| |
[Date Prev][Date Next][Thread Prev][Thread Next][Date index][Thread index]
Re: st: nested logit model
Matthias inquired about a -nlogit- model specification:
> I have some problems with the estimations of a nested logit model with
> stata (version 9).
>
> In contrast to the example in the stata documentation, I want to use some
> (individual-specific variables)
> at both levels of my nested logit model. Unfortunately, stata omits some
> values (standard
> errors, p-values...) of some coefficient as soon as I use the same
> explanatory variables
> on two instead of one level.
>
> The example from the stata guide works like this:
>
> webuse restaurant
> nlogitgen type=restaurant(fast:Freebirds|MamasPizza, family:
> CafeEccell|LosNortenos|WingsNmore, fancy: Christophers|MadCows)
> gen incFast=(type==1)*income
> gen incFancy=(type==3)*income
> gen kidFast=(type==1)*kids
> gen kidFancy=(type==3)*kids
>
> nlogit chosen(restaurant=cost rating distance) (type=incFast incFancy
> kidFast kidFancy), group(family_id) nolog
>
>
> If I try to extend the stata example by using one of the
> individual-specific variables (kids) on both level, I get problems:
>
> gen kid1=(restaurant==1)*kids
> gen kid2=(restaurant==2)*kids
> gen kid3=(restaurant==3)*kids
> gen kid4=(restaurant==4)*kids
> gen kid5=(restaurant==5)*kids
> gen kid6=(restaurant==6)*kids
>
> nlogit chosen(restaurant=cost rating distance kid1-kid6) (type=incFast
> incFancy kidFast kidFancy), group(family_id) nolog
>
> With this model specification I do not get standard errors and p-values for
> the variables kidFast and kidFancy.
>
> - Does someone know how it is possible to estimate a nested logit model in
> stata with the same explanatory variable on different variables?
>
The problem here is that the kidFast variable is the same a kid1 + kid2
. gen int kid11 = kid1+kid2
. di reldif(kid11, kidFast)
0
so the model is over specified. Try dropping kid2 from the model
and I believe you will also need to drop one of the kid# variables
from the family branch from the model. Below I dropped kid5 from
the family branch.
. nlogit chosen(restaurant=cost rating distance kid1 kid3 kid4 kid6)
> (type=incFast incFancy kidFast kidFancy),
> group(family_id) tech(nr) shownrtol
tree structure specified for the nested logit model
top --> bottom
type restaurant
--------------------------
fast Freebirds
MamasPizza
family CafeEccell
LosNorte~s
WingsNmore
fancy Christop~s
MadCows
initial: log likelihood = -540.55268
rescale: log likelihood = -512.70444
rescale eq: log likelihood = -506.52097
Iteration 0: log likelihood = -506.52097 (not concave)
Iteration 1: log likelihood = -495.08828 (not concave)
Iteration 2: log likelihood = -488.63901 (not concave)
Iteration 3: log likelihood = -485.4273 (not concave)
Iteration 4: log likelihood = -484.46353 (not concave)
Iteration 5: log likelihood = -483.74091 (not concave)
Iteration 6: log likelihood = -483.46418 (not concave)
Iteration 7: log likelihood = -483.29151 (not concave)
Iteration 8: log likelihood = -483.20039
Iteration 9: log likelihood = -483.01382
Iteration 10: log likelihood = -483.01106
Iteration 11: log likelihood = -483.0108
Iteration 12: log likelihood = -483.0108
g inv(H) g' = 3.797e-12
Nested logit regression
Levels = 2 Number of obs = 2100
Dependent variable = chosen LR chi2(14) = 201.5245
Log likelihood = -483.0108 Prob > chi2 = 0.0000
------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
restaurant |
cost | -.085732 .0345972 -2.48 0.013 -.1535412 -.0179228
rating | .3749732 .1581017 2.37 0.018 .0650996 .6848468
distance | -.1554523 .0510703 -3.04 0.002 -.2555482 -.0553564
kid1 | .0362515 .1055775 0.34 0.731 -.1706766 .2431795
kid3 | .0273874 .0526962 0.52 0.603 -.0758953 .1306701
kid4 | -.0687169 .0699435 -0.98 0.326 -.2058037 .0683699
kid6 | .1127797 .1138542 0.99 0.322 -.1103704 .3359298
-------------+----------------------------------------------------------------
type |
incFast | -.0279577 .0115713 -2.42 0.016 -.0506371 -.0052783
incFancy | .0450274 .0088896 5.07 0.000 .0276041 .0624506
kidFast | -.1929279 .3185084 -0.61 0.545 -.8171929 .4313372
kidFancy | -.534186 .2317833 -2.30 0.021 -.988473 -.079899
-------------+----------------------------------------------------------------
(incl. value |
parameters) |
type |
/fast | 5.830438 2.651674 2.20 0.028 .6332521 11.02762
/family | 1.970546 1.459654 1.35 0.177 -.890323 4.831415
/fancy | 2.039541 .9848676 2.07 0.038 .1092357 3.969846
------------------------------------------------------------------------------
LR test of homoskedasticity (iv = 1): chi2(3)= 8.67 Prob > chi2 = 0.0341
------------------------------------------------------------------------------
-Rich
[email protected]
*
* For searches and help try:
* http://www.stata.com/support/faqs/res/findit.html
* http://www.stata.com/support/statalist/faq
* http://www.ats.ucla.edu/stat/stata/