Statalist The Stata Listserver


[Date Prev][Date Next][Thread Prev][Thread Next][Date index][Thread index]

st: How to best describe interaction between a dummy variable and a continuous one in logistic regression?


From   "daniel waxman" <[email protected]>
To   <[email protected]>
Subject   st: How to best describe interaction between a dummy variable and a continuous one in logistic regression?
Date   Fri, 3 Feb 2006 14:52:09 -0500

This is a statistics question rather than a Stata question.   
 
I am struggling with how to best describe (medical journal manuscript) an
interaction effect. 

The overall goal of the study is to describe the continuous variable 'zlog'
as a predictor of 'outcome'  and to determine the degree to which the
association is independent of other variables.  It is indeed independent of
most of them, but there are two dummy variables for which interaction terms
are significant and the odds ratio for zlog changes.  

The question is:  How do I describe/quantify the interaction in a succinct
way?    
Do the odds ratios for the interaction terms have any intuitive meaning?  I
can see what is happening (sort of)  by dropping observations based upon the
dummy variable, but it is hard to describe quantitatively.

The two dummy variables that interact are different.  In the first example,
the odds ratio for the continuous variable increases when the either the
observations with dummy==0 or dummy==1 are dropped.  In the second case,
dropping dummy==0 decreases the the OR for the continuous variable and
dropping dummy==1 increases it.


*********************example #1:  Dummy variable (romi) has increases OR for

                                  the continuous variable (zlog) for both 
                                  situations romi==0 and romi==1
                                
                                  
                                  
. logistic outcome zlog

Logistic regression                               Number of obs   =
20277
                                                  LR chi2(1)      =
243.41
                                                  Prob > chi2     =
0.0000
Log likelihood = -3868.6247                       Pseudo R2       =
0.0305

----------------------------------------------------------------------------
--
     outcome | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf.
Interval]
-------------+--------------------------------------------------------------
--
        zlog |   2.080782   .0918129    16.61   0.000     1.908394
2.268742
----------------------------------------------------------------------------
--


. logistic is_dead romi

Logistic regression                               Number of obs   =
21236
                                                  LR chi2(1)      =
278.92
                                                  Prob > chi2     =
0.0000
Log likelihood = -3928.3283                       Pseudo R2       =
0.0343

----------------------------------------------------------------------------
--
     outcome | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf.
Interval]
-------------+--------------------------------------------------------------
--
        romi |   .2172724   .0241013   -13.76   0.000     .1748169
.2700384
----------------------------------------------------------------------------
--


. logistic outcome zlog romi

Logistic regression                               Number of obs   =
20277
                                                  LR chi2(2)      =
553.98
                                                  Prob > chi2     =
0.0000
Log likelihood = -3713.3369                       Pseudo R2       =
0.0694

----------------------------------------------------------------------------
--
     outcome | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf.
Interval]
-------------+--------------------------------------------------------------
--
        zlog |   2.474006   .1195488    18.75   0.000     2.250448
2.719772
        romi |   .1786168   .0215241   -14.29   0.000     .1410422
.2262016
----------------------------------------------------------------------------
--


. xi: logistic outcome i.romi*zlog
i.romi            _Iromi_0-1          (naturally coded; _Iromi_0 omitted)
i.romi*zlog       _IromXzlog_#        (coded as above)

Logistic regression                               Number of obs   =
20277
                                                  LR chi2(3)      =
558.58
                                                  Prob > chi2     =
0.0000
Log likelihood = -3711.0395                       Pseudo R2       =
0.0700

----------------------------------------------------------------------------
--
     outcome | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf.
Interval]
-------------+--------------------------------------------------------------
--
    _Iromi_1 |   .2093427   .0292553   -11.19   0.000     .1591856
.2753037
        zlog |   2.350594   .1269027    15.83   0.000     2.114576
2.612955
_IromXzlog_1 |   1.295315   .1556027     2.15   0.031     1.023583
1.639185
----------------------------------------------------------------------------
--

. preserve
. drop if romi==1
(6413 observations deleted)

. logistic outcome zlog

Logistic regression                               Number of obs   =
14823
                                                  LR chi2(1)      =
230.33
                                                  Prob > chi2     =
0.0000
Log likelihood = -3335.5847                       Pseudo R2       =
0.0334

----------------------------------------------------------------------------
--
     outcome | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf.
Interval]
-------------+--------------------------------------------------------------
--
        zlog |   2.350594   .1269027    15.83   0.000     2.114576
2.612955
----------------------------------------------------------------------------
--

. restore
. drop if romi==0
(14823 observations deleted)


. logistic outcome zlog

Logistic regression                               Number of obs   =
5454
                                                  LR chi2(1)      =
91.85
                                                  Prob > chi2     =
0.0000
Log likelihood =  -375.4548                       Pseudo R2       =
0.1090

----------------------------------------------------------------------------
--
     outcome | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf.
Interval]
-------------+--------------------------------------------------------------
--
        zlog |    3.04476   .3267399    10.38   0.000     2.467225
3.757486
----------------------------------------------------------------------------
--


*************************
*************************  example #2:  dummy variable increases OR for zlog

                                        if is_sec == 1
                                        but increases it is is_sec==0

. logistic outcome zlog

 

Logistic regression                               Number of obs   =
20277
                                                  LR chi2(1)      =
243.41
                                                  Prob > chi2     =
0.0000
Log likelihood = -3868.6247                       Pseudo R2       =
0.0305
 

----------------------------------------------------------------------------
--
     outcome | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf.
Interval]
-------------+--------------------------------------------------------------
--
        zlog |   2.080782   .0918129    16.61   0.000     1.908394
2.268742
----------------------------------------------------------------------------
--
 

.

. logistic outcome no_sec

 

Logistic regression                               Number of obs   =
20277
                                                  LR chi2(1)      =
42.08
                                                  Prob > chi2     =
0.0000
Log likelihood = -3969.2894                       Pseudo R2       =
0.0053
 

----------------------------------------------------------------------------
--
     outcome | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf.
Interval]
-------------+--------------------------------------------------------------
--
      no_sec |   1.543235    .101792     6.58   0.000     1.356085
1.756214
----------------------------------------------------------------------------
--
 

.

. logistic outcome zlog no_sec

 

Logistic regression                               Number of obs   =
20277
                                                  LR chi2(2)      =
306.15
                                                  Prob > chi2     =
0.0000
Log likelihood = -3837.2553                       Pseudo R2       =
0.0384
 

----------------------------------------------------------------------------
--
     outcome | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf.
Interval]
-------------+--------------------------------------------------------------
--
        zlog |   2.146586   .0947182    17.31   0.000     1.968743
2.340495
      no_sec |    1.71472   .1148813     8.05   0.000     1.503713
1.955335
----------------------------------------------------------------------------
--
 

 

. xi: logistic outcome i.no_sec*zlog

i.no_sec          _Ino_sec_0-1        (naturally coded; _Ino_sec_0 omitted)

i.no_sec*zlog     _Ino_Xzlog_#        (coded as above)

 

Logistic regression                               Number of obs   =
20277
                                                  LR chi2(3)      =
315.56
                                                  Prob > chi2     =
0.0000
Log likelihood = -3832.5466                       Pseudo R2       =
0.0395
 

----------------------------------------------------------------------------
--
     outcome | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf.
Interval]
-------------+--------------------------------------------------------------
--
  _Ino_sec_1 |   1.268187   .1531227     1.97   0.049      1.00094
1.606788
        zlog |   2.396819   .1351902    15.50   0.000     2.145972
2.676988
_Ino_Xzlog_1 |   .7573733   .0690372    -3.05   0.002     .6334612
.905524
----------------------------------------------------------------------------
--
 

.

. preserve

 

. drop if no_sec==0

(13788 observations deleted)

 

. logistic outcome zlog

 

Logistic regression                               Number of obs   =
6489
                                                  LR chi2(1)      =
60.98
                                                  Prob > chi2     =
0.0000
Log likelihood = -1514.7069                       Pseudo R2       =
0.0197
 

----------------------------------------------------------------------------
--
     outcome | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf.
Interval]
-------------+--------------------------------------------------------------
--
        zlog |   1.815287    .129987     8.33   0.000     1.577587
2.088802
----------------------------------------------------------------------------
--
 

. restore

 

. drop if no_sec==1

(6489 observations deleted)

 

. logistic outcome zlog

 

Logistic regression                               Number of obs   =
13788
                                                  LR chi2(1)      =
212.51
                                                  Prob > chi2     =
0.0000
Log likelihood = -2317.8397                       Pseudo R2       =
0.0438
 

----------------------------------------------------------------------------
--
     outcome | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf.
Interval]
-------------+--------------------------------------------------------------
--
        zlog |   2.396819   .1351902    15.50   0.000     2.145972
2.676988
----------------------------------------------------------------------------
--
                                                  


*
*   For searches and help try:
*   http://www.stata.com/support/faqs/res/findit.html
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/



© Copyright 1996–2024 StataCorp LLC   |   Terms of use   |   Privacy   |   Contact us   |   What's new   |   Site index