

Data-driven decision making using Stata

UK Stata Conference 2024 London, LSE 12-13 September 2024

Fostering Open Science in Social Science Research Innovative tools and services to investigate economic and societal change

Giovanni Cerulli CNR – IRCRES National Research Council of Italy Research Institute on Sustainable Economic Growth

#EUSolidarity #StrongerTogether

Next Generation

#NextGenerationEU #EUBudget

THE 6 PRIORITIES

1	GREEN TRANSITION
2	DIGITAL TRANSFORMATION
3	ECONOMIC COHESION, PRODUCTIVITY AND COMPETITIVENESS
4	SOCIAL AND TERRITORIAL COHESION
5	INSTITUTIONAL RESILIENCE
6	POLICIES FOR THE NEXT GENERATION

32 million project

FOSSR Fostering Open Science in Social Science Research Innovative tools and services to investigate economic and societal change

Dipartimento Scienze Umane e Sociali Patrimonio Culturale

Consiglio Nazionale delle Ricerche Centro Interdipartimentale per l'Etica e l'Integrità nella Ricerca

Machine Learning (prediction)

Causal Inference (counterfactual)

Data-driven Decision Making (Optimal Policy Learning, OPL)

DEFINITION OF OPL

• What is policy learning?

Process of improving program **welfare** achievements by re-iterating similar policies over time

Optimal treatment assignment

Policymakers can **optimally fine-tune the treatment assignment** of a prospective policy using the results from an RCT or observational study. Assignment rules depends on the **class of policies** considered (here we focus on **threshold-based** and **linear-combination** policies)

Maximizing constrained welfare

The policymaker hardly manage to reach the best solution (**unconstrained maximum welfare**) because of institutional/economic contains of various sort

Background literature

Athey, S., and S. Wager. 2021. "Policy Learning with Observational Data." Econometrica 89 (1): 133–161.

Bhattacharya, D., and P. Dupas. 2012. "Inferring Welfare Maximizing Treatment Assignment under Budget Constraints." Journal of Econometrics 167 (1): 168–196.

Dehejia, R. 2005. "Program Evaluation as a Decision Problem." Journal of Econometrics 125 (1–2): 141–173.

Hirano, K., and J. R. Porter. 2009. "Asymptotics for Statistical Treatment Rules." Econometrica 77 (5): 1683–1701.

Kitagawa, T., and A. Tetenov. 2018. "Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice." Econometrica 86 (2): 591–616.

Manski, C. F. 2004. "Statistical Treatment Rules for Heterogeneous Populations." Econometrica 72 (4):

Zhou, Z., S. Athey, and S. Wager. 2018. "Offline Multi-Action Policy Learning: Generalization and Optimization." arXiv Preprint arXiv. 1810.04778.

Policy as a *selection problem*

Policy direct and indirect effect

Optimal treatment assignment

Let X be an individual's vector of characteristics, Y an outcome of interest, $T = \{0, 1\}$ a binary treatment. A policy assignment rule \mathcal{G} is a function mapping X to T, specifying which individuals are or are not to be treated:

 $\mathcal{G}: X \to T$

Define the (population) policy conditional average treatment effect as:

 $\tau(X) = E(Y_1|X) - E(Y_0|X)$

where Y_1 and Y_0 represent the two potential outcomes of the policy, and $E_X[\tau(X)] = \tau$ the average treatment effect.

Under selection-on-observables, we know that:

$$\tau(X) = E(Y|X, T = 1) - E(Y|X, T = 0)$$

These two **conditional expectations** are **identified** by data. Whatever **ML algorithm** can be used for estimation (Boosting, Random forests, Neural networks, Nearest neighbor, etc.)

Extension to **selection-on-unobservables** straightforward

ML estimation of $\tau(X)$

Estimation of the **distribution** of the **conditional average treatment effects** (CATE) using the ML methods implemented via c_ml_stata_cv (Cerulli, 2022). Note: dashed vertical line indicates the **average treatment effect** (ATE).

Optimal treatment assignment and *regret* estimation

The estimated policy actual total effect (or *welfare*)

$$\widehat{W} = \sum_{i=1}^{N} T_i \cdot \widehat{\tau}(X_i)$$

and the estimated policy unconstrained optimal total effect (or unconstrained maximum welfare) as:

$$\widehat{W}^* = \sum_{i=1}^N \widehat{T}_i^* \cdot \widehat{\tau}(X_i)$$

where:

$$\hat{T}_i^* = \mathbf{1}[\hat{\tau}(X_i) > 0]$$

is the estimated optimal unconstrained policy assignment.

The difference between the estimated (unconstrained) maximum achievable welfare and the estimated welfare associated to the policy actually run is called *regret*, and it is defined as:

$$\widehat{regret} = \widehat{W}^* - \widehat{W}$$

Finanziato dall'Unione europea

NAÏVE OPTIMAL SELECTION

1. Given $\{X, Y, T\}$ from an already-implemented policy: estimate the **idiosyncratic effect** $\tau(X)$. This means we have learnt the mapping:

$X \rightarrow \tau(X)$ (learning from experience)

- 2. Consider a prospective second policy round with a new eligible set $\{X'\}$, and compute the learnt $\{\tau(X')\}$ over X'.
- 3. Rank individuals so that: $\tau(X_1') > \tau(X_2') > \tau(X_3') > ... > 0$.
- 4. Given a monetary budget *C* and a unit cost c_i , find N_1^* :

$$\sum_{i=1}^{N_1^*} c_i = C$$

Optimal constrained assignment

□Eligibility, budget, ethical, or institutional constrains make policymakers unable to implement the *optimal unconstrained policy assignment*

□ They are obliged to rely on a <u>constrained assignment rule</u> selecting treated units according to their characteristics

The welfare thus obtained may drop down

□ Policymakers can however produce the largest feasible constrained welfare

Policy classes

There exist however several classes of policies used by policymakers to select in a constrained decision context. The most popular are:

□ <u>Threshold-based</u>

Linear combination

Fixed-depth decision trees

Policy classes (decision boundaries)

Threshold-based **OPTIMAL CONSTRAINED** TREATMENT RULE policy Unit selection Splitting function feature $\hat{T}_i(x,c_x) = \hat{T}_i^* \cdot \mathbf{1}[x] = c_x]$ Optimal unconstrained policy Threshold $\hat{T}_{i}^{*} = \mathbf{1}[\hat{\tau}(X_{i}) > 0]$ value

Missione 4 • Istruzione e Ricerca

Computing the optimal thresholds

OPTIMAL CONSTRAINED WELFARE

The corresponding welfare is a function of c_x:

$$\widehat{W}(x, c_x) = \sum_{i=1}^{N} \widehat{T}_i(x, c_x) \cdot \widehat{\tau}(X_i)$$

We define the optimal choice of the threshold c_x as the one maximizing $\widehat{W}(x, c_x)$ over c_x :

$$c_x^* = \texttt{argmax}_{c_x}[\widehat{W}(x,c_x)]$$

If c_x^* exists, the estimated optimal constrained welfare will thus be equal to $\widehat{W}(c_x^*)$.

Multiple selection variables

OPTIMAL CONSTRAINED TREATMENT RULE

Estimation

Ministero dell'Università e della Ricerca

Procedure. Threshold–based optimal policy assignment

- 1. Suppose to have data from an RCT or from an observational study consisting of the information triple (Y, X, T) available for every unit involved in the program.
- 2. Run a quasi-experimental method with observable heterogeneity, estimate $\tau(X)$, and compute the (estimated) actual total welfare of the policy \widehat{W} .
- 3. Identify the estimated optimal unconstrained policy \hat{T}^* , and compute \widehat{W}^* , i.e. the estimated maximum total welfare achievable by the policy, and estimate the regret as $\widehat{W}^* \widehat{W}$.
- 4. Consider an estimated constrained selection rule $\hat{T}(x,c)$ based on a given set of selection variables, x, and related thresholds, c, and define the estimated maximum constrained welfare as $\widehat{W}(x,c)$.
- 5. Build a greed of K possible values for $c \in \{c_1, ..., c_K\}$, compute the optimal vector of thresholds c_{k^*} and the corresponding maximum estimated welfare $\widehat{W}(x, c_{k^*})$ thus achieved.

Linear-combination policy

Decision-tree policy

Fixed-depth decision tree. Within this policy class, given two selection variables x_1 and x_2 , and three thresholds c_1 , c_2 , and c_3 , the estimated assignment to treatment is:

$$\begin{aligned} \widehat{T}_i(z(1), z(2), z(3), c_1, c_2, c_3) &= \widehat{T}_i^* \cdot \{\mathbf{1}[z(1) > = c_1] \cdot \mathbf{1}[z(2) > = c_2] \\ &+ (1 - \mathbf{1}[z(1) > = c_1]) \cdot \mathbf{1}[z(3) > = c_3] \} \end{aligned}$$

where each z(j) – with j = 1, 2, 3 – can be either x_1 and x_2 .

The corresponding welfare is given by:

$$\widehat{W}(x, ...) = \sum_{i=1}^{N} \widehat{T}_i(z(1), z(2), z(3), c_1, c_2, c_3) \cdot \widehat{\tau}(X_i)$$

SOFTWARE

We formed a research group for **OPL software implementation** within the PNRR project **FOSSR**:

Stata

Cerulli (CNR), opl command

R

Guardabascio (Perugia University) and Brogi (Istat)

Python

De Fausti (Istat)

Stata package for optimal policy learning **OPL** –

Synta

———— Syntax L	
command [, options]
command	Description
<pre>make_cate opl_tb opl_tb_c opl_lc opl_lc_c opl_dt opl_dt_c</pre>	Estimation of the conditional average treatment effect (CATE) Threshold-based optimal policy learning Threshold-based policy learning at specific threshold values Linear-combination optimal policy learning Linear-combination policy learning at specific parameters' values Decision-tree optimal policy learning Decision-tree policy learning at specific splitting variables and threshold values

opl_tb_c —

Threshold-based policy learning at specific threshold values

<u>Syntax</u>

opl_tb_c , xlist(var1 var2) cate(varname) c1(number) c2(number) [graph]

_ ___ Description

opl_tb_c is a command implementing ex-ante treatment assignment using as policy class a threshold-based (or quadrant) approach at specific threshold values c1 and c2 for respectively the selection variables var1 and var2.

LINEAR-COMBINATION POLICY

opl_lc — Linear-combination optimal policy learning
Syntax

opl_lc , xlist(var1 var2) cate(varname)

Description

opl_lc is a command implementing optimal ex-ante treatment assignment using as policy class a linear-combination of variables var1 and var2:
c1*var1+c2*var2=c3.

opl_lc_c —

Linear-combination policy learning at specific parameters' values

<u>Syntax</u>

opl_lc_c , xlist(var1 var2) cate(varname) c1(number) c2(number) [graph]

Description

opl_lc_c is a command implementing ex-ante treatment assignment using as policy class a linear-combination approach at specific parameters'
values c1, c2, and c3 for the linear-combination of variables var1 and var2: c1*var1+c2*var2=c3.

opl_	_dt — Decision-tree optimal policy learning
<u>Syntax</u>	
	<pre>opl_dt , xlist(var1 var2) cate(varname)</pre>
	Description

opl_dt is a command implementing optimal ex-ante treatment assignment using as policy class a fixed-depth (1-layer) decision-tree based on selection variables *var1* and *var2*.

opl_dt_c —

Decision-tree policy learning at specific splitting variables and threshold values

<u>Syntax</u>

opl_dt_c , xlist(var1 var2) cate(varname) cl(number) c2(number) [graph]

Description

opl_dt_c is a command implementing ex-ante treatment assignment using as policy class a fixed-depth (1-layer) decision-tree at specific
splitting variables and threshold values.

Application

- DATA: National Supported Work Demonstration (NSWD), an RCT by LaLonde (1986).
- **TARGET**: Effect of a 1976 job training program on people real earnings in 1978
- **CONTROLS**: age, race, educational attainment, previous employment condition, real earnings in 74 and 75

Application 1 opl_tb_c

Load initial dataset sysuse JTRAIN2, clear Split the original data into a "old" (training) and "new" (testing) dataset get train test, dataname(jtrain) split(0.60 0.40) split var(svar) rseed(101) Use the "old" dataset (i.e. policy) for training use jtrain_train , clear Set the outcome global y "re78" Set the features global x "re74 re75 age agesg nodegree" Set the treatment variable global w "train" Set the selection variables global z "age mostrn" Run "make cate" and generate training (old policy) and testing (new policy) CATE predictions make cate \$y \$x , treatment(\$w) model("ra") new cate("my cate new") train cate("my cate train") new data("jtrain test") Generate a global macro containing the name of the variable "cate_new" global T `e(cate_new)' Select only the "new data" keep if train new index=="new" Drop "my_cate_train" as in the new dataset treatment assignment and outcome performance are unknown drop my cate train \$w \$y Run "opl_tb" to find the optimal thresholds opl_tb , xlist(\$z) cate(\$T) Save the optimal threshold values into two global macros global c1 opt=e(best c1) global c2 opt=e(best c2) Run "opl_tb_c" at optimal thresholds and generate the graph opl_tb_c , xlist(\$z) cate(\$T) c1(\$c1_opt) c2(\$c2_opt) graph Tabulate the variable "_units_to_be_treated" tab units to be treated , mis

Policy class: Threshold-based

<u>Main results</u>

Learner = Regression adjustment			
N. of units = 178			
Threshold value $c1 = .60000002$			
Average unconstrained welfare = 2.0673337			
Percentage of treated = 1.1			
N. of untreated = 176			

Target variable = Selection variables = age mostrn Threshold value c2 = .79999999 Average constrained welfare = 2.885844 N. of treated = 2

. tab _units_to_be_treated , mis

1 = unit to treat; 0 = unit not to treat	Freq.	Percent	Cum.
0 1	176 2	98.88 1.12	98.88 100.00
Total	178	100.00	

Optimal policy assignment Policy class: threshold-based

Application 2 opl_lc_c

Load initial dataset sysuse JTRAIN2, clear Split the original data into a "old" (training) and "new" (testing) dataset get train test, dataname(jtrain) split(0.60 0.40) split var(svar) rseed(101) Use the "old" dataset (i.e. policy) for training use jtrain_train , clear Set the outcome global y "re78" Set the features global x "re74 re75 age agesg nodegree" Set the treatment variable global w "train" Set the selection variables global z "age mostrn" Run "make cate" and generate training (old policy) and testing (new policy) CATE predictions make_cate \$y \$x , treatment(\$w) model("ra") new_cate("my_cate_new") train_cate("my_cate_train") new_data("jtrain_test") Generate a global macro containing the name of the variable "cate_new" global T `e(cate_new)' Select only the "new data" keep if train new index=="new" Drop "my_cate_train" as in the new dataset treatment assignment and outcome performance are unknown drop my cate train \$w \$y Run "opl_lc" to find the optimal linear-combination parameters opl_lc , xlist(\$z) cate(\$T) Save the optimal linear-combination parameters into three global macros global c1 opt=e(best c1) global c2 opt=e(best c2) global c3_opt=e(best_c3) Run "opl_lc_c" at optimal linear-combination parameters and generate the graph opl_lc_c , xlist(\$z) cate(\$T) c1(\$c1_opt) c2(\$c2_opt) c3(\$c3_opt) graph Tabulate the variable "_units_to_be_treated" tab _units_to_be_treated , mis

Policy class: Linear-combination

<u>Main results</u>

```
Learner = Regression adjustment
N. of units = 178
Lin. comb.parameter c1 = .59999999
Lin. comb.parameter c3 = .8
Average constrained welfare = 2.885844
N. of treated = 2
```

Target variable =
Selection variables = age mostrn
Lin. comb.parameter c2 = .45000001
Average unconstrained welfare = 2.0673337
Percentage of treated = 1.1
N. of untreated = 176

. tab _units_to_be_treated , mis

1 = unit to treat; 0 = unit not to treat	Freq.	Percent	Cum.
0	176 2	98.88 1.12	98.88 100.00
Total	178	100.00	

Optimal policy assignment Policy class: linear combination

Expected unconstrained average welfare = 2.07 Expected constrained average welfare = 2.89 Percentage of treated units = 1.1%

Load initial dataset

Application 3 opl_dt_c

sysuse JTRAIN2, clear Split the original data into a "old" (training) and "new" (testing) dataset get_train_test, dataname(jtrain) split(0.60 0.40) split_var(svar) rseed(101) Use the "old" dataset (i.e. policy) for training use jtrain_train , clear Set the outcome global y "re78" Set the features global x "re74 re75 age agesg nodegree" Set the treatment variable global w "train" Set the selection variables global z "age mostrn" Run "make_cate" and generate training (old policy) and testing (new policy) CATE predictions make_cate \$y \$x , treatment(\$w) model("ra") new_cate("my_cate_new") train_cate("my_cate_train") new_data("jtrain_test") Generate a global macro containing the name of the variable "cate_new" global T `e(cate new)' Select only the "new data" keep if _train_new_index=="new" Drop "my_cate_train" as in the new dataset treatment assignment and outcome performance are unknown drop my_cate_train \$w \$y Run "opl dt" to find the optimal linear-combination parameters opl_dt , xlist(\$z) cate(\$T) Save the optimal splitting variables into three global macros global x1_opt `e(best_x1)' global x2_opt `e(best_x2)' global x3 opt `e(best x3)' Save the optimal splitting thresholds into three global macros global c1_opt=e(best_c1) global c2_opt=e(best_c2) global c3_opt=e(best_c3) Run "opl dt c" at optimal splitting variables and corresponding thresholds and generate the graph opl_dt_c , xlist(\$z) cate(\$T) c1(\$c1_opt) c2(\$c2_opt) c3(\$c3_opt) x1(\$x1_opt) x2(\$x2_opt) x3(\$x3_opt) graph Tabulate the variable "_units_to_be_treated" tab _units_to_be_treated , mis

Policy class: Fixed-depth decision-tree

<u>Main results</u>

Learner = Regression adjustment	Target variable =	
N. of units = 178	Selection variables =	
Threshold first splitting var. = .69999999	Threshold second splitting var. = .89999998	
Threshold third splitting var. = = .60000002	Average unconstrained welfare = 2.0673337	
Average constrained welfare = 4.2417823	Percentage of treated = 1.7	
N. of treated = 3	N. of untreated = 175	
First splitting variable x1 = age	Second splitting variable x2 = age	
Third splitting variable x3 = age		

. tab _units_to_be_treated , mis

1 = unit to treat; 0 = unit not to treat	Freq.	Percent	Cum.
0 1	175 3	98.31 1.69	98.31 100.00
Total	178	100.00	

Optimal policy assignment

CONCLUSIONS

Policy Learning: new frontier of econometrics of prog evaluation

- □ Theory-driven and data-driven approaches can complement
- □ Extensions to unobservable selection quite straightforward
- **D** Machine Learning algorithms for estimating $\tau(X)$
- □ Welfare monotonicity and data sparseness major problems
- □ Monotonicity solved by "menu strategy"
- Generalization to other policy classes
- □ Providing Stata/R/Python software implementation

Books for learning about Causal Inference and Machine Learning

Causal inference

Machine learning

Statistics and Computing Giovanni Cerulli Fundamentals of Supervised Machine Learning With Applications in Python, R, and Stata

THANK YOU!

fossr.dissemination@ircres.cnr.it

@fossrproject

fossr-eu

