
Single Precision Storage Default - Is it
time to bid farewell?

presentation for Oceania Stata Conference 2025

Jan Kabatek
The University of Melbourne, CentER, IZA, LCC & Netspar

February 5, 2025

1 / 44



Why am I here?

• I have identified a legacy issue that is important enough (IMO) to warrant your
attention.

• Last time around, I talked about inefficiencies in Stata visualization workflows
(twoway/histogram/line/etc.).

• And I introduced my PLOT suite of graphing commands for large datasets:

ssc install plottabs

• Today, I want to highlight another issue and propose a readily-available solution

2 / 44



Illustrative example

Stata code
clear

set obs 10

generate x = n /10

list x

...this produces and lists a variable x ∈ {0.1, 0.2, . . . , 1}

Let’s introduce some basic conditionality...

list x if x <= .4

...what happens now? ...huh? Where’s 0.4???

3 / 44



Illustrative example

Stata code
clear

set obs 10

generate x = n /10

list x

...this produces and lists a variable x ∈ {0.1, 0.2, . . . , 1}

Let’s introduce some basic conditionality...

list x if x <= .4

...what happens now? ...huh? Where’s 0.4???

4 / 44



Illustrative example

Stata code
clear

set obs 10

generate x = n /10

list x

...this produces and lists a variable x ∈ {0.1, 0.2, . . . , 1}

Let’s introduce some basic conditionality...

list x if x <= .4

...what happens now? ...huh? Where’s 0.4???

5 / 44



Illustrative example

Stata code
clear

set obs 10

generate x = n /10

list x

...this produces and lists a variable x ∈ {0.1, 0.2, . . . , 1}

Let’s introduce some basic conditionality...

list x if x <= .4

...what happens now? ...huh? Where’s 0.4???

6 / 44



Illustrative example

Stata code
clear

set obs 10

generate x = n /10

list x

...this produces and lists a variable x ∈ {0.1, 0.2, . . . , 1}

Let’s introduce some basic conditionality...

list x if x <= .4

...what happens now?

...huh? Where’s 0.4???

7 / 44



Illustrative example

Stata code
clear

set obs 10

generate x = n /10

list x

...this produces and lists a variable x ∈ {0.1, 0.2, . . . , 1}

Let’s introduce some basic conditionality...

list x if x <= .4

...what happens now? ...huh? Where’s 0.4???

8 / 44



Illustrative example

Stata code
clear

set obs 10

generate x = n /10

list x

...this produces and lists a variable x ∈ {0.1, 0.2, . . . , 1}

Let’s introduce some basic conditionality...

list x if x <= .4

...what happens now?

...huh? Where’s 0.4???

9 / 44



Blast from the past: Floating-point precision issues

•••••••••••••••••••••• Computer architectures have been known to struggle with non-integer numbers,
such as fractions, π, ρ, etc.

1/3 = 0.3333333333 . . .

• To evaluate and work with these numbers, we typically resort to approximation
(and Stata does so, too).

• The exact sequence of numbers outside the precision range is IEEE-standardized
and replicable across programming languages (on the same hardware).

10 / 44



Blast from the past: Floating-point precision issues

• Computer architectures have been known to struggle with non-integer numbers,
such as fractions, π, ρ, etc.

1/3 = 0.3333333333 . . .

• To evaluate and work with these numbers, we typically resort to approximation
(and Stata does so, too).

• The exact sequence of numbers outside the precision range is IEEE-standardized
and replicable across programming languages (on the same hardware).

11 / 44



Blast from the past: Floating-point precision issues

• Computer architectures have been known to struggle with non-integer numbers,
such as fractions, π, ρ, etc.

1/3 = 0.3333333333 . . .

• To evaluate and work with these numbers, we typically resort to approximation
(and Stata does so, too).

• The exact sequence of numbers outside the precision range is IEEE-standardized
and replicable across programming languages (on the same hardware).

12 / 44



Blast from the past: Floating-point precision issues

• Computer architectures have been known to struggle with non-integer numbers,
such as fractions, π, ρ, etc.

1/3 = 0.3333333333 . . .

• To evaluate and work with these numbers, we typically resort to approximation
(and Stata does so, too).

• The exact sequence of numbers outside the precision range is IEEE-standardized
and replicable across programming languages (on the same hardware).

13 / 44



Back to the example: What happens with 0.4?

• So let’s look at the precision handling of 0.4:

• This number is greater than 0.4! That is why 0.4 was excluded from the list!!!• This number is greater than 0.4! That is why 0.4 was excluded from the list!!!

• Nope, this is not the reason. If it were, we should be able to replicate the same
behavior across different programming languages.

14 / 44



Back to the example: What happens with 0.4?

• So let’s look at the precision handling of 0.4:

• This number is greater than 0.4! That is why 0.4 was excluded from the list!!!• This number is greater than 0.4! That is why 0.4 was excluded from the list!!!

• Nope, this is not the reason. If it were, we should be able to replicate the same
behavior across different programming languages.

15 / 44



Back to the example: What happens with 0.4?

• So let’s look at the precision handling of 0.4:

• This number is greater than 0.4! That is why 0.4 was excluded from the list!!!

• This number is greater than 0.4! That is why 0.4 was excluded from the list!!!

• Nope, this is not the reason. If it were, we should be able to replicate the same
behavior across different programming languages.

16 / 44



Back to the example: What happens with 0.4?

• So let’s look at the precision handling of 0.4:

• This number is greater than 0.4! That is why 0.4 was excluded from the list!!!

• This number is greater than 0.4! That is why 0.4 was excluded from the list!!!

• Nope, this is not the reason. If it were, we should be able to replicate the same
behavior across different programming languages.

17 / 44



Back to the example: What happens with 0.4?

• So let’s look at the precision handling of 0.4:

• This number is greater than 0.4! That is why 0.4 was excluded from the list!!!

• This number is greater than 0.4! That is why 0.4 was excluded from the list!!!

• Nope, this is not the reason. If it were, we should be able to replicate the same
behavior across different programming languages.

18 / 44



Killing joy with R

• Let’s produce an equivalent workflow in R:

• R produces the correct result, which means that floating-point arithmetic is not to
blame here.

• This makes intuitive sense, since the precision of the numbers stored in the c()
vector, and the number used in the conditional statement use the same standard.

• Fundamentally, we are asking whether 0.4000000000000000222045 is smaller or equal
than 0.4000000000000000222045, which it is!

19 / 44



Killing joy with R

• Let’s produce an equivalent workflow in R:

• R produces the correct result, which means that floating-point arithmetic is not to
blame here.

• This makes intuitive sense, since the precision of the numbers stored in the c()
vector, and the number used in the conditional statement use the same standard.

• Fundamentally, we are asking whether 0.4000000000000000222045 is smaller or equal
than 0.4000000000000000222045, which it is!

20 / 44



Killing joy with R

• Let’s produce an equivalent workflow in R:

• R produces the correct result, which means that floating-point arithmetic is not to
blame here.

• This makes intuitive sense, since the precision of the numbers stored in the c()
vector, and the number used in the conditional statement use the same standard.

• Fundamentally, we are asking whether 0.4000000000000000222045 is smaller or equal
than 0.4000000000000000222045, which it is!

21 / 44



Killing joy with R

• Let’s produce an equivalent workflow in R:

• R produces the correct result, which means that floating-point arithmetic is not to
blame here.

• This makes intuitive sense, since the precision of the numbers stored in the c()
vector, and the number used in the conditional statement use the same standard.

• Fundamentally, we are asking whether 0.4000000000000000222045 is smaller or equal
than 0.4000000000000000222045, which it is!

22 / 44



So what is going in Stata???

• The culprit is inconsistent storage types. By default, Stata uses different
storage types for the numbers that are stored as data points (float), and the
numbers that are used to perform arithmetic operations (double).

• That is why the stored number 0.4 does not satisfy the weak inequality restriction in
list x if x<= 0.4.

• The stored value is strictly greater than the value used in the if-statement.

23 / 44



So what is going in Stata???

• The culprit is inconsistent storage types. By default, Stata uses different
storage types for the numbers that are stored as data points (float), and the
numbers that are used to perform arithmetic operations (double).

• That is why the stored number 0.4 does not satisfy the weak inequality restriction in
list x if x<= 0.4.

• The stored value is strictly greater than the value used in the if-statement.

24 / 44



So what is going in Stata???

• The culprit is inconsistent storage types. By default, Stata uses different
storage types for the numbers that are stored as data points (float), and the
numbers that are used to perform arithmetic operations (double).

• That is why the stored number 0.4 does not satisfy the weak inequality restriction in
list x if x<= 0.4.

• The stored value is strictly greater than the value used in the if-statement.

25 / 44



So what is going in Stata???

• The culprit is inconsistent storage types. By default, Stata uses different
storage types for the numbers that are stored as data points (float), and the
numbers that are used to perform arithmetic operations (double).

• That is why the stored number 0.4 does not satisfy the weak inequality restriction in
list x if x<= 0.4.

• The stored value is strictly greater than the value used in the if-statement.

26 / 44



So what is going in Stata???

• The culprit is inconsistent storage types. By default, Stata uses different
storage types for the numbers that are stored as data points (float), and the
numbers that are used to perform arithmetic operations (double).

• That is why the stored number 0.4 does not satisfy the weak inequality restriction in
list x if x<= 0.4.

• The stored value is strictly greater than the value used in the if-statement.

27 / 44



Quod Erat Demonstrandum

• We get the correct behavior if we force the value in the if-statement to be of the
same precision (float) as the stored value:

28 / 44



So what?

• The Stata manual is not too bothered, stating that:

”This is unlikely to affect any calculated result because Stata performs all internal
calculations in double precision.”

• Well, I disagree.

• The problem is that this behavior is unexpected, and it is capable of producing
calculation & data construction errors that can be extremely damaging to
modern causal inference designs.

29 / 44



So what?

• The Stata manual is not too bothered, stating that:

”This is unlikely to affect any calculated result because Stata performs all internal
calculations in double precision.”

• Well, I disagree.

• The problem is that this behavior is unexpected, and it is capable of producing
calculation & data construction errors that can be extremely damaging to
modern causal inference designs.

30 / 44



So what?

• The Stata manual is not too bothered, stating that:

”This is unlikely to affect any calculated result because Stata performs all internal
calculations in double precision.”

• Well, I disagree.

• The problem is that this behavior is unexpected, and it is capable of producing
calculation & data construction errors that can be extremely damaging to
modern causal inference designs.

31 / 44



RDD: Regression Discontinuity Debacle
• Many causal designs operate with cut-off points, and a correct classifications of
observations in the vicinity of the cutoff point is critical:

32 / 44



RDD: Regression Discontinuity Debacle
• Many causal designs operate with cut-off points, and a correct classifications of
observations in the vicinity of the cutoff value is critical:

33 / 44



Well, that’s not great...

• Yup.

• These precision issues introduce another layer of uncertainty that can hamper
reliability and replicability of scientific studies.

• IMHO, we should endeavor to eliminate these hidden traps, especially when solutions
are readily available.

34 / 44



Solution 1: Everything in double!

• Make Stata 19 use the double precision for both math operations & data storage
BY DEFAULT.

• This will mean that the datasets storing non-integer numbers will become larger, but
that’s a minor legacy issue (considering the capacities of modern hard drives)

• R uses the very same default.

In the meantime, we can set the precision standard manually:

set type double

*caution: ’set type float’ will NOT override double for arithmetic ops

clear

set obs 10

generate x = n/10

list x if x <= 0.4

35 / 44



Solution 1: Everything in double!

• Make Stata 19 use the double precision for both math operations & data storage
BY DEFAULT.

• This will mean that the datasets storing non-integer numbers will become larger, but
that’s a minor legacy issue (considering the capacities of modern hard drives)

• R uses the very same default.

In the meantime, we can set the precision standard manually:

set type double

*caution: ’set type float’ will NOT override double for arithmetic ops

clear

set obs 10

generate x = n/10

list x if x <= 0.4

36 / 44



Solution 1: Everything in double!

• Make Stata 19 use the double precision for both math operations & data storage
BY DEFAULT.

• This will mean that the datasets storing non-integer numbers will become larger, but
that’s a minor legacy issue (considering the capacities of modern hard drives)

• R uses the very same default.

In the meantime, we can set the precision standard manually:

set type double

*caution: ’set type float’ will NOT override double for arithmetic ops

clear

set obs 10

generate x = n/10

list x if x <= 0.4

37 / 44



Solution 1: Everything in double!

• Make Stata 19 use the double precision for both math operations & data storage
BY DEFAULT.

• This will mean that the datasets storing non-integer numbers will become larger, but
that’s a minor legacy issue (considering the capacities of modern hard drives)

• R uses the very same default.

In the meantime, we can set the precision standard manually:

set type double

*caution: ’set type float’ will NOT override double for arithmetic ops

clear

set obs 10

generate x = n/10

list x if x <= 0.4

38 / 44



Solution 2: Smart precision handling

• The alternative is to assign the type of values used in mathematical expressions
according to the precision of the stored values that are being evaluated:

Pseudocode:

if type(x) = float ---> evaluate: x<= float(0.4)

if type(x) = double --> evaluate: x<= double(0.4)

if type(x) = quad ----> evaluate: x<= quad(0.4)

• This is more cumbersome (and could run into problems with complex operations
where the correct use might be ambiguous), but it would avoid making datasets
larger by default.

39 / 44



Solution 2: Smart precision handling

• The alternative is to assign the type of values used in mathematical expressions
according to the precision of the stored values that are being evaluated:

Pseudocode:

if type(x) = float ---> evaluate: x<= float(0.4)

if type(x) = double --> evaluate: x<= double(0.4)

if type(x) = quad ----> evaluate: x<= quad(0.4)

• This is more cumbersome (and could run into problems with complex operations
where the correct use might be ambiguous), but it would avoid making datasets
larger by default.

40 / 44



Solution 2: Smart precision handling

• The alternative is to assign the type of values used in mathematical expressions
according to the precision of the stored values that are being evaluated:

Pseudocode:

if type(x) = float ---> evaluate: x<= float(0.4)

if type(x) = double --> evaluate: x<= double(0.4)

if type(x) = quad ----> evaluate: x<= quad(0.4)

• This is more cumbersome (and could run into problems with complex operations
where the correct use might be ambiguous), but it would avoid making datasets
larger by default.

41 / 44



Takeaways

• Unless the single-precision default has some other justification that supersedes the
concerns presented here, I say that it is time to bid it a heartfelt farewell.

• The Stata practitioners will thank you for it.

(or they would if they were aware of this issue to start with)

42 / 44



Takeaways

• Unless the single-precision default has some other justification that supersedes the
concerns presented here, I say that it is time to bid it a heartfelt farewell.

• The Stata practitioners will thank you for it.

(or they would if they were aware of this issue to start with)

43 / 44



Thank you for your attention!

Email:
Web:
Git:
Bluesky:

j.kabatek@unimelb.edu.au
www.jankabatek.com
github.com/jankabatek
@jankabatek.com

44 / 44


	First Section

