|
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
st: validity of estimates when fiml heckman converges to rho=1
From |
Justin Falk <[email protected]> |
To |
[email protected] |
Subject |
st: validity of estimates when fiml heckman converges to rho=1 |
Date |
Wed, 4 Mar 2009 07:10:13 -0800 (PST) |
I estimated a sample selection model using the command heckman (with fiml, not the two-step approach). The program converged to a solution at which rho equals 1. I find the uniform estimates for the t-stats on the instruments in the selection equation suspicious. (I have pasted the output below.) Do you understand how those standard error for the instruments are calculate under such a boundary solution?
Cheers, Justin
heckman $y $treatment $w if $condition, select($s1=$treatment $z1 $w)
> cluster(name)Iteration 0: log pseudolikelihood = -2.1784177 (not concave)
Iteration 1: log pseudolikelihood = -2.1784172 (not concave)
Iteration 2: log pseudolikelihood = -2.1784167 (not concave)
Iteration 3: log pseudolikelihood = -2.1784161 (not concave)
Iteration 4: log pseudolikelihood = -2.1784151 (not concave)
Iteration 5: log pseudolikelihood = -2.1784142 (not concave)
Iteration 6: log pseudolikelihood = -2.1784122 (not concave)
Iteration 7: log pseudolikelihood = -2.0504685 (not concave)
Iteration 8: log pseudolikelihood = -1.8571609 (not concave)
Iteration 9: log pseudolikelihood = -1.53331 (not concave)
Iteration 10: log pseudolikelihood = -1.2231065
Iteration 11: log pseudolikelihood = -.44859226
Iteration 12: log pseudolikelihood = -.28555273 (not concave)
Iteration 13: log pseudolikelihood = -.19045476 (not concave)
Iteration 14: log pseudolikelihood = -.03164312 (not concave)
Iteration 15: log pseudolikelihood = .745585 (not concave)
Iteration 16: log pseudolikelihood = 2.1089315
Iteration 17: log pseudolikelihood = 2.8867084
Iteration 18: log pseudolikelihood = 3.5050768
Iteration 19: log pseudolikelihood = 3.7131656
Iteration 20: log pseudolikelihood = 3.7984129
Iteration 21: log pseudolikelihood = 4.0843501
Iteration 22: log pseudolikelihood = 4.2175989
Iteration 23: log pseudolikelihood = 4.2857362
Iteration 24: log pseudolikelihood = 4.3115319
Iteration 25: log pseudolikelihood = 4.3253351
Iteration 26: log pseudolikelihood = 4.3330355
Iteration 27: log pseudolikelihood = 4.3362203
Iteration 28: log pseudolikelihood = 4.3380159
Iteration 29: log pseudolikelihood = 4.3392351
Iteration 30: log pseudolikelihood = 4.3398897
Iteration 31: log pseudolikelihood = 4.3404044
Iteration 32: log pseudolikelihood = 4.3409418
Iteration 33: log pseudolikelihood = 4.3411832
Iteration 34: log pseudolikelihood = 4.3413712
Iteration 35: log pseudolikelihood = 4.3415178
Iteration 36: log pseudolikelihood = 4.341616
Iteration 37: log pseudolikelihood = 4.3416821
Iteration 38: log pseudolikelihood = 4.3417317
Iteration 39: log pseudolikelihood = 4.3417627
Iteration 40: log pseudolikelihood = 4.3417861
Iteration 41: log pseudolikelihood = 4.3417888
Iteration 42: log pseudolikelihood = 4.3418021
Iteration 43: log pseudolikelihood = 4.3418142 (not concave)
Iteration 44: log pseudolikelihood = 4.3418231
Iteration 45: log pseudolikelihood = 4.3418283
Iteration 46: log pseudolikelihood = 4.3418317
Iteration 47: log pseudolikelihood = 4.341835
Iteration 48: log pseudolikelihood = 4.3418369 (not concave)
Iteration 49: log pseudolikelihood = 4.3418389
Iteration 50: log pseudolikelihood = 4.3418396
Iteration 51: log pseudolikelihood = 4.3418398 (not concave)
Iteration 52: log pseudolikelihood = 4.3418414
Iteration 53: log pseudolikelihood = 4.3418432 (backed up)
Iteration 54: log pseudolikelihood = 4.3418433
Heckman selection model Number of obs = 103
(regression model with sample selection) Censored obs = 27
Uncensored obs = 76 Wald chi2(0) = .
Log pseudolikelihood = 4.341843 Prob > chi2 = . (Std. Err. adjusted for 56 clusters in name)
------------------------------------------------------------------------------
| Robust
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
votesharet |
disclosed | -.2157538 .03195 -6.75 0.000 -.2783746 -.1531331
_cons | .6482833 .0229978 28.19 0.000 .6032085 .6933581
-------------+----------------------------------------------------------------
nominated |
disclosed | -.8478425 .1875101 -4.52 0.000 -1.215356 -.4803295
dpension | .0075225 .0005421 13.88 0.000 .00646 .0085849
dpensioncdis | -.0052622 .0003792 -13.88 0.000 -.0060054 -.004519
senelection | -.0549624 .0039606 -13.88 0.000 -.0627251 -.0471997
senelectio~s | -.5100564 .0367549 -13.88 0.000 -.5820946 -.4380181
lasttake | .0004281 .0000309 13.88 0.000 .0003677 .0004886
_cons | 1.098665 .1229111 8.94 0.000 .8577637 1.339566
-------------+----------------------------------------------------------------
/athrho | 18.34718 .0978797 187.45 0.000 18.15534 18.53902
/lnsigma | -1.764034 .0720605 -24.48 0.000 -1.90527 -1.622798
-------------+----------------------------------------------------------------
rho | 1 6.52e-17 1 1
sigma | .1713523 .0123477 .1487825 .1973458
lambda | .1713523 .0123477 .1471512 .1955534
------------------------------------------------------------------------------
Wald test of indep. eqns. (rho = 0): chi2(1) = 35136.11 Prob > chi2 = 0.0000
------------------------------------------------------------------------------
*
* For searches and help try:
* http://www.stata.com/help.cgi?search
* http://www.stata.com/support/statalist/faq
* http://www.ats.ucla.edu/stat/stata/