Stata The Stata listserver
[Date Prev][Date Next][Thread Prev][Thread Next][Date index][Thread index]

Re: st: RE: Why does -xtabond2- not work with unbalanced panels?


From   "Clive Nicholas" <[email protected]>
To   [email protected]
Subject   Re: st: RE: Why does -xtabond2- not work with unbalanced panels?
Date   Sun, 4 Jul 2004 02:20:45 +0100 (BST)

Thuy Le replied:

> I think your panel is not -tsset- properly, so that there are missing
> value. Try to generate new time variable using -tsmktim- and -tsset-
> again.

I should point out here that -tsmktim- is a user-written package by Kit
Baum and Vince Wiggins, downloadable via SSC.

Thanks for the suggestion, but although -tsmktim- worked a treat (it now
works with panels: it didn't before), -xtabond2- still didn't work:

. tsmktim dcyear, start(1976) seq(edyear) i(pano)
       panel variable:  pano, 1 to 659
        time variable:  dcyear, 1976 to 1992, but with gaps

. tsset pano dcyear
       panel variable:  pano, 1 to 659
        time variable:  dcyear, 1976 to 1992, but with gaps

. xtabond2 edconpc ledconpc ed2-ed13 edpollch lagconch laglabch lagldmch
clmargin cdmargin conplace edenp class if edmarker==1, gmm(l3edconpc)
robust small
Missing values in time variable (dcyear).
r(459);

This simply makes no sense to me: there's _nothing_ in the help file that
states that -xtabond2- does not work with unbalanced panels, or indeed
should not work (in evidence I submitted in an earlier post). I wish I
knew why it behaves like this.

However, I've found a solution, although it's not a satisfactory one:

. drop if edyear==.
(2838 observations deleted)

. xtabond2 edconpc ledconpc ed2-ed13 edpollch lagconch laglabch lagldmch
clmargin cdmargin conplace edenp class if edmarker==1, gmm(l3edconpc)
robust small
ed2 dropped because of collinearity.
ed3 dropped because of collinearity.
Building GMM instruments..
8 instruments dropped because of collinearity.
Estimating.
Performing specification tests.

Arellano-Bond dynamic panel-data estimation, one-step system GMM results
------------------------------------------------------------------------------
Group variable: pano                            Number of obs      =     
1842
Time variable : edyear                          Number of groups   =      
302
Number of instruments = 32                      Obs per group: min =      
  1
F(20, 301)    =      6.01                                      avg =     
6.10
Prob > F      =     0.000                                      max =      
 11
------------------------------------------------------------------------------
             |               Robust
             |      Coef.   Std. Err.      t    P>|t|     [95% Conf.
Interval]
-------------+----------------------------------------------------------------
    ledconpc |  -.2848439   .3087844    -0.92   0.357    -.8924934   
.3228057
         ed4 |  -159.8244   166.6444    -0.96   0.338      -487.76   
168.1112
         ed5 |   8320.825   177418.4     0.05   0.963    -340816.6   
357458.2
         ed6 |   8325.268   177418.9     0.05   0.963    -340813.2   
357463.8
         ed7 |   8446.951   177421.6     0.05   0.962    -340696.8   
357590.7
         ed8 |    13121.3   288135.6     0.05   0.964      -553894   
580136.6
         ed9 |   13129.14   288135.9     0.05   0.964    -553886.7     
580145
        ed10 |    13108.4   288134.5     0.05   0.964    -553904.8   
580121.6
        ed11 |   8341.228   177400.4     0.05   0.963    -340760.8   
357443.2
        ed12 |   8341.948     177400     0.05   0.963    -340759.3   
357443.2
        ed13 |   8332.933   177399.2     0.05   0.963    -340766.7   
357432.6
    edpollch |  -1.050461   1.017076    -1.03   0.303    -3.051941   
.9510186
    lagconch |   3.718234   7.188094     0.52   0.605    -10.42705   
17.86352
    laglabch |   2.686741   6.064912     0.44   0.658    -9.248257   
14.62174
    lagldmch |   1.971574   6.519442     0.30   0.763    -10.85788   
14.80103
    clmargin |  -1.538656   2.839115    -0.54   0.588    -7.125683   
4.048371
    cdmargin |   .1944372   1.942892     0.10   0.920    -3.628934   
4.017808
    conplace |  -44.53702   78.18992    -0.57   0.569    -198.4051   
109.3311
       edenp |  -14.35173   6.621796    -2.17   0.031     -27.3826  
-1.320851
       class |  -4.739345   6.573417    -0.72   0.471    -17.67502   
8.196327
       _cons |  -8060.598   177387.4    -0.05   0.964    -357137.1   
341015.9
------------------------------------------------------------------------------
Hansen test of overid. restrictions: chi2(11) =    5.72   Prob > chi2 = 
0.891

Arellano-Bond test for AR(1) in first differences: z =  -1.85  Pr > z = 
0.064
Arellano-Bond test for AR(2) in first differences: z =      .  Pr > z =   
  .
------------------------------------------------------------------------------

What I'll need to automatically impute years not in EDYEAR so that I won't
need to -drop- observations in my dataset that I need to keep.

CLIVE NICHOLAS        |t: 0(044)191 222 5969
Politics              |e: [email protected]
Newcastle University  |http://www.ncl.ac.uk/geps
*
*   For searches and help try:
*   http://www.stata.com/support/faqs/res/findit.html
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/



© Copyright 1996–2024 StataCorp LLC   |   Terms of use   |   Privacy   |   Contact us   |   What's new   |   Site index