Spatial autoregressive logit and probit using Stata: The spatbinary package

Daniele Spinelli^a daniele.spinelli@unimib.it

Anna Gloria Billè^b Alessio Tomelleri ^c

^a Dep. of Statistics and Quantitative Methods, University of Milano-Bicocca

^b Dep. of Statistical Sciences, Alma Mater Studiorum - University of Bologna

^c Research Institute for the Evaluation of Public Policies - Fondazione Bruno Kessler

Italian Stata Conference. May 2024, Florence

Spinelli, Billè, Tomelleri

spatbinary

Official Stata

Stata 15 introduced [SP]:

- manipulation of spatial matrices (spmatrix)
- official commands for spatial regression models (spregress,spxtregress and spivregress) estimate models with continuous dependent variables.

・ 同 ト ・ ヨ ト ・ ヨ ト

Community contributed

- spatwmat and spmat for matrix manipulation
- spmap and geoplot draw detailed maps (Pisati 2018; Jann 2023)
- spatial regression models in terms of
 - cross-sectional data (Pisati 2001),
 - spatial panel regressions (Belotti, Hughes and Mortari 2017)
 - endogenous regressors (Drukker, Prucha and Raciborski 2013).
- calculate travel time (Huber and Rust 2016; Weber and Péclat 2017)
- patial correlation tests (spatcorr),
- geocode data (Ozimek and Miles 2011)

Aim

- Commands to estimate spatial regressions with binary dependent variables are not available.
- Introducing spatbinary (Spinelli 2022), a command to estimate spatial autoregressive probit and logit models
 - compatible with SP
 - estimation
 - marginal effects
 - prediction
- an empirical example with real data provided by Tomelleri and Billé 2024

The binary SAR - 1

The spatial autoregressive model with binary response (BSAR) (Pinkse and Slade 1998; Klier and McMillen 2008; Billé and Leorato 2020)

- Binary response $y_i = I(U_i > 0)$, where $y_i \in \mathbf{y}, u_i \in \mathbf{U}$
- row-standardized continguity matrix W
- $\boldsymbol{\beta}$ and $\boldsymbol{\rho}$ to be estimated

$$\boldsymbol{U} = \rho \boldsymbol{W} \boldsymbol{U} + \boldsymbol{X} \boldsymbol{\beta} + \boldsymbol{\epsilon}$$

• U_i is the unobserved *propensity* to observe $y_i = 1$

イロト イポト イヨト イヨト 二日

```
The binary SAR - 2
```

- the spatial autocorrelation parameter ρ implies clustering (ρ > 0) or dispersion (ρ < 0) in space
- distributional assumptions on the residuals lead to the **probit BSAR** (normal) or to the **logit BSAR** (logistic)
- residuals are correlated and heteroscedastic
- the error term variance is proportional to

$$\mathbf{V} = E(\boldsymbol{\epsilon}'\boldsymbol{\epsilon}) = [(\mathbf{I} - \rho \mathbf{W})'(\mathbf{I} - \rho \mathbf{W})]^{-1}$$

Estimation

GMM estimator (Hansen 1982; Pinkse and Slade 1998), estimates are chosen to minimize the quantity:

$$Q = n^{-1} [\epsilon(\beta, \rho)' ZMZ' \epsilon(\beta, \rho)]$$
(1)

- Z is a set of instruments which may include the covariates and their spatial lags (Kelejian and Prucha 1998)
- Klier and McMillen 2008: the model is a non-linear two stage least squares (N2SLS) if $M = (Z'Z)^{-1}$ and proposed a *linearized* version
- The spatbinary estimates the linearized and the full N2SLS

・ロト ・ 四ト ・ ヨト ・ ヨト …

Linearized vs N2SLS

Advantages of the linearized model

- computational: no inversion of the matrix $\boldsymbol{I} \rho \boldsymbol{W}$ is required
- ullet the advantage is less pronounced if $oldsymbol{W}$ is small or sparse
- good approximation if ρ is small

Disadvantages

- less efficient the N2SLS (Billé 2013)
- upwardly biased if |
 ho| > 0.5

The coefficients from the linearized model can be used as starting values for the N2SLS model. This is the default setting in spatbinary

イロト イポト イヨト イヨト 二日

Syntax

Data should be spset before using spatbinary. The main options are ¹: spatbinary depvar [indepvars] [if] [in] [weight],wmat(matname) [logit probit <u>lin</u>earized n2sls instr(varlist) winstr(varlist) impower(#)]

- wmat(*matname*), the spatial weight matrix created using spmatrix.
- probit or logit: estimate a logit or probit model
- linearized or n2sls: fits the linearized or N2SLS model . The default is linearized, if n2sls is chosen estimates from linearized are used as starting values.
- instr a *varlist* of instruments
- winstr a *varlist* of instruments to be premultiplied by the spatial weight matrix up to degree chosen by impower(#). Default is 1.

イロト 不得下 イヨト イヨト 二日

¹estimation options are also allowed

Postestimation

- spatbinary allows predict
- allows spatbinary_impact: a wrapper of margins that estimates measures of impact such as **direct**, **indirect** and **total marginal effects** (Billé and Leorato 2020)
- spatbinary_impact corresponds to official Stata's estat impact for spregress postestimation.

spatbinary_impact varlist, eyex dydx eydx dyex total direct
indirect

- dydx. marginal effect of varlist on the predicted probability.
- eyex, eydx and dyex. Calculates the elasticities and semielasticities of the predicted probability wrt *varlist*.
- <u>total,dir</u>ect and <u>ind</u>irect. Calculates the total, direct (own-effect) and indirect (other unit's effect) measure of impact of *varlist*,

General workflow - 1

Installation

```
. net install st0672
```

Setup using spmatrix and spset

```
. webuse homicide1990, clear
(S.Messner et al.(2000), U.S southern county homicide rates in 1990)
. copy https://www.stata-press.com/data/r17/homicide1990_shp.dta .
. spmatrix clear
. spmatrix create contiguity W2, normalize(row)
. spset
    Sp dataset: homicide1990.dta
Linked shapefile: homicide1990_shp.dta
    Data: Cross sectional
Spatial-unit ID: _ID
    Coordinates: _CX, _CY (planar)
. quietly sum hrate, det
. gen hrate_gt_p95=hrate>r(p95)
```

= nar

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

General workflow - 2

Estimation (using n2sls)

```
. spatbinary hrate_gt_p95 ln_population gini, wmat(W2) n2sls
instruments set as (X.WX...W^n X)
(output omitted)
```

N2SLS LOGIT

hrate_gt_p95	Coefficient	Robust std. err.	z	P> z	[95% conf	. interval]
hrate_gt_p95						
ln_population	.2088806	.176295	1.18	0.236	1366513	.5544124
gini	41.17571	6.693724	6.15	0.000	28.05625	54.29517
_cons	-23.58003	4.516926	-5.22	0.000	-32.43304	-14.72702
rho						
_cons	4242538	.2173661	-1.95	0.051	8502837	.001776

Test of overidentifying restriction: Hansen's J chi2(1) = .0588395, p = .8083396

General workflow - 3

Measures of impact

. spatbinary_impact gini, dydx Impact measures for gini

	dydx	Delta-M~d std. err.	z	p> z	[95 conf.	interval]
gini						
total	1.198613	.1923828	6.230356	4.65e-10	.8215498	1.575676
direct	1.698983	.2554343	6.65135	2.90e-11	1.198341	2.199625
indirect	5003701	.2555695	-1.957863	.0502461	-1.001277	.000537

イロト イヨト イヨト イヨト

∃ 990

Overview - 1

Tomelleri and Billé 2024:

- Do Micro-Enterprises Ask for Local Support Measures? Evidence After the COVID-19 Pandemic using a Spatial hurdle model
 - Investigate the impact of spatial dependence as a measure of interaction effects on the take-up rate of local government subsidies in 2020 in Trentino.
 - Specific sub-population of firms hit particularly hard by the pandemic: micro-enterprises (MEs).
 - Link with administrative data on structure and performance.
 - Lack of information about the coordinates of MEs due to privacy reasons (economic metric for the weighting matrix).
 - observations grouped into three areas (East, West and Central): we present results only from the Eestern Area

Spinelli, Billè, Tomelleri

Overview - 2

- Covariates:
 - In(turnover) is the logarithm of the average turnover between 2017 and 2019,
 - imp lockdown reports whether the firm was forced to close by the government in 2020,
 - \bigcirc *employees* = 1 if the firm have more than one employee, = 0 otherwise
 - Irr age is the number of years since the firm was registered,
 - Inational aid identifies firms who also resorted for national support,
 - four dummy variables, the strategies adopted by the firm
 - resorting to self-financing;
 - resorting to borrowing from friend/family members;
 - changing payment terms with customers;
 - changing payment terms with suppliers

3

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Data

	Mean	SD	Min	Max	Ν
			East		
turnover 17-19	152,412	229,468	4838	2.3e+06	367
added value 17-19	57,696	67,071	-2.8e+04	5.4e+05	367
ln(turnover 17-19)	11.26	1.11	8.48	14.64	367
ln(added value 17-19)	10.53	0.98	3.96	13.20	360
imp_lockdown	0.62	0.49	0.00	1.00	367
employees	0.30	0.46	0.00	1.00	367
firm age	20.05	11.95	3.00	60.00	367
self-financing	0.27	0.44	0.00	1.00	367
loans from family/friends	0.11	0.31	0.00	1.00	367
payment cond. customers	0.07	0.26	0.00	1.00	367
payment cond. suppliers	0.14	0.35	0.00	1.00	367
national aids	0.75	0.43	0.00	1.00	367

イロト イヨト イヨト イヨト

Model specification - 1

- In the full sample, 364 MEs were not eligible (they received a rejection). Take-up is conditional of eligibility.
- empirical strategy considers a spatial hurdle model
 - eligibility equation. Measures the participation decisions,
 main equation. Measures the MEs decisions, among the active ones, of asking for local support measures conditional on participation.
- The second equation is estimated using spatbinary

Depending on eligibility $(d_i = 1)$, and on covariates x_i the probability that ME *i* applies for local support $(y_i = 1)$ is

$$P(y_i = 1 | x_i) = \begin{cases} P(d_i = 0 | x_i) & \text{if } y_i = 0 \\ P(d_i = 1 | x_i) P(y_i = 1 | d_i = 1, x_i) & \text{if } y_i = \{0, 1\} \end{cases}$$

Stata 2024

Model specification - 2

The second equation then specify a spatial autoregressive probit model

$$y^* = \rho W y^* + X_2 \beta_2 + \varepsilon_2 \quad \varepsilon_2 \sim \mathcal{N}(0, I)$$

where W is an n by n matrix of weights connecting the spatial latent variable² y^* and ρ is the corresponding spatial autoregressive coefficient. Asking for local support be ME is observed only if

$$y = \mathsf{I}(y^* > 0)$$

- spatial spillovers can be interpreted as peer effects among MEs.
- direct, indirect and total marginal effects are estimated also taking into account the first equation. ³

²propensity to ask for local support

³this requires assumptions, please see details in Tomelleri and Billé 2024 🗈 🖉 💿 🗨

Weighting matrix

- Coordinates of MEs are unknown due to statistical confidentiality
- weighting matrix $W = \{w_{ij}\}$ is built by using an economic variable⁴, i.e. the mean 2017-2019 of the micro-firms' added values (\bar{av})

$$egin{cases} w_{ij} = rac{1}{|ar{av_i} - ar{av_j}|} & ext{if} \quad i
eq j \ w_{ij} = 0 & ext{otherwise} \end{cases}$$

- takes into account similarities in terms of added value.
- W is row-normalized (i.e., $\sum_{j} w_{ij} = 1$)

⁴see, for instance, Case, Rosen and Hines Jr 1993 who rely on a similar economic definition of the weighting matrix.

Setup

Setup using a matrix stored in an external file

```
. clear all
. import delimited "distEst3.csv"
(encoding automatically selected: ISO-8859-2)
(368 vars, 367 obs)
. drop v1
. mkmat v*, matrix(spatmat)
. use data.dta, clear
. spset ID
Sp dataset: data.dta
Linked shapefile: <none>
Data: Cross sectional
Spatial-unit ID: _ID (equal to ID)
Coordinates: <none>
. mata: W=st_matrix("spatmat")
. mata: ID=1::rows(W)
. spmatrix spfrommata W = W ID
```

3

Coefficient estimates

```
. spatbinary local_aid $X, wmat(W) probit n2sls noc
instruments set as (X,WX...W<sup>n</sup> X) where X= ln_ricven1719 imp_lockdown i.dip_cat i.frm_g
firm_age ib2.settore liquid_C03_3 liquid_C03_4 liquid_C03_8 liquid_C03_9 i.treatment1
and W=W where n=1
  (367 observations)
  (367 observations (places) used)
  (weighting matrix defines 367 places)
Iteration
                  1:
                       GMM criterion Q(b) =
                                                     0.020022488708
(output omitted)
Iteration
                  7:
                       GMM criterion Q(b) =
                                                     0.019416323129
N2SLS PROBIT
```

	local_aid	Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]
local_aid							
	ln_ricven1719	1427016	.0284251	-5.02	0.000	1984137	0869895
	<pre>imp_lockdown</pre>	.2735895	.165672	1.65	0.099	0511217	.5983006
(output om	itted)	1					
rho							
	1	.3718604	.2090455	1.78	0.075	0378612	.7815819
	reridentifying res chi2(16) = 7.12		07596		< □ ► < (] → 《 문 → 《 문	▶ ह ୬९२
Spinelli,	, Billè, Tomelleri		spatbinary			Stata 2024	21/30

Spinel	h.	Bill	lé.	l omel	leri

- marginal effects for the second equation
- they are to be interpreted as the change in probability of asking for local support associated to a 1% variation in turnover conditional on eligibility
- direct refers to own-effects, indirect refers to spillover effects, total aggregates them

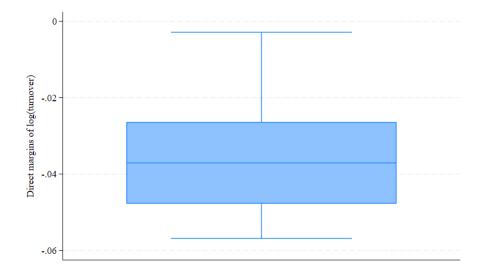
Impact measures for ln_ricven1719								
	dydx	Delta-M~d std. err.	z	p> z	[95 conf.	interval]		
ln_ricv~1719 total direct indirect	0560494 0358173 0202321	.0229092 .0062999 .0190645	-2.446587 -5.685387 -1.061243	1.31e-08	1009506 0481648 0575978	0111481 0234697 .0171337		

Spinelli, Billè, Tomelleri

. spatbinary impact ln ricven1719, dvdx

```
Marginal effects - 2
```

direct marginal effects for the second equation at the individual level


```
. predict dirmar_ln_ricven1719 , directmargin
Marginal effect
```

```
. replace dirmar_ln_ricven1719=dirmar_ln_ricven1719*_b[local_aid: ln_ricven1719]
(367 real changes made)
```

```
. summarize dirmar ln ricven1719
```

Variable	Obs	Mean	Std. dev.	Min	Max
dirmar_~1719	367	0358173	.0141344	0568698	0028516

. tabstat dir	mar_ln_ricve	en1719, sta	at(p5 p25 p	o50 p75 p95)
Variable	p5	p25	p50	p75	p95
dirmar_~1719	0555428	0477662	0370793	0263814	010658

Spinelli, I	Billè, To	omelleri
-------------	-----------	----------

æ

→ ∃→

</l>< □ > < ⊇ >

- marginal effects for the hurdle model, they take into account participation
- they use the phat_1 variable: the participation probability from the first equation
- they are to be interpreted as the change in probability of asking for local support associated to a 1% variation in turnover

イロト イポト イヨト イヨト

. margins, expression(phat_1*predict(totalmargin)*_b[local_aid: ln_ricven1719]) warning: cannot perform check for estimable functions.

Number of obs = 367Predictive margins Model VCE: Robust

Expression: phat_1*predict(totalmargin)*_b[local_aid: ln_ricven1719]

	I	Delta-method				
	Margin	std. err.	z	P> z	[95% conf.	interval]
_cons	032345	.0131934	-2.45	0.014	0582036	0064864

. margins, expression(phat_1*predict(directmargin)*_b[local_aid: ln_ricven1719]) warning: cannot perform check for estimable functions.

Predictive margins Model VCE: Robust

Number of obs = 367

Expression: phat_1*predict(directmargin)*_b[local_aid: ln_ricven1719]

	I	Delta-method				
	Margin	std. err.	z	P> z	[95% conf.	interval]
_cons	0206689	.003668	-5.63	0.000	027858	0134799

margins, expression(phat_1*predict(indirectmargin)*_b[local_aid: ln_ricven171 warning: cannot perform check for estimable functions.

Predictive margins Number of obs = 367Model VCE: Robust

Expression: phat_1*predict(indirectmargin)*_b[local_aid: ln_ricven1719]

	I	Delta-method				
	Margin	std. err.	z	P> z	[95% conf.	interval]
_cons	0116761	.010984	-1.06	0.288	0332044	.0098522

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨ ● の ○ ○ Stata 2024

Spine	lli,	Billè,	Tomel	leri

Conclusion

- spatial probit and logit models using Stata
- o possibile extensions:
 - the partial maximum likelihood modeling framework of Billé and Leorato 2020
 - spatial error models

3

イロト イポト イヨト イヨト

Conclusion

Thanks

THANKS FOR YOUR ATTENTION!

Spinelli, I	Billè, T	omelleri
-------------	----------	----------

э

イロン イ団 と イヨン イヨン

- Belotti, Federico, Gordon Hughes and Andrea Piano Mortari (2017). 'Spatial panel-data models using Stata'. In: *The Stata Journal* 17.1, pp. 139–180.
 - Billé, Anna Gloria (2013). 'Computational Issues in the Estima tion of the Spatial Probit Model: A Comparison of Various Estimators'. In: *Review of Regional Studies* 43.2, 3, pp. 131–154.
- Billé, Anna Gloria and Samantha Leorato (2020). 'Partial ML estimation for spatial autoregressive nonlinear probit models with autoregressive disturbances'. In: *Econometric Reviews* 39.5, pp. 437–475.
- Case, Anne C, Harvey S Rosen and James R Hines Jr (1993). 'Budget spillovers and fiscal policy interdependence: Evidence from the states'. In: *Journal of public economics* 52.3, pp. 285–307.
- Drukker, David M, Ingmar R Prucha and Rafal Raciborski (2013). 'Maximum likelihood and generalized spatial two-stage least-squares estimators for a spatial-autoregressive model with spatial-autoregressive disturbances'. In: The Stata Journal 13.2, pp. 221–241.
 - Hansen, Lars Peter (1982). 'Large sample properties of generalized method of moments estimators'. In: *Econometrica: Journal of the Econometric Society*, pp. 1029–1054.

3

< ロ > < 同 > < 三 > < 三 > <

- Huber, Stephan and Christoph Rust (2016). 'Calculate travel time and distance with OpenStreetMap data using the Open Source Routing Machine (OSRM)'. In: *The Stata Journal* 16.2, pp. 416–423.
 - Jann, Ben (2023). 'geoplot: A new command to draw maps'. In.
 - Kelejian, Harry H and Ingmar R Prucha (1998). 'A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances'. In: *The Journal of Real Estate Finance and Economics* 17.1, pp. 99–121.
- Klier, Thomas and Daniel P McMillen (2008). 'Clustering of auto supplier plants in the United States: generalized method of moments spatial logit for large samples'. In: *Journal of Business & Economic Statistics* 26.4, pp. 460–471.
- Ozimek, Adam and Daniel Miles (2011). 'Stata utilities for geocoding and generating travel time and travel distance information'. In: *The Stata Journal* 11.1, pp. 106–119.
 - Pinkse, Joris and Margaret E Slade (1998). 'Contracting in space: An application of spatial statistics to discrete-choice models'. In: *Journal of Econometrics* 85.1, pp. 125–154.

3

< ロ > < 同 > < 三 > < 三 > <

Appendix

- Pisati, Maurizio (2001). 'sg162: tools for spatial data analysis'. In: *Stata Technical Bulletin* 60, pp. 21–37.
 - (2018). 'SPMAP: Stata module to visualize spatial data'. In.
- Spinelli, Daniele (2022). 'Fitting spatial autoregressive logit and probit models using Stata: The spatbinary command'. In: *The Stata Journal* 22.2, pp. 293–318.
- Tomelleri, Alessio and Anna Gloria Billé (2024). 'Evidence after the COVID-19 pandemic using a Spatial hurdle model'. In: *SSRN*.
- Weber, Sylvain and Martin Péclat (2017). 'A simple command to calculate travel distance and travel time'. In: *The Stata Journal* 17.4, pp. 962–971.

イロト イヨト イヨト

Marginal effects for the hurdle Model

(Tomelleri and Billé 2024) The marginal effects were calculated considering the spatial hurdle model in reduced form.

The marginal effects with respect to a continuous variable x_h are calculated as follows

$$\frac{\partial P(y_{i2}=1|x_{i2})}{\partial x_{ih}}|_{x} = \Phi(x_{i1}'\beta_{1})\phi\left(\{\Sigma_{\varepsilon_{2}^{*}}\}_{ii}^{-1/2}\{A^{-1}X_{2}\}_{i}\beta_{2}\right)\{\Sigma_{\varepsilon_{2}^{*}}^{-1/2}\}_{ii}\{A^{-1}\}_{i}\beta_{2h}$$

where x_h is the *n*-dimensional vector of units referred to the *h*-th continuous regressor included *only* in the set X_2 , $\{.\}_i$ is the *i*-th row of the matrix inside, and $\{.\}_{ii}$ is the *i*-th diagonal element of a square matrix.

Please, see details in Tomelleri and Billè (2024) at SSRN.

Spinelli,	Billè,	Tomelleri
-----------	--------	-----------

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >