Statalist The Stata Listserver


[Date Prev][Date Next][Thread Prev][Thread Next][Date index][Thread index]

st: fe & robust using mata


From   [email protected] (Jeff Pitblado, StataCorp LP)
To   [email protected]
Subject   st: fe & robust using mata
Date   Fri, 24 Feb 2006 14:17:53 -0600

AbdelRahmen El Lahga <[email protected]> is having trouble writing a
Mata routine that will reproduce the robust variance estimates from -xtreg, fe
robust-:

> I try to write a code estimating fe model for unbalanced data using mata in
> order to practice my mata!! (see the code below) I find the same coefficient
> vector as the command xtreg but my programmation of the robust se vector is
> certainly wrong it give se like 1.37e+15..; (see the last 10 lines of the
> code below) any suggestions

For reference, AbdelRahmen's original Mata code (with indentation) is included
after my signature.

I believe there is a one line hit that will fix AbdelRahmen's code.  I believe
the definition for 'xuux' should be:

	xuux = cross(x, uhat:^2, x)

This should result in "Robust" variance estimates similar to using -_robust,
minus(0)-.

In order to "check my work" against -xtreg, fe robust- I made some changes to
the original code, so that it would

1) work with unbalanced panels (see -help mata panelsetup()-)
2) work with a dataset other than AbdelRahmen's c:\projets\nicolas\sas\table

I also included the 'q_c' factor in the variance formula (see Methods and
formulas in [R] regress), this is equivalent to -xtreg, fe robust- which uses
-minus(n+k)- (an option of -_robust-).  Here 'n' is the number of panels and
'k' is the number of regression coefficients (not including _cons).

My fe.do and fe.mata files are also included at the end of this email.

--Jeff
[email protected]

***** BEGIN: indented version of AbdelRahmen's Mata code
version 9.1
mata:
mata clear

void fe() 
{
	stata ("drop _all")   
	stata ("use c:\projets\nicolas\sas\table")
	stata("sort idfamt")
	y_init = x_init = s_init = .
	st_view(y_init, .,  "f_week_hours")
	st_view(x_init, ., ("f_lnwage", "m_lnwage", "assetinc" , "kids01" , 
		"kids2_4", "kids5p" , ///
		"pchange" , "puls_1" ,  "puls0" , "puls1" , "f_age"))
	st_view(s_init, ., "s")
	tmax = 21                // tmax periode maximale d'observation
	n = rows(x_init)/tmax    // nombre d'individus
	nt= rows(x_init)         // nombre total des lignes
	k = cols(x_init)         // nombre de regresseurs
	k
	y = J(nt,1,0)
	x = J(nt,k,0)
	s = s_init
	for (i=1; i<=nt; i++) {
		if (s[i]==1) {
			y[i,.] = y_init[i,.]  
			x[i,.] = x_init[i,.]
		}
	}
	y_within=J(nt, 1, 0)
	x_within=J(nt, k, 0)
	compt=0
	for (i=1;i<=n;i++) {
		compt = compt+tmax
		rec1  = compt-tmax+1 // numero 1ere ligne d'apparition
		rec2  = compt        // numero derniere ligne d'apparition, 
		                     // la boucle marche jusqu'ici
		si = s[|rec1 \ rec2|]
		Ti = sum(si)
		yi = y[rec1..rec2,.]
		xi = x[rec1..rec2,.]
		y_mean = colsum(yi)/Ti
		x_mean = colsum(xi)/Ti
		y_within[rec1..rec2,.] = si:*(yi:-y_mean)
		x_within[rec1..rec2,.] = si:*(xi:-x_mean)

		xi = si:*x_within[rec1..rec2,.]
		yi = si:*y_within[rec1..rec2,.]
		x[rec1..rec2,.] = xi
		y[rec1..rec2,.] = yi
	}
	xx = cross(x,x)
	xy = cross(x,y)
	betaFE=invsym(xx)*xy
	betaFE // tres bien Abdel!! courage
	/* Matrice de varcoc  robuste a l'heteroscedasdicite et 
			l'autocorrelation */
	uhat = y_within-x_within*betaFE // Wooldridge page 275 et page 581
	xuux = x'*uhat*uhat'*x
	variance = invsym(xx)*xuux*invsym(xx)
	ee = diagonal(variance)
	ee
	se = sqrt(ee)
	se
	tstat = betaFE:/se
	tstat
}

fe()
end
***** END: indented version of AbdelRahmen's Mata code

***** BEGIN: fe.mata
version 9.1

mata:
mata clear

void fe(string b_out, string V_out, string se_out, string tstat_out) 
{
	// Local macros assumed defined in Stata:
	// idvar	- panel variable
	// touse	- sample selection variable
	// yvar		- dependent variable
	// xvars	- independent variables

	// sort Stata's dataset on the panel variable
	stata("sort " + st_local("idvar"))
	st_view(id=., ., st_local("idvar"), st_local("touse"))
	y = st_data(., st_local("yvar"), st_local("touse"))
	x = st_data(., tokens(st_local("xvars")), st_local("touse"))
	x_mean = mean(x, 1)
	y_mean = mean(y, 1)
	// use 'info' to identify the panels, 'id' is assumed already sorted
	info = panelsetup(id, 1)
	n = rows(info)           // nombre d'individus
	nt= rows(x)              // nombre total des lignes
	k = cols(x)              // nombre de regresseurs
	y_within=J(nt, 1, 0)
	x_within=J(nt, k, 0)
	compt=0
	for (i=1;i<=n;i++) {
		// 'yi' contains the depvar's values for panel 'i'
		yi = panelsubmatrix(y, i, info)
		// 'xi' contains the indepvars' values for panel 'i'
		xi = panelsubmatrix(x, i, info)
		// 'rec1' in the row number for the beginning of panel 'i'
		rec1 = info[i,1]
		// 'rec2' in the row number for the end of panel 'i'
		rec2 = info[i,2]
		// compute the panel means
		yi_mean = mean(yi, 1)
		xi_mean = mean(xi, 1)
		y_within[rec1..rec2,.] = yi :- yi_mean
		x_within[rec1..rec2,.] = xi :- xi_mean
	}
	y_within = y_within :+ y_mean
	x_within = x_within :+ x_mean, J(nt,1,1)
	xx = quadcross(x_within,x_within)
	xy = quadcross(x_within,y_within)
	betaFE = cholsolve(xx, xy)
	invxx  = cholinv(xx)
	/* Matrice de varcoc  robuste a l'heteroscedasdicite et 
			l'autocorrelation */
	uhat = (y_within-x_within*betaFE):^2 // Wooldridge page 275 et page 581
	xuux = quadcross(x_within,uhat,x_within)
	q_c = nt / (nt - n - k)
	variance = q_c * invxx * xuux * invxx
	se = sqrt(diagonal(variance))
	tstat = betaFE:/se
	// saved results
	st_matrix(b_out,betaFE')
	st_matrix(V_out,variance)
	st_matrix(se_out,se')
	st_matrix(tstat_out,tstat')
}
end

* finished fe.mata
***** END:

***** BEGIN: fe.do
cscript
version 9.1
do fe.mata

use nlswork
gen age2 = age^2
generate ttl_exp2 = ttl_exp^2
generate tenure2 = tenure^2
generate byte black = race==2

unab yvar  : ln_w
unab xvars : age* ttl_exp* tenure* // not_smsa south
unab idvar : idcode

sort idcode
by idcode: gen n = _N
mark touse if idcode < 21 & n > 2
markout touse `yvar' `xvars' `idvar'
keep if touse

unab touse : touse

xtreg `yvar' `xvars' if `touse', fe i(idcode) robust
matrix eb = e(b)
matrix ev = e(V)
mata: fe("b_fe","v_fe", "se_fe", "tstat_fe")
matrix b0 = eb[1,1..colsof(b_fe)]
matrix v0 = ev[1..colsof(b_fe),1..colsof(b_fe)]
mata:
	se0 = sqrt(diagonal(st_matrix("v0")))'
	mreldif(st_matrix("b_fe"), st_matrix("b0"))
	mreldif(st_matrix("v_fe"), st_matrix("v0"))
	mreldif(st_matrix("se_fe"), se0)
end

* finished fe.do
***** END:

*
*   For searches and help try:
*   http://www.stata.com/support/faqs/res/findit.html
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/



© Copyright 1996–2025 StataCorp LLC   |   Terms of use   |   Privacy   |   Contact us   |   What's new   |   Site index