Statalist


[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

st: RE: Can I compare the coefficients of one certain variable from two different samples by -suest-?


From   "Martin Weiss" <[email protected]>
To   <[email protected]>
Subject   st: RE: Can I compare the coefficients of one certain variable from two different samples by -suest-?
Date   Sun, 3 Jan 2010 20:37:15 +0100

<>

" If can, why the coeffiecients in -suest- are different from independent
-reg- no matter whether I take vce(robust) or not ?"

See [R], page 1802, first "technical note"


" What does "_lnvar" mean?"


See page 1803:

" regress does not include its ancillary parameter, the residual variance,
in its coefficient vector
and (co)variance matrix. Moreover, while the score option is allowed with
predict after regress,
a score variable is generated for the mean but not for the variance
parameter. suest contains special
code that assigns the equation name mean to the coefficients for the mean,
adds the equation lnvar
for the log variance, and computes the appropriate two score variables
itself."


HTH
Martin

-----Original Message-----
From: [email protected]
[mailto:[email protected]] On Behalf Of [email protected]
Sent: Sonntag, 3. Januar 2010 18:14
To: statalist
Subject: st: Can I compare the coefficients of one certain variable from two
different samples by -suest-?

Dear statalists,

Can I compare the coefficients  of one certain variable from two different
samples by -suest-?

If can, why the coeffiecients in -suest- are different from independent
-reg- no matter whether I take vce(robust) or not ? Which one should I take
to report?

What does "_lnvar" mean?


webuse income,clear

. 
.      regress inc edu exp if male

      Source |       SS       df       MS              Number of obs =
110
-------------+------------------------------           F(  2,   107) =
20.05
       Model |  639.919043     2  319.959521           Prob > F      =
0.0000
    Residual |  1707.31485   107  15.9562136           R-squared     =
0.2726
-------------+------------------------------           Adj R-squared =
0.2590
       Total |   2347.2339   109  21.5342559           Root MSE      =
3.9945

----------------------------------------------------------------------------
--
         inc |      Coef.   Std. Err.      t    P>|t|     [95% Conf.
Interval]
-------------+--------------------------------------------------------------
--
         edu |   1.841002    .383369     4.80   0.000     1.081018
2.600986
         exp |   1.590727   .3569439     4.46   0.000     .8831278
2.298327
       _cons |   1.783822   .3818906     4.67   0.000     1.026769
2.540876
----------------------------------------------------------------------------
--
. 
.      estimates store Male 
. 
. 
.      regress inc edu exp if !male

      Source |       SS       df       MS              Number of obs =
167
-------------+------------------------------           F(  2,   164) =
43.30
       Model |  1418.47853     2  709.239266           Prob > F      =
0.0000
    Residual |  2686.09306   164  16.3786162           R-squared     =
0.3456
-------------+------------------------------           Adj R-squared =
0.3376
       Total |  4104.57159   166  24.7263349           Root MSE      =
4.0471

----------------------------------------------------------------------------
--
         inc |      Coef.   Std. Err.      t    P>|t|     [95% Conf.
Interval]
-------------+--------------------------------------------------------------
--
         edu |   2.475213   .3160483     7.83   0.000     1.851165
3.099261
         exp |   1.354081   .3043211     4.45   0.000     .7531885
1.954974
       _cons |   1.250719   .3132966     3.99   0.000     .6321043
1.869334
----------------------------------------------------------------------------
--

. .     estimates store Female. 
. 
. 
.     suest Male Female

Simultaneous results for Male, Female

                                                  Number of obs   =
277

----------------------------------------------------------------------------
--
             |               Robust
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf.
Interval]
-------------+--------------------------------------------------------------
--
Male_mean    |
         edu |   1.841002   .3911029     4.71   0.000     1.074454
2.607549
         exp |   1.590727   .3320187     4.79   0.000     .9399827
2.241472
       _cons |   1.783822   .3829948     4.66   0.000     1.033166
2.534478
-------------+--------------------------------------------------------------
--
Male_lnvar   |
       _cons |   2.769848   .1328349    20.85   0.000     2.509497
3.0302
-------------+--------------------------------------------------------------
--
Female_mean  |
         edu |   2.475213   .3093986     8.00   0.000     1.868803
3.081623
         exp |   1.354081   .2982058     4.54   0.000     .7696084
1.938554
       _cons |   1.250719   .3122779     4.01   0.000      .638666
1.862773
-------------+--------------------------------------------------------------
--
Female_lnvar |
       _cons |   2.795977   .0976384    28.64   0.000     2.604609
2.987344
----------------------------------------------------------------------------
--


 . test [Male_mean]edu = [Female_mean]edu

 ( 1)  [Male_mean]edu - [Female_mean]edu = 0

           chi2(  1) =    1.62
         Prob > chi2 =    0.2035



Many thanks for any help!



Best regards,

Rose.
 

*
*   For searches and help try:
*   http://www.stata.com/help.cgi?search
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/

*
*   For searches and help try:
*   http://www.stata.com/help.cgi?search
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/



© Copyright 1996–2025 StataCorp LLC   |   Terms of use   |   Privacy   |   Contact us   |   What's new   |   Site index