[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: st: Correction for bias in regression estimates after log transformation
From
Richard Goldstein <[email protected]>
To
[email protected]
Subject
Re: st: Correction for bias in regression estimates after log transformation
Date
Wed, 17 Dec 2008 08:59:10 -0500
I thank Nick for mentioning my old program; note however, that the
program offers a choice between smearing and what I call the naive
estimator (treating the result as lognormal) -- see the article for more
on this
my preference these days is generally to use glm with the appropriate
link (which might, or might not, be the log link)
Rich
Nick Cox wrote:
The issue as I understand it for response y arises because the mean of
log(y) differs from the log of mean(y). What you do to the predictors is
immaterial. The problem is generic to any nonlinear transformation.
I see there being two main relatively simple ways of tackling this
problem. (There are other more complicated methods; my experience, such
as it is, indicates that they don't give very different results except
when results are highly dubious anyway.)
1. Avoid it altogether by using -glm- with appropriate link.
2. Use smearing.
Richard Goldstein implemented -predlog- in 1996, which includes
smearing.
STB-29 sg48 . Predictions in the original metric for log-transformed
models
(help predlog if installed) . . . . . . . . . . . . . . . R.
Goldstein
1/96 pp.27--29; STB Reprints Vol 5, pp.145--147
calculates three different retransformations, which allow
obtaining predictions in the original metric
Both the software and the original article are accessible to all.
*
* For searches and help try:
* http://www.stata.com/help.cgi?search
* http://www.stata.com/support/statalist/faq
* http://www.ats.ucla.edu/stat/stata/
© Copyright 1996–2025 StataCorp LLC | Terms of use | Privacy | Contact us | What's new | Site index |