Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
st: Re: ivprobit marginal effects
From
Christopher Baum <[email protected]>
To
"Torres, Margarita Liliana Vides Morales de" <[email protected]>
Subject
st: Re: ivprobit marginal effects
Date
Tue, 2 Mar 2010 14:07:43 -0500
That is because, as help ivprobit postestimation indicates, the default action of predict is to compute xb, the latent variable, rather than the probability of a positive outcome, option pr.
Using the example from help ivprobit:
. webuse laborsup, clear
. ivprobit fem_work fem_educ kids (other_inc = male_educ), nolog
Probit model with endogenous regressors Number of obs = 500
Wald chi2(3) = 163.88
Log likelihood = -2368.2062 Prob > chi2 = 0.0000
------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
other_inc | -.0542756 .0060854 -8.92 0.000 -.0662027 -.0423485
fem_educ | .211111 .0268648 7.86 0.000 .1584569 .2637651
kids | -.1820929 .0478267 -3.81 0.000 -.2758316 -.0883543
_cons | .3672083 .4480724 0.82 0.412 -.5109975 1.245414
-------------+----------------------------------------------------------------
/athrho | .3907858 .1509443 2.59 0.010 .0949403 .6866313
/lnsigma | 2.813383 .0316228 88.97 0.000 2.751404 2.875363
-------------+----------------------------------------------------------------
rho | .3720374 .1300519 .0946561 .5958135
sigma | 16.66621 .5270318 15.66461 17.73186
------------------------------------------------------------------------------
Instrumented: other_inc
Instruments: fem_educ kids male_educ
------------------------------------------------------------------------------
Wald test of exogeneity (/athrho = 0): chi2(1) = 6.70 Prob > chi2 = 0.0096
. margins
Predictive margins Number of obs = 500
Model VCE : OIM
Expression : Fitted values, predict()
------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_cons | -.1417621 .0624493 -2.27 0.023 -.2641605 -.0193638
------------------------------------------------------------------------------
. margins, pred(pr)
Predictive margins Number of obs = 500
Model VCE : OIM
Expression : Probability of positive outcome, predict(pr)
------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_cons | .4627798 .0161664 28.63 0.000 .4310943 .4944654
------------------------------------------------------------------------------
. margins, dydx(_all) pred(pr)
Average marginal effects Number of obs = 500
Model VCE : OIM
Expression : Probability of positive outcome, predict(pr)
dy/dx w.r.t. : other_inc fem_educ kids male_educ
------------------------------------------------------------------------------
| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
other_inc | -.014015 .0009836 -14.25 0.000 -.0159428 -.0120872
fem_educ | .0545129 .0066007 8.26 0.000 .0415758 .06745
kids | -.0470199 .0123397 -3.81 0.000 -.0712052 -.0228346
male_educ | (omitted)
------------------------------------------------------------------------------
. mfx compute
Marginal effects after ivprobit
y = Fitted values (predict)
= -.14176214
------------------------------------------------------------------------------
variable | dy/dx Std. Err. z P>|z| [ 95% C.I. ] X
---------+--------------------------------------------------------------------
other_~c | -.0542756 .00609 -8.92 0.000 -.066203 -.042348 49.6023
fem_educ | .211111 .02686 7.86 0.000 .158457 .263765 12.046
kids | -.1820929 .04783 -3.81 0.000 -.275832 -.088354 1.976
------------------------------------------------------------------------------
. mfx compute, pred(pr)
Marginal effects after ivprobit
y = Probability of positive outcome (predict, pr)
= .44363395
------------------------------------------------------------------------------
variable | dy/dx Std. Err. z P>|z| [ 95% C.I. ] X
---------+--------------------------------------------------------------------
other_~c | -.0214364 .00242 -8.87 0.000 -.026176 -.016697 49.6023
fem_educ | .0833791 .01057 7.89 0.000 .062664 .104094 12.046
kids | -.0719183 .01888 -3.81 0.000 -.108927 -.03491 1.976
------------------------------------------------------------------------------
.
end of do-file
.
Note that -margins- in Stata 11 gives you the same fitted value of -0.1418 as does mfx_compute. Likewise, margins, pred(pr) gives you a probability. That value agrees with mfx compute, pred(pr). The marginal effects from the two commands do not agree because mfx compute evaluates the derivatives at the point of means, whereas margins computes average marginal effects.
help mfx shows you that the default setting is 'discrete', that is, evaluate the marginal effect of a dummy going from 0->1. 'nodiscrete' turns that off. For the margins command, it is the continuous option, which is not the default. Dummies by default are treated as dummies by both mfx and margins.
Kit Baum | Boston College Economics and DIW Berlin | http://ideas.repec.org/e/pba1.html
An Introduction to Stata Programming | http://www.stata-press.com/books/isp.html
An Introduction to Modern Econometrics Using Stata | http://www.stata-press.com/books/imeus.html
On Mar 2, 2010, at 11:56 AM, Torres, Margarita Liliana Vides Morales de wrote:
> Dear Kit:
> I am working on a model using ivprobit over 8 different sets of data, when
> looking at the result from mfx command (Stata10) all of them are negative
> and its absolute value greater than 1.
> As an example one of the result says:
> Marginal effects after ivprobit
> y = Fitted valued (predict)
> = -2.02 How should I interpret this number?
> At the same time the first derivative dy/dx are the same as the regression
> coefficients.
> One last thing where can I find documentation of treatment of a dummy in
> the marginal effected calculated by stata 10? the help of mfx just said
> that is calculated with their mean, does it apply for the dummies variable
> as well?
>
> When working with probit mfx result is positive lower than 1. and the
> coefficients are different from the regression, all is perfect.
>
> Thanks in advance.
>
> Liliana Vides
>
*
* For searches and help try:
* http://www.stata.com/help.cgi?search
* http://www.stata.com/support/statalist/faq
* http://www.ats.ucla.edu/stat/stata/