|  | 
[Date Prev][Date Next][Thread Prev][Thread Next][Date index][Thread index]
st: output of dhurdle different from combination: Probit + truncreg
Dear Statalist Members
I am currently estimating a Cragg type two-hurdle model (Cragg 1971, 
some statistical models for limited dependent variables with application 
to the demand for durable goods).
It is well documented in the literature that this type of model can be 
estimated in Stata using "probit" and "truncreg".
But there also exists a command "dhurdle" written by J. Fennema 
(downloadable: http://www.sml.hw.ac.uk/somjaf/stata.htm
When I estimate both procedures, I get fairly different results 
(truncation by 0):
dhurdle  anteil_a  ln_gpd_  ln_exp_  global_f  corrupti  plqi_ind  
anteil_1  christ__  ln_pop_  communis, sel( probitest =ln_gpd_  ln_exp_  
global_f  corrupti plqi_ind  anteil_1  christ__  ln_pop_  communis) indep
(where probitest is a dummyvariable indicating that it is truncated if =0)
Double hurdle model                                         Number of 
obs      =      1706
(model with selection and censoring)            Censored obs       
=       432
                                                                      
       Uncensored obs     =      1274
Log likelihood = -3043.047                    Independent errors
------------------------------------------------------------------------------ 
           |      Coef.   Std. Err.      z    P>|z|     [95% Conf. 
Interval]
-------------+---------------------------------------------------------------- 
anteil_a     |
   ln_gpd_ |  -.3560236   .0971659    -3.66   0.000    -.5464652    
-.165582
   ln_exp_ |   .0068026   .0045881     1.48   0.138      -.00219    
.0157951
  global_f |   .1737621   .1752133     0.99   0.321    -.1696496    
.5171738
  corrupti |   .4872212   .2079483     2.34   0.019       .07965    
.8947924
  plqi_ind |  -.0177344   .0045215    -3.92   0.000    -.0265963   
-.0088725
  anteil_1 |   24.90654   2.733824     9.11   0.000     19.54834    
30.26473
  christ__ |   .0700423   .1389945     0.50   0.614     -.202382    
.3424665
   ln_pop_ |   .5031898   .0521789     9.64   0.000      .400921    
.6054586
  communis |   -1.49317    .596529    -2.50   0.012    -2.662345   
-.3239948
     _cons |  -4.221061   .9567632    -4.41   0.000    -6.096282    
-2.34584
-------------+---------------------------------------------------------------- 
probitest    |
   ln_gpd_ |  -.5145746   .2017658    -2.55   0.011    -.9100283   
-.1191209
   ln_exp_ |   .0033303   .0084804     0.39   0.695     -.013291    
.0199515
  global_f |   .2962727   .3330498     0.89   0.374    -.3564929    
.9490384
  corrupti |  -.0864238   .3263287    -0.26   0.791    -.7260163    
.5531686
  plqi_ind |   .0170198   .0104676     1.63   0.104    -.0034962    
.0375359
  anteil_1 |   132368.3   199918.2     0.66   0.508    -259464.2    
524200.8
  christ__ |   .1458046   .3011484     0.48   0.628    -.4444354    
.7360447
   ln_pop_ |   .1061033   .0941986     1.13   0.260    -.0785225     
.290729
  communis |  -.7897535   1.178506    -0.67   0.503    -3.099583    
1.520076
     _cons |   1.037665   1.693086     0.61   0.540    -2.280721    
4.356052
-------------+---------------------------------------------------------------- 
  /lnsigma |   .8095791   .0200602    40.36   0.000     .7702618    
.8488964
-------------+---------------------------------------------------------------- 
     sigma |   2.246962   .0450746                      2.160332    
2.337066
------------------------------------------------------------------------------ 
other procedure:
probit  anteil_a  ln_gpd_  ln_exp_  global_f  corrupti  plqi_ind  
anteil_1  christ__  ln_pop_  communis
Probit estimates                                  Number of obs   
=       1706
                                                        LR chi2(9)      
=     785.92
                                                        Prob > chi2     
=     0.0000
Log likelihood = -572.37985              Pseudo R2       =     0.4071
------------------------------------------------------------------------------ 
  anteil_a |      Coef.   Std. Err.      z    P>|z|     [95% Conf. 
Interval]
-------------+---------------------------------------------------------------- 
   ln_gpd_ |  -.4133993   .0608054    -6.80   0.000    -.5325758   
-.2942228
   ln_exp_ |   .0103626   .0025291     4.10   0.000     .0054057    
.0153195
  global_f |   .0721878   .1061359     0.68   0.496    -.1358347    
.2802104
  corrupti |   .1809791   .1145471     1.58   0.114     -.043529    
.4054872
  plqi_ind |  -.0030565   .0027014    -1.13   0.258    -.0083511    
.0022381
  anteil_1 |   288.4433   27.17308    10.62   0.000     235.1851    
341.7016
  christ__ |    .075396   .0932029     0.81   0.419    -.1072782    
.2580703
   ln_pop_ |   .2684596   .0299844     8.95   0.000     .2096913    
.3272279
  communis |  -1.448146   .4195454    -3.45   0.001     -2.27044   
-.6258523
     _cons |  -.8459712   .5491671    -1.54   0.123    -1.922319    
.2303766
------------------------------------------------------------------------------ 
truncreg  anteil_a  ln_gpd_  ln_exp_  global_f  corrupti  plqi_ind  
anteil_1  christ__  ln_pop_  communis, ll(0)
Truncated regression
Limit:   lower =          0                                 Number of 
obs =   1274
       upper =       +inf                                    Wald 
chi2(9)  =  20.63
Log likelihood = -1362.0893                             Prob > chi2   = 
0.0144
------------------------------------------------------------------------------ 
  anteil_a |      Coef.   Std. Err.      z    P>|z|     [95% Conf. 
Interval]
-------------+---------------------------------------------------------------- 
eq1          |
   ln_gpd_ |   -32.7136   10.71833    -3.05   0.002    -53.72114   
-11.70606
   ln_exp_ |    .513018   .2324739     2.21   0.027     .0573775    
.9686585
  global_f |   -18.6152   11.84124    -1.57   0.116    -41.82361    
4.593197
  corrupti |  -67.65709   22.36747    -3.02   0.002    -111.4965   
-23.81765
  plqi_ind |   -1.82605   .5016721    -3.64   0.000     -2.80931    
-.842791
  anteil_1 |   373.6971   99.63596     3.75   0.000     178.4142      
568.98
  christ__ |  -.9076562   9.842575    -0.09   0.927    -20.19875    
18.38344
   ln_pop_ |   45.06314   11.03242     4.08   0.000        23.44    
66.68628
  communis |  -90.83652   35.48364    -2.56   0.010    -160.3832   
-21.28987
     _cons |  -616.4984   160.5081    -3.84   0.000    -931.0884   
-301.9083
-------------+---------------------------------------------------------------- 
sigma        |
     _cons |   14.19904   1.747253     8.13   0.000     10.77448    
17.62359
------------------------------------------------------------------------------ 
For dhurdle there is no official help file, but one is written by a user:
http://www.datasets.org/statalist/archive/2008-01/msg00117.html
The results of dhurdle look more reliable on me (Coefficitents of 
regression), although I cant imagine why the other procedure is wrong.....
As I need Tests for Normality (and correction of it) and 
Heteroscedasticity, I would prefer using dhurdle (it has options for ihs 
transformation and a het-option, see: 
http://fmwww.bc.edu/repec/dsug2007/Fennema.pdf )
Do you have any suggestions where this different results come from an 
what I can do?
Many thanks
Anita
*
*   For searches and help try:
*   http://www.stata.com/support/faqs/res/findit.html
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/