

Difference in differences using constraints in Stata

Colin Birch, Dept Epidemiological Sciences, Animal and Plant Health Agency colin.birch@apha.gov.uk DOI: 10.1038/s41598-024-54062-4

Difference in differences emphasizing the parallel trends assumption

- The parallel trends assumption:
 - Suppose we can estimate an average trend for an observation, excluding the effect of an intervention.
 - Assume the trend is independent of whether or when the intervention is applied.
- We estimate the parallel trend
- The average intervention effect is the divergence from the parallel trend observed after the intervention.
- Parallel trends can't be demonstrated?

Intervention start

Animal &

Agency

Plant Health

WOAH Collaborating Centre for

Risk Analysis

& Modelling

Badger Control Policy (BCP) in England

WOAH Collaborating Centre for Risk Analysis & Modelling

Animal & Plant Health Agency

- An intervention to reduce Tuberculosis (TB) incidence rate in cattle
- Controls in cattle were not reducing TB in large areas
- Cattle and badgers share tuberculosis infection
 - Badger culling licenses reintroduced
- Pilots from 2013, rapid rollout from 2016
- Multiple areas start BCP each year 2016-2020
- Culling licenses issued for 52 areas up to 2020
- Culling maintained for at least 4 years.
- By end of 2022, BCP included > 90% high TB incidence areas in England.

Difference in differences analysis included heterogeneous trends before intervention

- Trends differed between areas before the start of BCP in each area.
 - TB incidence rate converged. Between area variance in 2013 < 2009
- Fitted descriptive trend in each area to estimate TB incidence rate at start of BCP.
- Trend NOT assumed to continue.
 - Implicit trend after BCP starts = 0
- Constrained mean trend before BCP = 0

Animal &

Agency

Plant Health

WOAH Collaborating Centre for

Risk Analysis

& Modelling

Constraints in Stata are very flexible!

+

* Set a constraint for the sum of heterogeneous observable slopes = 0

<pre>constraint 1 1.AreaID#c.IntYearX + 2.AreaID#c.IntYearX + 3.AreaID#c.IntYearX</pre>			
4.AreaID#c.IntYearX + 5.Area	ID#c.IntYearX + 6	.AreaID#c.IntYearX +	
7.AreaID#c.IntYearX + 8.Area	ID#c.IntYearX + 9	.AreaID#c.IntYearX +	
10.AreaID#c.IntYearX + 11.Ar	eaID#c.IntYearX +	12.AreaID#c.IntYearX	+
13.AreaID#c.IntYearX + 14.Ar	eaID#c.IntYearX +	15.AreaID#c.IntYearX	+
16.AreaID#c.IntYearX + 17.Ar	eaID#c.IntYearX +	18.AreaID#c.IntYearX	+
19.AreaID#c.IntYearX + 20.Ar	eaID#c.IntYearX +	21.AreaID#c.IntYearX	+
22.AreaID#c.IntYearX + 23.Ar	eaID#c.IntYearX +	24.AreaID#c.IntYearX	+
25.AreaID#c.IntYearX + 26.Ar	eaID#c.IntYearX +	27.AreaID#c.IntYearX	+
28.AreaID#c.IntYearX + 29.Ar	eaID#c.IntYearX +	30.AreaID#c.IntYearX	+
31.AreaID#c.IntYearX + 33.Ar	eaID#c.IntYearX +	34.AreaID#c.IntYearX	+
35.AreaID#c.IntYearX + 36.Ar	eaID#c.IntYearX +	37.AreaID#c.IntYearX	+
38.AreaID#c.IntYearX + 39.Ar	eaID#c.IntYearX +	40.AreaID#c.IntYearX	+
41.AreaID#c.IntYearX + 42.Ar	eaID#c.IntYearX +	43.AreaID#c.IntYearX	+
44.AreaID#c.IntYearX + 45.Ar	eaID#c.IntYearX +	46.AreaID#c.IntYearX	+
47.AreaID#c.IntYearX + 48.Ar	eaID#c.IntYearX +	49.AreaID#c.IntYearX	+
50.AreaID#c.IntYearX + 51.Ar	eaID#c.IntYearX +	52.AreaID#c.IntYearX	+
53.AreaID#c.IntYearX = 0			

Applying the constraint in cnsreg (or glm)

Animal & Plant Health Agency

- * Use cnsreg to apply a regression constrained by the * constraint above.
- * TBincidence = confirmed TB incidence rate
- * AreaID and Year indicate the fixed effects of location and * year.
- * BCP = 6 levels of intervention: 0 and 1st 5+ years after * start.
- * i.AreaID#c.IntYearX fits heterogeneous slopes up to the start
- * of interventions. (heterogeneous observable trends)
- * Only include up to Area 53, omitting Area 32.

cnsreg TBincidence i.AreaID i.Year i.AreaID#c.IntYearX i.BCP if AreaID!=32 & AreaID<54, constraints(1) vce(cluster AreaID)</pre>

Tuberculosis incidence rate just before interventions start, with linear prediction

margins if Year == StartYear-1, over(StartYear) marginsplot, addplot(scatter

TBincidence StartYear ...

- Selection bias TB incidence rate tended to be lower in areas starting later
- Reason for using difference in differences

Heterogeneous linear slopes before BCP intervention

- * Elegant Stata code not available
- The analysis included distinct linear trends for each area up to the start of interventions.
 - "Heterogeneous observable trends"
- Overall average constrained = 0
- The average deviation of the trends was near zero for 2016 2020.
- Demonstrates the parallel trend assumption?

Estimated annual average TB incidence rate without intervention effect vs as observed

margins, over(Year) at(BCP=0)
margins, over(Year)

- The time trend estimated by the analysis shows the parallel trend without the effect of interventions.
- This trend was nearly static from 2014
- Hence the observed decline in TB incidence rate since 2014 roughly matched the cumulative intervention effect.

Estimating the intervention effect

margins BCP

marginsplot...

- The BCP intervention effect increased with time after it started.
- Effect increased at least to the third intervention year
- The estimated decline in the fourth intervention year was over 50%

