Statalist The Stata Listserver


[Date Prev][Date Next][Thread Prev][Thread Next][Date index][Thread index]

Re: st: survival analysis


From   [email protected] (Roberto G. Gutierrez, StataCorp)
To   [email protected]
Subject   Re: st: survival analysis
Date   Thu, 09 Feb 2006 09:55:25 -0600

Joerg Heining <[email protected]> asks:

> right now I am concentrating my studies on the analysis of duration data.
> While working through the Stata manual (version 8) on "Survival Analysis and
> Epidemiological Tables" I found and remark which I could not understand so
> far. On p. 204 the manual says that the relationship between the coefficents
> of a PH and an AFT Weibull model does only hold if the ancillary parameter
> is a constant. It does not hold when the ancillary parameter is parametrized
> in terms of covariates, e.g. using the strata option. Can anyone explain
> this to me?

Consider the following PH Weibull model, run on the cancer data:

. streg drug, dist(weib) nohr

[stuff deleted]

------------------------------------------------------------------------------
          _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        drug |   -1.20743    .251076    -4.81   0.000     -1.69953   -.7153303
       _cons |  -2.595273   .6680031    -3.89   0.000    -3.904535   -1.286011
-------------+----------------------------------------------------------------
       /ln_p |   .4660248   .1454774     3.20   0.001     .1808943    .7511554
-------------+----------------------------------------------------------------
           p |   1.593647   .2318396                      1.198289    2.119447
         1/p |   .6274917   .0912859                      .4718211    .8345235
------------------------------------------------------------------------------

The manual claims that the mapping from PH to AFT is one-to-one, and
examination of Table 1 in [ST] streg shows that if I take the coefficients of
the above PH model and divide them by -p, I'll get the coefficients of the AFT
model.  Namely,

            [-1.20743,  -2.595273] / -1.593647 = [.75765, 1.6285]

and running the AFT model confirms this:

. streg drug, dist(weib) time

[stuff deleted]

------------------------------------------------------------------------------
          _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        drug |   .7576525   .1594317     4.75   0.000      .445172    1.070133
       _cons |   1.628512   .2760891     5.90   0.000     1.087387    2.169637
-------------+----------------------------------------------------------------
       /ln_p |   .4660248   .1454774     3.20   0.001     .1808943    .7511554
-------------+----------------------------------------------------------------
           p |   1.593647   .2318396                      1.198289    2.119447
         1/p |   .6274917   .0912859                      .4718211    .8345235
------------------------------------------------------------------------------

The point is once you have fit a PH Weibull model, it would not be necessary
to rerun the estimation in order to get the AFT model coefficients, but I 
usually rerun it anyway because my computer can fit a Weibull AFT model 
faster than I can divide by hand.

When you stratify, however, you are stipulating that p is not constant, but
instead parameterized as 

       ln(p) = some linear combination of covariates in your data

As such, the above by-hand conversion from PH to AFT is impossible.  There
is no single p to divide by.  Instead, p varies with the data.

No worries, though.  Just re-estimate in this case.

--Bobby
[email protected]
*
*   For searches and help try:
*   http://www.stata.com/support/faqs/res/findit.html
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/



© Copyright 1996–2024 StataCorp LLC   |   Terms of use   |   Privacy   |   Contact us   |   What's new   |   Site index