Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan

Too much or too little? New tools for the static CCE Estimator.

Jan Ditzen

Free University of Bozen-Bolzano, Bozen, Italy

www.jan.ditzen.net, jan.ditzen@unibz.it

https://janditzen.github.io/xtdcce2/

May 9, 2024

Motivation I

- In panel time series models with (N, T) ⇒ ∞ cross-section dependence via common factors (or unobserved heterogeneity) is likely to occur.
- Often modelled using interactive fixed effects

$$y_{i,t} = \beta_i x_{i,t} + u_{i,t} \tag{1}$$

$$u_{i,t} = \gamma_{1,i}f_{1,t} + \dots + \gamma_{M,i}f_{M,t} + \vartheta_{i,t}$$
(2)

- where we have *M* interactions between unit specific effects and time effects.
- $\gamma_{m,i}$ is the factor loading of factor $f_{m,t}$.

Motivation II

• The explanatory variables can also consist of a factor structure:

$$x_{i,t} = \gamma_{x,1,i} f_{x,1,t} + \dots + \gamma_{M_x,i} f_{M_x,t} + \epsilon_{i,t}$$

- Assumption: $corr(\vartheta_{i,t}, \epsilon_{i,t}) = 0!$
- This setting poses two challenges:
 - Correlation across units, cross-sectional dependence
 - **2** If the factors in $x_{i,t}$ and $u_{i,t}$ overlap, the observables and unobservables are correlated
- Popular estimator: Common Correlated Effects Estimator (Pesaran, 2006)

(Static) Common Correlated Effects

• Pesaran (2006) proposes to span the space of the common factors using cross-section averages (CSA) in a static model:

$$y_{i,t} = \beta_i x_{i,t} + \psi_{x,i} \bar{x}_t + \psi_{y,i} \bar{y}_t + \epsilon_{i,t}$$

where $\bar{x}_t = 1/N \sum_{i=1}^{N} x_{i,t}$ and $\bar{y}_t = 1/N \sum_{i=1}^{N} y_{i,t}$ are the cross-section averages.

- Can be combined with a pooled or mean group estimator.
- Estimator is \sqrt{N} consistent.
- Proved to be versatile in many conditions (Kapetanios et al., 2011; Chudik et al., 2011; Westerlund, 2018).
- Extended to dynamic models (Chudik and Pesaran, 2015) and estimation of long run coefficients (Chudik et al., 2016).

Static CCE

Stata Implementations

- First implementation in xtmg (Eberhardt, 2012).
- Also implemented in xtdcce2 (Ditzen, 2018, 2021):
 - Static and dynamic models
 - Estimation of long run coefficients
 - Bootstrapping
 - Different types of cross-section averages
 - Estimation of degree and testing for cross-section dependence
 - Various estat and predict functions
- Syntax:

xtdcce2 depvar indepvars [if] , ... cr(varlist , options)

cr() defines variables added as cross-section averages.

Static CCE

New developments

- In "early" years discussion on CCE focused on validity under stationary factors, autocorrelated factors, strong and semi strong cross-section dependence and dynamic models.
- A recurring topic is also bootstrapping.
- In past years discussion on what "spanning factor space" actually means intensified:
 - Regularized CCE
 - When does the "Rank Condition" hold?
 - Information Criteria to select CSA.

Regularized CCE

- Large number of cross-section averages might only contain limited information, inducing non-trivial bias for pooled and mean group CCE, see Karabiyik et al. (2017).
- Juodis (2022) suggest rCCE approach:
 - Calculate cross-section averages (CSA)
 - Estimate number of common factors in CSA, \hat{m} , using ER or GR from Ahn and Horenstein (2013)
 - Replace cross-section averages with the first \hat{m} eigenvectors of CSA.
- Requires bootstrapping.
- Disadvantage: approach sensitive to estimation of factors and only for static panels.

xtdcce2, ... cr(rcce)

xtdcce2 depvar indepvars [if] , ... cr(varlist , rcce[(options)])

- options are:
 - criterion(er|gr) specifies criterion to estimate number of common factors using the ER or GR criterion from Ahn and Horenstein (2013)
 - scale scales cross-section averages
 - npc(real) specifies number of eigenvectors without estimating it.
- Bootstrap is not automatically performed.
- Number of factors estimated based on xtnumfac (Ditzen and Reese, 2023).
- Unbalanced panels supported, then missing values in CSA are imputed.

Regularized CCE

Example

- Dell et al. (2012) investigate effect of temperature (*wtem_{i,t}*) and precipitation (*wpre_{i,t}*) on economic growth (*g_{i,t}*).
- Balanced panel of 89 countries and over 42 years (1962-2003):1

$$g_{i,t} = \mu_i + \beta_{1,i}$$
 wtem_{i,t} + $\beta_{2,i}$ wpre_{i,t} + $u_{i,t}$

• Estimated number of common factors (output shortened):

	g wtem wpre , 3738 89	stand(5) T vars	= 5. =	42 3
IC	# factors	IC	# factors	
 ER 	1	GR	1	
	naximally cons: n Ahn and Horen		3)	

¹This is only an example!

Ditzen

Regularized CCE Example MG (no CSA)

xtdcce2 g wtem w (Dynamic) Common			timator -	- Mean Group			
Panel Variable				Number of			3738
Time Variable (1	:): year			Number of	group	os =	89
Degrees of freed without cross-s with cross-sect	Obs per g	roup ((T) =	42			
Number of		,		F(534, 32	04)	-	0.40
cross-sectional	lags	0	to O	Prob > F			1.00
variables in me		ression =	178	R-squared		-	0.94
variables parti	alled out	=	356	R-squared	(MG)	=	0.10
•				Root MSE		-	5.04
				CD Statis	tic	-	0.79
				p-valu	e	=	0.4322
g	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
Mean Group:							
wtem	492719	.3991216	-1.23	0.217	-1.27	4983	.289545
wpre	.0794217	.0863426	0.92	0.358	089	8066	.2486501

Mean Group Variables: wtem wpre Cross Sectional Averaged Variables: g wtem wpre Heterogenous constant partialled out.

- cr(g wtem wprec) adds cross-section averages of g, wtem and wprec.
- No strong cross-section dependence left in residuals.
- No coefficients significant.
- Space of one common factor spanned by 3 cross-section averages.

Regularized CCE

Example

. xtdcce2 g wten (Dynamic) Common							ıp		
Panel Variable	i): cc_num					Number o	of obs	=	3738
Time Variable (t	:): year					Number o	of group	s =	89
Degrees of freedom per group: without cross-sectional averages = 39 with cross-sectional averages = 36						Obs per	group (T) =	42
Number of		, ,				F(534, 3	3204)	=	0.44
cross-sectional	lags		=	0		Prob > H	7	-	1.00
variables in me		gression				R-square		-	0.93
variables parti	alled out		=	356		R-square		-	-0.04
						Root MSE	2	=	5.43
						CD Stati	istic	=	18.31
						p-val	lue	-	0.0000
g	Coef.	Std. E	rr.		z	P> z	[95%	Conf.	Interval]
Mean Group:									
wtem	8734534	.24719	56	-3.	53	0.000	-1.35	7948	3889591
wpre	.1390197	.09750	41	1.	43	0.154	052	0847	.3301241

Mean Group Variables: wtem wpre

1 Regularized Cross-Section Averages from variables:

g wtem wpre

Heterogenous constant partialled out.

- cr(..., rcce(npc(1)) employs rCCE estimator with 1st eigenvalue instead of CSA.
- Some strong cross-section dependence left in residuals.
- Temperature significant.
- xtdcce2 can also estimate number of common factors in CSA Example.

Static CCE The Rank Condition

- Key for consistent estimation is the rank condition.
- Rank condition implies that loosely speaking(!!) rank of average factor loadings has to be larger or equal than rank of factors.
- Karabiyik et al. (2017, 2021) show that if rank condition fails, CCE is inconsistent!
- Implies that adding CSAs with zero loadings, might lead to problems!
- In empirical practice: more CSA required than factors.

- Reminder: Rank of unobserved factors (f), m, is not larger than the rank of unobserved average factor loadings (γ), g.
- Problem: both are unobserved! DeVos et al. (2024) propose a indicator if the rank conditions holds:

$$\widehat{RC} = 1 - I(\hat{g} < \hat{m}) \tag{3}$$

Rank Condition

where \hat{m} is the rank of the cross/product of the observed data estimated by ER or GR from Ahn and Horenstein (2013) and \hat{g} is rank of the unobserved factor loadings estimated from cross-section averages.

- If $\dot{RC} = 1$, rank condition holds.
- Requires bootstrap to estimate variance of rank estimator of factor loadings.
- Consistency depends on fixed T. Trick: bound dimension with shrinkage.
- Indicator only valid for static panels.

Rank Condition Classifier

xtdcce2, ... cr(rccl)

xtdcce2 depvar indepvars [if] , ... cr(varlist , <u>rccl</u>assifier[(options)])

- options are:
 - er|gr specifies criterion to estimate number of common factors using the ER or GR criterion from Ahn and Horenstein (2013)
 - standardize(integer) standardize data prior to estimation of number of common factors.
 - replications(integer) sets number of replication for bootstrapping variance of the rank estimator of the unobserved matrix of average factor loadings.
 - randomshrinkage Instead of fold-over matrix, use matrix with entries drawn from random normal distribution.
 - noshrinkage No shrinkage.
- Number of factors estimated based on xtnumfac (Ditzen and Reese, 2023).

Rank Condition Classifier

Example²

. xtdcce2 g wten (Dynamic) Common				Mean Group			
Panel Variable				Number of		=	3738
Time Variable (1	:): year			Number of	groups	=	89
Degrees of freed without cross-s with cross-sect	•	Obs per g	roup (T)	-	42		
Number of	-			F(534, 32	04)	=	0.40
cross-sectional	lags	0 to	0	Prob > F		=	1.00
variables in me	an group regre	ssion = 17	8	R-squared		=	0.94
variables parti	alled out	= 35	6	R-squared	(MG)	=	0.10
				Root MSE		=	5.04
				CD Statis	tic	=	0.79
				p-valu	e	=	0.4322
g	Coef. S	td. Err.	z	P> z	[95% Co	nf.	Interval]
Mean Group:							
wtem	492719 .	3991216	-1.23	0.217	-1.2749	83	.289545
wpre	.0794217 .	0863426	0.92	0.358	08980	66	.2486501

Mean Group Variables: wtem wpre Cross Sectional Averaged Variables: g wtem wpre Heterogenous constant partialled out.

Test for Rank Condition (De Vos, Everaert and Sarafidis, 2024)

RC (1-I(p <m))*< th=""><th></th><th>imated # Factors</th><th></th></m))*<>		imated # Factors	
1	2	1	

* RC=1 indicates rank condition holds.

²Unpublished beta version of xtdcce2 version 4.7. Results may change.

- cr(..., rccl) requests calculation or rank condition classifier.
- More common factors in CSA than in unobserved factors.

New Tools for CCE

Information Criteria and CCE

- Long time no theory for use of information criteria and CCE
- Information criteria can be used for 2 purposes:
 - Selection of cross-section averages
 - Lag selection in dynamic models
- 1) received recently attention:
 - DeVos et al. (2024) propose a sequential method to identify the set of relevant cross-section averages.
 - Margaritella and Westerlund (2023) propose a similar criteria as in Bai and Ng (2002); Bai (2009).

• <u>No</u> guidance on lag selection in dynamic models - left for research!

Information Criteria and CCE

• Margaritella and Westerlund (2023) propose 4 criteria to identify the optimal set of cross-section averages:

$$\begin{split} &IC_{1}(M) = ln\hat{\sigma}^{2}\left(\hat{F}_{M}\right) + m\frac{N+T}{NT}ln\left(\frac{NT}{N+T}\right), \qquad IC_{2}(M) = ln\hat{\sigma}^{2}\left(\hat{F}_{M}\right) + m\frac{N+T}{NT}ln\left(C_{NT}^{2}\right) \\ &PC_{1}(M) = \hat{\sigma}^{2}\left(\hat{F}_{M}\right) + m\hat{\sigma}^{2}\left(\hat{F}_{\tilde{M}}\right)\frac{N+T}{NT}ln\left(\frac{NT}{N+T}\right), \quad PC_{2}(M) = \hat{\sigma}^{2}\left(\hat{F}_{M}\right) + m\hat{\sigma}^{2}\left(\hat{F}_{\tilde{M}}\right)\frac{N+T}{NT}ln\left(C_{NT}^{2}\right) \end{split}$$

with $\hat{\sigma}^2(\hat{F}_M)$ the error variance from a CCE estimation with *m* CSA and $(\hat{F}_{\bar{M}})$ is the error variance with the full set of CSA.

- Optimal number of CSA is then $\hat{M} = argminIC(M)$.
- Integrated in xtdcce2 as estat ic.
- Caveat: can only be applied to static models.

Information Criteria and CCE Example³

. estat ic

IC from Margaritella & Westerlund (2023)

Model	IC1	IC2	PC1	PC2	
1	6.79*	6.59*		•	

- ICs alone are not informative.
- Option sequential compares all permutations of CSA.

³Unpublished beta version of xtdcce2 version 4.7. Results may change.

Information Criteria and CCE Example⁴

. estat ic, seq

Running 7 combinations of cross-section averages:

.

IC from Margaritella & Westerlund (2023)

Model	IC1	IC2	PC1	PC2	
1	6.95	6.88	1040	1040	
2	6.95	6.88	1043	1043	
3	6.86	6.79	948	948	
4	6.91	6.77	1001	1001	
5	6.82	6.68	909	909	
6	6.82	6.69	918	918	
7	6.79*	6.59*	884*	884*	

* indicates minimum.

Cross Section Averages:

Model 1: upre Model 2: wtem Model 3: g Model 4: wtem upre Model 5: g wpre Model 6: g wtem Model 7: g wtem upre (Main Model) Click on Model to run in xtdccse2.

- Model with 3 CSA has lowest IC.
- Possible to run models directly in Stata.
- Many combinations possible which can take time.

⁴Unpublished beta version of xtdcce2 version 4.7. Results may change.

Summary

- New developments in the CCE literature on static models:
 - Regularized CCE (rCCE)
 - Rank condition classifier
 - Information criteria to select CSA
- rCCE available with xtdcce2 version 4.0.
- Rank condition classifier and IC will be available with version 4.7.
- How to install?

net install xtdcce2 , from("https://janditzen.github.io/xtdcce2/")

• More info:

jan.ditzen.net

<u>GitHub</u>

References I

- Ahn, S. C., and A. R. Horenstein. 2013. Eigenvalue Ratio Test for the Number of Factors. Econometrica 81(3): 1203–1227.
- Bai, J. 2009. Panel Data Models With Interactive Fixed Effects. Econometrica 77(4): 1229–1279.
- Bai, J., and S. Ng. 2002. Determining the number of factors in approximate factor models. Econometrica 70(1): 191–221.
- Chudik, A., K. Mohaddes, M. H. Pesaran, and M. Raissi. 2016. Long-Run Effects in Large Heterogeneous Panel Data Models with Cross-Sectionally Correlated Errors. In Essays in Honor of Aman Ullah (Advances in Econometrics, Volumn 36), ed. R. C. Hill, G. GonzÁlez-Rivera, and T.-H. Lee, 85–135. Emerald Group Publishing Limited.

References II

- Chudik, A., and M. H. Pesaran. 2015. Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors. Journal of Econometrics 188(2): 393–420.
 - ------. 2019. Mean group estimation in presence of weakly cross-correlated estimators. Economics Letters 175: 101–105.
- Chudik, A., M. H. Pesaran, and E. Tosetti. 2011. Weak and strong cross-section dependence and estimation of large panels. <u>The</u> <u>Econometrics Journal</u> 14(1): C45–C90.
- Dell, B. M., B. F. Jones, and B. A. Olken. 2012. Temperature Shocks and Economic Growth: Evidence from the Last Half Century. <u>American</u> Economic Journal: Macroeconomics 4(3): 66–95.

References III

- DeVos, I., G. Everaert, and V. Sarafidis. 2024. A method to evaluate the rank condition for CCE estimators A method to evaluate the rank condition for CCE estimators. <u>Econometric Reviews</u> 0(0): 1–34. URL https://doi.org/10.1080/07474938.2023.2292383.
- Ditzen, J. 2018. Estimating Dynamic Common-Correlated Effects in Stata. The Stata Journal 18(3): 585–617.
 - . 2021. Estimating long run effects and the exponent of cross-sectional dependence: an update to xtdcce2. The Stata Journal 21(3): 687–707. URL

https://ideas.repec.org/p/bzn/wpaper/bemps81.html.

Ditzen, J., and S. Reese. 2023. A battery of estimators for the number of common factors in time series and panel data models. <u>The Stata</u> <u>Journal</u> 23(2): 438–454. URL https:

//journals.sagepub.com/doi/abs/10.1177/1536867X231175305.

References IV

- Eberhardt, M. 2012. Estimating panel time series models with heterogeneous slopes. The Stata Journal 12(1): 61–71.
- Juodis, A. 2022. A regularization approach to common correlated effects estimation. Journal of Applied Econometrics (October 2021): 788–810.
- Kapetanios, G., M. H. Pesaran, and T. Yamagata. 2011. Panels with non-stationary multifactor error structures. Journal of Econometrics 160(2): 326–348.
- Karabiyik, H., S. Reese, and J. Westerlund. 2017. On the role of the rank condition in CCE estimation of factor-augmented panel regressions. <u>Journal of Econometrics</u> 197(1): 60–64. URL http://dx.doi.org/10.1016/j.jeconom.2016.10.006.
- Karabiyik, H., J. Westerlund, and A. Juodis. 2021. On the Robustness of the Pooled CCE Estimator. Journal of Econometrics 220(2): 325–348.

References V

- Margaritella, L., and J. Westerlund. 2023. Using Information Criteria to Select Averages in CCE. The Econometrics Journal .
- Pesaran, M. H. 2006. Estimation and inference in large heterogeneous panels with a multifactor error structure. Econometrica 74(4): 967–1012.
- Pesaran, M. H., and R. Smith. 1995. Estimating long-run relationships from dynamic heterogeneous panels. Journal of Econometrics 68(1): 79–113.
- Westerlund, J. 2018. CCE in panels with general unknown factors. Econometrics Journal 21(3): 264–276.

MG with no CSA (back)

. xtdcce2 g wtem (Dynamic) Common			Est	imator -	Mean Grou	p		
Panel Variable (i Time Variable (t)	. –				Number o Number o			3738 89
Degrees of freedom per group: without cross-sectional averages with cross-sectional averages				9 9	Obs per	group	(T) =	42
Number of					F(267, 3	471)	=	0.87
cross-sectional	lags		non	none Prob > F		=	0.93	
variables in mea	an group reg	ression	= 1	78	R-square	d	=	0.94
variables partia	alled out		= 8	9	R-square	d (MG)	=	0.01
-					Root MSE		=	5.28
					CD Stati	stic	=	22.42
					p-val	ue	=	0.0000
g	Coef.	Std. E	rr.	z	P> z	[95%	Conf.	Interval]
Mean Group:								
wtem	6109652	.21636	47	-2.82	0.005	-1.03	35032	1868981
wpre	.1805907	.08841	39	2.04	0.041	.007	73027	.3538786

Mean Group Variables: wtem wpre Heterogenous constant partialled out.

rCCE - number of factors estimated **back**

. xtdcce2 g wten (Dynamic) Common				Mean Group)		
Panel Variable (i): cc_num			Number of	obs	=	3738
Time Variable (t	;): year			Number of	group	s =	89
Degrees of freed without cross-sect with cross-sect	Obs per g	roup (r) =	42			
Number of				F(534, 32	204)	=	0.47
cross-sectional	lags	= ()	Prob > F		=	1.00
variables in me	an group reg	ression = 1	78	R-squared :		=	0.93
variables parti	alled out	= 3	856	R-squared	l (MG)	=	0.07
				Root MSE		=	5.11
				CD Statis	stic	=	0.43
				p-valı	ıe	=	0.6704
g	Coef.	Std. Err.	z	P> z	[95% (Conf.	Interval]
Mean Group: wtem wpre	0618736 .1070665	.3554097 .091807	-0.17 1.17	0.862 0.244	758 072		.6347165 .2870048

Mean Group Variables: wtem wpre

2 Regularized Cross-Section Averages from variables:

g wtem wpre

Heterogenous constant partialled out.

Information Criteria and CCE Example

. estat ic, model((g wtem wpre) (g) (g wtem)) Running 3 combinations of cross-section averages:

. . . IC from Margaritella & Westerlund (2023)

Model	IC1	IC2	PC1	PC2	
1	6.79*	6.59*	885*	885*	
2	6.86	6.79	950	950	
3	6.82	6.69	918	918	

* indicates minimum.

Cross Section Averages: Model 1: g wtem wpre (Main Model) Model 2: g Model 3: g wtem Click on Model to run in xtdcce2.

- Compare specific models.
- Syntax: model((model1) (model2) ...).
- (model1) is the reference model.

Static CCE Mean Group Estimator

- Main contributions: Pesaran and Smith (1995); Pesaran (2006); Chudik and Pesaran (2019)
- $\hat{\beta}_{MG} = \frac{1}{N} \sum_{i=1}^{N} \hat{\beta}_i$
- Asymptotic variance estimator $V(\hat{\beta}_{MG}) = \frac{1}{N(N-1)} \sum_{i=1}^{N} \left(\hat{\beta}_{i} \hat{\beta}_{MG}\right)^{2}$
- Individual coefficients asymptotically normal with $(N, T) \xrightarrow{j} \infty$ with no particular order. Rank condition requires $\sqrt{T}/N \rightarrow 0$.
- Mean group asymptotically unbiased if $N \to \infty$ and T fixed and $(N, T) \xrightarrow{j} \infty$. Also needs T > K.

Static CCE Pooled Estimator

- Main contribution: Pesaran (2006)
- Estimate β_p directly with the condition $\beta_i = \beta_p$.
- Various variance estimators, such as $V(\hat{\beta}_p)_{np} = f(\hat{\beta}_i, \hat{\beta}_{MG}, \tilde{X}'\tilde{X})$ or $V(\hat{\beta}_p)_{hac} = f(\hat{\beta}_p, \tilde{X}'\tilde{X}, \hat{\epsilon}_{i,t}).$
- Depending on the estimator, we need to make sure that the residuals are cross-section dependence free!
- Asymptotically normal with $(N, T) \xrightarrow{j} \infty$ with no particular order.