| |
[Date Prev][Date Next][Thread Prev][Thread Next][Date index][Thread index]
st: post estimation in gllamm again
Thanks Caleb, I should have included more information. Perhaps it is a
df problem. The random effects in my full model are also very small.
Here is my code and output:
NULL MODEL:
gllamm status, fam(bin) link(logit) i(e_lufsitecode e_farm) adapt
number of level 1 units = 792
number of level 2 units = 83
number of level 3 units = 33
Condition Number = 1.2407365
gllamm model
log likelihood = -446.21472
------------------------------------------------------------------------------
status | Coef. Std. Err. z P>|z| [95% Conf.
Interval]
-------------+----------------------------------------------------------------
_cons | -1.240137 .1827224 -6.79 0.000 -1.598266
-.8820074
------------------------------------------------------------------------------
Variances and covariances of random effects
-----------------------------------------------------------------------------
***level 2 (e_lufsitecode)
var(1): 1.431e-15 (1.463e-08)
***level 3 (e_farm)
var(1): .60448629 (.26422999)
-----------------------------------------------------------------------------
. estat ic
------------------------------------------------------------------------------
Model | Obs ll(null) ll(model) df
AIC BIC
-------------+----------------------------------------------------------------
. | 33 . -446.2147 3 898.4294
902.919
------------------------------------------------------------------------------
FULL MODEL:
xi: gllamm status wNT wOT i.bis1B sas1 scumdd403cen10 scumdd403censq10
snumt483bin ageP size_flock, fam(bin) link(logit) i(e_lufsitecode
e_farm) adapt
i.bis1B _Ibis1B_0-2 (naturally coded; _Ibis1B_0
omitted)
number of level 1 units = 694
number of level 2 units = 80
number of level 3 units = 31
Condition Number = 149248.47
gllamm model
log likelihood = -329.04972
------------------------------------------------------------------------------
status | Coef. Std. Err. z P>|z| [95% Conf.
Interval]
-------------+----------------------------------------------------------------
wNT | -.3849298 .2427759 -1.59 0.113 -.8607617
.0909022
wOT | -1.101316 .4090949 -2.69 0.007 -1.903128
-.2995053
_Ibis1B_2 | .6672017 .2577098 2.59 0.010 .1620998
1.172304
sas1 | 1.440306 .2811731 5.12 0.000 .8892169
1.991395
scumdd40~n10 | .0828534 .0351455 2.36 0.018 .0139694
.1517374
scumdd40~q10 | .0016047 .0004363 3.68 0.000 .0007496
.0024599
snumt483bin | -1.153253 .3989543 -2.89 0.004 -1.935189
-.3713174
ageP | .1714664 .0407183 4.21 0.000 .09166
.2512727
size_flock | .0000608 .0000242 2.52 0.012 .0000134
.0001081
_cons | -9.315843 1.543667 -6.03 0.000 -12.34137
-6.290311
------------------------------------------------------------------------------
Variances and covariances of random effects
-----------------------------------------------------------------------------
***level 2 (e_lufsitecode)
var(1): 1.865e-17 (1.452e-09)
***level 3 (e_farm)
var(1): 3.769e-15 (1.984e-08)
-----------------------------------------------------------------------------
. est store N
. estat ic
------------------------------------------------------------------------------
Model | Obs ll(null) ll(model) df
AIC BIC
-------------+----------------------------------------------------------------
N | 31 . -329.0497 12 682.0994
699.3073
------------------------------------------------------------------------------
Michele
*
* For searches and help try:
* http://www.stata.com/support/faqs/res/findit.html
* http://www.stata.com/support/statalist/faq
* http://www.ats.ucla.edu/stat/stata/