| |
[Date Prev][Date Next][Thread Prev][Thread Next][Date index][Thread index]
st: cloglog or logit
Hi,
I have data where my outcome is a rare event, it occurs in 0.97% of my
sample (n =11,618). So I was reading about complimentary log log
regression and thought it may be appropriate, but when I compared the
predicted probabilities of the complimentary log log model and a logit
model I get a pariwise correlation of 0.9991 which suggests to me that
the complimentary log log model isn't doing a better job of predicting
than the logit model. The coefficients are reasonably close to each
other, see output below.
Does this mean I should stick with a logit model and perhaps just alter
the cutoff value? Also I came across the work of Gary King and his
-relogit- command found at http://gking.harvard.edu/stats.shtml#relogit
though I see this was last updated in 1999 so I'm not sure how relevant
it is. Any thoughts would be greatly appreciated.
Regards,
Bellinda
. xi:logit wander age i.psych_state delirium inapprop_beh e1k i.b4
i.g1ea_c
i.psych_state _Ipsych_sta_0-2 (naturally coded; _Ipsych_sta_
omitted)
i.b4 _Ib4_0-2 (naturally coded; _Ib4_0 omitted)
i.g1ea_c _Ig1ea_c_0-2 (naturally coded; _Ig1ea_c_0
omitted)
Logistic regression Number of obs =
11618
LR chi2(10) =
237.38
Prob > chi2 =
0.0000
Log likelihood = -517.27798 Pseudo R2 =
0.1866
------------------------------------------------------------------------
------
wander | Coef. Std. Err. z P>|z| [95%
ConfInterval]
-------------+----------------------------------------------------------
------
age | .0275566 .0087225 3.16 0.002 .0104608
.0446523
_Ipsych_st~1 | .9608209 .2334963 4.11 0.000 .5031765
1.418465
_Ipsych_st~2 | 1.079544 .3496697 3.09 0.002 .394204
1.764884
delirium | .7911933 .2471891 3.20 0.001 .3067116
1.275675
inapprop_b | .9479077 .2576809 3.68 0.000 .4428624
1.452953
e1k | .6659235 .2701732 2.46 0.014 .1363938
1.195453
_Ib4_1 | 1.374957 .2451875 5.61 0.000 .8943987
1.855516
_Ib4_2 | 2.275775 .2786492 8.17 0.000 1.729633
2.821918
_Ig1ea_c_1 | .2038798 .2409538 0.85 0.397 -.268381
.6761407
_Ig1ea_c_2 | -.7956763 .3723895 -2.14 0.033 -1.525546
.0658064
_cons | -7.76677 .6269897 -12.39 0.000 -8.995647
6.537892
------------------------------------------------------------------------
------
xi:cloglog wander age i.psych_state delirium inapprop_beh e1k i.b4
i.g1ea_c
i.psych_state _Ipsych_sta_0-2 (naturally coded; _Ipsych_sta_
omitted)
i.b4 _Ib4_0-2 (naturally coded; _Ib4_0 omitted)
i.g1ea_c _Ig1ea_c_0-2 (naturally coded; _Ig1ea_c_0
omitted)
Complementary log-log regression Number of obs =
11618
Zero outcomes =
11505
Nonzero outcomes = 113
LR chi2(10) =
236.78
Log likelihood = -517.57978 Prob > chi2 =
0.0000
------------------------------------------------------------------------
------
wander | Coef. Std. Err. z P>|z| [95%
ConfInterval]
-------------+----------------------------------------------------------
------
age | .0272044 .0084431 3.22 0.001 .0106562
.0437527
_Ipsych_st~1 | .9297655 .2285607 4.07 0.000 .4817946
1.377736
_Ipsych_st~2 | 1.067526 .3399633 3.14 0.002 .4012106
1.733842
delirium | .751 .2397234 3.13 0.002 .2811507
1.220849
inapprop_b | .8954374 .2476817 3.62 0.000 .4099902
1.380885
e1k | .6169237 .2571763 2.40 0.016 .1128674
1.12098
_Ib4_1 | 1.378481 .2420793 5.69 0.000 .904014
1.852948
_Ib4_2 | 2.235668 .2733994 8.18 0.000 1.699815
2.771521
_Ig1ea_c_1 | .1869587 .2322885 0.80 0.421 -.2683184
.6422358
_Ig1ea_c_2 | -.7917172 .3630383 -2.18 0.029 -1.503259
.0801752
_cons | -7.717735 .6062998 -12.73 0.000 -8.906061
6.52941
------------------------------------------------------------------------
------
*
* For searches and help try:
* http://www.stata.com/support/faqs/res/findit.html
* http://www.stata.com/support/statalist/faq
* http://www.ats.ucla.edu/stat/stata/