Bookmark and Share

Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.


[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: st: Matched ID in Kernel Matching (PSMATCH2)


From   Austin Nichols <[email protected]>
To   [email protected]
Subject   Re: st: Matched ID in Kernel Matching (PSMATCH2)
Date   Wed, 29 Sep 2010 00:42:35 -0400

Santosh Kumar <[email protected]>
I see one obvious typo:
g w=cond(improved,`m'/(-`m'),pscore/(1-pscore))
should be
g w=cond(improved,`m'/(1-`m'),pscore/(1-pscore))
as the weights are based on odds, and m over -m is just -1.

On Tue, Sep 28, 2010 at 4:09 PM, Santosh Kumar <[email protected]> wrote:
> Dear Austin,
>
> I followed your syntax for weighting and then ran OLS. But why does it
> drop the treatment variable, that is "improved" in my regression. Are
> "t" and "w" collinear?
>
> Thanks for your inputs.
> Santosh
>
> su improved, mean
>
> . loc m=r(mean)
>
> . la var pscore "Estimated Propensity Score"
>
> . g w=cond(improved,  `m'/(-`m'),pscore/(1-pscore))
> (1876 missing values generated)
>
> . xi: reg diarr improved  piped m_age h_age m_yrsch h_yrsch pucca
> hindu muslim dsc dst dobc i.state i.vmonth awadi bpl elec [pw=w]
> i.state           _Istate_1-34        (naturally coded; _Istate_1 omitted)
> i.vmonth          _Ivmonth_1-12       (naturally coded; _Ivmonth_1 omitted)
> (sum of wgt is   7.2979e+06)
> note: improved omitted because of collinearity
>
> Linear regression                                      Number of obs =  159136
>                                                       F( 52,159083) =   80.28
>                                                       Prob > F      =  0.0000
>                                                       R-squared     =  0.5534
>                                                       Root MSE      =  .21132
>
> ------------------------------------------------------------------------------
>             |               Robust
>       diarr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
> -------------+----------------------------------------------------------------
>    improved |  (omitted)
>       piped |  -.2922823   .1117145    -2.62   0.009    -.5112403   -.0733243
>       m_age |  -.0122199    .002744    -4.45   0.000    -.0175981   -.0068417
>       h_age |  -.0012004   .0029404    -0.41   0.683    -.0069635    .0045628
>     m_yrsch |   .0006469   .0011709     0.55   0.581    -.0016482    .0029419
>     h_yrsch |   .0015974   .0024514     0.65   0.515    -.0032072    .0064021
>       pucca |   .0967932   .0224104     4.32   0.000     .0528692    .1407171
>       hindu |   -.126827   .0434699    -2.92   0.004    -.2120271    -.041627
>
> On Fri, Sep 24, 2010 at 1:02 PM, Austin Nichols <[email protected]> wrote:
>> Santosh Kumar <[email protected]>:
>>
>> Your -psmatch2- syntax is suspect, since you are not regressing a
>> treatment indicator on controls.  That said...
>> Why not reweight instead of match?
>>
>> la var t "Treatment"
>> su t, mean
>> loc m=r(mean)
>> la var pvar "Estimated Propensity Score"
>> g w=cond(t,`m'/(`-`m'),pvar/(1-pvar))
>> la var w "ATT weight"
>> logit y t x* [pw=w]
>>
>> Have you tried rerunning -psmatch2- multiple times to see if you get
>> the same estimate every time?  My guess is that your estimate depends
>> on the sort order of your data, which is an odd feature for any
>> estimator.
>>
>>
>> On Thu, Sep 23, 2010 at 12:38 PM, Santosh Kumar <[email protected]> wrote:
>>> Dear listserv,
>>>
>>> I want to use propensity score matching to match the treated with the
>>> control. I am using Kernel matching. Instead of getting ATT, I want to
>>> run a logistic regression on the matched sample. I am struggling to
>>> create a matched sample in kernel matching. In nearest neighbor
>>> matching, follwoing syntax will created a matched sample.
>>>
>>> psmatch2 xvar, pscore(pvar) outcome(yvar) caliper(.001) noreplace
>>> neighbor(1)
>>> gen pair = _id if _treated==0
>>> replace pair = _n1 if _treated==1
>>> bysort pair: egen paircount = count(pair)
>>> drop if paircount !=2
>>> save paired, replace
>>>
>>> Could anyone help me in creating a matched sample with Kernel Matching?

*
*   For searches and help try:
*   http://www.stata.com/help.cgi?search
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/


© Copyright 1996–2018 StataCorp LLC   |   Terms of use   |   Privacy   |   Contact us   |   Site index