| |
[Date Prev][Date Next][Thread Prev][Thread Next][Date index][Thread index]
st: asmprobit, problems with correlation patterns
Hello everyone,
I would like to estimate a mulitnomial probit model explaining a
person's labour market status.
There are four different destinations:
* employed
* unemployed
* retired
* other
that are possibly correlated.
Now I tried to use -asmprobit- and specified different correlation
patterns.
But all of them (except "independent") failed to converge.
I�m not very surprised that "unstructured" didn�t work, but there are
two different problems I don�t really understand:
1) If I specify the correlation pattern
matrix define B=J(4,4,.)
matrix B[3,2]=1
matrix B[4,3]=1
matrix B[4,2]=1
I think I restrict asmprobit to estimate only one covariance
parameter and two variances
(for the two alternatives not being 'scale' or 'base').(?)
For this correlation pattern, the covariance parameter is always
EXACTLY -0.5
Even with different explanatory variables included in the model.
How is that possible?
2) If I include more than one explanatory variable in the model I get
the message:
"Note: two or more of the variables are collinear; convergence may
not be achieved"
That's the case even if I include:
* one variable varying across alternatives and cases and
* only one other variable that is constant across the alternatives,
varies only by "i".
I don�t understand how two such variables could be collinear?
Both problems occur with different optimization techniques.
I�m not sure if it may help, but I have printed the output below.
I would really appreciate any suggestions!
Barbara
The output is as follows:
########################################################
####################
. asmprobit wahl eink AB, case(z1) alternatives(altern)
casevars(AB) correlation(pattern B)
> iterate(100) hessian gradient shownrtolerance
Note: two or more of the variables are collinear; convergence may
not be achieved
(output omitted - Iterations 1 to 31)
Alternative-specific multinomial probit Number of obs =
9700
Case variable: z1 Number of cases =
2425
Alternative variable: altern Alts per case: min = 4
avg = 4.0
max = 4
Integration sequence: Hammersley
Integration points: 200 Wald chi2(4) = .
Log simulated-likelihood = -2429.6698 Prob > chi2 =
.
------------------------------------------------------------------------------
wahl | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
altern |
eink | .000631 .0001332 4.74 0.000 .00037
.0008921
AB | (dropped)
-------------+----------------------------------------------------------------
ET | (base alternative)
-------------+----------------------------------------------------------------
AL |
AB | 6.498919 2.957141 2.20 0.028 .7030285
12.29481
_cons | -1.80445 .1309075 -13.78 0.000 -2.061024 -
1.547876
-------------+----------------------------------------------------------------
R |
AB | -4.308268 2.407709 -1.79 0.074 -9.02729
.4107547
_cons | -1.236563 .0867427 -14.26 0.000 -1.406576 -
1.066551
-------------+----------------------------------------------------------------
KS |
AB | 15.49664 1.622816 9.55 0.000 12.31598
18.6773
_cons | -.1677057 .0752585 -2.23 0.026 -.3152096 -
.0202019
-------------+----------------------------------------------------------------
/lnsigmaP1 | .0504696 . . . . .
/lnsigmaP2 | .1474712 . . . . .
-------------+----------------------------------------------------------------
/atanhrP1 | -.5493061 .0127844 -42.97 0.000 -.5743631 -
.5242492
-------------+----------------------------------------------------------------
sigma1 | 1 (base alternative)
sigma2 | 1 (scale alternative)
sigma3 | 1.051765 . . .
sigma4 | 1.1589 . . .
-------------+----------------------------------------------------------------
rho3_2 | -.5 .0095883 -.5185563 -.4809729
rho4_2 | -.5 .0095883 -.5185563 -.4809729
rho4_3 | -.5 .0095883 -.5185563 -.4809729
------------------------------------------------------------------------------
(altern=ET is the alternative normalizing location)
(altern=AL is the alternative normalizing scale)
-- -- -- -- -- -- -- -- -- -- -- -- -- --
Dipl.-Volksw. Barbara Hanel
FAU Erlangen N�rnberg
Lehrstuhl f�r Statistik und empirische Wirtschaftsforschung; Prof. Riphahn,
PhD
0911/5302-258
Lange Gasse 20
90403 N�rnberg
[email protected]
*
* For searches and help try:
* http://www.stata.com/support/faqs/res/findit.html
* http://www.stata.com/support/statalist/faq
* http://www.ats.ucla.edu/stat/stata/