Jeff Pitblado, in reply to Jeffrey Simons, writes (in part):
> There are several approximations to this (inverse non-central
> chi-square) distribution, most
> (if not all) of which are discussed in Johnson, Kotz, and
> Balakrishnan (1995). One approximation is based on a Central
> Limit Argument.
>
> Assume X2 is distributed as a non-central chi-square
> random variable
> with n degrees of freedome and non-centrality parameter L, then
>
> Z = (X2 - (n+L))/sqrt(2*(n+2*L))
>
> will tend to follow the standard normal distribution
> for fixed n and
> large L, or for fixed L and large n.
>
> I compared the results between -invnchi2()- and this
> approximation fixing n=200, using alpha = 0.05, and L ranging
> between 5 and 99. The relative difference between the two
> ranged between 0.0040 and 0.0047. The normal approximation
> was consistently less than the result from -invnchi2()-
> (minimum difference was 1.12, max was 1.38).
As Jeff says, there are a number of approximations. I repeated Jeff's
analysis with the 3 approximation formulas given in Abramowitz
& Stegun (1972) and show the results below. The first approximation,
labeled "invnchi2A", is based on the central chi-square while
approximations "invnchi2B" and "invnchi2C" are based on the central
normal distribution. I report Stata's invnchi2 value, the result of
each of these formulas and the relative difference of each from
invnchi2, using invnchi2 as the reference.
invnchi2A, based on the central chi-square, is very poor, averaging
5.037% relative difference and ranging from 0.064% to 11.831%. It was
lower than the Stata result throughout and became progressively more
divergent as lambda became larger.
invnchi2B is much better, at 0.139% average relative difference and
range 0.108% to 0.167%. It was slightly lower throughout than the
Stata value but became closer as lambda increased.
invnchi2C is quite good, at -0.020% average relative difference and
range -0.001% to -0.040%. It was slightly higher throughout than the
Stata value and became more divergent as lambda increased.
If I understood Jeff's relative difference notation, then the
approximation he used ranged in relative difference from 0.40% to 0.47%.
Approximation invnchi2C seems quite acceptable (for this example) and
could easily be programmed. It would be reasonable, though, to test
such an approximation formula over a wide range of values before
offering it as a stand-alone program (or, better yet, a function).
Tom Steichen
------------------------------------
local p = .05
local v = 200
forvalues l = 5/99 {
local a = `v' + `l'
local b = `l'/`a'
local stata = invnchi2(`v',`l',`p')
local invnchi2A = (1+`b') * invchi2(`v', `p')
local invnchi2B = ((1+`b')/2)*(invnorm(`p') + sqrt(2*`a'/(1+`b') - 1))^2
local invnchi2C = `a'*(invnorm(`p')*sqrt(2/9*((1+`b')/`a')) + 1 - 2/9*((1+`b')/`a'))^3
di %5.0f `l' %10.3f `stata' _c
di %10.3f `invnchi2A' %10.6f (`stata' - `invnchi2A')/`stata' _c
di %10.3f `invnchi2B' %10.6f (`stata' - `invnchi2B')/`stata' _c
di %10.3f `invnchi2C' %10.6f (`stata' - `invnchi2C')/`stata'
}
lambda invnchi2 invnchi2A rel_difA invnchi2B rel_difB invnchi2C rel_difC
5 172.494 172.383 0.000642 172.206 0.001666 172.495 -0.000009
6 173.340 173.180 0.000921 173.050 0.001668 173.340 -0.000005
7 174.185 173.969 0.001242 173.895 0.001667 174.187 -0.000006
8 175.031 174.751 0.001603 174.741 0.001661 175.033 -0.000011
9 175.880 175.525 0.002019 175.587 0.001668 175.881 -0.000004
10 176.726 176.292 0.002457 176.434 0.001654 176.729 -0.000017
11 177.575 177.051 0.002947 177.281 0.001653 177.578 -0.000018
12 178.423 177.804 0.003473 178.129 0.001648 178.427 -0.000022
13 179.272 178.549 0.004033 178.978 0.001639 179.277 -0.000030
14 180.124 179.287 0.004642 179.828 0.001642 180.128 -0.000026
15 180.972 180.019 0.005268 180.678 0.001626 180.980 -0.000041
16 181.824 180.744 0.005940 181.529 0.001622 181.832 -0.000043
17 182.678 181.462 0.006658 182.380 0.001630 182.684 -0.000035
18 183.529 182.173 0.007390 183.232 0.001619 183.537 -0.000044
19 184.384 182.878 0.008165 184.085 0.001620 184.391 -0.000042
20 185.235 183.577 0.008953 184.938 0.001603 185.246 -0.000058
21 186.092 184.269 0.009797 185.792 0.001612 186.101 -0.000047
22 186.943 184.955 0.010637 186.646 0.001589 186.956 -0.000069
23 187.800 185.635 0.011532 187.501 0.001592 187.812 -0.000064
24 188.657 186.308 0.012450 188.357 0.001592 188.669 -0.000062
25 189.514 186.976 0.013392 189.213 0.001590 189.526 -0.000064
26 190.371 187.638 0.014356 190.070 0.001584 190.384 -0.000068
27 191.228 188.294 0.015343 190.927 0.001575 191.242 -0.000075
28 192.085 188.944 0.016350 191.785 0.001564 192.101 -0.000084
29 192.942 189.589 0.017378 192.643 0.001550 192.961 -0.000097
30 193.802 190.228 0.018440 193.502 0.001547 193.820 -0.000097
31 194.661 190.861 0.019520 194.361 0.001542 194.681 -0.000101
32 195.521 191.489 0.020620 195.221 0.001534 195.542 -0.000107
33 196.381 192.112 0.021736 196.081 0.001524 196.403 -0.000115
34 197.243 192.729 0.022884 196.942 0.001525 197.265 -0.000112
35 198.105 193.341 0.024049 197.804 0.001524 198.128 -0.000112
36 198.965 193.948 0.025215 198.665 0.001506 198.990 -0.000127
37 199.828 194.550 0.026411 199.528 0.001500 199.854 -0.000132
38 200.693 195.147 0.027635 200.391 0.001505 200.718 -0.000125
39 201.555 195.738 0.028860 201.254 0.001494 201.582 -0.000133
40 202.418 196.325 0.030099 202.118 0.001481 202.447 -0.000145
41 203.280 196.907 0.031352 202.982 0.001465 203.312 -0.000158
42 204.148 197.484 0.032643 203.847 0.001474 204.178 -0.000147
43 205.010 198.056 0.033921 204.712 0.001455 205.044 -0.000164
44 205.878 198.624 0.035236 205.578 0.001459 205.911 -0.000157
45 206.743 199.187 0.036551 206.444 0.001449 206.778 -0.000166
46 207.609 199.745 0.037876 207.311 0.001436 207.645 -0.000176
47 208.477 200.299 0.039225 208.178 0.001434 208.513 -0.000176
48 209.344 200.849 0.040583 209.045 0.001431 209.382 -0.000177
49 210.212 201.394 0.041952 209.913 0.001425 210.250 -0.000181
50 211.080 201.934 0.043330 210.781 0.001417 211.120 -0.000186
51 211.948 202.471 0.044717 211.650 0.001408 211.989 -0.000193
52 212.816 203.003 0.046112 212.519 0.001396 212.859 -0.000203
53 213.684 203.531 0.047516 213.389 0.001383 213.730 -0.000214
54 214.555 204.054 0.048941 214.259 0.001380 214.601 -0.000214
55 215.425 204.574 0.050372 215.129 0.001376 215.472 -0.000216
56 216.296 205.089 0.051811 216.000 0.001370 216.344 -0.000219
57 217.167 205.601 0.053257 216.871 0.001362 217.216 -0.000225
58 218.037 206.109 0.054710 217.743 0.001352 218.088 -0.000232
59 218.908 206.612 0.056169 218.615 0.001341 218.961 -0.000241
60 219.781 207.112 0.057646 219.487 0.001340 219.834 -0.000239
61 220.655 207.608 0.059128 220.360 0.001338 220.708 -0.000239
62 221.528 208.100 0.060616 221.233 0.001334 221.582 -0.000241
63 222.402 208.589 0.062109 222.106 0.001328 222.456 -0.000244
64 223.275 209.073 0.063607 222.980 0.001321 223.331 -0.000249
65 224.149 209.554 0.065109 223.855 0.001312 224.206 -0.000255
66 225.022 210.032 0.066616 224.729 0.001301 225.081 -0.000263
67 225.895 210.506 0.068127 225.604 0.001289 225.957 -0.000273
68 226.769 210.976 0.069642 226.480 0.001275 226.833 -0.000284
69 227.648 211.443 0.071184 227.355 0.001285 227.710 -0.000272
70 228.521 211.906 0.072706 228.231 0.001268 228.587 -0.000286
71 229.397 212.366 0.074242 229.108 0.001262 229.464 -0.000290
72 230.273 212.823 0.075782 229.985 0.001254 230.341 -0.000295
73 231.152 213.276 0.077335 230.862 0.001257 231.219 -0.000289
74 232.026 213.726 0.078869 231.739 0.001235 232.097 -0.000309
75 232.905 214.173 0.080428 232.617 0.001235 232.976 -0.000306
76 233.784 214.616 0.081988 233.495 0.001234 233.855 -0.000305
77 234.662 215.056 0.083550 234.374 0.001231 234.734 -0.000305
78 235.539 215.493 0.085104 235.252 0.001215 235.614 -0.000319
79 236.418 215.927 0.086670 236.132 0.001210 236.494 -0.000322
80 237.296 216.358 0.088237 237.011 0.001203 237.374 -0.000326
81 238.178 216.786 0.089816 237.891 0.001206 238.254 -0.000320
82 239.057 217.211 0.091386 238.771 0.001196 239.135 -0.000327
83 239.936 217.632 0.092956 239.651 0.001186 240.016 -0.000335
84 240.815 218.051 0.094528 240.532 0.001174 240.898 -0.000344
85 241.696 218.467 0.096111 241.413 0.001172 241.779 -0.000343
86 242.578 218.880 0.097694 242.295 0.001169 242.662 -0.000344
87 243.457 219.290 0.099267 243.176 0.001153 243.544 -0.000357
88 244.341 219.697 0.100861 244.058 0.001159 244.427 -0.000349
89 245.220 220.101 0.102434 244.941 0.001141 245.310 -0.000364
90 246.105 220.503 0.104028 245.823 0.001144 246.193 -0.000358
91 246.984 220.902 0.105602 246.706 0.001124 247.076 -0.000376
92 247.868 221.298 0.107195 247.589 0.001125 247.960 -0.000372
93 248.752 221.691 0.108788 248.473 0.001124 248.844 -0.000370
94 249.637 222.082 0.110380 249.357 0.001123 249.729 -0.000369
95 250.518 222.470 0.111962 250.241 0.001109 250.614 -0.000380
96 251.400 222.855 0.113543 251.125 0.001095 251.499 -0.000392
97 252.285 223.238 0.115133 252.010 0.001090 252.384 -0.000394
98 253.169 223.618 0.116722 252.895 0.001084 253.269 -0.000397
99 254.053 223.996 0.118310 253.780 0.001077 254.155 -0.000401
Averages:
212.971 201.387 5.037% 212.678 0.139% 213.016 -0.020%
----------------------------------------
-----------------------------------------
CONFIDENTIALITY NOTE: This e-mail message, including any
attachment(s), contains information that may be confidential,
protected by the attorney-client or other legal privileges, and/or
proprietary non-public information. If you are not an intended
recipient of this message or an authorized assistant to an intended
recipient, please notify the sender by replying to this message and
then delete it from your system. Use, dissemination, distribution,
or reproduction of this message and/or any of its attachments (if
any) by unintended recipients is not authorized and may be unlawful.
*
* For searches and help try:
* http://www.stata.com/support/faqs/res/findit.html
* http://www.stata.com/support/statalist/faq
* http://www.ats.ucla.edu/stat/stata/