| |
[Date Prev][Date Next][Thread Prev][Thread Next][Date index][Thread index]
st: asmprobit
Stata experts,
I don't understand how -asmprobit- converts from the transformed scale of variance and correlation parameters into the actual space. See this example. I am using Stata 9 which has been updated.
. which asmprobit
C:\Program Files\Stata9\ado\updates\a\asmprobit.ado
*! version 2.0.3 18aug2006
. which asmprobit_p
C:\Program Files\Stata9\ado\updates\a\asmprobit_p.ado
*! version 2.0.1 25apr2006
. which asmprobit_estat
C:\Program Files\Stata9\ado\updates\a\asmprobit_estat.ado
*! version 2.0.2 25apr2006
. query born
06 Oct 2006
. webuse travel
. asmprobit choice travelcost termtime , casevars(income) case(id) alternative(mode) corr(unstructured) stdd
> ev(heteroskedastic)
Iteration 0: log simulated-likelihood = -201.33896
[output deleted]
Iteration 26: log simulated-likelihood = -190.09419
Alternative-specific multinomial probit Number of obs = 840
Case variable: id Number of cases = 210
Alternative variable: mode Alts per case: min = 4
Integration sequence: Hammersley
Integration points: 200 Wald chi2(5) = 32.06
Log simulated-likelihood = -190.09419 Prob > chi2 = 0.0000
------------------------------------------------------------------------------
choice | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
mode |
travelcost | -.0097707 .0027835 -3.51 0.000 -.0152261 -.0043152
termtime | -.0377034 .0094046 -4.01 0.000 -.0561361 -.0192708
-------------+----------------------------------------------------------------
air | (base alternative)
-------------+----------------------------------------------------------------
train |
income | -.0291886 .0089232 -3.27 0.001 -.0466778 -.0116995
_cons | .5615485 .394619 1.42 0.155 -.2118906 1.334988
-------------+----------------------------------------------------------------
bus |
income | -.0127473 .0079269 -1.61 0.108 -.0282839 .0027892
_cons | -.0572738 .4791635 -0.12 0.905 -.9964169 .8818693
-------------+----------------------------------------------------------------
car |
income | -.0049067 .0077481 -0.63 0.527 -.0200927 .0102792
_cons | -1.833159 .81842 -2.24 0.025 -3.437233 -.2290856
-------------+----------------------------------------------------------------
/lnl2_2 | -.5499745 .3903368 -1.41 0.159 -1.315021 .2150717
/lnl3_3 | -.6008993 .3354232 -1.79 0.073 -1.258317 .056518
-------------+----------------------------------------------------------------
/l2_1 | 1.131589 .2125186 5.32 0.000 .7150604 1.548118
/l3_1 | .9720683 .2352248 4.13 0.000 .5110362 1.4331
/l3_2 | .5196988 .2860692 1.82 0.069 -.0409865 1.080384
------------------------------------------------------------------------------
(mode=air is the alternative normalizing location)
(mode=train is the alternative normalizing scale)
. estat cov
+------------------------------------------------+
| | train bus car |
|--------------+---------------------------------|
| train | 2 |
| bus | 1.600309 1.613382 |
| car | 1.374712 1.39983 1.515656 |
+------------------------------------------------+
Note: covariances are for alternatives differenced with air
. estat corr
+---------------------------------------+
| | train bus car |
|--------------+------------------------|
| train | 1.000 |
| bus | 0.891 1.000 |
| car | 0.790 0.895 1.000 |
+---------------------------------------+
Note: correlations are for alternatives differenced with air
. di exp(-.5499745)
.57696452
. di exp(-.6008993)
.54831831
I don't understand how to convert the /lnl2_2 and /lnl3_3 parameters into the reported variances of (1.61 and 1.51). Also, why is the variance of train=2 - I had expected it to be 1.00 since train is the scale normalization.
Finally, I don't quite understand how to compare /l2_1 /l3_1 and /l3_2 to the reported correlations of 0.891 0.790 and 0.895.
Thanks for your help!
--Alex Cavallo
Managing Consultant
Navigant Consulting, Inc.
This communication is from Navigant Consulting Inc. E-mail text or attachments may contain information which is confidential and may also be privileged. This communication is for the exclusive use of the intended recipient(s). If you have received this communication in error, please return it with the title "received in error" to [email protected], and then delete the email and destroy any copies of it. In addition, this communication is subject to, and incorporates by reference, additional disclaimers found in Navigant Consulting's "Email Disclaimer" section at www.NavigantConsulting.com