Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: st: Comparison of the R-squared in a loglog and linear model
From
"Joao Ricardo F. Lima" <[email protected]>
To
[email protected]
Subject
Re: st: Comparison of the R-squared in a loglog and linear model
Date
Sat, 19 Jun 2010 17:46:51 -0300
Martin,
exactly! Thx!
JL
2010/6/19 Martin Weiss <[email protected]>:
>
> <>
>
> Shorthand for a "million", I would say:
>
> *************
> di 1e6
> *************
>
>
>
> HTH
> Martin
>
>
> -----Ursprüngliche Nachricht-----
> Von: [email protected]
> [mailto:[email protected]] Im Auftrag von Joao Ricardo F.
> Lima
> Gesendet: Samstag, 19. Juni 2010 19:11
> An: [email protected]
> Betreff: Re: st: Comparison of the R-squared in a loglog and linear model
>
> Austin,
>
> the question is not my opinion to the thread. I only don't understand
> this part of the code:
>
> g mse_xb=(totexp-xb)^2/1e6
>
> What's -1e6-??
>
> Thx a lot,
>
> Joao Lima
>
> 2010/6/18 Austin Nichols <[email protected]>:
>> Kit et al.--
>> Duan's smearing method is one approach to dealing with a logged
>> depvar; a better approach is to use a regression technique that
>> respects the functional form, like -poisson- (or another member of the
>> -glm- family). But you still cannot compare the R-squared across
>> non-nested models and hope to conclude anything about which model is
>> better from that information alone. Mean squared prediction error in
>> levels for the nonzero outcomes seems a reasonable criterion for
>> rejecting the log(y) regression model below.
>>
>> use http://fmwww.bc.edu/ec-p/data/mus/mus03data, clear
>> qui reg totexp suppins phylim actlim totchr age female income
>> predict xb
>> qui reg ltotexp suppins phylim actlim totchr age female income
>> levpredict tenorm
>> levpredict teduan, duan print
>> qui poisson totexp suppins phylim actlim totchr age female income
>> predict tepois
>> qui nbreg totexp suppins phylim actlim totchr age female income
>> predict tenbreg
>> su totexp xb te*
>> su totexp xb te* if totexp>0
>> corr totexp xb te*
>>
>> g mse_norm=(totexp-tenorm)^2/1e6
>> g mse_duan=(totexp-teduan)^2/1e6
>> g mse_pois=(totexp-tepois)^2/1e6
>> g mse_nbreg=(totexp-tenbreg)^2/1e6
>> su mse*
>> su mse* if totexp>0
>>
>> Variable | Obs Mean Std. Dev. Min Max
>> -------------+--------------------------------------------------------
>> mse_xb | 2955 127.0504 642.6503 .00005 12779.11
>> mse_norm | 2955 142.4353 641.0374 3.32e-06 11744.09
>> mse_duan | 2955 140.7604 644.1605 .0000549 11842.16
>> mse_pois | 2955 128.3255 648.1356 4.52e-06 12841.78
>> mse_nbreg | 2955 131.8694 642.3027 2.48e-06 12432.65
>>
>> For those enamored of scatter plots for this kind of comparison, much
>> more work is required to get a good picture of fit. This is one
>> approach:
>>
>> g cr_te=totexp^(1/3)
>> g cr_xb=sign(xb)*abs(xb)^(1/3)
>> g cr_norm=tenorm^(1/3)
>> g cr_duan=teduan^(1/3)
>> g cr_pois=tepois^(1/3)
>> g cr_nbreg=tenbreg^(1/3)
>> sc cr_* cr_te if totexp>0, msize(1 1 1 1 1 1)
>>
>> On Fri, Jun 18, 2010 at 9:47 AM, Christopher Baum <[email protected]> wrote:
>>> <>
>>> On Jun 18, 2010, at 2:33 AM, Natalie wrote:
>>>
>>>> Can I not maybe obtain the antilog predicted values for the log log
>>>> model and compute the R-squared between the antilog of the observed and
>>>> predicted values. And then compare this R-square with the R-square
>>>> obtained from OLS estimation of the linear model?
>>>>
>>>> There are other statistical programs that can do this automatically, but
>>>> as I work with Stata, I'd rather do it with this program.
>>>
>>>
>>> findit levpredict
>>>
>>> Generate the level form of the dependent variable (correctly, using this
> routine) and then
>>> compute the squared correlation between that and the original level
> variable. That will be the
>>> R^2 of the log form of the regression.
>> *
>> * For searches and help try:
>> * http://www.stata.com/help.cgi?search
>> * http://www.stata.com/support/statalist/faq
>> * http://www.ats.ucla.edu/stat/stata/
>>
>
>
>
> --
> ----------------------------------------
> Joao Ricardo Lima, D.Sc.
> Professor
> UFPB-CCA-DCFS
> Fone: +558387264913
> Skype: joao_ricardo_lima
> ----------------------------------------
>
> *
> * For searches and help try:
> * http://www.stata.com/help.cgi?search
> * http://www.stata.com/support/statalist/faq
> * http://www.ats.ucla.edu/stat/stata/
>
>
> *
> * For searches and help try:
> * http://www.stata.com/help.cgi?search
> * http://www.stata.com/support/statalist/faq
> * http://www.ats.ucla.edu/stat/stata/
>
--
----------------------------------------
Joao Ricardo Lima, D.Sc.
Professor
UFPB-CCA-DCFS
Fone: +558387264913
Skype: joao_ricardo_lima
----------------------------------------
*
* For searches and help try:
* http://www.stata.com/help.cgi?search
* http://www.stata.com/support/statalist/faq
* http://www.ats.ucla.edu/stat/stata/