Bayesian hierarchical models in Stata

Nikolay Balov

StataCorp LP

2016 Stata Conference

Why hierarchical models?

- Hierarchical models represent complex, multilevel data structures.
- Examples:
 - Predict the risk of death after surgery for a group of hospitals and then rank the hospitals according to their performance
 - Estimate the rate of weight gain in children from a panel data of different age groups
 - ► Estimate student abilities based on their performance on a test panel of different questions
- I will apply a Bayesian approach to answer this kind of questions.

Why Bayesian hierarchical models?

- Bayesian models combine prior knowledge about model parameters with evidence from data.
- They are especially well suited for analysis of multilevel models:
 - ► Flexibility in specifying multilevel structures of parameters using priors
 - Ability to handle small samples and model missspecification (overparametrization of the likelihood can be resolved with well chosen priors).
 - Provide intuitive and easy to interpret answers. (credible interval vs. confidence interval).
- Some challenges of the Bayesian approach:
 - Computational burden of simulating posterior distributions with many parameters
 - Difficulties in specifying prior distributions; potential subjectivity in selecting priors.

Main problem of interest

I will focus on

prior specification and efficient simulation of model parameters associated with grouping variables ("random-effects" parameters).

This methodological problem is at the heart of multilevel (hierarchical) modeling.

Outline

- Motivating example: Hospital ranking
- Overview of Bayesian analysis in Stata
- Bayesian multilevel models
 - Sources of hierarchy in data
 - ▶ Hierarchical prior structures involving random-effects (RE)
 - Efficient MCMC sampling of RE parameters
- Analysis of the hospital ranking problem
 - Completely uninformative prior
 - Weakly informative prior
 - Hierarchical prior
 - Model comparison
- Other hierarchical model examples
 - ► Random-slope with unstructured covariance
 - Weight gain in children: Growth curve model
 - ▶ Federal interest rates: Gaussian 2-mixture model
 - ► Educational research example: 3PL IRT model

Motivating example: Hospital ranking

Mortality rate after cardiac surgery in babies from 12 hospitals (WinBUGS).

${\tt input}$	hospital	n_ops	deaths
	1	47	0
	2	148	18
	3	119	8
	4	810	46
	5	211	8
	6	196	13
	7	148	9
	8	215	31
	9	207	14
	10	97	8
	11	256	29
	12	360	24
end			

- Estimate the risk of death in each hospital
- Rank hospitals according to their risk probabilities

Hospital ranking: Frequentist approach

The likelihood model is

$$deaths_i \sim Binomial(\theta_i, n_ops_i)$$

where, for i = 1, ..., 12, θ_i is probability of death.

- . fvset base none hospital
- . binreg deaths i.hospital, nocons $n(n_{-}ops)$ or

deaths	•				[95% Conf.	Interval]
hospital	•		-0.01		0	
	1 .1384615				.0845784	.2266725
12	 .0714286	.015092	-12.49	0.000	.0472088	.108074

Risk probability for the first hospital is estimated to be zero.

Hospital ranking: Mixed-effects approach

A random-intercept model pools information across hospitals and provides more believable predictions for the risk probabilities.

```
. meglm deaths || hospital:, family(binomial n_ops) link(logit)
. predict theta, xb
. predict re, reffects
. replace theta = invlogit(theta+re)
. list hospital n_ops deaths theta
```

	+			+
	hospital	n_ops	deaths	theta
1.	1	47	0	.0532718
2.	1 2	148	18	.1010213
3.	1 3	119	8	.0691329
4.	1 4	810	46	.0585764
11.	11	256	29	.1011471
12.	12	360	24	.0675388
	+			

We obtain **point estimates** of the risk probabilities.

Hospital ranking: Limitations of the standard approaches

Although the mixed-effects model predicts hospital risk probabilities that can be used for ranking, it is **impossible to quantify the credibility of the predicted hospital ranking**.

The frequentist approach cannot answer questions such as

- How probable is the risk of death for the first hospital to be lower than the second hospital?
- What is the probability the first hospital to have rank one, that is, to perform best across all twelve hospitals?

Can a Bayesian approach help?

Bayesian analysis overview

A Bayesian model for data y and model parameters θ includes

- Likelihood function $L(\theta; y) = P(y|\theta)$
- Prior probability distribution $\pi(\theta)$
- Bayes rule for the posterior distribution

$$P(\theta|y) \propto L(\theta;y)\pi(\theta)$$

- Posterior distribution $P(\theta|y)$ provides full description of θ
- MCMC methods are usually used for simulating $P(\theta|y)$

Bayesian analysis in Stata

Command	Description
Estimation	-
bayesmh	Bayesian regression using MH
Postestimation	
bayesgraph	Graphical diagnostics
bayesstats ess	Effective sample sizes
bayesstats ic	Bayesian information criteria
bayesstats summary	Summary statistics
bayestest interval	Interval hypothesis testing
bayestest model	Model posterior probabilities

Bayesian estimation in Stata

Built-in likelihood models

```
bayesmh ..., likelihood() prior() ...
```

User-defined models

```
bayesmh ..., {evaluator() | llevaluator()} ...
```

- You can access the GUI by typing
 - . db bayesmh
 - or from the statistical menu.
- bayesmh performs MCMC estimation using adaptive Metropolis-Hastings (MH) algorithm.

Prior distributions

- Completely uninformative priors: the flat prior option prior({params}, flat)
- Weakly informative priors: N(0,1e6)
 prior({params}, normal(0, 1e6))
- Informative priors: N(-1,1), InvGamma(10,10), ...
- ullet Hierarchical priors using hyper-parameters: $N(\mu,\sigma^2)$

```
prior({params}, normal({mu}, {sig2}))
prior({mu}, normal(0, 100))
prior({sig2}, igamma(0.01, 0.01))
```

• Hierarchical priors are essential in Bayesian multilevel modeling

Two sources of hierarchy in Bayesian models

- Multilevel data structure, where observations are grouped by one
 or more categorical variables; it is represented in the likelihood. For
 example, observations of students clustered in schools.
 - ► Frequentist: fixed-effects and random-effects (RE) parameters.
 - ▶ Bayesian: all model parameters are random, and the distinction is in their prior specification.
- Model parameter hierarchy, where the prior of lower-level parameters involves higher-level hyper-parameters.

```
prior({RE_params}, normal({RE_cons}, {RE_var}))
prior({RE_cons}, normal(0, 100))
prior({RE_var}, igamma(0.01, 0.01))
```

Bayesian models with "random-effects" and MCMC

• Consider a simple random-intercept regression (2-level) model

$$y = X\beta + Zu + \epsilon$$

where Z is $n \times q$ design matrix and u_j , $j \in \{1, \dots, q\}$, are "random-effects" parameters.

 \bullet u_j 's are assigned a hierarchical prior, typically

$$u_j | \mu, \sigma_u^2 \sim i.i.d. N(\mu, \sigma_u^2)$$

where μ and σ_u^2 are hyper-parameters.

Block sampling of random-effects parameters

• RE parameters u_j 's are, typically, **highly dependent** in the prior and posterior, which complicates MCMC simulation

$$\pi(u_1,\ldots u_q)\neq \prod_{j=1}^q \pi(u_j)$$

- bayesmh employs an adaptive random-walk Metropolis sampling algorithm in which model parameters are grouped in blocks.
- If u_j 's are grouped in one block, the sampling becomes extremely inefficient as q increases **the curse of dimensionality**.
- When u_j 's are sampled individually, the computational complexity of one MCMC iteration is O(nq), where n is the sample size.
- The solution: use the reffects() option in bayesmh.

Efficient sampling of RE parameters in bayesmh

 bayesmh employs the conditional independence of random-effects parameters in both prior and posterior

$$\pi(u_1,\ldots,u_q|\mu,\sigma_u^2)=\prod_{j=1}^q\pi(u_j|\mu,\sigma_u^2)$$

$$P(u_1,\ldots,u_q|\mu,\sigma_u^2,\boldsymbol{y}) = \prod_{j=1}^q P(u_j|\mu,\sigma_u^2,\boldsymbol{y_j})$$

where y_j is a subsample of y having effect u_j .

• In such cases the computational complexity of one MCMC iteration is now only O(n), a huge improvement from O(nq).

Specifying RE parameters in bayesmh

- Suboption reffects of option block()
 - . fvset base none u
 - . bayesmh y ... i.u , likelihood(...) ...
 block({y:i.u}, reffects) ...
- Global reffects() option
 - . bayesmh y ..., reffects(u) ...
- Option redefine(): specify RE linear forms to be used as latent variables in expressions
 - . fvset base none u
 - . bayesmh $y = (\{re:\})$, redefine(re:i.u) ...

Back to the hospital ranking example

Recall our earlier example of mortality rate after cardiac surgery.

input	hospital	n_ops	deaths
	1	47	0
	2	148	18
	3	119	8
	4	810	46
	5	211	8
	6	196	13
	7	148	9
	8	215	31
	9	207	14
	10	97	8
	11	256	29
	12	360	24
end			

The standard frequentist approach is unable to answer satisfactory our research questions.

Hospital ranking models

I will fit three Bayesian models with increasing complexity according to their prior specification

- Model 1: Completely uninformative, flat, prior
- Model 2: Slightly informative prior
- Model 3: Hierarchical prior

I will discard the first model as improper. Then, I will compare the second and the third models and show that the latter, the hierarchical model, is the best fit for the data.

Model 1: Uninformative priors

We assume that **death incidents are independent across hospitals** and apply uninformative, flat, prior for the risk effects.

The above specification has poor sampling efficiency. To improve the MCMC sampling efficiency we apply the global reffects() option

Bayesian binon Random-walk M	0	Burn-in MCMC sam Number o	rations = = ple size = f obs = ce rate =	12,500 2,500 10,000 12 .3138		
				Efficien	cy: min =	.001144
					avg =	. 1483
Log marginal	likelihood =	-25.093932			max =	. 2025
	l				Equal-	tailed
	Mean					Interval]
	+					
hospital						
1	-165.8625	56.62666	16.7452	-177.5466	-237.5561	-29.43683
2	-1.998605	.256157	.0063	-1.985625	-2.51977	-1.521995
3	-2.691607	.3765987	.008468	-2.663127	-3.487504	-2.024282
11	-2.072715	.1923903	.005107	-2.068274	-2.461135	-1.719813
12	-2.654584	.2146438	.005511	-2.651604	-3.079447	-2.254491

Note: There is a high autocorrelation after 500 lags.

Model 1: Sampling efficiency

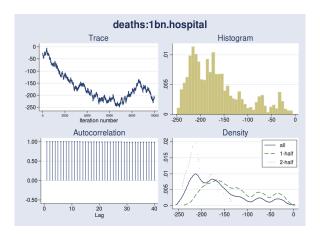
. bayesstats ess

Efficiency s	umma	ries MCN	MC sample size	= 10,000
deaths	 -+	ESS	Corr. time	Efficiency
hospital	Ī			
1	1	11.44	874.46	0.0011
2	1	1653.45	6.05	0.1653
3	1	1978.00	5.06	0.1978
11	1	1419.06	7.05	0.1419
12	T	1516.84	6.59	0.1517

The very small ESS for the first hospital suggests **nonconvergence**.

Model 1: Diagnostic plot confirms nonconvergence

. bayesgraph diagnostic {deaths:1bn.hospital}



Model 2: Weakly informative priors

We again assume that death incidents are independent across hospitals but this time we apply slightly informative, **normal(0, 100)**, prior for the probabilities of death.

We also save the simulation results in **model2.dta** and store estimation results as **model2**.

Model 2: Sampling efficiency

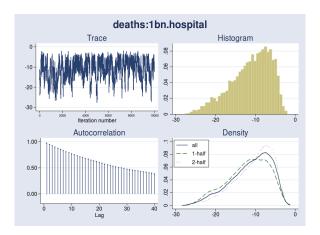
. bayesstats ess

ımma	aries MCM	MC sample size	= 10,000
 -+	ESS	Corr. time	Efficiency
İ			
1	129.62	77.15	0.0130
1	1587.85	6.30	0.1588
1	1936.80	5.16	0.1937
1	1483.44	6.74	0.1483
1	1541.34	6.49	0.1541
	 -+	ESS 	ESS Corr. time

The ESS for the first hospital is greatly improved.

Model 2: Diagnostic plot for the first hospital

. bayesgraph diagnostic {deaths:1bn.hospital}



Model 2: Summaries

Note that the parameters {deaths:i.hospital} are regression coefficients in a generalized linear model with logit link. We apply invlogit() transformation to obtain risk probabilities.

```
. bayesstats summary (hosp1_risk:invlogit({deaths:1bn.hospital})) ///
                   (hosp2_risk:invlogit({deaths:2.hospital})) ///
                   (hosp3_risk:invlogit({deaths:3.hospital})), nolegend
Posterior summary statistics
                                              MCMC sample size =
                                                                   10,000
                                                         Equal-tailed
                         Std. Dev. MCSE
                                              Median
                                                      [95% Cred. Interval]
                  Mean
 hosp1_risk | .0021345 .0073743
                                   .000265 .0000308 1.56e-10 .0190562
 hosp2_risk | .1214157 .0266825
                                   .000669 .1192722 .0735422
                                                                 .1771528
 hosp3_risk | .066891
                         .0228277
                                   .000514
                                            .0650115 .0283552 .117942
```

Model 3: Hierarchical approach

It is more realistic to assume that **the risks of death across hospitals are related.** After all, the surgical procedures followed in different hospital are probably similar. This observation motivates the following random-effects model

$$deaths_i \sim Binomial(invlogit(u_i), n_ops_i)$$
 $u_i \sim Normal(\mu, \sigma^2)$

This is a two-level model with RE parameters u_i 's and hyper-parameters μ and σ^2 .

Moreover, we assume **exchangiability** of u_i 's

$$u_i|\mu,\sigma^2 \sim i.i.d. Normal(\mu,\sigma^2)$$

Model 3: Specification

```
. set seed 12345
. bayesmh deaths, reffects(hospital) likelihood(binomial(n_ops)) ///
    prior({deaths:i.hospital}, normal({mu}, {sig2})) noconstant ///
    prior({mu}, normal(0, 1e6)) ///
    prior({sig2}, igamma(0.001, 0.001)) ///
    block({mu}) block({sig2}) ///
    saving(model3, replace)
```

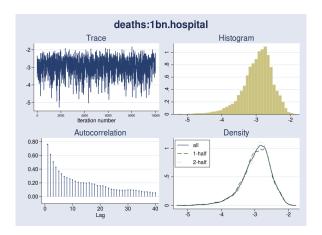
- The RE parameters u_i 's are represented by {deaths:i.hospital}.
- We apply uninformative hyperpriors for {mu} and {sig2}.

Model 3: Estimation results

Bayesian binomial	regressio	on		MCMC ite	rations =	12,500
Random-walk Metropo	ing	Burn-in	=	2,500		
	MCMC sam	ple size =	10,000			
	Number o	f obs =	12			
		Acceptan	ce rate =	.3743		
				Efficien	cy: min =	.02602
					avg =	.05918
Log marginal likelihood = -48.442035					max =	.09235
1					Equal-	-tailed
!	Mean	Std. Dev.	MCSE	Median	[95% Cred	Interval]
mu -:	 2.5511	.1531508	.00504	-2.545055	-2.882478	-2.260335
sig2 .18	399029	.1518367	.009413	.1449774	.0306749	.6327214

Model 3: Diagnostic plot for the first hospital

. bayesgraph diagnostic {deaths:1bn.hospital}



Bayesian information criteria

We compare model2 and model3

. bayesstats ic model2 model3

Bayesian information criteria

	 	DIC	log(ML)	0
model2	İ	74.76517	-66.21896 -48.44204	•

Note: Marginal likelihood (ML) is computed using Laplace-Metropolis approximation.

model3 is a better fit than model2 with respect to both DIC and marginal likelihood ML.

Bayesian model comparison

We compare model2 and model3

. bayestest model model2 model3

Bayesian model tests

 	log(ML)	P(M)	P(M y)
	-66.2190 -48.4420	0.5000 0.5000	0.0000 1.0000

Note: Marginal likelihood (ML) is computed using Laplace-Metropolis approximation.

Conclusion: model3 is overwhelmingly better than model2 based on the Bayes factors and model probabilities.

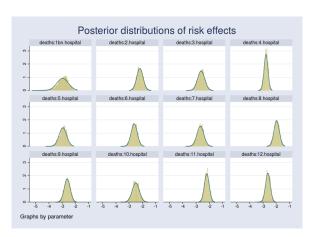
Model 3: Summaries

```
(hosp1_risk:invlogit({deaths:1bn.hospital})) ///
. bayesstats summary
                    (hosp2_risk:invlogit({deaths:2.hospital})) ///
                    (hosp3_risk:invlogit({deaths:3.hospital})), nolegend
Posterior summary statistics
                                               MCMC sample size =
                                                                    10,000
                                                          Equal-tailed
                         Std. Dev. MCSE
                                                       [95% Cred. Interval]
                  Mean
                                               Median
 hosp1_risk | .0529738 .0194244
                                    .000775 .0517034 .018142
                                                                  .0958831
 hosp2_risk | .1037734
                        .0227254
                                    . 000705
                                             .1009743 .0667345
                                                                  .1555239
  hosp3_risk |
               .0704388
                         .0174802
                                    .000423
                                             .0695322 .0403892
                                                                  .1094492
```

The posterior mean risk for the first hospital is estimated to be about 5%. These posterior means are very close to the predicted with meglm.

Model 3: Histogram plots of the risk effects

```
. bayesgraph histogram {deaths:i.hospital}, ///
  byparm(legend(off) noxrescale noyrescale ///
  title(Posterior distributions of risk effects)) ///
  normal
```



Model 3: Hospital comparison

We can test whether the risk probability for the first hospital is lower than that for the second hospital.

We estimate the posterior probability $P(u_1 < u_2)$ to be 96%.

What is the probability of the first hospital to have rank 1?

	 Std. Dev.	
•	0.47967	

We estimate the posterior probability $P(u_1 \leq min(u))$ to be 36%.

The Bayesian approach gives us more informative quantitative answers than any of the standard frequentist approaches.

The advantage of hierarchical priors

- Flat or uninformative priors may result in improper posterior.
- Strong informative priors may be **subjective** and introduce bias.
- Hierarchical priors provide a compromise between these two ends by using informative prior family of distributions and uninformative hyper-priors for the hyper-parameters

```
prior({RE_params}, normal({RE_cons}, {RE_var}))
prior({RE_cons}, normal(0, 100))
prior({RE_var}, igamma(0.01, 0.01))
```

• The hierarchical prior specification provides **pooling of information** across REs to enhance model estimation.

Other hierarchical models using bayesmh

Random-intercept model

- Modeling weight growth based on panel data
- Data: weight measurements of 48 pigs identified by id on 9 successive weeks (e.g. Diggle et al. [2002]).
- Consider a random intercept model with group variable id

$$exttt{weight}_{ij} = b_1 exttt{week} + u_j + \epsilon_{ij}$$
 $u_j \sim \mathrm{N}(b_0, \sigma_{cons}^2), \ \epsilon_{ij} \sim \mathrm{N}(0, \sigma^2)$ where $j=1,\ldots,48$ and $i=1,...,n_j=9$.

Noninformative hyperpriors

$$b_0,\ b_1 \sim \textit{Normal}(0,\ 100)$$
 $\sigma^2,\ \sigma^2_{\textit{cons}} \sim \textit{InvGamma}(0.01,\ 0.01)$

Bayesian random-intercept model

We use the global reffects(id) option to introduce the random intercept parameters.

```
. bayesmh weight week, reffects(id) likelihood(normal({var})) noconstant ///

prior({weight:i.id}, normal({weight:_cons}, {var_cons})) ///

prior({var}, igamma(0.01, 0.01)) block({var}, gibbs) ///

prior({var_cons}, igamma(0.01, 0.01)) block({var_cons}, gibbs) ///

prior({weight:week}, normal(0,1e2)) block({weight:week}, gibbs) ///

prior({weight:_cons}, normal(0,1e2)) block({weight:_cons}, gibbs)
```

We request the noconstant option and include the parameter {weight:_cons} as the mean of the random intercepts.

Two-level, random-slope model with unstructured covariance

Mixed-effects specification

$$ext{weight}_{ij} = b_0 + b_1 ext{week} + u_j + v_j ext{week} + \epsilon_{ij}$$
 $(u_j, v_j) \sim ext{MVN}(0, 0, \Sigma_{2 ext{x2}}), \; \epsilon_{ij} \sim ext{N}(0, \sigma^2)$

- We can fit this model by typing
 - . mixed weight week || id: week, cov(unstructured)
- Alternative formulation

$$exttt{weight}_{ij} = u_j + v_j exttt{week} + \epsilon_{ij}$$
 $(u_j, v_j) \sim exttt{MVN}(b_0, b_1, \Sigma_{2 exttt{x2}}), \; \epsilon_{ij} \sim exttt{N}(0, \sigma^2)$

Bayesian two-level model with unstructured covariance

```
. fyset base none id
. bayesmh weight i.id i.id#c.week, likelihood(normal({var_0})) noconstant ///
                                                                           111
       prior ({weight:i.id i.id#c.week},
                                                                           111
               mvnormal(2, {weight:_cons}, {weight:week}, {covar,m}))
                                                                           ///
                                                                           111
       block ({weight: i.id},
                                                                           111
                                     reffects)
       block ({weight: i.id#c.week}, reffects)
                                                                           111
                                                                           111
       prior({var_0}, igamma(0.01, 0.01)) block({var_0}, gibbs)
                                                                           111
       prior({covar,m}, iwishart(2, 3, I(2))) block({covar,m}, gibbs)
                                                                           111
                                                                           111
       prior({weight:week _cons}, normal(0, 1e2))
                                                                           111
       block({weight:_cons}) block({weight:week})
```

Because we use factor notation to introduce random slopes and intercepts, we need to suppress the base level of id.

Weight gain in children: Quadratic growth curve model

Data: weight gain in Asian children in UK (e.g. S. Rabe-Hesketh et al. [2008]).

```
. use http://www.stata-press.com/data/mlmus2/asian, clear
. gen age2 = age^2
```

A random-slope model with unstructured covariance

```
. bayesmh weight age2 i.id i.id#c.age, likelihood(normal({var_0})) noconstant ///
       prior ({weight:i.id i.id#c.age},
                                                                         111
               mvnormal(2, {weight:_cons}, {weight:age}, {covar,m}))
                                                                         111
       block ({weight: i.id}, reffects)
                                                                         111
       block ({weight: i.id#c.age}, reffects)
                                                                         111
                                                                         111
       prior({var_0}, igamma(0.01, 0.01)) block({var_0}, gibbs)
                                                                         111
       prior({covar,m}, iwishart(2, 3, I(2))) block({covar,m}, gibbs)
                                                                         ///
                                                                         111
                                                                         ///
       prior({weight:age age2 _cons}, normal(0, 1e4))
       block({weight:_cons}) block({weight:age})
                                                                         111
       exclude({weight:i.id i.id#c.age})
```

Weight gain in children: Estimation results from bayesmh

	1				Equal-tailed		
	Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]	
weight	 						
0	-1.682645	.0902288	.02214	-1.68861	-1.840406	-1.460976	
var_0	.345705	.0550158	.003565	.3409993	. 2534185	.4691682	
weight							
_cons	3.466845	.141187	.025511	3.466053	3.183534	3.756561	
age		.2430883	.059586	7.778459	7.177397	8.200629	
covar_1_1		.1499469	.011251	.416012	.200588	.7827044	
covar_2_1	.0739061	.0723623	.005094	.0786635	0836601	.2037509	
covar_2_2	.291677	.0857778	.004919	.279615	.1600136	.4948752	

The results are similar to those from

. mixed weight age age2 || id: age, mle

Gaussian 2-mixture model

We observe outcome y coming from a mixture of two Gaussian distributions with common variances but different means. The latent mixing variable z is not observed.

$$y|z \sim N(\mu_z, \sigma^2), \ z \in \{1, 2\},$$
 $z \sim \textit{Multinomial}(\pi_1, \pi_2)$

We want to estimate π_j , μ_j , j=1,2, and σ^2 .

Federal interest rates: A two-staged model

Records from the database of the Federal Reserve Bank of Saint Louis from 1954 to 2010 reveal a period in 1970s and 1980s with unusually high rates. We want to estimate the levels of moderate and high rates.

. webuse usmacro

A Markov-switching model with switching intercept: see Example 1 in mswitch manual.

. mswitch dr fedfunds

Federal interest rates: Gaussian 2-mixture model

- . generate id = _n
 . fvset base none id
- A Gaussian 2-mixture model is applied to the outcome fedfunds

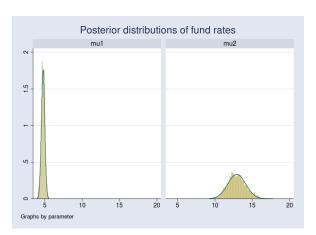
```
set seed 12345
. bayesmh fedfunds = (({state:}==1)*{mu1}+({state:}==2)*{mu2}), ///
       likelihood(normal({sig2})) redefine(state:i.id)
                                                                 111
       prior({state:}, index({p1}, (1-{p1})))
                                                                 111
       prior({p1}, uniform(0, 1))
                                                                 111
       prior({mu1} {mu2}, normal(0, 100))
                                                                 111
                                                                 111
       prior({sig2}, igamma(0.1, 0.1))
                                                                 111
       init({p1} 0.5 {mu1} 1 {mu2} 1 {sig2} 1 {state:} 1)
       block({sig2}, gibbs) block({p1}) block({mu1}{mu2})
                                                                 ///
       exclude({state:}) dots
```

Federal interest rates: Estimation results

Bayesian normal regression					rations =	12,500
Metropolis-Hastings and Gibbs sampling			Burn-in	=	2,500	
			MCMC sam	ple size =	10,000	
			Number o	f obs =	226	
			Acceptan	ce rate =	.5397	
				Efficien	cy: min =	.02064
					avg =	.04739
Log marginal li	kelihood =				max =	.1073
1			Equal-tailed			tailed
1	Mean	Std. Dev.			[95% Cred.	Interval]
mu1	4.788393	.2270429	.01207	4.793052	4.323518	5.223823
mu2	12.92741	1.195207	.083203	12.87748	10.75527	15.46583
sig2	6.889847	.8215697	.025083	6.83881	5.426364	8.668182
p1	.9143812	.0316361	.001953	.9179353	.8443814	.9667421

Federal interest rates: Histogram plots

```
bayesgraph histogram {mu1 mu2}, ///
byparm(legend(off) noxrescale noyrescale ///
title(Posterior distributions of fund rates)) ///
normal
```



Educational research example: 3PL IRT model

- Predict the effect of subject ability and question difficulty and discrimination on test performance.
- We observe binary responses y_{ij} of subjects $j=1,\ldots,K$ with abilities θ_j on items $i=1,\ldots,I$ with discrimination parameters a_i , difficulty parameters b_i , and guessing parameters c_i .

$$P(y_{ij} = 1) = c_i + (1 - c_i) \operatorname{InvLogit}\{a_i(\theta_j - b_i)\},$$

 $\theta_j \sim \operatorname{N}(0, 1) \ a_i > 0, \ c_i \in [0, 1]$

Hierarchical priors

$$log(a_i) \sim N(\mu_a, \sigma_a^2)$$

 $b_i \sim N(\mu_b, \sigma_b^2)$
 $log(c_i) \sim N(\mu_c, \sigma_c^2)$

Bayesian 3PL IRT

You can find more details in our Stata blog entry: Bayesian binary item response theory models using bayesmh.

Conclusion

The Bayesian hierarchical modeling approach is a powerful tool that facilitates

- the representation of complex multilevel data structures
- the specification of objective priors
- the modeling by exploiting intra-group correlation across panels (pooling information across panels)
- the inference by providing intuitive and comprehensive answers to research questions

The current suite of commands for Bayesian analysis in Stata makes hierarchical modeling accessible for a wide variety of problems.