Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
From | Paolina Medina <carmencitamedina@gmail.com> |
To | statalist@hsphsun2.harvard.edu |
Subject | Re: st: Generalized lineal models with survey data |
Date | Tue, 27 Jul 2010 11:30:09 -0500 |
Thank you both, very much. So this almost zero alpha, without a confidence interval can be taken to indicate that there is no overdispersion in the model? Here is my svyset statement and the complete output.. I am using 52 regressors (including the constant), i really dont know how many are the design degrees of freedom... But in fact whenever i take any of these regressors i get a lot of troubles with convergence in the survey results (not concave or backed up) and i have to throw away many other regressors to get convergence again. Do you know anything i can do to fix this? Thank you very much again in advance!! svyset upm [weight=factor], strata(estrato) (sampling weights assumed) pweight: factor VCE: linearized Strata 1: estrato SU 1: upm FPC 1: <zero> . svy: nbreg ncels resmay6 numradios nTVs tfijo tpaga luz ncompus internet prim2 sec2 prepa2 normal2 tec2 pro2 m2 doc2 traba > jadores e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e22 e23 e24 e25 e26 e27 e28 e29 e30 e31 > e32 estrato1 estrato2 estrato3 estrato4, log (running nbreg on estimation sample) note: e3 dropped due to collinearity note: estrato2 dropped due to collinearity Fitting Poisson model: Iteration 0: log pseudolikelihood = -32297663 Iteration 1: log pseudolikelihood = -32264546 Iteration 2: log pseudolikelihood = -32264459 Iteration 3: log pseudolikelihood = -32264459 Fitting constant-only model: Iteration 0: log pseudolikelihood = -41335387 Iteration 1: log pseudolikelihood = -40428544 Iteration 2: log pseudolikelihood = -40419335 Iteration 3: log pseudolikelihood = -40418972 Iteration 4: log pseudolikelihood = -40418972 Fitting full model: Iteration 0: log pseudolikelihood = -34707498 Iteration 1: log pseudolikelihood = -32843264 Iteration 2: log pseudolikelihood = -32387977 Iteration 3: log pseudolikelihood = -32296994 Iteration 4: log pseudolikelihood = -32272196 Iteration 5: log pseudolikelihood = -32265972 Iteration 6: log pseudolikelihood = -32264708 Iteration 7: log pseudolikelihood = -32264488 Iteration 8: log pseudolikelihood = -32264465 Iteration 9: log pseudolikelihood = -32264460 Iteration 10: log pseudolikelihood = -32264459 Iteration 11: log pseudolikelihood = -32264459 (not concave) Negative binomial regression Number of obs = 6089 LR chi2(50) = 1.63e+07 Dispersion = mean Prob > chi2 = 0.0000 Log pseudolikelihood = -32264459 Pseudo R2 = 0.2017 ------------------------------------------------------------------------------ ncels | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- resmay6 | -.1189499 .0003869 -307.48 0.000 -.1197081 -.1181917 numradios | .0516967 .0002443 211.65 0.000 .0512179 .0521754 nTVs | .1765134 .0001923 918.12 0.000 .1761366 .1768902 tfijo | -.1133193 .0004484 -252.70 0.000 -.1141982 -.1124403 tpaga | .1687625 .0004486 376.22 0.000 .1678833 .1696417 luz | .7604265 .0046124 164.87 0.000 .7513864 .7694665 ncompus | .1401202 .0003325 421.45 0.000 .1394686 .1407718 internet | -.0047512 .0005739 -8.28 0.000 -.0058761 -.0036264 prim2 | .1220793 .0004182 291.90 0.000 .1212596 .122899 sec2 | .1243138 .0002344 530.28 0.000 .1238543 .1247733 prepa2 | .0985697 .0002857 344.95 0.000 .0980097 .0991298 normal2 | -.0754922 .0007591 -99.45 0.000 -.07698 -.0740044 tec2 | .0036673 .0007941 4.62 0.000 .002111 .0052236 pro2 | .0751997 .0004025 186.83 0.000 .0744109 .0759886 m2 | .0292361 .0007304 40.03 0.000 .0278046 .0306677 doc2 | -.160645 .002035 -78.94 0.000 -.1646335 -.1566565 trabajadores | .1317086 .0001916 687.47 0.000 .1313331 .1320841 e1 | .0016872 .002384 0.71 0.479 -.0029854 .0063599 e2 | .0648906 .002022 32.09 0.000 .0609276 .0688537 e4 | -.0181868 .0026577 -6.84 0.000 -.0233957 -.0129778 e5 | -.1868008 .0021267 -87.83 0.000 -.1909691 -.1826324 e6 | .1466343 .0026388 55.57 0.000 .1414623 .1518062 e7 | -.3935254 .0021961 -179.20 0.000 -.3978296 -.3892212 e8 | -.1245181 .0020253 -61.48 0.000 -.1284877 -.1205485 e9 | -.2299045 .0019112 -120.29 0.000 -.2336504 -.2261585 e10 | -.0837978 .0022478 -37.28 0.000 -.0882033 -.0793922 e11 | -.3531027 .0020698 -170.60 0.000 -.3571595 -.349046 e12 | -.4600149 .00238 -193.28 0.000 -.4646797 -.4553501 e13 | -.3038531 .002392 -127.03 0.000 -.3085414 -.2991648 e14 | -.127427 .0019299 -66.03 0.000 -.1312096 -.1236444 e15 | -.3696336 .0019058 -193.95 0.000 -.3733689 -.3658982 e16 | -.001945 .0020393 -0.95 0.340 -.0059418 .0020519 e17 | -.1287652 .0023403 -55.02 0.000 -.1333522 -.1241783 e18 | -.1066276 .0026009 -41.00 0.000 -.1117253 -.1015299 e19 | -.1713326 .0019934 -85.95 0.000 -.1752395 -.1674257 e20 | -.3297286 .0023891 -138.02 0.000 -.3344111 -.3250461 e21 | -.2838858 .0020318 -139.72 0.000 -.287868 -.2799037 e22 | -.0790438 .0022371 -35.33 0.000 -.0834285 -.0746591 e23 | .1517953 .0022013 68.96 0.000 .1474808 .1561099 e24 | -.2631786 .0022394 -117.52 0.000 -.2675677 -.2587895 e25 | .0587088 .0021346 27.50 0.000 .0545251 .0628925 e26 | .0442961 .0020797 21.30 0.000 .0402199 .0483723 e27 | .165134 .0021816 75.69 0.000 .1608581 .1694098 e28 | -.0281822 .0020233 -13.93 0.000 -.0321478 -.0242167 e29 | -.6082309 .002915 -208.66 0.000 -.6139442 -.6025177 e30 | -.1442515 .0020102 -71.76 0.000 -.1481914 -.1403116 e31 | .0250986 .0022023 11.40 0.000 .0207822 .0294149 e32 | -.1352461 .0025166 -53.74 0.000 -.1401785 -.1303137 estrato1 | .189495 .0005579 339.69 0.000 .1884016 .1905883 estrato3 | -.322916 .0010167 -317.62 0.000 -.3249087 -.3209234 estrato4 | -.479242 .0008096 -591.98 0.000 -.4808287 -.4776553 _cons | -1.493952 .0049766 -300.19 0.000 -1.503706 -1.484198 -------------+---------------------------------------------------------------- /lnalpha | -23.93108 . . . -------------+---------------------------------------------------------------- alpha | 4.04e-11 . . . ------------------------------------------------------------------------------ Likelihood-ratio test of alpha=0: chibar2(01) = 0.00 Prob>=chibar2 = 1.000 Computing scores... Survey results: Survey: Negative binomial regression Number of strata = 4 Number of obs = 6089 Number of PSUs = 837 Population size = 27782772 Design df = 833 F( 51, 783) = 50.61 Prob > F = 0.0000 ------------------------------------------------------------------------------ | Linearized ncels | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- resmay6 | -.1189499 .0302713 -3.93 0.000 -.1783669 -.0595329 numradios | .0516967 .019889 2.60 0.010 .0126581 .0907352 nTVs | .1765134 .0210548 8.38 0.000 .1351867 .2178402 tfijo | -.1133193 .0389423 -2.91 0.004 -.1897558 -.0368827 tpaga | .1687625 .0330961 5.10 0.000 .1038009 .233724 luz | .7604265 .4341484 1.75 0.080 -.091727 1.61258 ncompus | .1401202 .0232643 6.02 0.000 .0944567 .1857837 internet | -.0047512 .0434178 -0.11 0.913 -.0899725 .08047 prim2 | .1220793 .0353386 3.45 0.001 .0527162 .1914425 sec2 | .1243138 .0272578 4.56 0.000 .0708117 .1778159 prepa2 | .0985697 .0253691 3.89 0.000 .0487748 .1483647 normal2 | -.0754922 .0678928 -1.11 0.266 -.2087533 .0577689 tec2 | .0036673 .0752994 0.05 0.961 -.1441316 .1514662 pro2 | .0751997 .038429 1.96 0.051 -.0002293 .1506288 m2 | .0292361 .04043 0.72 0.470 -.0501205 .1085927 doc2 | -.160645 .0938375 -1.71 0.087 -.3448307 .0235407 trabajadores | .1317086 .0193343 6.81 0.000 .093759 .1696583 e1 | .0016872 .1667689 0.01 0.992 -.3256494 .3290239 e2 | .0648906 .1476771 0.44 0.660 -.2249723 .3547535 e4 | -.0181868 .1666332 -0.11 0.913 -.345257 .3088835 e5 | -.1868008 .1583675 -1.18 0.239 -.4976471 .1240456 e6 | .1466343 .1557808 0.94 0.347 -.1591347 .4524032 e7 | -.3935254 .2460117 -1.60 0.110 -.876401 .0893502 e8 | -.1245181 .1549826 -0.80 0.422 -.4287205 .1796842 e9 | -.2299045 .1487182 -1.55 0.123 -.5218109 .062002 e10 | -.0837978 .2982255 -0.28 0.779 -.6691594 .5015639 e11 | -.3531027 .1536798 -2.30 0.022 -.6547479 -.0514576 e12 | -.4600149 .1721165 -2.67 0.008 -.7978478 -.122182 e13 | -.3038531 .1661254 -1.83 0.068 -.6299266 .0222204 e14 | -.127427 .1614396 -0.79 0.430 -.4443031 .1894491 e15 | -.3696336 .151954 -2.43 0.015 -.6678914 -.0713758 e16 | -.001945 .2189627 -0.01 0.993 -.4317284 .4278385 e17 | -.1287652 .1711779 -0.75 0.452 -.4647559 .2072255 e18 | -.1066276 .162161 -0.66 0.511 -.4249198 .2116646 e19 | -.1713326 .1540608 -1.11 0.266 -.4737256 .1310603 e20 | -.3297286 .2472161 -1.33 0.183 -.8149682 .155511 e21 | -.2838858 .1542873 -1.84 0.066 -.5867234 .0189518 e22 | -.0790438 .1822687 -0.43 0.665 -.4368038 .2787162 e23 | .1517953 .1548563 0.98 0.327 -.1521591 .4557498 e24 | -.2631786 .179553 -1.47 0.143 -.6156081 .0892509 e25 | .0587088 .176449 0.33 0.739 -.2876282 .4050458 e26 | .0442961 .1611852 0.27 0.784 -.2720808 .3606729 e27 | .165134 .168757 0.98 0.328 -.1661049 .4963729 e28 | -.0281822 .1619115 -0.17 0.862 -.3459847 .2896203 e29 | -.6082309 .1689908 -3.60 0.000 -.9399288 -.2765331 e30 | -.1442515 .190234 -0.76 0.448 -.5176458 .2291428 e31 | .0250986 .1760391 0.14 0.887 -.3204338 .3706309 e32 | -.1352461 .2260741 -0.60 0.550 -.578988 .3084957 estrato1 | .189495 .0642525 2.95 0.003 .0633791 .3156108 estrato3 | -.322916 .111296 -2.90 0.004 -.5413697 -.1044624 estrato4 | -.479242 .1214264 -3.95 0.000 -.7175798 -.2409043 _cons | -1.493952 .4622372 -3.23 0.001 -2.401239 -.5866658 -------------+---------------------------------------------------------------- /lnalpha | -23.93108 . . . -------------+---------------------------------------------------------------- alpha | 4.04e-11 . . . ------------------------------------------------------------------------------ On Tue, Jul 27, 2010 at 11:14 AM, Stas Kolenikov <skolenik@gmail.com> wrote: > Most likely, you run out of degrees of freedom. They should be > reported in -svy:- output, and if you have more regressors/model > parameters than the design d.f., you will have missing standard > errors. > > On Tue, Jul 27, 2010 at 4:51 PM, Paolina Medina > <carmencitamedina@gmail.com> wrote: >> Thank you very much Steve for your help, in fact i have tried to run >> the svy: nbreg command, but i am encountering some problems, i hope >> you can help me: >> >> This is the regression that i run: >> >> svy: nbreg ncels residents numradios nTVs dfixedphone delectricity >> ncompus dinternet elementary highschool phd workingpeople e1 e2 e3 e4 >> e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e22 e23 >> e24 e25 e26 e27 e28 e29 e30 e31 e32 estrato1 estrato2 estrato3 >> estrato4, log >> >> I am trying to estimate coefficients for the number of cell phones in >> mexican households using a technology specialized survey. I use some >> socioeconomic variables, 32 dummies one for each state in mexico, and >> 4 dummies indicating the size of the town. >> >> But in the first stage of the regresion, below the coefficients estimates i get: >> >> -------------+---------------------------------------------------------------- >> /lnalpha | -23.93108 . . . >> -------------+---------------------------------------------------------------- >> alpha | 4.04e-11 . . . >> ------------------------------------------------------------------------------ >> Likelihood-ratio test of alpha=0: chibar2(01) = 0.00 Prob>=chibar2 = 1.000 >> >> >> And in the survey results, below the coefficients estimates i get >> >> -------------+---------------------------------------------------------------- >> /lnalpha | -23.93108 . . . >> -------------+---------------------------------------------------------------- >> alpha | 4.04e-11 . . . >> ------------------------------------------------------------------------------ >> >> I understand that stata wont calculate the LR test for alpha when it >> comes to survey data, but as you may see it is not even giving me the >> confidence interval! >> >> Do you happen to know what is happening? >> >> Thank you very very much in advance! >> >> Regards! >> >> PM >> >> >> >> >> >> >> >> On Mon, Jul 26, 2010 at 10:24 PM, Steve Samuels <sjsamuels@gmail.com> wrote: >>> In Version 9, -svy: nbreg- and -svy: gnbreg- will work for you. Both >>> fit generalizations of the Poisson with extra dispersion. -svy: glm- >>> was not available until Stata 10. >>> >>> Steve >>> >>> >>> On Mon, Jul 26, 2010 at 10:00 PM, Paolina Medina >>> <carmencitamedina@gmail.com> wrote: >>>> Dear statalisters, >>>> Is it possible to perform a regression using glm with survey data in stata 9? >>>> I have count data with overdispersion (mean 1.21, variance 1.70). >>>> Thank you very much in advance, >>>> PM >>>> * >>>> * For searches and help try: >>>> * http://www.stata.com/help.cgi?search >>>> * http://www.stata.com/support/statalist/faq >>>> * http://www.ats.ucla.edu/stat/stata/ >>>> >>> >>> >>> >>> -- >>> Steven Samuels >>> sjsamuels@gmail.com >>> 18 Cantine's Island >>> Saugerties NY 12477 >>> USA >>> Voice: 845-246-0774 >>> Fax: 206-202-4783 >>> >>> * >>> * For searches and help try: >>> * http://www.stata.com/help.cgi?search >>> * http://www.stata.com/support/statalist/faq >>> * http://www.ats.ucla.edu/stat/stata/ >>> >> >> >> >> -- >> Paolina Medina Palma >> >> * >> * For searches and help try: >> * http://www.stata.com/help.cgi?search >> * http://www.stata.com/support/statalist/faq >> * http://www.ats.ucla.edu/stat/stata/ >> > > > > -- > Stas Kolenikov, also found at http://stas.kolenikov.name > Small print: I use this email account for mailing lists only. > > * > * For searches and help try: > * http://www.stata.com/help.cgi?search > * http://www.stata.com/support/statalist/faq > * http://www.ats.ucla.edu/stat/stata/ > -- Paolina Medina Palma * * For searches and help try: * http://www.stata.com/help.cgi?search * http://www.stata.com/support/statalist/faq * http://www.ats.ucla.edu/stat/stata/