Italian Stata User Group – XVIII Conference Florence, Italy May 9-10, 2024

Structural Equation Modelling with Partial Least Squares using Stata

Sergio Venturini

sergio.venturini@unicatt.it

Mehmet Mehmetoglu

mehmet.mehmetoglu@ntnu.no

Università Cattolica del Sacro Cuore Via Bissolati 74 26100 Cremona Italy

NTNU – Norwegian University of Science and Technology 517, Dragvoll NO-7491 Trondheim Norway

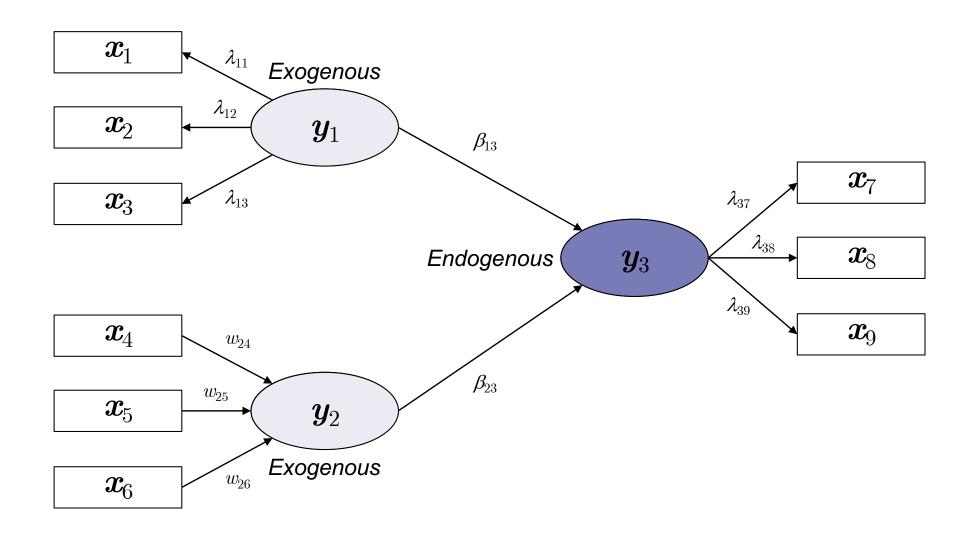
Overview

1. What is Partial Least Squares Structural Equation Modeling (PLS-SEM)?

2. The PLS-SEM algorithm

3. The plssem Stata package

4. Future directions

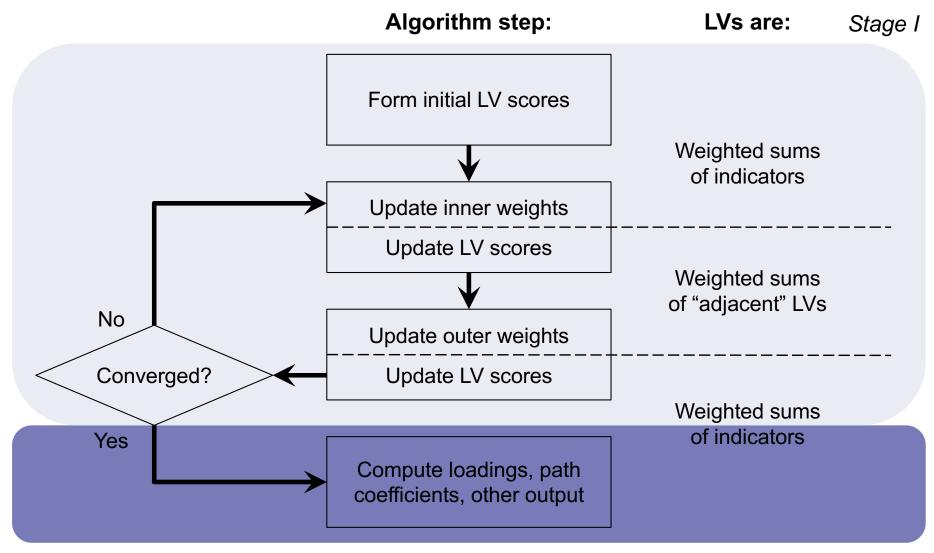

- PLS-SEM can be seen as:
 - The partial least squares (PLS) approach to structural equation modeling (SEM)
 - A statistical method for studying complex multivariate relationships among observed and latent variables
 - A data analysis approach for studying blocks of observed variables in which each block can be summarized by a latent variable and linear relations between the latent variables are assumed

- PLS-SEM originates from the work of Herman Wold
- In the 1960s and 1970s Wold developed a set of iterative algorithms based on least squares that nowadays are referred to as partial least squares (PLS)
- PLS methods encompass a broad spectrum of both explanatory and exploratory multivariate techniques, ranging from regression to path modeling, and from principal component to multi-block data analysis

- PLS-SEM is frequently seen as an alternative approach to classical covariance-based SEM (COV-SEM):
 - they aim at studying the interdependencies among a set of *unobserved* latent variables (LVs), each of which is measured through a different set of *observed* (or *manifest*) variables (MVs)
 - they involve a measurement (or outer) model relating the latent variables to the corresponding manifest variables, and a structural (or inner) model providing the relations among the latent variables
 - both are typically specified using a path diagram

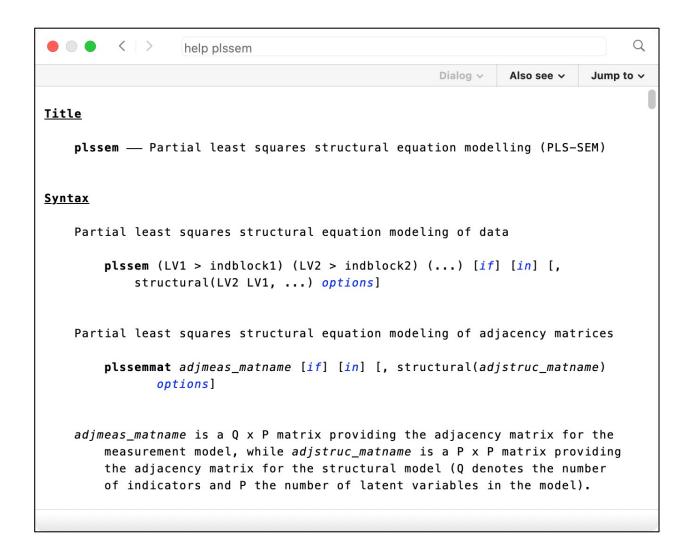
• The main differences between the two approaches are:

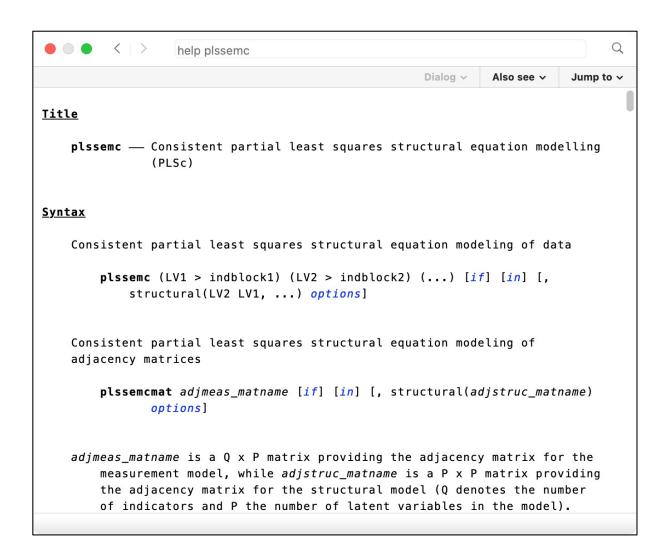
COV-SEM	PLS-SEM
it aims at reproducing the observed covariance matrix of the manifest variables	it aims at maximizing the explained variance of the endogenous latent variables
the model is estimated using maximum likelihood	the model is estimated using an iterative algorithm that involves ordinary least squares
➤ it is typically used for theory testing	> it is typically used for predictive purposes

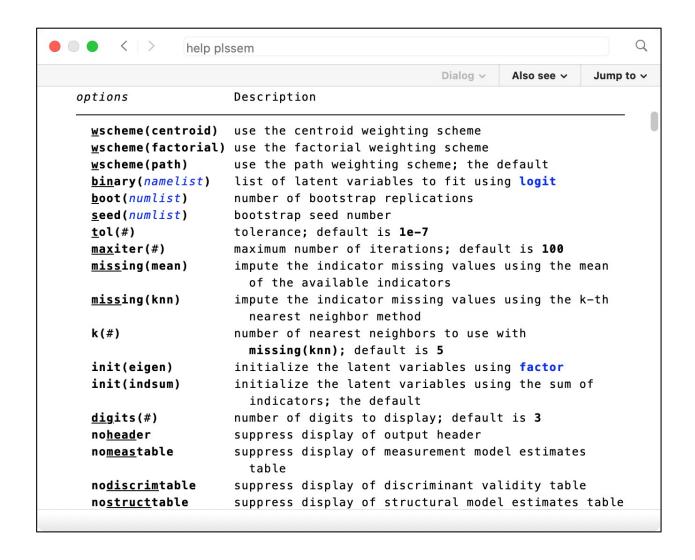

- Both the structural and measurement models involve linear specifications:
 - In the structural model a generic endogenous LV y_j is linked to the corresponding latent predictors through the multiple linear regression model

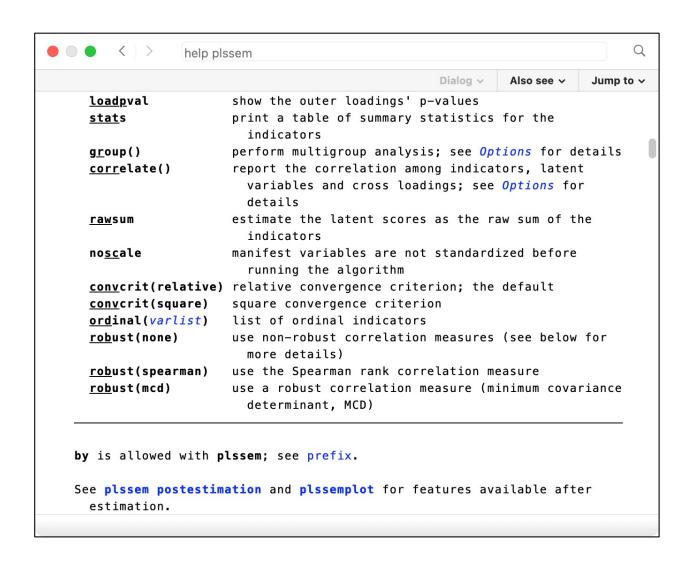
$$y_j = \beta_{0j} + \sum_{m=1}^{M_j} \beta_{jm} y_{m \to j} + \delta_j$$

– In the measurement model, the relation between each MV x_k and the corresponding LV is generally modeled as

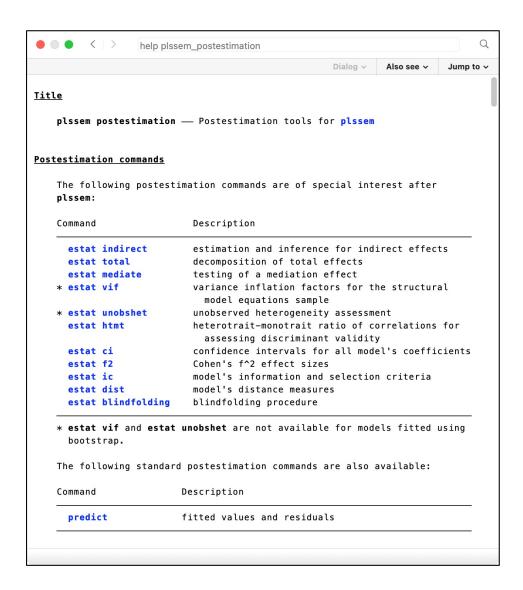

- o reflective blocks $\rightarrow x_k = \lambda_{0k} + \lambda_{jk}y_j + \epsilon_k$
- o formative blocks $\rightarrow y_j = w_{0k} + \sum_h w_{jh} x_h + \zeta_j$

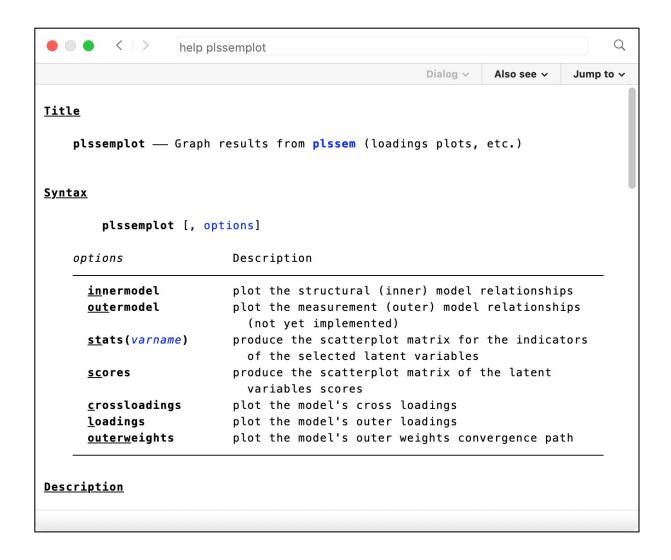

The PLS-SEM algorithm




- Different software packages are available for fitting PLS-SEM models, both commercial (e.g. SmartPLS, ADANCO) and open-source (e.g. csem, seming)
- While Stata has a very nice suite of commands for COV-SEM, nothing is available for PLS-SEM
- To fill the gap, some years ago we started the development of a Stata package for PLS-SEM called plssem
- The project is open-source and it can be installed from one of the author's GitHub account (https://github.com/sergioventurini/plssem)

- The package provides:
 - estimation commands
 - plssem → implements the standard PLS-SEM algorithm
 - plssemc → implements the consistent PLS-SEM (PLSc) algorithm
 - plssemmat → matrix-based version of plssem
 - plssemcmat → matrix-based version of plssemc
 - post-estimation commands
 - estat → computes many goodness of fit and diagnostic measures
 - plssemplot → creates some graphs for visualizing the results
 - predict -> computes the predicted values and residuals






```
help plssem
                                                                               Q
                                                     Dialog v
                                                              Also see v
                                                                          Jump to v
Stored results
    plssem stores the following in e():
    Scalars
      e(N)
                              number of observations
      e(reps)
                              number of bootstrap replications
      e(n_inadmissibles)
                              number of inadmissable bootstrap replications
      e(iterations)
                              number of iterations to reach convergence
      e(tolerance)
                              chosen tolerance value
      e(maxiter)
                              maximum number of iterations allowed
      e(converged)
                              equal to 1 if convergence is achieved; 0
                                otherwise
      e(k_aux)
                              number of auxiliary variables
      e(df_m)
                              model degrees of freedom
   Macros
      e(cmd)
                              plssem
      e(cmdline)
                              command as typed
      e(vce)
                              type of the variance-covariance matrix of the
                                estimators
      e(estat_cmd)
                              program used to implement estat
      e(predict)
                              program used to implement predict
      e(title)
                              title in estimation output
```

```
Q
                  help plssem
                                                     Dialog v
                                                              Also see v
                                                                         Jump to v
   Matrices
     e(b)
                              coefficient vector
     e(V)
                              variance-covariance matrix of the estimators
     e(loadings)
                              outer loadings matrix
     e(loadings bs)
                              bootstrap-based outer loadings matrix
                                (available only if the boot() option is
                                chosen)
     e(loadings_se)
                              matrix of the outer loadings standard errors
     e(cross_loadings)
                              cross loadings matrix
     e(cross_loadings_bs)
                              bootstrap-based cross loadings matrix
                                (available only if the boot() option is
                                chosen)
     e(cross loadings se)
                              matrix of the cross loadings standard errors
     e(adj_meas)
                              adjacency matrix for the measurement (outer)
                                model
     e(outerweights)
                              matrix of outer weights
                              matrix of outer weights evolution
     e(ow_history)
     e(relcoef)
                              matrix of reliability coefficients
                              matrix of squared correlations among the latent
     e(sqcorr)
                                variables
     e(ave)
                              vector of average variances extracted
     e(struct_b)
                              path coefficients matrix (short form)
     e(struct_se)
                              matrix of path coefficients' standard errors
                                (short form)
```


Future directions

- We continue actively developing the package and we are planning to expand it in different directions:
 - moderated mediation
 - nonlinear effects in the structural model
 - multiple imputation
 - graphical interface to interactively specify the entire model, similar to Stata's sembuilder for COV-SEM → call for collaborations!!!

References

- 1. Esposito Vinzi, V., Russolillo, G. 2013. Partial least squares algorithms and methods. *WIREs Computational Statistics*, 5, 1-19.
- 2. Esposito Vinzi, V., Trinchera, L., Squillacciotti, S., Tenenhaus, M. 2008. REBUS-PLS: a response-based procedure for detecting unit segments in PLS path modeling. *Applied Stochastic Models in Business and Industry*, 24, 439-458.
- 3. Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M. 2017. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). 2nd edition. Sage.
- 4. Hair, J. F., Sarstedt, M., Ringle, C. M., Gudergan, S. P. 2017. Advanced Issues in Partial Least Squares Structural Equation Modeling. Sage.
- 5. Mehmetoglu, M., Venturini, S. 2021. Structural Equation Modelling with Partial Least Squares Using Stata and R. CRC Press
- 6. Monecke, A., Leisch, F. 2012. **semPLS**: Structural Equation Modeling Using Partial Least Squares. *Journal of Statistical Software*, 48, 3, 1-32.
- 7. Sanchez, G. 2013. PLS Path Modeling with R. Trowchez Editions.
- 8. Sanchez, G., Trinchera, L., Russolillo, G. 2015. plspm: Tools for Partial Least Squares Path Modeling (PLS-PM). R package version 0.4.7.
- 9. Venturini, S., Mehmetoglu, M. 2019 plssem: A Stata Package for Structural Equation Modeling with Partial Least Squares. *Journal of Statistical Software*, 88, 8, 1-35.