Statalist


[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

st: RE: PCA vs. Factor Loadings


From   "Nick Cox" <[email protected]>
To   <[email protected]>
Subject   st: RE: PCA vs. Factor Loadings
Date   Wed, 16 Dec 2009 12:15:44 -0000

I think the short answer is that you are not comparing like with like. 

Loadings can be presented in various ways. See for example the help for
-pca postestimation- and then experiment with the different
normalisations on offer for -estat loadings-. 

The default presentation of PCA loadings is not what you want, but a
different normalisation shows that PCA and factor analysis coincide in
the limit: 

. pca headroom trunk weight length displacement

Principal components/correlation                  Number of obs    =
74
                                                  Number of comp.  =
5
                                                  Trace            =
5
    Rotation: (unrotated = principal)             Rho              =
1.0000

 
------------------------------------------------------------------------
--
       Component |   Eigenvalue   Difference         Proportion
Cumulative
 
-------------+----------------------------------------------------------
--
           Comp1 |      3.76201        3.026             0.7524
0.7524
           Comp2 |      .736006      .427915             0.1472
0.8996
           Comp3 |      .308091      .155465             0.0616
0.9612
           Comp4 |      .152627      .111357             0.0305
0.9917
           Comp5 |     .0412693            .             0.0083
1.0000
 
------------------------------------------------------------------------
--

Principal components (eigenvectors) 

 
------------------------------------------------------------------------
------
        Variable |    Comp1     Comp2     Comp3     Comp4     Comp5 |
Unexplained 
 
-------------+--------------------------------------------------+-------
------
        headroom |   0.3587    0.7640    0.5224   -0.1209    0.0130 |
0 
           trunk |   0.4334    0.3665   -0.7676    0.2914    0.0612 |
0 
          weight |   0.4842   -0.3329    0.0737   -0.2669    0.7603 |
0 
          length |   0.4863   -0.2372   -0.1050   -0.5745   -0.6051 |
0 
    displacement |   0.4610   -0.3390    0.3484    0.7065   -0.2279 |
0 
 
------------------------------------------------------------------------
------

. estat loadings, cnorm(eigen)

Principal component loadings (unrotated)
    component normalization: sum of squares(column) = eigenvalue

    ----------------------------------------------------------------
                 |    Comp1     Comp2     Comp3     Comp4     Comp5 
    -------------+--------------------------------------------------
        headroom |    .6958     .6554       .29   -.04724   .002635 
           trunk |    .8405     .3144    -.4261     .1138    .01243 
          weight |    .9392    -.2856    .04092    -.1043     .1545 
          length |    .9432    -.2035   -.05829    -.2245    -.1229 
    displacement |    .8942    -.2909     .1934      .276   -.04629 
    ----------------------------------------------------------------

. factor   headroom trunk weight length displacement, pcf
(obs=74)

Factor analysis/correlation                        Number of obs    =
74
    Method: principal-component factors            Retained factors =
1
    Rotation: (unrotated)                          Number of params =
5

 
------------------------------------------------------------------------
--
         Factor  |   Eigenvalue   Difference        Proportion
Cumulative
 
-------------+----------------------------------------------------------
--
        Factor1  |      3.76201      3.02600            0.7524
0.7524
        Factor2  |      0.73601      0.42791            0.1472
0.8996
        Factor3  |      0.30809      0.15546            0.0616
0.9612
        Factor4  |      0.15263      0.11136            0.0305
0.9917
        Factor5  |      0.04127            .            0.0083
1.0000
 
------------------------------------------------------------------------
--
    LR test: independent vs. saturated:  chi2(10) =  373.68 Prob>chi2 =
0.0000

Factor loadings (pattern matrix) and unique variances

    ---------------------------------------
        Variable |  Factor1 |   Uniqueness 
    -------------+----------+--------------
        headroom |   0.6958 |      0.5159  
           trunk |   0.8405 |      0.2935  
          weight |   0.9392 |      0.1180  
          length |   0.9432 |      0.1103  
    displacement |   0.8942 |      0.2003  
    ---------------------------------------

On the broader question, the question has some similarity with the
question of how big should a correlation be before one should pay
attention. I doubt there's an answer independent of discipline and
problem. 

Nick 
[email protected] 

Michael I. Lichter

Why are component loadings from -pca- so much smaller than factor 
loadings from -factor-? Is there something about the procedure used by 
Stata that makes them systematically smaller? I get the sense (which may

be mistaken; I don't have any evidence in my hand) that in other 
packages -pca- and -factor- loadings are more similar.

For example, in the example below the variable -trunk- has a component 
loading of 0.5068 and a factor loading of .8807, which is a fairly large

difference. Aside from the difference in the loading sizes, the 
solutions look comparable.

My question is prompted by a more fundamental question, which is how 
large should a loading be before it is considered significant (in the 
sense of "worthy of notice")? Texts that give advice on interpretation 
seem to assume that -pca- and -factor- results are on the same scale, 
and I am a bit flustered about what to do with the low-ish loadings I'm 
getting from -pca-.

Example:

. sysuse auto
. pca trunk weight length headroom, mineigen(1)

Principal components/correlation                  Number of obs    
=        74
                                                  Number of comp.  
=         1
                                                  Trace            
=         4
    Rotation: (unrotated = principal)             Rho              =    
0.7551

    
------------------------------------------------------------------------
--
       Component |   Eigenvalue   Difference         Proportion
Cumulative
    
-------------+----------------------------------------------------------
--
           Comp1 |      3.02027      2.36822             0.7551
0.7551
           Comp2 |      .652053       .37494             0.1630
0.9181
           Comp3 |      .277113      .226551             0.0693
0.9874
           Comp4 |     .0505616            .             0.0126
1.0000
    
------------------------------------------------------------------------
--

Principal components (eigenvectors)

    --------------------------------------
        Variable |    Comp1 | Unexplained
    -------------+----------+-------------
           trunk |   0.5068 |       .2243
          weight |   0.5221 |       .1768
          length |   0.5361 |       .1319
        headroom |   0.4280 |       .4467
    --------------------------------------
. factor trunk weight length headroom, pcf
(obs=74)

Factor analysis/correlation                        Number of obs    
=       74
    Method: principal-component factors            Retained factors 
=        1
    Rotation: (unrotated)                          Number of params 
=        4

    
------------------------------------------------------------------------
--
         Factor  |   Eigenvalue   Difference        Proportion
Cumulative
    
-------------+----------------------------------------------------------
--
        Factor1  |      3.02027      2.36822            0.7551
0.7551
        Factor2  |      0.65205      0.37494            0.1630
0.9181
        Factor3  |      0.27711      0.22655            0.0693
0.9874
        Factor4  |      0.05056            .            0.0126
1.0000
    
------------------------------------------------------------------------
--
    LR test: independent vs. saturated:  chi2(6)  =  257.89 Prob>chi2 = 
0.0000

Factor loadings (pattern matrix) and unique variances

    ---------------------------------------
        Variable |  Factor1 |   Uniqueness
    -------------+----------+--------------
           trunk |   0.8807 |      0.2243 
          weight |   0.9073 |      0.1768 
          length |   0.9317 |      0.1319 
        headroom |   0.7438 |      0.4467 
    ---------------------------------------

*
*   For searches and help try:
*   http://www.stata.com/help.cgi?search
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/



© Copyright 1996–2024 StataCorp LLC   |   Terms of use   |   Privacy   |   Contact us   |   What's new   |   Site index