Statalist The Stata Listserver


[Date Prev][Date Next][Thread Prev][Thread Next][Date index][Thread index]

Re: st: Fixed Effects controlling for Heteroskedasticity andAutocorrelation


From   "David M. Drukker" <[email protected]>
To   [email protected]
Subject   Re: st: Fixed Effects controlling for Heteroskedasticity andAutocorrelation
Date   Tue, 14 Feb 2006 09:01:17 -0600 (CST)

G. Chidambaran Iyer <[email protected]> asked about estimating the parameters of a fixed-effects panel-data model with an unknown form of serial correlation and cross-sectional heteroskedasticity.

Below I outline a method that will model the autocorrelation and handle the
heteroskedasticity by robust standard errors.

The Stata command -xtgee- estimates the parameters of a population-averaged longitudinal model. This approach extends the generalized linear model (GLM) to longitudinal data. As discussed in [XT] xtreg, using -xtgee- with the -link(identity)-, the -family(gaussian)- and corr(exchangeable) produces the same results as fitting a random-effects model by maximum likelihood. Below is an example.

. webuse grunfeld

. xtreg invest mvalue kstock, mle nolog

Random-effects ML regression Number of obs = 200
Group variable (i): company Number of groups = 10

Random effects u_i ~ Gaussian Obs per group: min = 20
avg = 20.0
max = 20

LR chi2(2) = 293.43
Log likelihood = -1095.257 Prob > chi2 = 0.0000

------------------------------------------------------------------------------
invest | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
mvalue | .1097626 .0103389 10.62 0.000 .0894988 .1300265
kstock | .307942 .0171006 18.01 0.000 .2744254 .3414585
_cons | -57.7672 27.70004 -2.09 0.037 -112.0583 -3.476114
-------------+----------------------------------------------------------------
/sigma_u | 80.29729 18.37811 51.27213 125.7536
/sigma_e | 52.49255 2.69306 47.47094 58.04534
rho | .7005943 .0985226 .4881266 .8603709
------------------------------------------------------------------------------
Likelihood-ratio test of sigma_u=0: chibar2(01)= 193.09 Prob>=chibar2 = 0.000

. xtgee invest mvalue kstock, link(identity) family(gaussian) ///

        corr(exchangeable) nolog
GEE population-averaged model                   Number of obs      =       200
Group variable:                    company      Number of groups   =        10
Link:                             identity      Obs per group: min =        20
Family:                           Gaussian                     avg =      20.0
Correlation:                  exchangeable                     max =        20
                                                Wald chi2(2)       =    668.53
Scale parameter:                  9203.121      Prob > chi2        =    0.0000

------------------------------------------------------------------------------
      invest |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      mvalue |   .1097626   .0103384    10.62   0.000     .0894997    .1300256
      kstock |    .307942    .017072    18.04   0.000     .2744815    .3414025
       _cons |   -57.7672   27.69738    -2.09   0.037    -112.0531   -3.481341
------------------------------------------------------------------------------

We could have used -xtgee- to fit a model with a panel-level random-effect
and within-panel serial correlation by specifying corr(unstructured) in the
call to -xtgee-.  For example,

. xtgee invest mvalue kstock, link(identity) family(gaussian)     ///
        corr(unstructured) nolog
GEE population-averaged model                   Number of obs      =       200
Group and time vars:          company year      Number of groups   =        10
Link:                             identity      Obs per group: min =        20
Family:                           Gaussian                     avg =      20.0
Correlation:                  unstructured                     max =        20
                                                Wald chi2(2)       =     54.26
Scale parameter:                  12160.61      Prob > chi2        =    0.0000

------------------------------------------------------------------------------
      invest |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      mvalue |   .0857029   .0116573     7.35   0.000      .062855    .1085508
      kstock |   .1551136   .0431404     3.60   0.000     .0705599    .2396673
       _cons |  -11.12214   23.45177    -0.47   0.635    -57.08677    34.84249
------------------------------------------------------------------------------


G. Chidambaran wants to fit a model a model with fixed-effects, not
random-effects.  G. Chidambaran can remove the fixed-effects by
first-differencing the data and then estimating the remaining parameters by
-xtgee , corr(unstructured).  For example,

. xtgee D.(invest mvalue kstock), link(identity) family(gaussian) ///
        corr(unstructured) noconstant nolog
GEE population-averaged model                   Number of obs      =       190
Group and time vars:          company year      Number of groups   =        10
Link:                             identity      Obs per group: min =        19
Family:                           Gaussian                     avg =      19.0
Correlation:                  unstructured                     max =        19
                                                Wald chi2(2)       =    308.79
Scale parameter:                  1876.358      Prob > chi2        =    0.0000

------------------------------------------------------------------------------
    D.invest |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      mvalue |
         D1. |    .072526   .0050103    14.48   0.000     .0627059    .0823461
      kstock |
         D1. |   .3312199   .0299399    11.06   0.000     .2725387     .389901
------------------------------------------------------------------------------


Specifying -robust- will produced estimated standard errors that are robust
to cross-sectional conditional heteroskedasticity.

. xtgee D.(invest mvalue kstock), link(identity) family(gaussian) ///
        corr(unstructured) noconstant robust nolog
GEE population-averaged model                   Number of obs      =       190
Group and time vars:          company year      Number of groups   =        10
Link:                             identity      Obs per group: min =        19
Family:                           Gaussian                     avg =      19.0
Correlation:                  unstructured                     max =        19
                                                Wald chi2(2)       =   1122.79
Scale parameter:                  1876.358      Prob > chi2        =    0.0000

                                (Std. Err. adjusted for clustering on company)
------------------------------------------------------------------------------
             |             Semi-robust
    D.invest |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      mvalue |
         D1. |    .072526   .0048388    14.99   0.000     .0630422    .0820098
      kstock |
         D1. |   .3312199   .0351578     9.42   0.000     .2623119    .4001279
------------------------------------------------------------------------------

     -David
      [email protected]
*
*   For searches and help try:
*   http://www.stata.com/support/faqs/res/findit.html
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/



© Copyright 1996–2024 StataCorp LLC   |   Terms of use   |   Privacy   |   Contact us   |   What's new   |   Site index