Stata The Stata listserver
[Date Prev][Date Next][Thread Prev][Thread Next][Date index][Thread index]

st: xtprobit: all independent variable is significant.


From   Koichiro Okamura <[email protected]>
To   [email protected]
Subject   st: xtprobit: all independent variable is significant.
Date   Sat, 17 May 2003 17:28:08 -0400

Dear all,

I have a question about xtprobit. I ran xtprobit (random  effects) 
for an unbalanced panel-data and found that all independent variable
(sometimes except one variable or two) were significant. I'm not
familiar with such a result and afraid that something might be wrong.
So I am here seeking for your suggestions/advice.


I guess the reason for "everything is significant" could be either:

R1) there were too many failures (dependent variable = 0) than success
(dep = 1); the result is biased toward failures;

R2) the number of sample was huge (if the sample are so huge, the
independent variables that aren't significant tend to be found
"significant." Does it hold for probit, too?);
or
R3) the independent variables are really significant
(i.e. I don't have to worry about the results).


What would you do to examine what causes the "everything is significant"
results (and whether the results are really correct)? More specifically,
my questions could be, for example, when the proportion of
success/failure is unbalanced very much, is xtprobit an appropriate
command? Or are there other commands, more appropriate than xtprobit?
etc.

Also, please tell me, if there are other potential causes/problems
you find that I'm not aware of, please.


The attached in the rest of this posting is an example of the output
from Stata 8 (one independent variable is (eventually) found as
insignificant here):
O1) tabulate and summarize (to see the overall view of data), and
O2) xtprobit, preceded by probit in order to make xtprobit converge, 
and followed by quadchk checking the stability of xtprobit's results
together with other commands.
# As to the usage of probit, quadchk, and other commands, the series
# of discussions on xtprobit in Sep. 2002 here is very helpful.

Any help will be appreciated. Thank you very much.

Regards,

------- Stata 8 output from here to the end of this posting ------

. tabulate dep year

           |                    year
       dep |        90         91         92         93 |     Total
-----------+--------------------------------------------+----------
         0 |    34,480     41,974     49,580     45,682 |   171,716
         1 |       236        804        506      2,834 |     4,380 
-----------+--------------------------------------------+----------
     Total |    34,716     42,778     50,086     48,516 |   176,096

. summarize

  Variable |       Obs        Mean    Std. Dev.       Min        Max
-----------+--------------------------------------------------------
      year |    176096     91.6383    1.084519         90         93
        id |    442352    111200.5    66353.34          1     239086
       dep |    176096    .0248728    .1557379          0          1
        x1 |    442352    .1626749    .2227833          0          1
        x2 |    176096    .0290038    .1161555          0          1
-----------+--------------------------------------------------------
        x3 |    176096    .2804436    1.420482          0         68
        x4 |    176096    .0020983      .00406          0        .05
        x5 |    176096    27.28332     71.9288          0        868
        x6 |    176096    5.703616    8.440668          0        121
       x7i |    176096    6054.225    15543.99        .33   135696.8
-----------+--------------------------------------------------------
       x7j |    176096    5071.261    13000.79        .33   135696.8
      x7ij |    176096    3.03e+07    2.21e+08       .297   1.47e+10

. probit dep x1 x2 x3 x4 x5 x6 x7i x7j x7ij

Iteration 0:   log likelihood = -20504.706
Iteration 1:   log likelihood = -17467.585
Iteration 2:   log likelihood = -17232.621
Iteration 3:   log likelihood = -17231.582
Iteration 4:   log likelihood = -17231.582

Probit estimates                          Number of obs   =     176096
                                          LR chi2(9)      =    6546.25
                                          Prob > chi2     =     0.0000
Log likelihood = -17231.582               Pseudo R2       =     0.1596

----------------------------------------------------------------------
     dep |     Coef.  Std. Err.      z    P>|z|   [95% Conf. Interval]
---------+------------------------------------------------------------
      x1 |  .9626477  .0273679    35.17   0.000   .9090076    1.016288
      x2 |  .8126779  .0407537    19.94   0.000   .7328022    .8925536
      x3 |  .0460465  .0042701    10.78   0.000   .0376773    .0544157
      x4 |  3.965495  1.625142     2.44   0.015   .7802758    7.150715
      x5 |  .0016754  .0000945    17.73   0.000   .0014902    .0018606
      x6 |  .0122497  .0010104    12.12   0.000   .0102695      .01423
     x7i | -1.65e-06  5.22e-07    -3.16   0.002  -2.67e-06   -6.27e-07
     x7j | -4.40e-07  5.58e-07    -0.79   0.430  -1.53e-06    6.54e-07
    x7ij | -8.84e-11  2.23e-11    -3.96   0.000  -1.32e-10   -4.46e-11
   _cons | -2.467827  .0119242  -206.96   0.000  -2.491198   -2.444456
----------------------------------------------------------------------

. scalar ll0 = e(ll)

. mat b = e(b)

. mat b0 = b, (ln(.1/(1-.1)))

. xtprobit dep x1 x2 x3 x4 x5 x6 x7i x7j x7ij, i(id) from(b0, copy) re

Iteration 0:   log likelihood = -17297.277
Iteration 1:   log likelihood = -17197.392
Iteration 2:   log likelihood = -17195.744
Iteration 3:   log likelihood = -17195.688
Iteration 4:   log likelihood = -17195.688

Random-effects probit regression        Number of obs      =    176096
Group variable (i): id                  Number of groups   =     61999

Random effects u_i ~ Gaussian           Obs per group: min =         1
                                                       avg =       2.8
                                                       max =         4

                                        Wald chi2(8)       =         .
Log likelihood  = -17195.688            Prob > chi2        =         .

----------------------------------------------------------------------
     dep |     Coef.  Std. Err.      z    P>|z|   [95% Conf. Interval]
---------+------------------------------------------------------------
      x1 |  1.030274  .0315317    32.67   0.000   .9684727    1.092075
      x2 |  .8954573  .0467279    19.16   0.000   .8038723    .9870423
      x3 |  .0452287  .0048709     9.29   0.000   .0356821    .0547754
      x4 |  5.102698  1.811342     2.82   0.005   1.552533    8.652863
      x5 |  .0018586  .0001094    16.99   0.000   .0016443     .002073
      x6 |    .01222  .0011133    10.98   0.000   .0100379     .014402
     x7i | -1.46e-06  5.77e-07    -2.53   0.012  -2.59e-06   -3.26e-07
     x7j | -1.41e-07  6.20e-07    -0.23   0.820  -1.36e-06    1.07e-06
    x7ij | -9.24e-11  2.55e-11    -3.63   0.000  -1.42e-10   -4.24e-11
   _cons | -2.634148  .0256348  -102.76   0.000  -2.684391   -2.583905
---------+------------------------------------------------------------
/lnsig2u | -1.992943  .1386826                   -2.264756    -1.72113
---------+------------------------------------------------------------
 sigma_u |  .3691798  .0255994                     .322266     .422923
     rho |  .1199458  .0146392                    .0940842    .1517256
----------------------------------------------------------------------

. scalar ll1 = e(ll)

. quadchk, noout

Refitting model quad() =  8
Refitting model quad() = 16

                         Quadrature check

              Fitted     Comparison   Comparison
            quadrature   quadrature   quadrature
            12 points    8 points     16 points
------------------------------------------------
Log         -17195.688   -17195.688   -17195.688
likelihood               -7.470e-06   -7.112e-09  Difference
                          4.344e-10    4.136e-13  Relative difference
------------------------------------------------
dep:         1.0302736    1.0302736    1.0302736
      x1                 -5.028e-08   -8.018e-11  Difference
                         -4.880e-08   -7.782e-11  Relative difference
------------------------------------------------
dep:         .89545732    .89545731    .89545732
      x2                 -9.534e-09   -4.996e-11  Difference
                         -1.065e-08   -5.579e-11  Relative difference
------------------------------------------------
dep:         .04522874    .04522875    .04522874
      x3                  4.139e-09    7.031e-12  Difference
                          9.151e-08    1.554e-10  Relative difference
------------------------------------------------
dep:         5.1026978    5.1026978    5.1026978
      x4                  2.846e-08    4.266e-10  Difference
                          5.577e-09    8.359e-11  Relative difference
------------------------------------------------
dep:         .00185862    .00185862    .00185862
      x5                 -3.218e-10   -4.060e-13  Difference
                         -1.732e-07   -2.185e-10  Relative difference
------------------------------------------------
dep:         .01221998    .01221998    .01221998
      x6                  1.365e-09    5.915e-13  Difference
                          1.117e-07    4.840e-11  Relative difference
------------------------------------------------
dep:        -1.456e-06   -1.456e-06   -1.456e-06
     x7i                 -7.990e-13   -4.308e-16  Difference
                          5.487e-07    2.959e-10  Relative difference
------------------------------------------------
dep:        -1.414e-07   -1.414e-07   -1.414e-07
     x7j                 -3.279e-13   -3.379e-16  Difference
                          2.320e-06    2.390e-09  Relative difference
------------------------------------------------
dep:        -9.237e-11   -9.237e-11   -9.237e-11
    x7ij                  6.284e-17   -3.258e-20  Difference
                         -6.804e-07    3.528e-10  Relative difference
------------------------------------------------
dep:        -2.6341479   -2.6341478   -2.6341479
   _cons                  1.010e-07    2.045e-10  Difference
                         -3.834e-08   -7.763e-11  Relative difference
------------------------------------------------
lnsig2u:    -1.9929432   -1.9929438   -1.9929432
   _cons                 -6.447e-07   -1.340e-09  Difference
                          3.235e-07    6.723e-10  Relative difference
------------------------------------------------

. scalar lr = 2 * (ll1-ll0)

. scalar p = 0.5 *chi2tail(1,lr)

. di "hand lr is " lr " with p-value " p
hand lr is 71.787482 with p-value 1.198e-17

------- Stata 8 output to here ------

-- 
Kou(Koichiro Okamura: [email protected])

*
*   For searches and help try:
*   http://www.stata.com/support/faqs/res/findit.html
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/



© Copyright 1996–2024 StataCorp LLC   |   Terms of use   |   Privacy   |   Contact us   |   What's new   |   Site index