Stata The Stata listserver
[Date Prev][Date Next][Thread Prev][Thread Next][Date index][Thread index]

st: RE: RE: RE: unpaired regression


From   "Nick Cox" <[email protected]>
To   <[email protected]>
Subject   st: RE: RE: RE: unpaired regression
Date   Tue, 11 May 2004 21:20:03 +0100

Your problems looks to me like -anova-, 
the flavor depending on what "separate"
means. It is not regression without 
pairing. I don't know what "unpaired regression"
would be. 

Nick 
[email protected] 

> -----Original Message-----
> From: [email protected]
> [mailto:[email protected]]On Behalf Of 
> Wallace, John
> Sent: 11 May 2004 20:57
> To: '[email protected]'
> Subject: st: RE: RE: unpaired regression
> 
> 
> Can anyone comment on whether Scott's suggestion would be 
> appropriate for
> the problem I'm working on?  The difference in R^2 between the samples
> indicates that it might be problematic.
> 
> John Wallace | Research Associate | Test Method Development
> AFFYMETRIX, INC. | 3380 Central Expressway | Santa Clara, CA 
> 95051 | Tel: 
> 408-731-5574 | Fax:  408-481-0435
> 
> -----Original Message-----
> From: Wallace, John [mailto:[email protected]] 
> Sent: Monday, May 10, 2004 10:08 PM
> To: '[email protected]'
> Subject: st: RE: RE: unpaired regression
> 
> Doesn't that imply a relationship between the observations 
> though?  Wouldn't
> it be equally valid to end up with them lined up like
>      +-------------------------+
>      | batch   assay1   assay2 |
>      |-------------------------|
>   1. | Btch1     5400     .905 |
>   2. | Btch1     5320     .898 |
>   3. | Btch1     5670     .9   |
>   4. | Btch2     8600     .943 |
>   5. | Btch2     7840     .955 |
>   6. | Btch2     7550     .962 |
> 
> In the original line-up, the coefficient of determination is 
> 0.968.  In the
> second one above, its 0.8.
> 
> 
> -----Original Message-----
> From: Scott Merryman [mailto:[email protected]] 
> Sent: Monday, May 10, 2004 6:42 PM
> To: [email protected]
> Subject: st: RE: unpaired regression
> 
> How about lining up the measurements?
> 
> Something like
> 
> . l
> 
>      +-------------------------+
>      | batch   assay1   assay2 |
>      |-------------------------|
>   1. | Btch1     5400        . |
>   2. | Btch1     5320        . |
>   3. | Btch1     5670        . |
>   4. | Btch1        .       .9 |
>   5. | Btch1        .     .905 |
>      |-------------------------|
>   6. | Btch1        .     .898 |
>   7. | Btch2     8600        . |
>   8. | Btch2     7840        . |
>   9. | Btch2     7550        . |
>  10. | Btch2        .     .962 |
>      |-------------------------|
>  11. | Btch2        .     .955 |
>  12. | Btch2        .     .943 |
>      +-------------------------+
> 
> . by batch: replace assay2 = assay2[_n +3]
> (12 real changes made, 6 to missing)
> 
> . drop if assay1 == .
> (6 observations deleted)
> 
> . l
> 
>      +-------------------------+
>      | batch   assay1   assay2 |
>      |-------------------------|
>   1. | Btch1     5400       .9 |
>   2. | Btch1     5320     .905 |
>   3. | Btch1     5670     .898 |
>   4. | Btch2     8600     .962 |
>   5. | Btch2     7840     .955 |
>      |-------------------------|
>   6. | Btch2     7550     .943 |
>      +-------------------------+
> 
> 
> Scott
> 
> ________________________________________
> From: [email protected]
> [mailto:[email protected]] On Behalf Of 
> Wallace, John
> Sent: Monday, May 10, 2004 7:48 PM
> To: '[email protected]'
> Subject: st: unpaired regression
> 
> I have two measures of batch performance on which I'd like to 
> perform a
> regression.� The measurements are taken on separate samples 
> from the batch,
> and typically look something like:
> ����������� Assay1 Assay2
> Btch1��� 5400���� ���� 
> Btch1��� 5320���� ���� 
> Btch1��� 5670���� ���� 
> Btch1��������������� 0.900
> Btch1��������������� 0.905
> Btch1��������������� 0.898
> Btch2��� 8600���� ���� 
> Btch2��� 7840���� ���� 
> Btch2��� 7550���� ��� 
> Btch2��������������� 0.962
> Btch2��������������� 0.955
> Btch2��������������� 0.943
> ...etc (on for multiple batches which show correlated 
> measures for the two
> assays)
> -collapse- ing them to batch averages and then performing the 
> regression is
> one approach, but it doesn't take variance of the measures 
> themselves into
> account in the regression.� Is there a system for performing 
> this type of
> analysis?
> �

*
*   For searches and help try:
*   http://www.stata.com/support/faqs/res/findit.html
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/



© Copyright 1996–2024 StataCorp LLC   |   Terms of use   |   Privacy   |   Contact us   |   What's new   |   Site index