Statalist The Stata Listserver


[Date Prev][Date Next][Thread Prev][Thread Next][Date index][Thread index]

st: Pareto v. lognormal


From   "Austin Nichols" <[email protected]>
To   [email protected]
Subject   st: Pareto v. lognormal
Date   Tue, 6 Mar 2007 13:35:19 -0500

The Pareto distribution is typically defined by the cdf F(x;a) = 1 -
x^(-a) where a>0 for x>=0 and zero elsewhere, and the pdf f(x;a) =
ax^(-a-1) for x>=0 and zero elsewhere.  A version with two parameters
is given by F(x;a,k) = 1-(x/k)^(-a) and f(x; a,k) = (a/k)(x/k)^(-a-1)
= a(k)^(a)(x)^(-a-1).

On a log-log plot, the density function for the Pareto distribution is
a straight line:
ln f(x) = ($B!](Ba $B!](B 1) ln x + a ln k + ln a.

This suggests a means for estimating parameters a and k by
constructing kernel density estimates of f(x), and regressing
ln(\hat{f(x)}) on ln(x).  Standard errors could presumably be obtained
via bootstrap.

Since
ln f(x) = $B!](B ln x $B!](B ln $B-u(B2$B&P&R(B $B!](B(ln x $B!](B $B&L(B)^2 /2$B&R(B^2
ln f(x) = $B!](B (ln x)^2/ 2$B&R(B^2 + ( $B&L&R(B^(-2) $B!](B 1)ln x $B!](B ln $B-u(B2$B&P&R(B $B!](B $B&L(B^2/2$B&R(B^2 .
a regression of ln(\hat{f(x)}) on ln(x) and (ln x)^2 should have a
zero coefficient on (ln x)^2 if x is distributed Pareto, and a
negative coefficient if it is distributed lognormal.  The trouble is
of course that a lognormal with a fairly large $B&R(B^2 will be very hard
to distinguish from a Pareto, since the negative coefficient will be
quite close to zero.

Does this test of Pareto versus lognormal distributions make sense?
Is anyone aware of an implementation of this?  I would be happy to
write it up as a Stata package if not.
*
*   For searches and help try:
*   http://www.stata.com/support/faqs/res/findit.html
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/



© Copyright 1996–2024 StataCorp LLC   |   Terms of use   |   Privacy   |   Contact us   |   What's new   |   Site index