|
[Date Prev][Date Next][Thread Prev][Thread Next][Date index][Thread index]
st: results from Papke/Wooldridge glm
Thanks again to Jeff Pitblado for providing the suggestions below for running a glm model (Papke and Wooldridge method for use with a proportion as a dependent variable). Using the Stata 9 suggestion, however, I get some strange results, unless I'm looking at the wrong results.
"In Stata 10, -glm- supports the -svy- prefix.
In Stata 9, Christina can use -glm- with -iweight-s followed by -suest- with
the -svy- option. Here is an example,
***** BEGIN:
webuse nhanes2f
svyset psuid [pw=finalwgt], strata(stratid)
glm loglead age female [iweight=finalwgt]
suest ., svy
***** END:
This will work with any family/link combination that is allowed by the -glm-
command. "
Results below (sorry for so much output):
1.
.glm pcoop evtime [iweight=perwt] if officemh==1, link(logit) family(binomial) robust
note: pcoop has non-integer values
excerpt
Iteration 2: log pseudolikelihood = -3.345e+08
Generalized linear models No. of obs = 45278
Optimization : ML Residual df = 45276
Scale parameter = 1
Variance function: V(u) = u*(1-u/1) [Binomial]
Link function : g(u) = ln(u/(1-u)) [Logit]
AIC = 14776.26
Log pseudolikelihood = -334519688 BIC = 4.79e+08
------------------------------------------------------------------------------
| Robust
pcoop | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
evtime | -.0030841 .0002791 -11.05 0.000 -.003631 -.0025371
_cons | -.0196169 .0182409 -1.08 0.282 -.0553683 .0161345
------------------------------------------------------------------------------
. suest . , svy
Survey results for .
Number of strata = 125 Number of obs = 45278
Number of PSUs = 361 Population size = 5.513e+08
Design df = 236
------------------------------------------------------------------------------
| Linearized
| Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
pcoop |
evtime | -.0030841 16.38178 -0.00 1.000 -32.27629 32.27012
_cons | -.0196169 1266.51 -0.00 1.000 -2495.128 2495.089
------------------------------------------------------------------------------
2. . glm pcoop evtime [iweight=perwt] if officeadultmh==1, link(logit) family(binomial) robust
note: pcoop has non-integer values
Iteration 2: log pseudolikelihood = -2.641e+08
Generalized linear models No. of obs = 34758
Optimization : ML Residual df = 34756
Scale parameter = 1
Deviance = 381457013.4 (1/df) Deviance = 10975.29
Pearson = 290464308.7 (1/df) Pearson = 8357.242
Variance function: V(u) = u*(1-u/1) [Binomial]
Link function : g(u) = ln(u/(1-u)) [Logit]
AIC = 15194.28
Log pseudolikelihood = -264061390 BIC = 3.81e+08
------------------------------------------------------------------------------
| Robust
pcoop | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
evtime | -.004174 .0003139 -13.30 0.000 -.0047891 -.0035588
_cons | .1200881 .0205699 5.84 0.000 .0797719 .1604043
------------------------------------------------------------------------------
. suest ., svy
Survey results for .
Number of strata = 125 Number of obs = 34758
Number of PSUs = 360 Population size = 4.329e+08
Design df = 235
------------------------------------------------------------------------------
| Linearized
| Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
pcoop |
evtime | -.004174 . . . . .
_cons | .1200881 . . . . .
------------------------------------------------------------------------------
Is there something I may have done in error? Any information would be helpful.
Sincerely,
Chris
*
* For searches and help try:
* http://www.stata.com/support/faqs/res/findit.html
* http://www.stata.com/support/statalist/faq
* http://www.ats.ucla.edu/stat/stata/