Statalist The Stata Listserver


[Date Prev][Date Next][Thread Prev][Thread Next][Date index][Thread index]

Re: st: Different results of mlogit on different machine


From   Qiuqiong Huang <[email protected]>
To   [email protected]
Subject   Re: st: Different results of mlogit on different machine
Date   Thu, 9 Feb 2006 11:32:22 -0800 (PST)

Thanks for the response. Is there any way I can check the default algorithm of maximization on different machines? I still do not know how different machines run the same command differently in Stata.


On Thu, 9 Feb 2006, Stas Kolenikov wrote:


You have -robust- option in one of your runs, but not in the other.
This affects how the estimate of the VCE is computed, and I believe
this would also affect the running estimate of the Hessian. The
initial steps before iteration 0 are performed without regard to the
curvature of the likelihood being maximized, so the two procedures
start from the same point. But then they are using somewhat different
estimates of the second derivative matrix, I guess, and that's where
the discrepancies are coming out of. By the way, neither of the
estimation procedures converged. With 40 observations, there is no way
you get reasonable results for 28 parameters. No way. And you do see
that in some parameters shooting off to infinity.

On 2/9/06, Qiuqiong Huang <[email protected]> wrote:
Hi
I found that when I run mlogit on different machine, I got different
results. The data and variables used in the regression are exactly the
same. But one machine ran 13 iterations.  another machine only ran 11
iterations and did not converge. And the results (magnitudes and standard
errors of coefficients are totally different too). On both machine, I
used Stata 8.2.

is there any way I can find out why i got different results?   Below are
the two sets of results.

Thanks a lot.
Qiuqiong
***********************************************************************
***********************************************************************
***********************************************************************
Machine 1:
. xi: mlogit incentive2 DClined seri_mud avgDCnumgate_2 avghhplot wstress
age_vill edu_vill pthsch ptnonag
 ptmig i.county, b(1) robust tr
i.county          _Icounty_31-35      (naturally coded; _Icounty_31
omitted)

Iteration 0:   log pseudolikelihood = -41.286362
                     0          0          0          0          0
                     0          0          0          0          0
                     0          0          0          0  -.9444616
                     0          0          0          0          0
                     0          0          0          0          0
                     0          0          0          0  -.1823216

Iteration 1:   log pseudolikelihood = -23.942025
             -.1535105  -1.862865  -.0126249  -.1058805  -.0903134
             -.0083592   .0718334   .0156798  -.0209434  -.0644558
              3.273693   .7684405   1.147216  -.7303947   1.996602
              .7346775   .4799768  -.0084356   .3432856   .8750169
              .0167751  -.1539001   .0164632  -.0378387   .0005579
             -2.041441  -.3045206  -.4144813   -1.28777  -4.461722

Iteration 2:   log pseudolikelihood =  -20.07641
.......Omitted here

Iteration 10:  log pseudolikelihood = -4.2511694
              216.9474  -83.40591  -.0279035   6.761672   64.32783
              22.57524    27.4512   8.661309  -10.73628  -3.635502
              222.3915   41.19815   30.15323  -13.08641  -1635.229
              200.3627  -3.597955   .0447571   41.53482   87.61121
              15.90677    27.2541   8.738907  -8.765639  -.4245701
             -83.01943  -71.07202  -171.0882  -218.1327  -1636.855

Iteration 11:  log pseudolikelihood = -3.7138854
              264.8277  -99.28156  -.0282477     7.7863   81.29004
              27.57892   32.82099   10.73473  -13.09572  -4.473515
              267.4728   44.75714   35.35282  -20.16417   -2002.28
              246.2304  -4.792918   .0514819    51.2159   110.3305
              19.22811   32.69608   10.69847  -10.85353  -.3073647
             -110.3294  -89.29089  -215.4751  -269.2497  -1999.169

Iteration 12:  log pseudolikelihood = -3.5259999
              290.1185  -106.7525  -.0283225   9.239672   89.29666
              30.11146   35.97972   11.79514  -14.29023  -4.862053
              286.5799   45.57917   34.45153  -27.19174  -2195.181
              270.1947  -5.378952   .0567416   56.18665   121.0073
              21.10159   35.89417   11.73846  -11.91466  -.3277298
              -120.984  -97.89167  -236.4222  -295.3328  -2193.674

Iteration 13:  log pseudolikelihood =  -3.510283
              296.3671  -108.5992  -.0283358   9.596246   91.27622
              30.73784   36.75933   12.05715  -14.58576  -4.958122
              291.3211   45.79315   34.24537  -28.90659  -2242.855
              276.1129  -5.525269   .0580142   57.41468   123.6471
              21.56427   36.68407   11.99532  -12.17688  -.3327286
             -123.6217  -100.0199   -241.603  -301.7788  -2241.715


Multinomial logistic regression                   Number of obs   =
40
                                                   Wald chi2(24)   =
.
                                                   Prob > chi2     =
.
Log pseudolikelihood = -3.5107012                 Pseudo R2       =
0.9150
***********************************************************************
***********************************************************************
***********************************************************************


Machine 2:


. xi: mlogit incentive2 DClined seri_mud avgDCnumgate_2 avghhplot wstress
age_vill edu_vill pthsch ptnonag
ptmig i.county, b(1) tr
i.county          _Icounty_31-35      (naturally coded; _Icounty_31
omitted)

Iteration 0:   log likelihood = -41.286362
                     0          0          0          0          0
                     0          0          0          0          0
                     0          0          0          0  -.9444616
                     0          0          0          0          0
                     0          0          0          0          0
                     0          0          0          0  -.1823216

Iteration 1:   log likelihood = -23.942025
             -.1535105  -1.862865  -.0126249  -.1058805  -.0903134
             -.0083592   .0718334   .0156798  -.0209434  -.0644558
              3.273693   .7684405   1.147216  -.7303947   1.996602
              .7346775   .4799768  -.0084356   .3432856   .8750169
              .0167751  -.1539001   .0164632  -.0378387   .0005579
             -2.041441  -.3045206  -.4144813   -1.28777  -4.461722

Iteration 2:   log likelihood =  -20.07641
              .7064876  -2.962282  -.0142221  -.1936033     .08562
  ........Omitted.......

Iteration 10:  log likelihood = -4.2511694
              216.9474  -83.40591  -.0279035   6.761672   64.32783
              22.57524    27.4512   8.661309  -10.73628  -3.635502
              222.3915   41.19815   30.15323  -13.08641  -1635.229
              200.3627  -3.597955   .0447571   41.53482   87.61121
              15.90677    27.2541   8.738907  -8.765639  -.4245701
             -83.01943  -71.07202  -171.0882  -218.1327  -1636.855

Iteration 11:  log likelihood =          .
              312.7081  -115.1572  -.0285919   8.810928   98.25225
               32.5826   38.19077   12.80816  -15.45516  -5.311528
               312.554   48.31613    40.5524  -27.24193  -2369.331
               292.098  -5.987881   .0582066   60.89697   133.0497
              22.54945   38.13805   12.65803  -12.94142  -.1901592
             -137.6394  -107.5098   -259.862  -320.3667  -2361.483


Multinomial logistic regression                   Number of obs   =
40
                                                   LR chi2(28)     =
.
Log likelihood =          .                       Prob > chi2     =
.
*
*   For searches and help try:
*   http://www.stata.com/support/faqs/res/findit.html
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/


--
Stas Kolenikov
http://stas.kolenikov.name

*
*   For searches and help try:
*   http://www.stata.com/support/faqs/res/findit.html
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/

*
*   For searches and help try:
*   http://www.stata.com/support/faqs/res/findit.html
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/



© Copyright 1996–2024 StataCorp LLC   |   Terms of use   |   Privacy   |   Contact us   |   What's new   |   Site index