Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Subject: st: how to interpret interaction effects in negative binomial model
From
[email protected]
To
[email protected]
Subject
Subject: st: how to interpret interaction effects in negative binomial model
Date
Tue, 23 Mar 2010 11:42:42 -0400
I have written an appendix for a forthcoming book on constructing and
interpreting interactions for count models. I'll send
it to the email address given in your communication. If you happen to
have a copy of my book, Logistic Regression Models
(2009, Chapman & Hall/CRC) , I devote an entire chapter to the
construction and interpretation of interactions for logistic models.
The logic of construction is fairly much the same -- but not identical
-- for count models. The interpretation, of course, differs. But for an
overview of constructing interactions for nonlinear models it is I
think a good resource. If you have it available you may want to check
it out. But this appendix should give you guidance on resolving your
query specifically for count models such as the negative binomial. .
Joseph Hilbe
From: "WANG Shiheng" <[email protected]>
Subject: st: how to interpret interaction effects in negative binomial
model
Dear all,
I have a question about how to interpret the interaction items in
negative binomial regression.
In the following model “post†is a dummy variable (0 or 1) to
indicate two
different periods (0 represents the first period, 1 represents the
second
period). “treatment†is a dummy variable (0 or 1) to indicate two
different groups –“treatment sampleâ€(1) vs. “control sampleâ€
(0). The
interaction is the product of the two dummies. The dependent variable is
the number of analysts. My research objective is to examine whether the
number of analysts changes over the two periods, and whether the changes
over periods differ between the treatment sample and control sample.
I have the following questions for the estimates below:
(1) the coefficient on "post" is not significant, does this mean that
the
change in the number of analysts from period 1 to period2 is not
statistically significant in the control group?
(2) the coefficient on the interaction term "post*treatment" is
significantly positive, does this mean that the change in the number of
analysts from period 1 to period2 is significantly greater in the
treatment sample than the control sample? How to interpret the
coefficient
on the interaction term exactly? How can I calculate if the changes in
number of analysts from period 1 to period 2 differ between the
treatment
sample and control sample?
Negative binomial regression Number of obs =
30274
Dispersion = mean Wald chi2(37) =
.
Log pseudolikelihood = -27412.392 Prob > chi2 =
.
(Std.Err.adjusted for 45 clusters in n)
-
-------------------------------------------------------------------------
--
| Robust
Analysts | Coef. Std. Err. z P>|z| [95% Conf.
Interval]
-
-----------+-------------------------------------------------------------
post .0610886 .0743914 0.82 0.412 -.0847159
.2068931
treatmen -2.975135 .1591135 -18.70 0.000 -3.286992
-2.663278
post*treatment .214007 .0730457 2.93 0.003 .0708402
.3571739
-
-------------------------------------------------------------------------
--
Your help is greatly appreciated.
- --
Shiheng Wang
Assistant Professor
Department of Accounting
School of Business and Management
Hong Kong University of Science and Technology
Tel: 852 2358 7570
Fax: 852 2358 1693
Email: [email protected]
*
* For searches and help try:
* http://www.stata.com/help.cgi?search
* http://www.stata.com/support/statalist/faq
* http://www.ats.ucla.edu/stat/stata/