Stata The Stata listserver
[Date Prev][Date Next][Thread Prev][Thread Next][Date index][Thread index]

st: bivariate ordered probit / ordinal probit - ctd.


From   Thomas Corneli�en <[email protected]>
To   <[email protected]>
Subject   st: bivariate ordered probit / ordinal probit - ctd.
Date   Fri, 4 Nov 2005 18:14:15 +0100

Dear Statalist,
I am referring to last year's threads "bivariate ordinal probit model" and "[multivariate ordered probit models in Stata]".

Joseph Coveney suggested to use -gllamm- to estimate a bivariate ordered probit model and gave an example do-file.

Before applying -gllamm- to a bivariate ordered probit I wanted to check whether I was using it correctly and therefore wanted to estimate a bivariate probit by -gllamm- and compared it to Stata's results form -biprobit-.

Unfortunately, I do not get similar estimates, although the log likelihood at convergence is similar.

I feel that the difference might be due to the fact that -gllamm- estimates individual random effects while biprobit does not, but I am not sure whether I understand that correctly.
Moreover, -gllamm- does not seem to give me an estimate of the parameter 'rho' estimated by the bivariate probit model?

The results and the code are below.

Are there any suggestions about how to have the same estimates from -gllamm- as from -biprobit-, so that I could then transfer it to a bivariate ordered probit ?
Thank for any comments!
Thomas
-------------------------------------------------------------------------
Thomas Cornelissen
Institute of Empirical Economic Research
University of Hannover, Germany
[email protected]


+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
-biprobit- delivers:

Iteration 4: log pseudolikelihood = -213.50427

Seemingly unrelated bivariate probit Number of obs = 250
Wald chi2(2) = 120.85
Log pseudolikelihood = -213.50427 Prob > chi2 = 0.0000

(Std. Err. adjusted for 250 clusters in pid)
------------------------------------------------------------------------------
| Robust
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
y0 |
x1 | 1.010417 .11046 9.15 0.000 .7939194 1.226915
_cons | .083602 .0920831 0.91 0.364 -.0968775 .2640815
-------------+----------------------------------------------------------------
y1 |
x1 | 1.189647 .1300007 9.15 0.000 .9348505 1.444444
_cons | -.0102275 .0950683 -0.11 0.914 -.1965579 .1761028
-------------+----------------------------------------------------------------
/athrho | .9527857 .1551993 6.14 0.000 .6486006 1.256971
-------------+----------------------------------------------------------------
rho | .7410416 .0699728 .5707272 .8502268
------------------------------------------------------------------------------
Wald test of rho=0: chi2(1) = 37.6887 Prob > chi2 = 0.0000


++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
-gllamm- delivers:
(x2 is the dummy to identify the equations and iac is the interaction of x1 and x2)

gllamm model

log likelihood = -213.50427


Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (pid)

var(1): 2.8616262 (1.0396932)
------------------------------------------------------------------------------

------------------------------------------------------------------------------
y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
y |
x1 | 1.985573 .3561421 5.58 0.000 1.287547 2.683598
x2 | -.1843845 .1846338 -1.00 0.318 -.54626 .177491
iac | .3522056 .288057 1.22 0.221 -.2123757 .916787
_cons | .1642864 .1813658 0.91 0.365 -.1911839 .5197568
-------------+----------------------------------------------------------------
pid1 |
_cons | 1.691634 .3073044 5.50 0.000 1.089329 2.29394
------------------------------------------------------------------------------

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
And here is the code, a modification of Joseph's suggestion from the earlier threads::

set more off
drawnorm res2 res3, ///
corr(1 0.7 \ 0.7 1) ///
n(250) seed(20040318) clear
generate float x1 = invnorm(uniform())
forvalues dep = 2/3 {
generate float y`dep' = 0.7 * x1 + ///
sqrt(1 - 0.7^2) * res`dep'
}
generate byte y0 = 0
replace y0 = y0 + (norm(y2) > 0.5)
generate byte y1 = 0
replace y1 = y1 + (norm(y3) > 0.5)

drop y2 y3 res*
generate int pid = _n
*
biprobit (y0 x1) (y1 x1), cluster(pid)
gen i=1
keep x1 y* pid
reshape long y, i(pid) j(x2)
generate float iac = x1 * x2
gllamm y x1 x2 iac, i(pid) family(binomial) link(probit) nip(30) adapt trace allc
exit
*
* For searches and help try:
* http://www.stata.com/support/faqs/res/findit.html
* http://www.stata.com/support/statalist/faq
* http://www.ats.ucla.edu/stat/stata/




© Copyright 1996–2024 StataCorp LLC   |   Terms of use   |   Privacy   |   Contact us   |   What's new   |   Site index