Robust testing for serial correlation in linear panel-data models

Sebastian Kripfganz

> 30th London Stata Conference September 13, 2024

ssc install xtdpdserial
net install xtdpdserial, from(http://www.kripfganz.de/stata/)

Sebastian Kripfganz (2024)

• Consider the linear panel data model

$$y_{it} = \mathbf{x}'_{it}\boldsymbol{\beta} + \underbrace{\alpha_i + u_{it}}_{=e_{it}}$$

- The regressors **x**_{it} can be strictly exogenous, predetermined, or endogenous, and they might include a lagged dependent variable y_{i,t-1}.
- It is standard practice to test for serial correlation in the idiosyncratic error component u_{it} .
 - In the best case, serial correlation just leads to a loss of efficiency and requires standard errors to be made panel/cluster-robust (which should be done by default anyways).
 - In the worst case, serial correlation can cause inconsistency of the coefficient estimator $\hat{\beta}$, which is the typical case in dynamic models.

Introduction New tests Stata command Example Conclusion

Existing serial correlation tests in Stata

- For static models with strictly exogenous regressors, several tests are available in Stata (some of them assuming homoskedasticity).
 - xtserial (Drukker, 2003): Wooldridge-Drukker test for $Corr(\Delta e_{it},\Delta e_{i,t-1})=-0.5$
 - xtistest, xtqptest, xthrtest (Wursten, 2018) after xtreg: tests proposed by Inoue and Solon (2006) and Born and Breitung (2016).
- For dynamic models or static models with possibly endogenous regressors, the Arellano and Bond (1991) test is widely applied.
 - estat abond after xtabond, xtdpdsys, and xtdpd.
 - xtabond2 and abar (Roodman, 2009), the latter for use after regress, ivregress, ivreg2, newey, and newey2.
 - estat serial after xtdpdbc (Kripfganz and Breitung, 2022), xtdpdgmm (Kripfganz, 2019), and xtdpdqml (Kripfganz, 2016).

Introduction New tests Stata command Example Conclusion of Conclusion

New Stata command xtdpdserial

- Jochmans (2020) proposed a portmanteau test with robustness to heteroskedasticity and better power properties than existing tests (when the time dimension T is very small).
 - xtserialpm (Jochmans and Verardi, 2020): limited to static fixed-effects estimation.
 - In theory, the test is also applicable after (dynamic) models with predetermined or endogenous regressors.
 - The Arellano and Bond (1991) test for no serial correlation at a specified order and the Yamagata (2008) test for no serial correlation at any order, both in first differences, can be regarded as special cases.
- The new command xtdpdserial implements this portmanteau test and a variety of existing and newly proposed special cases (Kripfganz, Demetrescu, and Hosseinkouchack, 2024) for use after regress, xtreg, xtdpdbc, and xtdpdgmm, or as a standalone test for a specified variable.

• Power of serial correlation tests against AR(1) alternatives (N = 100):

5/12

Sebastian Kripfganz (2024)

Introduction	New tests	Stata command	Example	Conclusion
000	○●	00	000	0
New serial correla	ation tests			

Kripfganz, Demetrescu, and Hosseinkouchack (2024)

- The Jochmans (2020) portmanteau test suffers from a curse of dimensionality when *T* becomes (moderately) large (similar to the too-many-instruments problem of dynamic panel data GMM estimators).
 - The null hypothesis is $Cov(e_{i,t-s}, \Delta e_{it}) = 0$ for $s \ge 2$ and s = -1 (for all t).
- We propose "collapsing" (averaging over time) and "curtailing" (restricting the maximum order of correlation to be tested) for dimensionality reduction.
- Our preferred test with the best power properties is based on "S-differencing" (seasonal or sandwich differencing).
 - The null hypothesis is $Cov(e_{i,t+1} e_{i,t-s}, \Delta e_{it}) = 0$ for $s \geq 2$ (for all t).
 - $\bullet\,$ Combined with collapsing and/or curtailing, the test retains power when ${\cal T}$ increases.
 - The test also has power against random-walk alternatives, unlike tests based entirely on first differences.
 - The test does not lose power when $Var(\alpha_i) \rightarrow \infty$, unlike the portmanteau test.

Introduction 000	New tests 00	Stata c ●0	command			Example 000		Conclusion O
New Stata command xtdpdserial								
• Syntax 1:	xtdpdserial	[varname]	[if]	[in]	[,	options]		

options:	<pre>pm difference sdifference order(#) lagrange(#1 [#2]) [full]collapse noforward nobackward noresiduals</pre>	portmanteau test: $Cov(L#.e, D.e) = 0$ test based on first differences: $Cov(L#D.e, D.e) = 0$ test based on seasonal differences: $Cov(FS(#+1).e, D.e) = 0$ maximum order of serial correlation (in levels) range of lags # to be used collapsed version of the test no forward-looking covariance restrictions no backward-looking covariance restrictions skip check for regression residuals
----------	---	--

• Examples:

Jochmans (2020): Arellano and Bond (1991): Yamagata (2008): our test:

xtdpdserial, pm xtdpdserial, difference collapse lagrange(2 2) xtdpdserial, difference collapse xtdpdserial, sdifference collapse order(2)

Introduction 000		New tests	Stata command ○●	Example 000	Conclusion O
New St	ata comm	nand xto	dpdserial		
•	Syntax 2: 3	tdpdseri	$[al [varname] [if] [in] [, \underline{s}]$	<pre>tatistics(stats)]</pre>	
	stat:	De one or	nore of <i>stat</i> [c][(#1 [#2])]		
	stat.	pm c fullc	collapsed portmanteau test		
		d	test based on first differences		
		sd	test based on seasonal differences		
	optional:	с	collapsed version of the test		
		(#)	maximum order of serial correlation		

- $(#_1 #_2)$ range of lags to be used
- Example (same 4 tests as before in a single command line): xtdpdserial, statistics(pm dc(2 2) dc sdc(2))
- The default is Syntax 2 with statistics(pm sdc dc fullc)

Introduction 000	New tests 00	Stata command 00	Exampl ●00	le		Conclusion 0
Example						
. webuse abdata		/	/ Arellano and E	Bond (1	991) data	set
. quietly xtreg n	n w k, fe vce(robust)	/	/ static FE esti	imation		
. xtdpdserial, st	atistics(pm dc(2 2) o	dc sdc(2))				
portmanteau test HO: no autocorrel	ation of any order		chi2(35) Prob > chi2	= 82 = 0	.6457 .0000	
collapsed test in HO: no autocorrel	n first differences ation up to order 3		chi2(1) Prob > chi2	= 1 = 0	.2134 .2707	
collapsed test in HO: no autocorrel	n first differences ation of any order		chi2(6) Prob > chi2	= 8 = 0	.7452 .1884	
collapsed test in HO: no autocorrel	n seasonal difference: .ation up to order 2	5	chi2(1) Prob > chi2	= 47 = 0	.0566 .0000	

Introduction 000	New tests 00	Stata command 00	Examp 0●0	le		Conclusion O
Example						
. quietly xtdpdbc	c n w k, fe lags(1) v	ce(robust) //	dynamic bias-o	corr	ected FE e	stimation
. xtdpdserial, st	catistics(pm dc(2 2)	dc sdc(2))				
portmanteau test			chi2(27)	=	54.8003	
HO: no autocorrel	lation of any order		Prob > chi2	=	0.0012	
collapsed test in	n first differences		chi2(1)	=	1.2925	
HO: no autocorrel	lation up to order 3		Prob > chi2	=	0.2556	
collapsed test in	n first differences		chi2(5)	=	21.7213	
H0: no autocorrel	lation of any order		Prob > chi2	=	0.0006	
		_	-1-0(1)	_	0.0401	
collapsed test in	i seasonal difference	S	cn12(1)	=	8.9481	
HU: no autocorrel	lation up to order 2		Prob > chi2	=	0.0028	

Introduction 000	New tests 00	Stata command 00	Examp 00●	le	Conclusion O
Example					
. quietly xtdpdbc	c n w k, fe lags(2) v	ce(robust) /	/ dynamic bias-o	corrected	FE estimation
. xtdpdserial, st	catistics(pm dc(2 2)	dc sdc(2))			
portmanteau test			chi2(20)	= 31.70	354
HO: no autocorrel	ation of any order		Prob > chi2	= 0.04	159
collapsed test in	n first differences		chi2(1)	= 0.1	563
HO: no autocorrel	ation up to order 3		Prob > chi2	= 0.69	925
collapsed test in) first differences		chi2(4)	= 3.29	948
HO: no autocorrel	ation of any order		Prob > chi2	= 0.50	098
collonged test in	angenel difference		chi2(1)	- 1 24	242
UQ: no outcome	i seasonar difference	ă	CIIIZ(1)	- 1.30	J4Z
HU: NO AUTOCOTTEL	ation up to order 2		Prob > ch12	= 0.2	004

Introduction	New tests	Stata command	Example	Conclusion
000	00	00	000	●
Conclusion				

- Serial correlation tests are part of the standard toolkit in applied work.
- Widely used tests require strong assumptions or have low power under certain circumstances.
- Kripfganz, Demetrescu, and Hosseinkouchack (2024) propose new tests with better power properties.
- The new Stata package xtdpdserial implements a variety of serial correlation tests robust to heteroskedasticity and valid under deviations from strict exogeneity.
- Word of caution: If the coefficient estimator is inconsistent under the alternative (as typically the case in dynamic models), these tests can be substantially underpowered. Recommended remedy: Use an estimator that is consistent both under the null and alternative hypothesis!

```
ssc install xtdpdserial
net install xtdpdserial, from(http://www.kripfganz.de/stata/)
```

help xtdpdserial

Sebastian Kripfganz (2024)