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Outline

This will be a broad talk across a range of areas. I will cover

What are flexible paramatric survival models?

Extended functions (non-linearity)

Predictions and Contrasts

Standardization

Assessing the fit of models

Competing risks

Log hazard models
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Censored survival data
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Figure 1: Calendar time (left) and time from entry in years (right)
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What is a parametric survival model

In a parametric survival model the survival function is expressed
as a mathematical function of follow-up time and a set of
parameters.

There is a mathematical relationship between the hazard,
survival and density functions, so there are also mathematical
function for all these entities.

There are also parameters for the effects of covariates.

All these parameters are estimated when you fit a model.

Note that a Cox model is a semi-parametric model as a parametric
function is not estimated for the hazard/survival/density functions. It
only directly estimates the (relative) effect of covariates.
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Flexible parametric models: basic idea

Consider a Weibull survival curve.

S(t) = exp (−λtγ)

If we transform to the log cumulative hazard scale.

ln [H(t)] = ln[− ln(S(t))]

ln [H(t)] = ln(λ) + γ ln(t)

This is a linear function of ln(t)

Rather than assuming linearity with ln(t) flexible parametric
models use natural splines for ln(t).
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Flexible parametric models: incorporating splines

We thus model on the log cumulative hazard scale.

ln[H(t|xi)] = ln [H0(t)] + xiβ

This is a proportional hazards model.

Natural cubic splines, s (ln(t)|γ, k0), with knots, k0, are used to
model the log baseline cumulative hazard.

ln[H(t|xi)] = ηi(t) = s (ln(t)|γ, k0) + xiβ

For example, with 4 knots we can write

ln [H(t|xi)] = ηi(t) = γ0 + γ1z1i + γ2z2i + γ3z3i︸ ︷︷ ︸
log baseline

cumulative hazard

+ xiβ︸︷︷︸
log hazard
ratios
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A history of software

Patrick Royston wrote the initial stpm command around 2000 [1]
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A history of software

I developed stpm2 with lots of input from Patrick Royston around
2008. stpm2 allowed more flexibility for modelling time-dependent
effects, relative survival models and more prediction options [2, 3]
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A history of software

I (with lots and lots of suggestions from Mark Rutherford) wrote
stpm3 in 2022. It incorporated

Factor variables (properly)

Extended functions (non-linearity)

Improved predict command

Prediction to frames

Better synergy with the standsurv postestimation command for
obtaining marginal survival curves

More in Mata (sometimes Python) for speed improvements
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Breast Cancer: Fitting a simple model

// Cox Model (deprivation group - 5 levels)
. stcox i.dep

// Flexible parametric survival model
. stpm3 i.dep, scale(lncumhazard) df(5)

. stpm3 i.dep, scale(lncumhazard) df(5) eform nolog
(output omitted )

exp(b) Std. err. z P>|z| [95% conf. interval]

xb
dep
2 1.048989 .0354091 1.42 0.157 .9818344 1.120737
3 1.105245 .0383089 2.89 0.004 1.032655 1.182939
4 1.213022 .0437548 5.35 0.000 1.130226 1.301884

mostdep 1.309804 .0513441 6.88 0.000 1.21294 1.414403

time
_ns1 -20.5192 .7302075 -28.10 0.000 -21.95038 -19.08802
_ns2 3.829793 .3917803 9.78 0.000 3.061918 4.597668
_ns3 -1.074997 .0182917 -58.77 0.000 -1.110849 -1.039146
_ns4 -.601024 .0128829 -46.65 0.000 -.6262739 -.575774
_ns5 -.3340791 .0109536 -30.50 0.000 -.3555478 -.3126103

_cons -1.14467 .023338 -49.05 0.000 -1.190412 -1.098928

Note: Estimates are transformed only in the first equation.
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Comparison of log hazard ratios

. estimates table stcox stpm3, eq(1:1) b(%7.4f)

Variable stcox stpm3

#1
dep
2 0.0478 0.0478
3 0.1001 0.1001
4 0.1931 0.1931

mostdep 0.2699 0.2699

time
_ns1 -20.5192
_ns2 3.8298
_ns3 -1.0750
_ns4 -0.6010
_ns5 -0.3341

_cons -1.1447

Estimation of the baseline (using splines) make postestimation
predictions (and uncertainty) much, much easier.
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Hazard and Survival functions
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Extended functions

If we want to include a spline function for a covariate we usually
do something like

. gensplines agediag, type(ns) df(3) gen(agens)

. stpm3 i.dep agens1 agens2 agens3, scale(lncumhazard) df(4) nolog

Number of obs = 6,242
Wald chi2(4) = 919.44

Log likelihood = -8008.3369 Prob > chi2 = 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

xb
dep

mostdep .2530977 .038471 6.58 0.000 .177696 .3284994
agens1 -6.731391 .7054777 -9.54 0.000 -8.114101 -5.34868
agens2 -.6183224 .3543468 -1.74 0.081 -1.312829 .0761844
agens3 -2.902752 .2202527 -13.18 0.000 -3.33444 -2.471065

time
_ns1 -15.49693 .4692123 -33.03 0.000 -16.41657 -14.57729
_ns2 3.966272 .2513638 15.78 0.000 3.473608 4.458936
_ns3 -1.092355 .0299249 -36.50 0.000 -1.151006 -1.033703
_ns4 -.5337899 .0237586 -22.47 0.000 -.580356 -.4872238

_cons 1.439092 .1061348 13.56 0.000 1.231072 1.647112
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Extended functions

Extended functions are included in the model command.

. stpm3 i.dep @ns(agediag, df(3)), scale(lncumhazard) df(4) nolog

Number of obs = 6,242
Wald chi2(4) = 919.44

Log likelihood = -8008.3369 Prob > chi2 = 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

xb
dep

mostdep .2530977 .038471 6.58 0.000 .177696 .3284994
_ns_f1_agediag1 -6.731391 .7054777 -9.54 0.000 -8.114101 -5.34868
_ns_f1_agediag2 -.6183224 .3543468 -1.74 0.081 -1.312829 .0761844
_ns_f1_agediag3 -2.902752 .2202527 -13.18 0.000 -3.33444 -2.471065

time
_ns1 -15.49693 .4692123 -33.03 0.000 -16.41657 -14.57729
_ns2 3.966272 .2513638 15.78 0.000 3.473608 4.458936
_ns3 -1.092355 .0299249 -36.50 0.000 -1.151006 -1.033703
_ns4 -.5337899 .0237586 -22.47 0.000 -.580356 -.4872238

_cons 1.439092 .1061348 13.56 0.000 1.231072 1.647112

Extended functions
(1) @ns(agediag, df(3))
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Types of extended functions

@bs() B-splines

@fp() fractional polynomials

@ns() natural cubic splines

@poly() polynomials

@rcs() restricted cubic splines

@fn() general function
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Extended functions

Multiple extended functions.

. stpm3 i.dep @ns(agediag, df(3)) @poly(yeardiag, degree(2)), ///
scale(lncumhazard) df(4)

Interactions with extended functions

. stpm3 i.dep##@ns(agediag, df(3)), ///
scale(lncumhazard) df(4)

Interactions between extended functions

. stpm3 i.dep @ns(agediag, df(3))##@ns(yeardiag, degree(2)), ///
scale(lncumhazard) df(4)

Using extended functions makes many predictions much simpler.
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Relaxing the proportional hazards assumption

We often make the proportional hazards assumption in survival
models.

Sometimes reasonable, but needs to be assessed.

Under proportional hazards the effect of a covariate is assumed
the same at all time points.

Non-proportional hazards means there is an interaction between
a covariate and follow-up time.

stpm3 forms these interactions for you using the tvc() and
dftvc() options.

. stpm3 i.dep @ns(agediag, df(3)), scale(lncumhazard) df(5) ///
tvc(i.dep) dftvc(3)
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Model output

. stpm3 i.dep @ns(agediag, df(3)), scale(lncumhazard) df(5) ///
> tvc(i.dep) dftvc(3) vsquish nolog

(output omitted )

Coefficient Std. err. z P>|z| [95% conf. interval]

xb
dep

mostdep .2326102 .0396115 5.87 0.000 .1549731 .3102473
_ns_f1_agediag1 1.59671 .6642716 2.40 0.016 .2947616 2.898659
_ns_f1_agediag2 -.4834445 .4039909 -1.20 0.231 -1.275252 .3083631
_ns_f1_agediag3 -.1530129 .1288731 -1.19 0.235 -.4055995 .0995737

time
_ns1 -20.8306 1.51351 -13.76 0.000 -23.79702 -17.86417
_ns2 3.82159 .7859048 4.86 0.000 2.281245 5.361935
_ns3 -1.159027 .0349635 -33.15 0.000 -1.227555 -1.0905
_ns4 -.6253963 .0245694 -25.45 0.000 -.6735514 -.5772411
_ns5 -.3741499 .020979 -17.83 0.000 -.415268 -.3330317

dep#c._ns_tvc1
mostdep 1.900655 2.089832 0.91 0.363 -2.195339 5.99665

dep#c._ns_tvc2
mostdep -.1922529 1.108999 -0.17 0.862 -2.365851 1.981346

dep#c._ns_tvc3
mostdep .1395927 .0482234 2.89 0.004 .0450767 .2341087

_cons -1.155454 .0628256 -18.39 0.000 -1.27859 -1.032318

Extended functions
(1) @ns(agediag, df(3))
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Hazard Ratio: Most vs Least Deprived
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Different types of predictions

We want to predict different types of functions.

hazard functions, survival functions etc.

There are 3 main types of predictions we may be interested in.

Predict at observed values of covariates.
Predict at user-specified values of covariates.
Take average of predictions (marginal estimates).

We may also be interested in contrasts in the above, e.g. when
comparing unexposed vs exposed.

Different choices for time.

Predict at observed event/censoring times ( t).
Predict at single time point for all subjects (e.g. 5 years).
Predict at user-specified time values (e.g. 100 values between 0
and 10).

Paul C Lambert Flexible parametric survival models 7th June 2024 18



Different types of predictions

We want to predict different types of functions.

hazard functions, survival functions etc.

There are 3 main types of predictions we may be interested in.

Predict at observed values of covariates.
Predict at user-specified values of covariates.
Take average of predictions (marginal estimates).

We may also be interested in contrasts in the above, e.g. when
comparing unexposed vs exposed.

Different choices for time.

Predict at observed event/censoring times ( t).
Predict at single time point for all subjects (e.g. 5 years).
Predict at user-specified time values (e.g. 100 values between 0
and 10).

Paul C Lambert Flexible parametric survival models 7th June 2024 18



Different types of predictions

We want to predict different types of functions.

hazard functions, survival functions etc.

There are 3 main types of predictions we may be interested in.

Predict at observed values of covariates.
Predict at user-specified values of covariates.
Take average of predictions (marginal estimates).

We may also be interested in contrasts in the above, e.g. when
comparing unexposed vs exposed.

Different choices for time.

Predict at observed event/censoring times ( t).
Predict at single time point for all subjects (e.g. 5 years).
Predict at user-specified time values (e.g. 100 values between 0
and 10).

Paul C Lambert Flexible parametric survival models 7th June 2024 18



Commands for conditional and marginal predictions

After fitting an stpm3 model

For conditional predictions, use predict
For marginal predictions, use standsurv

By conditional I mean given values of all covariates specified in
the model.
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Standard predictions

Similar to what would be expected in streg

Predicts at observed covariate values and at t

Model
. stset survtime, failure(dead=1) exit(time 5)
. stpm3 i.dep @ns(agediag, df(3)), scale(lncumhazard) df(4)

Predictions
. predict xb, xb ci // linear predictor
. predict S, survival ci // survival function
. predict h, hazard ci // hazard function

By default this type of prediction will be saved in the current frame
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predict with multiple at() options

. predict S60_d1 S70_d1 S80_d1, /// new variables
> survival ci /// predict survival and CI
> at1(agediag 60 dep 1) /// 1st prediction
> at2(agediag 70 dep 1) /// 2nd prediction
> at3(agediag 80 dep 1) /// 3rd prediction
> timevar(0 10, step(0.1)) /// times to predict at
> frame(surv, replace) // save in frame
Predictions are stored in frame - surv

. frame surv: format %5.4f S*

. frame surv: list tt S60_d1 S70_d1 S80_d1 if inlist(tt,1,5,10), noobs

tt S60_d1 S70_d1 S80_d1

1 0.8985 0.8623 0.7684
5 0.6785 0.5846 0.3850

10 0.5188 0.4032 0.1989
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predict with multiple at() options
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Merge predictions with existing frame

. predict S60_d5 S70_d5 S80_d5, /// new variables
> survival ci /// predict survival and CI
> at1(agediag 60 dep 5) /// 1st prediction
> at2(agediag 70 dep 5) /// 2nd prediction
> at3(agediag 80 dep 5) /// 3rd prediction
> frame(surv, merge) // merge to frame surv
Predictions are stored in frame - surv

. frame surv: format %5.4f S*

. frame surv: list tt S60_d1 S70_d1 S80_d1 S60_d5 S70_d5 S80_d5 ///
> if inlist(tt,1,5,10), noobs

tt S60_d1 S70_d1 S80_d1 S60_d5 S70_d5 S80_d5

1 0.8985 0.8623 0.7684 0.8712 0.8262 0.7123
5 0.6785 0.5846 0.3850 0.6068 0.5008 0.2925

10 0.5188 0.4032 0.1989 0.4295 0.3104 0.1250
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Plot predictions

. frame surv {

. twoway (line S60_d1 S70_d1 S80_d1 tt) ///
> (line S60_d5 S70_d5 S80_d5 tt, lpattern(dash..) ///
> pstyle(p1line p2line p3line)), ///
> ytitle("Survival function") ///
> xtitle("Years since diagnosis") ///
> ylabel(0(0.2)1, format(%3.1f)) ///
> legend(order(1 "Age 60" 2 "Age 70" 3 "Age 80") ///
> ring(0) pos(1) cols(1)) ///
> note("Sold lines: Least deprived, Dashed lines: Most deprived")
. }
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The predict command with complex models

Consider the following two models

Main effects and proportional hazards
stpm3 i.dep agediag, scale(lncumhazard) df(4)

Non-linearity, interactions and non-proportional hazards
stpm3 i.dep##@ns(agediag, df(3)), scale(lncumhazard) df(4) ///

tvc(i.dep @ns(agediag, df(2))) dftvc(3)

The predict command remains the same

predict S60_d1 S70_d1 S80_d1, /// new variables
survival ci /// predict survival and CI
at1(agediag 60 dep 1) /// 1st prediction
at2(agediag 70 dep 1) /// 2nd prediction
at3(agediag 80 dep 1) /// 3rd prediction
timevar(0 10, step(0.1)) /// times to predict at
frame(surv, replace) // save in frame
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Contrasts

We want to obtain contrasts between different covariate
patterns.

Just add contrast() and contrastvar() options.

. predict S70_d1 S70_d5, /// new variables
> survival ci /// predict survival and CI
> at1(agediag 70 dep 1) /// 1st prediction
> at2(agediag 70 dep 5) /// 2nd prediction
> timevar(0 10, step(0.1)) /// times to predict at
> contrast(difference) /// contrast type
> contrastvar(Sdiff) /// contrast variable name
> frame(survdiff, replace) // save in frame
Predictions are stored in frame - survdiff

Use atreference() to set reference at() option.
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Plot contrasts
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Marginal predictions (standardization).

For marginal predictions we are interested in the average
(survival) in a (study) population.

For example, we could estimate the average (marginal) survival
in our population.

Ŝm(t) =
1

N

N∑
i=1

Ŝ(t|xi, β̂)

This is averaged over all study subjects.

If calculated for all individuals in the study, this should be similar
to the corresponding Kaplan-Meier estimate.

standsurv will take averages of predicted survival curves.

Like margins, but for survival models.
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Counterfactual marginal survival probabilities

Let X = 1 correspond to exposed and X = 0 to unexposed.

Let Sx(t) denote the marginal survival probability had all
individuals in the population, possibly contrary to fact, been
assigned X = x .

We can also form contrasts between different levels of exposure

S1(t)− S0(t)

Difference in survival probabilities “had all patients been
exposed” and “had all patients been unexposed”.

Different to simply comparing the observed probabilities of
exposed and unexposed.
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Assumptions for identifiability

These hypothetical quantities are estimated using observed data
under various assumptions [4].

Assuming that covariates Z are sufficient to control for
confounding control,

Sx(t) = E [S(t|X = x ,Z )]

with the expectation taken over the marginal distribution of Z .

The difference between exposed and unexposed is,

E [S(t|X = 1,Z )]− E [S(t|X = 0,Z )]

Under further assumptions (consistency, positivity, well-defined
interventions) the marginal survival probability under X = x can
be estimated by the standardised survival probability using
regression standardisation (G-formula) [5].
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Standardised survival probabilities

The average (causal) difference in marginal survival probabilities can
be estimated as

1

N

N∑
i=1

Ŝ (t|X = 1,Z = zi)−
1

N

N∑
i=1

Ŝ (t|X = 0,Z = zi)

1 Fit a statistical model that contains exposure, X , and potential
confounders, Z .

2 Predict outcome for all individuals assuming they are all exposed
(X = 1).

3 Take mean to give marginal estimate of outcome under X = 1.

4 Repeat for unexposed (X = 0).

5 Take the difference in means to form contrasts.

Distribution of confounders, Z , is the same for both groups.
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Example: Rotterdam Breast Cancer Data

Exposure is hormonal treatment (hormon)

stpm3 i.hormon##(@fn(exp(-0.12 * nodes),stub(enodes)) ///

@ns(age, df(3)) ///

i.size i.grade c.pr 1), ///

scale(lncumhazard) df(4)

range tt 0 10 101

standsurv S0 S1, surv ci timevar(tt) frame(mar surv) ///

at1(hormon 0) at2(hormon 1) ///

contrast(difference) ///

contrastvar(Sdiff)

Difference between average of

2982 survival curves where everyone treated (hormon=1) and
2982 survival curves where everyone untreated (hormon=0)
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Counterfactual marginal survival probabilities
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Assessing the fit of models

If our model is a good fit to the data then obtaining the average
survival of the model predictions in a subgroup should be similar
to the corresponding non-parametric Kaplan-Meier curve.

Subgroups can be based on a prognostic index or a covariates in,
or not in, the model.

The stpm3km commands makes this easy.

stpm3km calls standsurv with the over option.
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Breast Cancer: Assessing the fit of models

Linear age and proportional hazards
. stpm3 agediag i.dep, scale(lncumhazard) df(4)

. stpm3km i.agegrp, name(linear, replace)
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Breast Cancer: Assessing the fit of models

Natural splines for age and proportional hazards
. stpm3 @ns(agediag,df(3)) i.dep, scale(lncumhazard) df(4)

. stpm3km i.agegrp, name(ns, replace)
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Breast Cancer: Assessing the fit of models

Natural splines for age and non-proportional hazards
. stpm3 @ns(agediag,df(3)) i.dep, scale(lncumhazard) df(4) ///

tvc(@ns(agediag,df(3))) dftvc(3)
. stpm3km i.agegrp, name(ns, replace)
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Calibration

A prognostic model is a regression model intended to enable
prediction of future outcomes given values of several covariates
measures at or before the time origin.

Used to make health care decisions, e.g. treatment, timings of
follow-up etc.

We are interested in both callibration and discrimination of the
model.

A common way to assess calibration is a calibration plot.

Calibration the agreement between observed and predicted
probabilities.

Discrimination the ability of the prognostic model to distinguish
between patients at different levels of risk
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Calibration plots

A visual tool to assess agreement between predicted and
observed probabilities.

With survival data (due to censoring) often define groups based
on predicted probabilities and compare marginal predictions with
non-parametric estimates.

More recently use pseudo observations to enable visualization
over the complete range of predictions[6].

Useful to add other summaries of model performance to plot.

stpm3calplot does some of this work for you.

It will be added in a future release.
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Rotterdam data

. stpm3 age @fn(exp(-0.12 * nodes),stub(enodes)) i.size i.hormon i.grade pr_1, ///
> scale(lnodds) df(4) neq(1) nolog

Number of obs = 2,982
Wald chi2(7) = 604.36

Log likelihood = -2607.772 Prob > chi2 = 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

xb
age .0148001 .0029896 4.95 0.000 .0089405 .0206596

_fn_enodes -2.664496 .1550357 -17.19 0.000 -2.96836 -2.360631

size
>20-50mmm .4698654 .0854911 5.50 0.000 .3023059 .6374249

>50 mm .8191977 .1311011 6.25 0.000 .5622443 1.076151

hormon
yes -.4521206 .1220432 -3.70 0.000 -.6913209 -.2129203

3.grade .3962003 .0933199 4.25 0.000 .2132966 .579104
pr_1 -.138221 .0176075 -7.85 0.000 -.172731 -.103711

(1) @fn(exp(-0.12 * nodes), stub(enodes))
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Calibration

stpm3km with failure option
. stpm3km, failure
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Calibration

stpm3km with lots of groups
. stpm3km, groups(15) legend(off)
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Calibration

stpm3calplot at 5 years
. stpm3calplot, time(5)
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Calibration

stpm3calplot with Observed CIs
. stpm3calplot, time(5) ciobs
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Calibration

stpm3calplot with Expected CIs
. stpm3calplot, time(5) cipred
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Calibration

stpm3calplot with pseudo observations smoother
. stpm3calplot, time(5) ciobs pseudo
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Calibration

stpm3calplot with pseudo observations smoother (splines)
. stpm3calplot, time(5) pseudo smoother(ns) smootherci
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Calibration

stpm3calplot at 5 years with performance statistics
. stpm3calplot, time(5) ciobs pseudo smoother(glm) smootherci ///
stats(brier auc calint calslope)

Brier Score: 0.1591
AUC: 0.7528

Calibration Intercept: -0.0182
Calibration Slope: 0.9467
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Competing risks

We are at risk of more than one event.

For example, people diagnosed with cancer are at risk of dying
from their cancer, but also at risk of dying from other causes.

A competing event is an event that prevent the occurrence of
the event of interest may be present.

Dying from a cardiovascular event means that the (potential)
time-to-death for cancer never observed.

Flexible parametric survival models also useful for competing
risks models (and more general multistate models).

Predictions are based on estimates from > 1 model.
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Competing risks

Alive Deadh(t)(a)

Alive

Cancer

CVD

Other

h1(t)

h2(t)

h3(t)

(b)

Use a separate model for each hazard function, hk(t)
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Cause-specific Cumulative Incidence Function (CIF)

Cause-specific Cumulative Incidence Function (CIF)

Fk(t) =

∫ t

0

S(u)hk(u)du

Probability of dying due to cause k

Partitioning all-cause probability of death

F (t) =
K∑

k=1

Fk(t)

CIFs estimated using numerical integration - using ODEs.
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Different causes

. table cause, statistic(frequency) statistic(percent)

Frequency Percent

cause
Censored 1,710 57.34
Cancer 996 33.40
Other causes 276 9.26
Total 2,982 100.00
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A model for each cause

Death due to breast cancer

. stset os, failure(cause=1) exit(time 120) scale(12)

. stpm3 @ns(age, df(5)) i.size i.grade pr 1, ///
scale(lnodds) df(3)

. estimates store cancer

Death due to other causes

. stset os, failure(cause=2) exit(time 120) scale(12)

. stpm3 @ns(age,df(3)), scale(lncumhazard) df(3)

. estimates store other

Store model estimates so can pass to predict command.
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Predictions

. // Conditional predictions

. predict cif50 cif60 cif70, cif crmodels(cancer other) ci ///
> timevar(0 10, step(0.1)) ///
> at1(age 50 size 1 grade 2 nodes 3 pr_1 0) ///
> at2(age 60 size 1 grade 2 nodes 3 pr_1 0) ///
> at3(age 70 size 1 grade 2 nodes 3 pr_1 0) ///
> frame(cifs, replace)
Predictions are stored in frame - cifs

.

. // Marginal predictions

. standsurv CIF_size1 CIF_size3, cif crmodels(cancer other) ci ///
> timevar(tt) ///
> at1(size 1) ///
> at2(size 3) ///
> contrast(difference) contrastvar(cifdiff) ///
> frame(cifstand, replace)
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Competing Risks: Predictions
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Competing Risks: Predictions
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Competing Risks Extensions

Causal Inference and competing risks using standsurv [7].

Competing risks and prognostic models [8].

Parametric version of Fine and Gray model [9, 10].
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Log hazard models

Most models I have presented on log cumulative hazard scale

ln(H(t)) = s(ln(t)|γ) + xβ

Sometimes useful to change to log hazard scale.

ln(h(t)) = s(ln(t)|γ) + xβ

log hazard models useful for

Multiple time scales.
Multiple time-dependent effects (sometimes).
Standardized incidence/mortality rate ratios.
Extraploation (sometimes).
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Likelihood

Likelihood contribution of i th individual is,

li = di ln(h(ti)) +

∫ ti

t0i

h(u)du

The integral needs to be calculated numerically.

For all individuals and for each call to
likelihood/gradient/Hessian functions.
Computationally intensive in large datasets.
Usually use Gauss-Legendre quadrature, but some precision
issues as can have singularity in hazard function at t = 0.
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Solutions to precision issue

(3-part integration:) Use analytic integral before and after last
knots[11].
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tanh-sinh quadrature when hazard has singularity[12].
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Faster models with large data sets

For large datasets can send heavy computations to Python.

Just add python option.

The mlad program is used to maximize the likelihood.

Calls mlad

Maximum Likelihood using Automatic Differentiation.
Calls Python Jax module.
Scores and Hessian automatically created
Just-In-Time (JIT) compilation
Efficient use of multiple processors.

. stpm3 i.dep, scale(lnhazard) df(5)

. stpm3 i.dep, scale(lnhazard) df(5) python

See mlad talk at Stata Conference
https://www.stata.com/meeting/us21/slides/US21 Lambert.pdf
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Times in seconds

Sample Size
500,000 1,000,000

3 part integration
strcs 2930 4807
stpm3 493 (83.1%) 981 (79.6%)

stpm3 (python option) 46 (98.4%) 83 (98.3%)

All numerical integration
stmerlin 1950 3996

stpm3 464 (76.2%) 917 (77.0%)
stpm3 (python option) 34 (98.3%) 69 (98.3%)
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Discussion

Will get very similar estimates (and standard errors) to a Cox
proportional hazards model.

Including the baseline in the model makes (complex) predictions
much easier.

Many alternative ways to present data than hazard ratios.

Lots of extensions

Relative survival[13, 14]
Extrapolation [15, 16]
Multistate models [17]
Loss in life expectancy [18, 19]
Multiple timescales [20]
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Want to find out more?

2024 Northern European Stata Conference Oslo, Norway,
Tuesday 10 September 2024

Pre-conference course Monday 9 September 2024
Modelling survival data using flexible parametric models
in Stata using stpm3: concepts and modelling choices.
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