

Advanced Bayesian survival analysis with merlin and morgana

Stata UK Conference 2024

Michael J. Crowther, PhD Red Door Analytics 13th September 2024

About me

- Background in mathematics and statistics
- PhD in survival analysis and joint modelling from University of Leicester.
- 10+ years experience working in survival analysis methods development.
- CEO & Director of Statistical Methodology at Red Door Analytics
- Main research and teaching interests: survival methods, multi-state models and joint models

Why Bayesian survival analysis?

- Stata released bayes and bayesmh, but the latter passed me by for awhile
 - bayes : ... is possibly my favourite example of well designed syntax
- Lots of previous work syncing with Stan and WinBUGS

Why Bayesian survival analysis?

- Stata released bayes and bayesmh, but the latter passed me by for awhile
 - bayes : ... is possibly my favourite example of well designed syntax
- Lots of previous work syncing with Stan and WinBUGS

bayesmh allows user-defined likelihood evaluators - could I play around with it?

- I started last year at the Nordic meeting with
 - morgana : stmerlin ... , distribution(rp) df(3)
- This year I moved the goalpost
 - morgana : merlin (...)(...) (...)
 - predict newvarname, statistic

example

Primary breast cancer

• To illustrate, I use data from 2,982 patients with primary breast cancer, where we have information on the time to relapse and the time to death.

Primary breast cancer

- To illustrate, I use data from 2,982 patients with primary breast cancer, where we have information on the time to relapse and the time to death.
- All patients begin in the initial post-surgery state, which is defined as the time of primary surgery, and can then move to a relapse state, or a dead state, and can also die after relapse.

Illness-death model for primary breast cancer example.

Covariates of interest

- age at primary surgery
- tumour size (three classes; \leq 20mm, 20–50mm, > 50mm)
- number of positive nodes
- progesterone level (fmol/l) in all analyses we use a transformation of progesterone level ($\log(pgr + 1)$)
- whether patients were on hormonal therapy (binary, yes/no)

Data setup

- . use multistate_example, clear
- . mat tmat = (.,1,2,..,3,..,.)
- . msset, id(pid) states(rfi osi osi) times(rf os os) ///
 transmatrix(tmat)
- . stset _stop, enter(_start) failure(_status==1) scale(12)
- . list _start _stop _from_to _status _trans if pid==3007

	+- -	_start	stop	from	to	_status	 trans
7480.	I	0	12.451745	1	2	1	1
7481.		0	12.451745	1	3	0	2
7482.	Ι	12.451745	12.485079	2	3	1	3
	+-						+

merlin

```
merlin (_t
           hormon pr_1
           if _trans==1
            , family(rp, df(3)
                 failure(_d))
       )
```

/// response

/// covariates

/// transition 1

/// distribution

// event indicator

```
merlin (_t
                                             /// response
           hormon rcs(pr_1, df(3))
                                             /// covariates
                                             /// transition 1
           if _trans==1
                                             /// distribution
           , family(rp, df(3)
                failure(_d))
                                              // event indicator
       )
```

```
merlin (t
                                          /// response
          hormon rcs(pr_1, df(3))
                                 /// covariates
          rcs(_t , df(2) offset(age)) /// second timescale
                                          /// transition 1
          if _trans==1
          , family(rp, df(3)
                                          /// distribution
               failure(_d))
                                           // event indicator
       )
```

```
merlin (t
                                          /// response
          hormon rcs(pr_1, df(3))
                                 /// covariates
          rcs(_t , df(2) offset(age)) /// second timescale
          rcs(_t, ...)#rcs(pr_1, df(1)) /// NPH on timesc. 2
                                          /// transition 1
          if _trans==1
          , family(rp, df(3)
                                          /// distribution
               failure(_d))
                                           // event indicator
```

```
merlin (_t hormon rcs(pr_1, df(3)) /// covariates
          rcs(_t , df(2) offset(age)) /// second timescale
          rcs(_t, ...)#rcs(pr_1, df(1)) /// NPH on timesc. 2
                                      /// transition 1
          if trans==1
          , family(rp, df(3) failure( d))) /// distribution
      (t age hormon
                                         /// covariates
                                         /// transition 2
          if trans==2
          , family(rp, df(5) failure( d))) // distribution
```

```
merlin (t hormon rcs(pr 1, df(3)) /// covariates
          rcs(_t , df(2) offset(age)) /// second timescale
          rcs(_t, ...)#rcs(pr_1, df(1)) /// NPH on timesc. 2
                                      /// transition 1
          if trans==1
          , family(rp, df(3) failure(_d))) /// distribution
                                         /// covariates
      (_t age hormon
          if trans==2
                                        /// transition 2
          , family(rp, df(5) failure( d))) /// distribution
      (_t hormon fp(pr_1, powers(1 2)) /// covariates
                                      /// transition 3
          if trans==3
          , family(rp, df(5) failure(_d) /// distribution
                ltruncated( t0))) // left truncation
```

Predictions

Probability of being in state 1 at time t

predict p1, transprob(1) transmatrix(tmat) at(hormon 1) zeroes

Red Door Analytics

morgana

Bayesian flexible survival analysis

- Bayesian methods are hugely popular in HTA
- Particularly in meta-analysis and survival analysis
- Incorporating prior information is a strength, particularly in rare diseases
- In survival analysis, a huge issue is extrapolation to a lifetime horizon

Bayesian flexible survival analysis - morgana

<u>Title</u>

morgana — prefix commmand for estimating a Bayesian stmerlin survival model

Syntax 8 1

morgana [, bayesmh_options] : stmerlin_model

Description

The morgana prefix commmand fits Bayesian versions of survival models available with the stmerlin command.

morgana's homepage

stmerLin fits survival models, including a range of parametric distributions, flexible spline-based models, and the Cox model. It is a convenience wrapper of the more powerful merLin command, but with a much more user-friendly syntax. Time-dependent effects can be specified using restricted cubic splines.

stmerlin's homepage

The merlin command fits an extremely broad class of mixed effects regression models for linear, non-linear and user-defined outcomes. For full details and many tutorials, take a look at the accompanying website:

merlin's homepage

Examples

Setup . webuse brcancer, clear . stset rectime, failure(censrec)

Estimate a Bayesian flexible parametric Royston-Parmar model: . morgana : stmerlin hormon , dist(rp) df(3)

Syncing bayesmh with a likelihood evaluator

```
// fill up the current samples
gml.myb = newb
merlin_xb(gml,gml.myb)
```

```
// calculate the total log likelihood
alllnl = 0
for (i=1;i<=gml.Nmodels;i++) {
   gml.model = gml.modtoind = i
   alllnl = alllnl + quadcolsum((*Plnl[i])(gml))
}
st numscalar(st local("lden"),alllnl)</pre>
```

```
111
morgana :
merlin (_t hormon rcs(pr_1, df(3))
                                /// covariates
          rcs(_t , df(2) offset(age)) /// second timescale
          rcs(_t, ...)#rcs(pr_1, df(1)) /// NPH on timesc. 2
          if _trans==1
                                         /// transition 1
          , family(rp, df(3) failure(_d))) /// distribution
      (_t age hormon
                                         /// covariates
          if _trans==2
                                         /// transition 2
          , family(rp, df(5) failure(_d))) /// distribution
      (_t hormon fp(pr_1, powers(1 2)) /// covariates
                                       /// transition 3
          if trans==3
          , family(rp, df(5) failure(_d) /// distribution
                ltruncated( t0))) // left truncation
```

Bayesian flexible survival modelling

Bayesian survival regression	MCMC iterations =	12,500
Random-walk Metropolis-Hastings sampling	Burn-in =	2,500
	MCMC sample size =	10,000
	Number of obs =	7,482
	Acceptance rate =	.2178
	Efficiency: min =	.005139
	avg =	.05556
Log marginal-likelihood = -8495.3885	max =	.09127

					Equal-tailed	
	Mean	Std. dev.	MCSE	Median	[95% cred.	interval]
m_1_chemo	.1708921	.0679421	.002249	.1737327	.0352579	.2992006
m_1_age	0008333	.0022796	.000076	0007661	005252	.0035402
_cons1	9754964	.1340637	.004445	9744596	-1.234694	7158145
_rcs1_1	.9921607	.02529	.000988	.9919211	.9433598	1.041425
_rcs1_2	.2822802	.0215711	.000924	.2826694	.2387542	.3253255
_rcs1_3	0252952	.0110329	.000434	0258134	0467949	0026522
m_2_chemo	.1724838	.4334772	.01641	.1727081	7478419	1.002909
m_2_age	.1329851	.0086941	.000343	.1333643	.1155756	.1492067
_cons2	-11.87702	.6344833	.025249	-11.90373	-13.11052	-10.67364
_rcs2_1	1.422209	.0951004	.0049	1.420971	1.244006	1.619145
_rcs2_2	1064825	.0603199	.002495	1091108	2120814	.0192805
_rcs2_3	0534212	.0354124	.001436	0528529	1230249	.0150708
m_3_chemo	.3283317	.0844886	.003559	.3303777	.1579553	.4939602
m_3_age	.0103573	.0025383	.000084	.0103202	.0054004	.0151745
_cons3	059857	.1807235	.013859	0649057	4057074	.2981892
_rcs3_1	.5350637	.0572586	.007987	.5392806	.4165171	.6398975
_rcs3_2	.0761114	.0292631	.003475	.0761524	.0195288	.1328764
_rcs3_3	0167223	.0099446	.000858	0167482	0359778	.0021036

Adding an informative prior

```
morgana , prior({m 1 hormon}, normal(-0.2,0.1)) : ///
merlin (_t hormon rcs(pr_1, df(3)) /// covariates
          rcs(_t , df(2) offset(age)) /// second timescale
          rcs(_t, ...)#rcs(pr_1, df(1)) /// NPH on timesc. 2
          if _trans==1
                                      /// transition 1
          , family(rp, df(3) failure(_d))) /// distribution
      (_t age hormon
                                         /// covariates
          if _trans==2
                                         /// transition 2
          , family(rp, df(5) failure(_d))) /// distribution
      (_t hormon fp(pr_1, powers(1 2)) /// covariates
                                     /// transition 3
          if trans==3
          , family(rp, df(5) failure(_d) /// distribution
                ltruncated( t0))) // left truncation
```

bayesgraph diagnostic {m_1_hormon}

Predictions

Utilising the saved samples

```
// grab the saved samples
curfr = st framecurrent()
st_framecurrent(st_local("sframe"))
st view(b=.,.,"eq0 *")
st_view(freq=.,.,"_frequency")
st_framecurrent(curfr)
// calculate the prediction and store
for (i=1;i<=Nsamps;i++) {</pre>
    gml.myb = b[i,]
    merlin_xb(gml,gml.myb)
    pred[,i] = (*pf)(gml)
}
```

Predictions

Probability of being in state 1 at time t

predict p1, transprob(1) transmatrix(tmat) at(hormon 1) zeroes

Next steps with bayesmh

Multilevel & multiple outcomes

User-defined models with bayesmh

```
bayesmh y x U0[id], llevaluator(ll, parameters({var})) ///
block(U0[id], reffects) ...
```

Random effects not supported;

Parameters corresponding to a random-effects variable may not be used in user-defined evaluators.

Next steps with merlin

- merlin's current release is v2.4.5
- version 3.0.0 is under development, and:
 - cuts computation time by anywhere from 40% to 70% in testing
 - supports full factor variable specification

Merlin & Morgana

Merlin & Morgana Ronaldo & Messi

Merlin & Morgana Ronaldo & Messi Stata & Mata

Merlin & Morgana Ronaldo & Messi Stata & Mata Yes, I'm aware the cats are the highlight of my talk