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• What is policy learning?
Process of improving program welfare achievements by re-iterating similar
policies over time

• Optimal treatment assignment
Policymakers can optimally fine-tune the treatment assignment of a prospective
policy using the results from an RCT or observational study. Assignment rules
depends on the class of policies considered (here we focus on threshold-based
and linear-combination policies)

• Maximizing constrained welfare
The policymaker hardly manage to reach the best solution (unconstrained
maximum welfare) because of institutional/economic contains of various sort

DEFINITION 
OF OPL



Athey, S., and S. Wager. 2021. "Policy Learning with Observational Data." Econometrica 89 (1): 133–
161.

Bhattacharya, D., and P. Dupas. 2012. "Inferring Welfare Maximizing Treatment Assignment under
Budget Constraints." Journal of Econometrics 167 (1): 168–196.

Dehejia, R. 2005. "Program Evaluation as a Decision Problem." Journal of Econometrics 125 (1–2):
141–173.

Hirano, K., and J. R. Porter. 2009. "Asymptotics for Statistical Treatment Rules." Econometrica 77 (5):
1683–1701.

Kitagawa, T., and A. Tetenov. 2018. "Who Should Be Treated? Empirical Welfare Maximization
Methods for Treatment Choice." Econometrica 86 (2): 591–616.

Manski, C. F. 2004. "Statistical Treatment Rules for Heterogeneous Populations." Econometrica 72 (4):

Zhou, Z., S. Athey, and S. Wager. 2018. "Offline Multi-Action Policy Learning: Generalization and
Optimization." arXiv Preprint arXiv. 1810.04778.

Background 
literature



Available options

Policymaker
action

Selected 
unit

Policy 
objectives/
constraints

1 2

3

Policy as a 
selection problem



Policy direct and 
indirect effect 



Optimal treatment assignment



Under selection-on-observables, we know that:

𝜏(X) = E(Y|X ,T = 1) – E(Y|X ,T = 0)  

These two conditional expectations are identified by data. Whatever ML
algorithm can be used for estimation (Boosting, Random forests, Neural
networks, Nearest neighbor, etc.)

Extension to selection-on-unobservables straightforward



Estimation of the distribution of the conditional
average treatment effects (CATE) using the ML
methods implemented via c_ml_stata_cv

(Cerulli, 2022). Note: dashed vertical line indicates
the average treatment effect (ATE).

ML estimation of 𝜏(X)



Optimal treatment assignment 
and regret estimation



NAÏVE OPTIMAL SELECTION

1. Given {X,Y,T} from an already-implemented policy: estimate the idiosyncratic effect 𝝉 𝑿 . This means we
have learnt the mapping:

𝑋→ 𝜏 𝑋 (learning from experience)

2. Consider a prospective second policy round with a new eligible set {X’}, and compute the learnt {𝜏 𝑋′ } over
X’.

3. Rank individuals so that: 𝜏 𝑋1′ > 𝜏 𝑋2′ > 𝜏 𝑋3′ > … > 0.

4. Given a monetary budget C and a unit cost ci , find 𝑁1
∗:



𝑖=1

𝑁1
∗

𝑐𝑖 = 𝐶



❑Eligibility, budget, ethical, or institutional constrains make policymakers unable to
implement the optimal unconstrained policy assignment

❑They are obliged to rely on a constrained assignment rule selecting treated units
according to their characteristics

❑The welfare thus obtained may drop down

❑Policymakers can however produce the largest feasible constrained welfare

Optimal constrained assignment



There exist however several classes of policies used by policymakers to select
in a constrained decision context. The most popular are:

❑ Threshold-based

❑ Linear combination

❑ Fixed-depth decision trees

Policy classes



Policy classes 
(decision boundaries)



Threshold-based
policy



Computing the 
optimal thresholds



Multiple selection 
variables



Estimation



Linear-combination
policy

3 parameters



Decision-tree
policy

.



We formed a research group for OPL software
implementation within the PNRR project FOSSR:

Stata

Cerulli (CNR), opl command

R

Guardabascio (Perugia University) and Brogi (Istat)

Python

De Fausti (Istat)

SOFTWARE
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• DATA: National Supported Work Demonstration (NSWD), an RCT by LaLonde
(1986).

• TARGET: Effect of a 1976 job training program on people real earnings in
1978

• CONTROLS: age, race, educational attainment, previous employment
condition, real earnings in 74 and 75

Application



Application 1  
opl_tb_c







Application 2  
opl_lc_c







Application 3  
opl_dt_c







❑ Policy Learning: new frontier of econometrics of prog evaluation

❑ Theory-driven and data-driven approaches can complement

❑ Extensions to unobservable selection quite straightforward

❑Machine Learning algorithms for estimating 𝜏(X)

❑Welfare monotonicity and data sparseness major problems

❑Monotonicity solved by “menu strategy”

❑ Generalization to other policy classes

❑ Providing Stata/R/Python software implementation

CONCLUSIONS



Machine learningCausal inferenceBooks for learning about
Causal Inference and 
Machine Learning
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