Heterogeneous Difference-in-Differences in Stata

Di Liu

Principal Econometrician

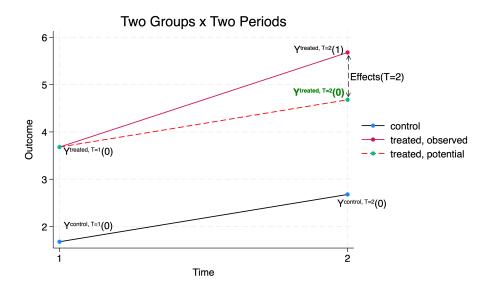
Stata

Table of Contents

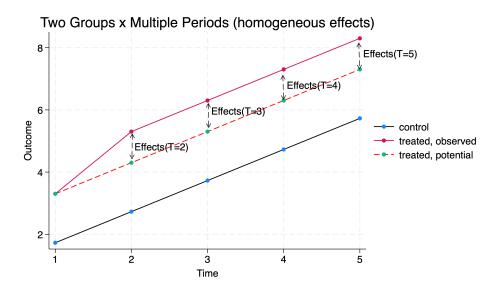
Heterogeneous treatment effects and TWFE

- 2 Example: minimum wage
- 3 Aggregate ATET's
- 4 Four estimators
- 5 Extensions

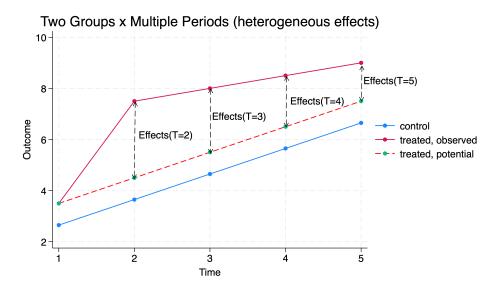
Introduction

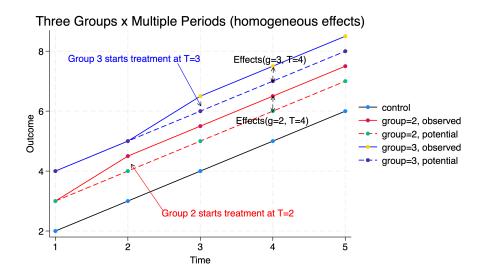

Setup

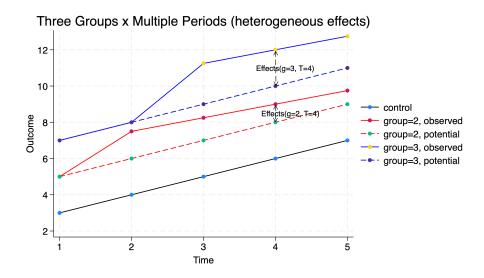
- Estimate treatment effects using panel data or repeated cross-section
- Treatments may start at different times
- Staggered treatment (once treated, always treated)


Group/Cohort: units in the same group start the treatment at the same time, different groups start treatments at different times

Objective: Estimate treatment effects for the treated groups


Canonical DID


Homogeneous effects across time


Heterogeneous effects across time

Homogeneous effects across groups and time

Heterogeneous effects across groups and time

Problematic TWFE

$$\mathbf{y}_{it} = \theta_t + \eta_i + \mathbf{d}_{it} \mathbf{\alpha} + \mathbf{v}_{it}$$

But,

$$\alpha = \sum w_k Good_DID_k + \sum w_j Bad_DID_j$$

- Newly treated relative to the control group (good)
- Newly treated relative to the not-yet treated group (good)
- Newly treated relative to already treated group (bad)

When is TWFE good?

- There are only two periods
- The treatment effects are homogeneouus across both groups and time

Overview of heterogeneous DID in Stata 18

Estimation:

- xthdidregress and hdidregress for panel data and repeated cross-section data
- Four estimators: ra, ipw, aipw in Callaway and Sant'Anna (2021) and twfe in Wooldridge (2021)

Post-estimation:

- estat atetplot: visualize ATETs
- estat aggregation: aggregate ATETs along different
 dimensions
- estat ptrends: pre-treatment parallel trend tests
- estat sci: simultaneous CI for RA, IPW, and AIPW estimators

Table of Contents

Heterogeneous treatment effects and TWFE

3 Aggregate ATET's

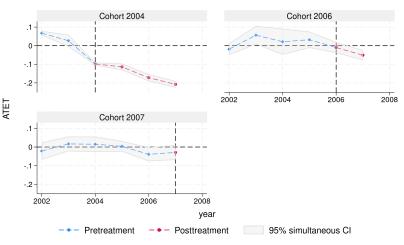
4 Four estimators

Increasing minimum wage and young employment

- Outcome: county-level employment for young workers
- **Treatment**: minimum wage restrictions introduced by State government; see Callaway and Sant'Anna (2021)
- Multiple periods: 2002 2007 (6 years)
- Multiple treatment timings: 2004, 2006, 2007

xthdidregress aipw

Define covariates


global covars i.region pop medinc white hs pov ///
 c.pop#c.pop c.medinc#c.medinc

Use AIPW estimator

xthdidregress aipw (lemp \$covars) (treat \$covars), group(state)

- Adding covariates for conditional parallel trend
- There are 18 ATET(g,t)'s (6 years \times 3 cohorts)
- Standard errors are adjusted by clusters of state

estat atetplot, sci

- Specify option sci for simultaneous confidence intervals
- For cohorts 2004 and 2006, minimum wage restriction decreases the employment rate for young workers

Table of Contents

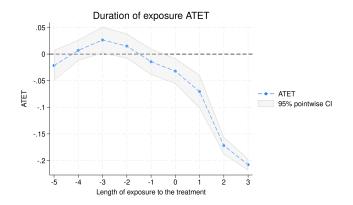
Heterogeneous treatment effects and TWFE

- 2 Example: minimum wage
- 3 Aggregate ATET's
 - 4 Four estimators
- 5 Extensions

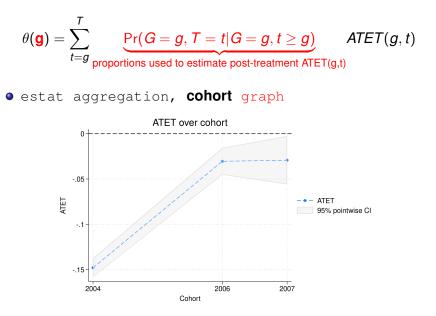
Summarize ATET(g,t)'s

- How do the ATETs vary with the length of exposure to the treatment? (event study)
- How do the ATETs vary with cohorts? (does start treatment earlier matter?)
- How do the ATETs vary with time? (Good year vs. lousy year)
- Overall ATETs across time and cohorts

We can express the aggregations as a weighted mean of all ATETs

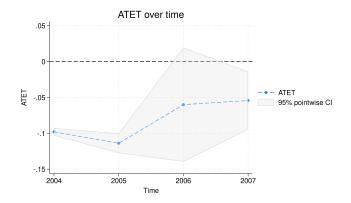

$$\theta = \sum_{g \in \mathbf{G}} \sum_{t=2}^{T} \underbrace{w(g, t)}_{\text{weight}} ATET(g, t)$$

Event study


• Let e = t - g be the length of exposure to the treatment.

$$\theta(\mathbf{e}) = \sum_{g \in \mathbf{G}} \underbrace{\mathbb{1}(g + e \leq T) \Pr(G = g | g + e \leq T)}_{\text{propotions used to estimate ATET(g, g+e)}} ATET(g, g + e)$$

• estat aggregation, **dynamic** graph


ATETs over cohort

ATETs across time

$$\theta(\mathbf{t}) = \sum_{g \in \mathbf{G}} \mathbb{1}(t \ge g) \operatorname{Pr}(\mathbf{G} = g | \mathbf{G} \le t) ATET(g, t)$$

• estat aggregation, **time** graph

Overall aggregations

A single number to summarize ATET's

$$heta = rac{1}{\kappa} \sum_{g \in \mathbf{G}} \sum_{t=2}^{T} \mathbb{1}(t \ge g) \operatorname{Pr}(\mathbf{G} = g | \mathbf{G} \le T) \operatorname{ATET}(g, t)$$

. estat aggreg, overall Overall ATET

Number of obs = 15,988

lemp	ATET	Robust std. err.	Z	P> z	[95% conf.	interval]
treat (1 vs 0)	062811	.0256879	-2.45	0.014	1131582	0124637

Table of Contents

Heterogeneous treatment effects and TWFE

- 2 Example: minimum wage
- 3 Aggregate ATET's
- 4 Four estimators

5 Extensions

Potential outcome framework

Some notations:

- y_{i,t}(g) is unit i's potential outcome at time t if it starts treatment at time g
- $y_{i,t}(\infty)$ is unit *i*'s potential outcome at time *t* if it is never treated
- G_i indicates unit i's cohort (when the treatment starts), and it is one element in G = {2,..., G,∞}
- $y_{i,t}$ is unit *i*'s observed outcome at time t

$$y_{i,t} = \underbrace{\mathbb{1}(t < G_i)y_{i,t}(\infty)}_{\text{before treatment}} + \underbrace{\mathbb{1}(t \ge G_i)y_{i,t}(G_i)}_{\text{after treatment}}$$

Heterogeneous ATETs

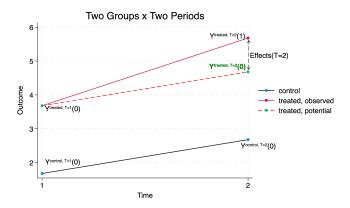
$$ATET(g,t) = \mathbf{E}[y_{i,t}(g) - y_{i,t}(\infty)|G_i = g]$$

Remarks

- *ATET*(*g*, *t*) is a function of two arguments: cohort *g* and time *t*
- *ATETs* can be heterogeneous over cohorts, across time, across both time and cohorts
- Objective: consistently estimate ATETs and summarize them

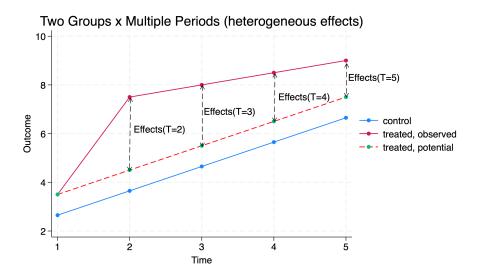
Key assumptions

- Observe I.I.D samples of {y_{i,t}, x_{i,t}, z_{i,t}, d_{i,t}}^{i=N,t=T}, where x_{i,t} and z_{i,t} are covariates, and d_{i,t} is observational level treatment indicator
- No one is treated in the first period
- No anticipation in pre-treatment periods t < g

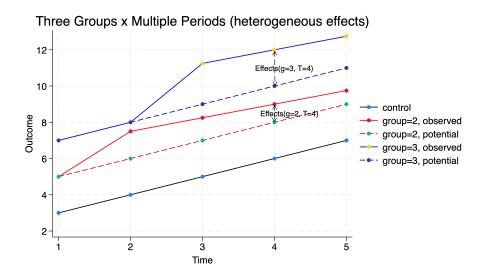

$$\mathsf{E}[y_{i,t}(g)|\mathbf{x},G_i=g]=\mathsf{E}[y_{i,t}(\infty)|\mathbf{x},G_i=g]$$

• Conditional parallel trend

 $\mathsf{E}[y_{i,t}(\infty) - y_{i,t-1}(\infty) | \mathbf{x}, G_i = g] = \mathsf{E}[y_{i,t}(\infty) - y_{i,t-1}(\infty) | \mathbf{x}, G_i = \infty]$


Overlap assumption for propensity scores

Canonical DID



$$Effects = \begin{bmatrix} Y^{treated, T=2}(1) - Y^{treated, T=1}(0) \end{bmatrix} - \begin{bmatrix} Y^{control, T=2}(0) - Y^{control, T=1}(0) \end{bmatrix}$$
$$= \underbrace{\begin{bmatrix} Y^{treated, T=2} - Y^{treated, T=1} \end{bmatrix}}_{treated differences} - \underbrace{\begin{bmatrix} Y^{control, T=2} - Y^{control, T=1} \end{bmatrix}}_{untreated differences}$$

Heterogenous DID: benchmark time g - 1

ATET(g, t) is reduced to 2 × 2 DID

Regression adjustment (RA)

$$ATET(g, t) = \mathbf{E} \left[\frac{K_g}{\mathbf{E}(K_g)} \left(y_t - y_{g-1} - m_{g,t} \right) \right]$$
$$= \underbrace{\mathbf{E} \left[y_t - y_{g-1} | K_g = 1 \right]}_{\text{treated differences}} - \underbrace{\mathbf{E} \left[m_{g,t}(\mathbf{x}) | K_g = 1 \right]}_{\text{untreated differences}}$$

where

•
$$K_g = \mathbb{1}(G_i = g)$$
 and $m_{g,t}(\mathbf{x}) = \mathbf{E}(y_t - y_{g-1} | \mathbf{x}, G_i = \infty)$

- It is 2 × 2 difference-in-differences (two groups × two periods)
- Benchmark time: one period before treatment (g 1)
- Benchmark group: never-treated group ($G_i = \infty$)

In Stata, we type

• xthdidregress ra
$$(y \times m_{g,t}(\mathbf{x}))$$
 (d), group(id)

Inverse probability weighting (IPW)

$$ATET(g,t) = \mathbf{E}\left[\left(\frac{K_g}{\mathbf{E}(K_g)} - \frac{\frac{p_g(\mathbf{z})K_\infty}{1-p_g(\mathbf{z})}}{\mathbf{E}\left[\frac{p_g(\mathbf{z})K_\infty}{1-p_g(\mathbf{z})}\right]}\right)(Y_t - Y_{g-1})\right]$$

where

•
$$p_g(\mathbf{z}) = \Pr(K_g = 1 | \mathbf{z}, K_g + K_\infty = 1) = \frac{\Pr(K_g = 1 | \mathbf{z})}{\Pr(K_g + K_\infty = 1 | \mathbf{z})}$$

- $\frac{p_g(\mathbf{z})}{1-p_g(\mathbf{z})} = \frac{\Pr(K_g=1|\mathbf{z})}{\Pr(K_{\infty}=1|\mathbf{z})}$. Thus, in the benchmark group (never treated), attach more weights to observations that are more probably observed in the cohort g
- We estimate $p_g(\mathbf{z})$ by a logit regression

In Stata, we type

• xthdidregress ipw (y)
$$(d \ \mathbf{Z}), group(id)$$

Augmented inverse probability weighting (AIPW)

$$ATET(g,t) = \mathbf{E}\left[\underbrace{\begin{pmatrix} K_g \\ \mathbf{E}(K_g) \end{pmatrix} - \frac{\frac{p_g(\mathbf{z})K_{\infty}}{1-p_g(\mathbf{z})}}{\mathbf{E}\left[\frac{p_g(\mathbf{z})K_{\infty}}{1-p_g(\mathbf{z})}\right]} (Y_t - Y_{g-1} - \underbrace{m_{g,t}(\mathbf{x})}_{\text{IPW}})\right]$$

 AIPW is doubly robust: only one of the outcome model or the treatment model needs to be correctly specified

In Stata, we type

• xthdidregress aipw
$$(y \times m_{g,t}(x), (d \times z), group(id))$$

TWFE

Traditional TWFE:

$$\mathbf{y}_{it} = \theta_t + \eta_i + \mathbf{d}_{it} \alpha + \mathbf{v}_{it}$$

TWFE in Wooldridge (2021):

$$\mathbf{y}_{it} = \theta_t + \eta_i + \sum_{g \in \mathbf{G}} \sum_{s=g}^T \alpha_{g,t} \mathbb{1}(\mathbf{G}_i = g, t = s) + \mathbf{v}_{it}$$

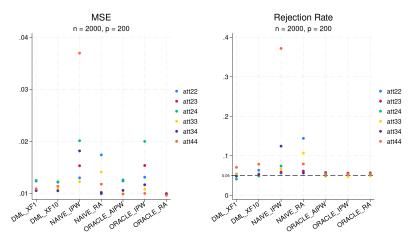
With covariates **x**, add full interactions with θ_t , η_i , and $\mathbb{1}(G_i = g, t = s)$.

• xthdidregress twfe (y x) TWFE outcome (d), group(id)

Table of Contents

Heterogeneous treatment effects and TWFE

- 2 Example: minimum wage
- 3 Aggregate ATET's
- Four estimators


Double machine learning AIPW estimator

• Recall the AIPW estimator

$$ATET(g,t) = \mathbf{E}\left[\left(\frac{K_g}{\mathbf{E}(K_g)} - \frac{\frac{p_g(\mathbf{z})K_\infty}{1-p_g(\mathbf{z})}}{\mathbf{E}\left[\frac{p_g(\mathbf{z})K_\infty}{1-p_g(\mathbf{z})}\right]}\right)(Y_t - Y_{g-1} - m_{g,t}(\mathbf{x}))\right]$$

- AIPW is not only doubly robust but also Neyman orthognal
- Allowing high-dimensional covariates in $p_g(\mathbf{z})$ and $m_{g,t}(\mathbf{x})$
- Combining the cross-fitting with the AIPW scores
- For details, see the working paper Callaway, Drukker, Liu, and Sant'Anna (2023)

Simulations with high-dimensional covariates

- Double machine learning AIPW (DML_XF1, DML_XF10)
- Naive estimators for IPW and RA
- Oracle estimators for RA, IPW, and AIPW

Summary

- We illustrate the heterogeneous treatment effects across time and groups
- Traditional TWFE is inconsistent
- xthdidregress and hdidregress implements four estimators to remedy the heterogeneity issues
- estat atetplot visualize the heterogeneity at the group-time level (zoom in)
- estat aggregation estimate and visualize the heterogeneity at a higher level (zoom out)

References

Callaway, B., D. Drukker, D. Liu, and P. Sant'Anna. 2023. Double/Debiased Machine-learning estimator for Difference-in-Difference with Multiple Periods. URL https://www.doi.org/10.13140/RG.2.2.33815.65447.

Callaway, B., and P. H. Sant'Anna. 2021. Difference-in-Differences with multiple time periods. *Journal of Econometrics* 225: 200–230.

Wooldridge, J. M. 2021. Two-Way Fixed Effects, the Two-Way Mundlak Regression, and Difference-in-Differences Estimators. URL https://ssrn.com/abstract=3931952.

Appendix

Contents

1	xthdidregress	2
2	estat aggregation, dynamic	3
3	estat aggregation, cohort	3
4	estat aggregation, time	4

1 xthdidregress

. global covars i.region pop medinc white hs pov c.pop#c.pop c.medinc#c.medinc

. xthdidregress aipw (lemp \$covars) (treat \$covars), group(state)

note: variable _did_cohort, containing cohort indicators formed by treatment variable treat and group variable state, was added to the dataset.

Computing ATET for each cohort and time:

Cohort	2004	(6):	 done
${\tt Cohort}$	2006	(6):	 done
${\tt Cohort}$	2007	(6):	 done

Treatment and time information

Time variable: year Time interval: 2001 to 2007 Control: _______ did_cohort = 0 Treatment: _______ did_cohort > 0

	_did_cohort
Number of cohorts	4
Number of obs	
Never treated	9639
2004	700
2006	1561
2007	4088

Heterogeneous-treatment-effects regression

Number of obs = 15,988 Number of panels = 29

Estimator: Augmented IPW Panel variable: countyreal Treatment level: state Control group: Never treated

Cohort	;	ATET	Robust std. err.	z	P> z	[95% conf.	interval]
2004							
	year						
	2002	.0672458	.0061125	11.00	0.000	.0552655	.079226
	2003	.0266718	.0122508	2.18	0.029	.0026608	.0506829
	2004	0979371	.002649	-36.97	0.000	103129	0927451
	2005	1139248	.0070092	-16.25	0.000	1276627	1001869
	2006	1719979	.0082852	-20.76	0.000	1882366	1557592
	2007	2078132	.0056814	-36.58	0.000	2189485	196678
2006							
	year						
	2002	0186685	.0105915	-1.76	0.078	0394274	.0020904
	2003	.056737	.0181748	3.12	0.002	.0211151	.0923589
	2004	.0212315	.0363779	0.58	0.559	0500679	.092531
	2005	.0319911	.0158191	2.02	0.043	.0009863	.0629959
	2006	009851	.0117487	-0.84	0.402	0328781	.013176
	2007	0510452	.0092241	-5.53	0.000	069124	0329664

2007							
	year						
	2002	0215125	.014779	-1.46	0.145	0504788	.0074538
	2003	.0167167	.0132905	1.26	0.208	0093322	.0427655
	2004	.0149363	.0133763	1.12	0.264	0112809	.0411534
	2005	.0038453	.0092391	0.42	0.677	014263	.0219537
	2006	0390546	.0114977	-3.40	0.001	0615896	0165196
	2007	0292338	.0136042	-2.15	0.032	0558976	00257

Note: ATET computed using covariates.

2 estat aggregation, dynamic

. estat aggreg, dynamic graph(name(d1))

Duration of exposure ATET

Number of obs = 15,988

(Std. err. adjusted for 29 clusters in state)

Exposure	ATET	Robust std. err.	z	P> z	[95% conf	. interval]
-5	0215125	.014779	-1.46	0.145	0504788	.0074538
-4	.0069386	.0100519	0.69	0.490	0127627	.0266399
-3	.0264872	.0126915	2.09	0.037	.0016122	.0513621
-2	.0151101	.0118987	1.27	0.204	0082109	.0384311
-1	0143403	.0124878	-1.15	0.251	0388159	.0101353
0	032043	.0122219	-2.62	0.009	0559975	0080885
1	0705126	.0161956	-4.35	0.000	1022553	0387699
2	1719979	.0082852	-20.76	0.000	1882366	1557592
3	2078132	.0056814	-36.58	0.000	2189485	196678

Note: Exposure is the number of periods since the first treatment time.

${f 3}$ estat aggregation, cohort

. estat aggreg, cohort graph(name(c1))

ATET over cohort

Number of obs = 15,988

Cohort	ATET	Robust std. err.	z	P> z	[95% conf	. interval]
2004	1479183	.0053113	-27.85	0.000	1583283	1375082
2006	0304481	.0075561	-4.03	0.000	0452578	0156384
2007	0292338	.0136042	-2.15	0.032	0558976	00257

4 estat aggregation, time

. estat aggreg, time graph(name(t1))

ATET over time

Number of obs = 15,988

Time	ATET	Robust std. err.	z	P> z	[95% conf.	interval]
2004	0979371	.002649	-36.97	0.000	103129	0927451
2005	1139248	.0070092	-16.25	0.000	1276627	1001869
2006	0600513	.0406199	-1.48	0.139	1396648	.0195622
2007	0542855	.0206191	-2.63	0.008	0946981	0138728