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Why hierarchical models?

@ Hierarchical models represent complex, multilevel data structures.

@ Examples:

» Predict the risk of death after surgery for a group of hospitals and
then rank the hospitals according to their performance

» Estimate the rate of weight gain in children from a panel data of
different age groups

» Estimate student abilities based on their performance on a test panel
of different questions

o | will apply a Bayesian approach to answer this kind of questions.

Nikolay Balov (Stata) Bayesian hierarchical models in Stata 2016 Stata Conference 2 /55



Why Bayesian hierarchical models?

@ Bayesian models combine prior knowledge about model parameters
with evidence from data.
@ They are especially well suited for analysis of multilevel models:

> Flexibility in specifying multilevel structures of parameters using priors

» Ability to handle small samples and model missspecification
(overparametrization of the likelihood can be resolved with well
chosen priors).

» Provide intuitive and easy to interpret answers. (credible interval vs.
confidence interval).

@ Some challenges of the Bayesian approach:

» Computational burden of simulating posterior distributions with many
parameters

» Difficulties in specifying prior distributions; potential subjectivity in
selecting priors.
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Main problem of interest

| will focus on

prior specification and efficient simulation of model parameters
associated with grouping variables (“random-effects” parameters).

This methodological problem is at the heart of multilevel (hierarchical)
modeling.
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Outline

Motivating example: Hospital ranking

Overview of Bayesian analysis in Stata

Bayesian multilevel models
» Sources of hierarchy in data
» Hierarchical prior structures involving random-effects (RE)
» Efficient MCMC sampling of RE parameters
Analysis of the hospital ranking problem
» Completely uninformative prior
» Weakly informative prior
» Hierarchical prior
» Model comparison

Other hierarchical model examples

» Random-slope with unstructured covariance

» Weight gain in children: Growth curve model

» Federal interest rates: Gaussian 2-mixture model
» Educational research example: 3PL IRT model
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Motivating example: Hospital ranking

Mortality rate after cardiac surgery in babies from 12 hospitals

(WinBUGS).

. input hospital n_ops deaths
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. end
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24

@ Estimate the risk of death in each hospital

@ Rank hospitals according to their risk probabilities
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Hospital ranking: Frequentist approach
The likelihood model is
deaths; ~ Binomial(0;, n_ops;)

where, for i =1,...,12, 0; is probability of death.

. fvset base none hospital
. binreg deaths i.hospital, nocons n(n_ops) or

| EIM
deaths | 0dds Ratio Std. Err. z P>zl [95% Conf. Intervall
hospital |
1] 3.17e-09 4.98e-06 -0.01 0.990 0 .
2 | .1384615 .0348219 -7.86 0.000 .0845784 .2266725
12 | .0714286 .015092 -12.49 0.000 .0472088 .108074

Risk probability for the first hospital is estimated to be zero.
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Hospital ranking: Mixed-effects approach

A random-intercept model pools information across hospitals and
provides more believable predictions for the risk probabilities.

. meglm deaths || hospital:, family(binomial n_ops) link(logit)

. predict theta, x
. predict re, reff
. replace theta =

b
ects

invlogit (theta+re)
. list hospital n_ops deaths theta

| hospital n_ops deaths theta

I
1. ] 1 47 0 .0632718
2. | 2 148 18 .1010213
3. | 3 119 8 .0691329
4. | 4 810 46 .0585764
11. | 11 256 29 .1011471
12. | 12 360 24 .0675388

We obtain point estimates of the risk probabilities.
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Hospital ranking: Limitations of the standard approaches

Although the mixed-effects model predicts hospital risk probabilities that
can be used for ranking, it is impossible to quantify the credibility of
the predicted hospital ranking.

The frequentist approach cannot answer questions such as

@ How probable is the risk of death for the first hospital to be lower
than the second hospital?

@ What is the probability the first hospital to have rank one, that is,
to perform best across all twelve hospitals?

Can a Bayesian approach help?
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Bayesian analysis overview

A Bayesian model for data y and model parameters 6 includes

o Likelihood function L(0;y) = P(y|0)
@ Prior probability distribution 7(8)
@ Bayes rule for the posterior distribution
P(0]y) o< L(6; y)m(6)
@ Posterior distribution P(f|y) provides full description of
@ MCMC methods are usually used for simulating P(0]y)
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Bayesian analysis in Stata

Command Description
Estimation
bayesmh Bayesian regression using MH

Postestimation

bayesgraph Graphical diagnostics
bayesstats ess Effective sample sizes
bayesstats ic Bayesian information criteria

bayesstats summary Summary statistics

bayestest interval Interval hypothesis testing
bayestest model Model posterior probabilities
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Bayesian estimation in Stata

@ Built-in likelihood models
bayesmh ..., likelihood() prior()
@ User-defined models
bayesmh ..., {evaluator() | llevaluator()} ...

@ You can access the GUI by typing
. db bayesmh
or from the statistical menu.

@ bayesmh performs MCMC estimation using adaptive
Metropolis-Hastings (MH) algorithm.
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Prior distributions

e Completely uninformative priors: the flat prior option
prior ({params}, flat)

e Weakly informative priors: N(0, 1e6)
prior({params}, normal(0, 1e6))

o Informative priors: N(—1,1), InvGamma(10, 10), ...

o Hierarchical priors using hyper-parameters: N(u,0?)

prior({params}, normal({mu}, {sig2}))
prior ({mu}, normal(0, 100))
prior({sig2}, igamma(0.01, 0.01))

@ Hierarchical priors are essential in Bayesian multilevel modeling
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Two sources of hierarchy in Bayesian models

o Multilevel data structure, where observations are grouped by one
or more categorical variables; it is represented in the likelihood. For
example, observations of students clustered in schools.

» Frequentist: fixed-effects and random-effects (RE) parameters.
» Bayesian: all model parameters are random, and the distinction is in
their prior specification.

@ Model parameter hierarchy, where the prior of lower-level
parameters involves higher-level hyper-parameters.

prior ({RE_params}, normal ({RE_cons}, {RE.var}))
prior ({RE_cons}, normal(0, 100))
prior({RE_var}, igamma(0.01, 0.01))
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Bayesian models with “random-effects” and MCMC

o Consider a simple random-intercept regression (2-level) model
y=XB+Zu+e

where Z is n x q design matrix and v, j € {1,...,q}, are
“random-effects” parameters.

@ uj's are assigned a hierarchical prior, typically
ujlp, o5 ~ i.i.d. N(p, o)

where 11 and o2 are hyper-parameters.
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Block sampling of random-effects parameters

o RE parameters u;'s are, typically, highly dependent in the prior and
posterior, which complicates MCMC simulation

q

m(ut,. .. uq) # Hw(uj')

j=1

@ bayesmh employs an adaptive random-walk Metropolis sampling
algorithm in which model parameters are grouped in blocks.

o If u;'s are grouped in one block, the sampling becomes extremely
inefficient as g increases - the curse of dimensionality.

@ When u;'s are sampled individually, the computational complexity of
one MCMC iteration is O(ngq), where n is the sample size.

@ The solution: use the reffects() option in bayesmh.
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Efficient sampling of RE parameters in bayesmh

@ bayesmh employs the conditional independence of random-effects
parameters in both prior and posterior

q
w(ul,...,uqlu, H7r ujm,
Jj=1
q
P(u1,...,uq|u,0,2,,y) = HP(UJ’/.L,O'[%,_Y_,)
j=1

where y; is a subsample of y having effect u;.

@ In such cases the computational complexity of one MCMC iteration
is now only O(n), a huge improvement from O(nq).

Nikolay Balov (Stata) Bayesian hierarchical models in Stata 2016 Stata Conference 17 / 55



Specifying RE parameters in bayesmh

@ Suboption reffects of option block()

. fvset base none u
. bayesmh y ... i.u , likelihood(...)
block({y:i.u}, reffects)

o Global reffects() option
. bayesmh y ..., reffects(u)

@ Option redefine(): specify RE linear forms to be used as latent
variables in expressions

. fvset base none u

. bayesmh y = ({re:}), redefine(re:i.u)
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Back to the hospital ranking example

Recall our earlier example of mortality rate after cardiac surgery.

. input hospital n_ops deaths

1
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. end

The standard frequentist approach is unable to answer satisfactory our
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research questions.
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Hospital ranking models

| will fit three Bayesian models with increasing complexity according to
their prior specification

@ Model 1: Completely uninformative, £lat, prior

@ Model 2: Slightly informative prior

@ Model 3: Hierarchical prior

| will discard the first model as improper. Then, | will compare the
second and the third models and show that the latter, the hierarchical
model, is the best fit for the data.
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Model 1: Uninformative priors

We assume that death incidents are independent across hospitals
and apply uninformative, flat, prior for the risk effects.

. fvset none hospital
. bayesmh deaths i.hospital, likelihood(binomial(n_ops)) ///
prior({deaths:i.hospital}, flat) noconstant

The above specification has poor sampling efficiency. To improve the
MCMC sampling efficiency we apply the global reffects() option

. set seed 12345

. bayesmh deaths, reffects(hospital) likelihood(binomial(n_ops)) ///
prior({deaths:i.hospital}, flat) noconstant ///
showreffects({deaths:i.hospitall})
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Bayesian binomial regression MCMC iterations = 12,500

Random-walk Metropolis-Hastings sampling Burn-in = 2,500
MCMC sample size = 10,000

Number of obs = 12

Acceptance rate = .3138

Efficiency: min = .001144

avg = .1483

Log marginal likelihood = -25.093932 max = .2025

| Equal-tailed
deaths | Mean  Std. Dev. MCSE Median [95% Cred. Intervall

+

hospital

1 -165.8625  56.62666 16.7452 -177.5466 -237.5561 -29.43683

2 -1.998605 .256157 .0063 -1.985625  -2.51977 -1.521995
3 -2.691607 .3765987 .008468 -2.663127 -3.487504 -2.024282
11 | -2.072715 .1923903 .005107 -2.068274 -2.461135 -1.719813
12 | -2.654584 .2146438 .0055611 -2.651604 -3.079447 -2.254491

Note: There is a high autocorrelation after 500 lags.
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Model 1: Sampling efficiency

. bayesstats ess

Efficiency summaries MCMC sample size = 10,000

deaths | ESS Corr. time Efficiency
hospital |

1] 11.44 874.46 0.0011

2 | 1653.45 6.05 0.1653

3 | 1978.00 5.06 0.1978

11 ] 1419.06 7.05 0.1419

12| 1516.84 6.59 0.1517

The very small ESS for the first hospital suggests nonconvergence.
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Model 1: Diagnostic plot confirms nonconvergence

. bayesgraph diagnostic {deaths:1bn.hospital}
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Model 2: Weakly informative priors

We again assume that death incidents are independent across hospitals
but this time we apply slightly informative, normal(0, 100), prior for the
probabilities of death.

. set seed 12345

. bayesmh deaths, reffects(hospital) likelihood(binomial(n_ops)) ///
prior({deaths:i.hospital}, normal(0, 100)) noconstant ///
showreffects({deaths:i.hospital}) saving(model2)

. estimates store model2

We also save the simulation results in model2.dta and store estimation
results as model2.
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Model 2: Sampling efficiency

. bayesstats ess

Efficiency summaries MCMC sample size = 10,000

deaths | ESS Corr. time Efficiency
hospital |

1] 129.62 77.15 0.0130

2 | 1587.85 6.30 0.1588

3 | 1936.80 5.16 0.1937

11 ] 1483.44 6.74 0.1483

12| 1541.34 6.49 0.1541

The ESS for the first hospital is greatly improved.
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Model 2: Diagnostic plot for the first hospital

. bayesgraph diagnostic {deaths:1bn.hospital}
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Model 2: Summaries

Note that the parameters {deaths:i.hospital} are regression
coefficients in a generalized linear model with logit link. We apply
invlogit () transformation to obtain risk probabilities.

. bayesstats summary (hospl_risk:invlogit({deaths:1bn.hospital})) ///
(hosp2_risk:invlogit({deaths:2.hospital})) ///
(hosp3_risk:invlogit({deaths:3.hospital})), nolegend

Posterior summary statistics

MCMC sample size = 10,000

+ - —

Equal-tailed

Mean  Std. Dev. MCSE Median [95% Cred. Intervall
hospi_risk | .0021345 .0073743 .000265 .0000308 1.56e-10 .0190562
hosp2_risk | .1214157 .0266825 .000669 .1192722 .0735422 .1771528
hosp3_risk | .066891 .0228277 .000514 .0650115 .0283552 .117942
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Model 3: Hierarchical approach

It is more realistic to assume that the risks of death across hospitals
are related. After all, the surgical procedures followed in different
hospital are probably similar. This observation motivates the following
random-effects model
deaths; ~ Binomial(inviogit(u;), n_ops;)
u; ~ Normal(p, o%)

This is a two-level model with RE parameters u;'s and hyper-parameters
u and o?.
Moreover, we assume exchangiability of u;'s

uilp, 0% ~ i.i.d. Normal(u, o)
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Model 3: Specification

. set seed 12345

. bayesmh deaths, reffects(hospital) likelihood(binomial(n_ops)) ///
prior({deaths:i.hospital}, normal({mu}, {sig2})) noconstant ///
prior ({mu}, normal(0, 1e6)) ///
prior({sig2}, igamma(0.001, 0.001)) /17
block({mu}) block({sig2}) ///

saving(model3, replace)
. estimates store model3

@ The RE parameters u;'s are represented by {deaths:i.hospital}.
@ We apply uninformative hyperpriors for {mu} and {sig2}.
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Model 3: Estimation results

Bayesian binomial regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500
MCMC sample size = 10,000

Number of obs = 12

Acceptance rate = .3743

Efficiency: min = .02602

avg = .05918

Log marginal likelihood = -48.442035 max = .09235

| Equal-tailed

| Mean  Std. Dev. MCSE Median [95% Cred. Intervall
mu | -2.5511 .1531508 .00504 -2.545055 -2.882478 -2.260335
sig2 | .1899029 .1518367 .009413 . 1449774 .0306749 .6327214
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Model 3: Diagnostic plot for the first hospital

. bayesgraph diagnostic {deaths:1bn.hospital}
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Bayesian information criteria

We compare model2 and model3

. bayesstats ic model2 model3

Bayesian information criteria

| DIC  log(ML)  log(BF)
model2 | 74.76517 -66.21896 .
model3 | 74.26092 -48.44204  17.77692

Note: Marginal likelihood (ML) is computed
using Laplace-Metropolis approximation.

model3 is a better fit than model2 with respect to both DIC and
marginal likelihood ML.
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Bayesian model comparison

We compare model2 and model3

. bayestest model model2 model3

Bayesian model tests

| log(ML) P(M) P(MIY)
model2 | -66.2190 0.5000 0.0000
model3 | -48.4420 0.5000 1.0000

Note: Marginal likelihood (ML) is computed using
Laplace-Metropolis approximation.

Conclusion: model3 is overwhelmingly better than model2 based on
the Bayes factors and model probabilities.
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Model 3: Summaries

. bayesstats summary (hospl_risk:invlogit({deaths:1bn.hospitall})) ///
(hosp2_risk:invlogit({deaths:2.hospital})) ///
(hosp3_risk:invlogit({deaths:3.hospitall})), nolegend

Posterior summary statistics

MCMC sample size = 10,000

Equal-tailed

| Mean Std. Dev. MCSE Median [95% Cred. Intervall
hospi_risk | .0529738 .0194244 .000775 .0517034 .018142 .0958831
hosp2_risk | .1037734 .0227254 .000705 .1009743 .0667345 .1555239
hosp3_risk | .0704388 .0174802 .000423 .0695322 .0403892 .1094492

The posterior mean risk for the first hospital is estimated to be about 5%.
These posterior means are very close to the predicted with meglm.
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Model 3: Histogram plots of the risk effects

bayesgraph histogram {deaths:i.hospital}, ///
byparm(legend (off) noxrescale noyrescale /77
title(Posterior distributions of risk effects)) ///
normal

Posterior distributions of risk effects
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Model 3: Hospital comparison

We can test whether the risk probability for the first hospital is lower
than that for the second hospital.

bayestest interval (probl2:{deaths:1bn.hospital}-{deaths:2.hospital}), ///
upper (0) nolegend

Interval tests MCMC sample size = 10,000
| Mean Std. Dev. MCSE
probi2 | .961 0.19360 .0054645

We estimate the posterior probability P(u; < uz) to be 96%.
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What is the probability of the first hospital to have rank 17

. bayestest interval ({deaths:1bn.hospital} - min( ///
{deaths:2.hospitall},{deaths:3.hospital}, ///
{deaths:4.hospitall},{deaths:5.hospital}, ///
{deaths:6.hospital},{deaths:7.hospital}, ///
{deaths:8.hospitall},{deaths:9.hospital}, ///
{deaths:10.hospital},{deaths:11.hospital}, ///
{deaths:12.hospital})), upper(0)

| Mean Std. Dev. MCSE

+

probl | .3588 0.47967 .0120528

We estimate the posterior probability P(u; < min(u)) to be 36%.
The Bayesian approach gives us more informative quantitative
answers than any of the standard frequentist approaches.
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The advantage of hierarchical priors

@ Flat or uninformative priors may result in improper posterior.
@ Strong informative priors may be subjective and introduce bias.

@ Hierarchical priors provide a compromise between these two ends by
using informative prior family of distributions and uninformative
hyper-priors for the hyper-parameters

prior ({RE_params}, normal ({RE_cons}, {RE_var}))
prior ({RE_cons}, normal(0, 100))
prior({RE_var}, igamma(0.01, 0.01))

@ The hierarchical prior specification provides pooling of information
across REs to enhance model estimation.
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Other hierarchical models using bayesmh
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Random-intercept model

@ Modeling weight growth based on panel data

o Data: weight measurements of 48 pigs identified by id on 9
successive weeks (e.g. Diggle et al. [2002]).

e Consider a random intercept model with group variable id
weight; = biweek + uj + ¢
uj ~ N(bO? Ugons)? €j ~ N(07 02)
where j=1,...,48and i =1,....,n; =09.
@ Noninformative hyperpriors

bo, by ~ Normal(0, 100)

02, 02, . ~ InvGamma(0.01, 0.01)
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Bayesian random-intercept model

We use the global reffects(id) option to introduce the random
intercept parameters.

. bayesmh weight week, reffects(id) likelihood(normal({varl})) noconstant ///

/17
prior({weight:i.id}, normal({weight:_cons}, {var_cons})) /17
/17
prior ({var}, igamma(0.01, 0.01)) block({var}, gibbs)  ///
prior({var_cons}, igamma(0.01, 0.01)) block({var_cons}, gibbs) ///
/17

prior ({weight:week}, normal(0,1e2)) block({weight:week}, gibbs) ///
prior ({weight:_cons}, normal(0,1e2)) block({weight:_cons},gibbs)

We request the noconstant option and include the parameter
{weight: _cons} as the mean of the random intercepts.
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Two-level, random-slope model with unstructured
covariance

o Mixed-effects specification
weight; = by + biweek + uj + vjweek + ¢

(uj, vj) ~ MVN(0,0, Z2,2), €; ~ N(0,0?)

@ We can fit this model by typing

. mixed weight week || id: week, cov(unstructured)

@ Alternative formulation
weight; = u;j + vjweek + ¢

(uj, v;) ~ MVN(bg, b1, Xox2), € ~ N(0,0?)
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Bayesian two-level model with unstructured covariance

. fvset base none id
. bayesmh weight i.id i.id#c.week, likelihood(normal({var_0})) noconstant ///

/17

prior ({weight:i.id i.id#c.week}, 11/
mvnormal (2, {weight:_cons}, {weight:week}, {covar,m})) ///

/17

block ({weight: i.id}, reffects) ///
block ({weight: i.id#c.week}, reffects) 11/
/17

prior ({var_0}, igamma(0.01, 0.01)) block({var_0}, gibbs) ///
prior({covar,m}, iwishart(2, 3, I(2))) block({covar,m}, gibbs) ///
/17

prior ({weight:week _cons}, normal(0, 1e2)) ///

block({weight: _cons}) block({weight:week})

Because we use factor notation to introduce random slopes and
intercepts, we need to suppress the base level of id.

Nikolay Balov (Stata) Bayesian hierarchical models in Stata 2016 Stata Conference 44 / 55



Weight gain in children: Quadratic growth curve model
Data: weight gain in Asian children in UK (e.g. S. Rabe-Hesketh et al.

[2008)).

. use http://www.stata-press.com/data/mlmus2/asian, clear

. gen age2 = age”2

A random-slope model with unstructured covariance

. bayesmh weight age2 i.id i.id#c.age, likelihood(normal({var_0})) noconstant ///
prior ({weight:i.id i.id#c.age},
mvnormal (2, {weight:_cons}, {weight:age}, {covar,m}))

block ({weight: i.id}, reffects)

block ({weight: i.id#c.age}, reffects)

prior({var_0},

prior ({weight:age age2 _cons}, normal(0, 1e4))

igamma(0.01, 0.01)) block({var_0}, gibbs)
prior({covar,m}, iwishart(2, 3, I(2))) block({covar,m}, gibbs)

block({weight:_cons}) block({weight:age})
exclude ({weight:i.id i.id#c.age})
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Weight gain in children: Estimation results from bayesmh

Equal-tailed

| Mean  Std. Dev. MCSE Median [95% Cred. Intervall

weight |
age2 | -1.682645 .0902288 .02214 -1.68861 -1.840406 -1.460976
var_0 | .345705 .0550158 .003565 .3409993 .25634185 .4691682

weight |
_cons | 3.466845 .141187 .025511 3.466053 3.183534 3.756561
age | 7.765166 .2430883 .059586 7.778459 7.177397 8.200629
covar_1_1 | .433247 .1499469 .011251 .416012 .200588 .7827044
covar_2_1 | .0739061 .0723623 .005094 .0786635 -.0836601 .2037509
covar_2_2 | .291677 .0857778 .004919 .279615 .1600136 .4948752

The results are similar to those from

. mixed weight age age2 || id: age, mle
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Gaussian 2-mixture model

We observe outcome y coming from a mixture of two Gaussian

distributions with common variances but different means. The latent
mixing variable z is not observed.

y|z ~ N(uz,0?), z € {1,2},
z ~ Multinomial(my1,m2)

We want to estimate 7;, uj, j = 1,2, and o2.
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Federal interest rates: A two-staged model

Records from the database of the Federal Reserve Bank of Saint Louis
from 1954 to 2010 reveal a period in 1970s and 1980s with unusually high
rates. We want to estimate the levels of moderate and high rates.

. webuse usmacro

A Markov-switching model with switching intercept: see Example 1 in
mswitch manual.

. mswitch dr fedfunds
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Federal interest rates: Gaussian 2-mixture model

. generate id = _n
. fvset base none id

A Gaussian 2-mixture model is applied to the outcome fedfunds

. set seed 12345
. bayesmh fedfunds = (({state:}==1)*{mul}+({state:}==2)*{mu2}), ///

likelihood(normal({sig2})) redefine(state:i.id) ///
prior({state:}, index({p1}, (1-{p1}))) ///
prior({p1}, uniform(0, 1)) ///
prior ({mul} {mu2}, normal(0, 100)) ///
prior({sig2}, igamma(0.1, 0.1)) /17
init({p1} 0.5 {mul} 1 {mu2} 1 {sig2} 1 {state:} 1) ///
block({sig2}, gibbs) block({p1}) block({mui}{mu2}) /17

exclude({state:}) dots
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Federal interest rates: Estimation results

Bayesian normal regression MCMC iterations = 12,500
Metropolis-Hastings and Gibbs sampling Burn-in = 2,500
MCMC sample size = 10,000

Number of obs = 226

Acceptance rate = .5397

Efficiency: min = .02064

avg = .04739

Log marginal likelihood = . max = .1073

Equal-tailed

|
| Mean  Std. Dev. MCSE Median [95% Cred. Intervall]
mul | 4.788393 .2270429 .01207 4.793052 4.323518 5.223823
mu2 | 12.92741 1.195207 .083203 12.87748 10.75527 15.46583
sig2 | 6.889847 .8215697 .025083 6.83881 5.426364 8.668182
pl | .9143812 .0316361 .001953 .9179353 .8443814 .9667421
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Federal interest rates: Histogram plots

. bayesgraph histogram {mul mu2}, /17
byparm(legend(off) noxrescale noyrescale ///
title(Posterior distributions of fund rates)) ///
normal

Posterior distributions of fund rates

mut mu2

15

5 10 15 20 5 10
Graphs by parameter
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Educational research example: 3PL IRT model

@ Predict the effect of subject ability and question difficulty and
discrimination on test performance.

@ We observe binary responses yj; of subjects j = 1,..., K with
abilities §; on items / = 1,...,/ with discrimination parameters a;,

difficulty parameters b;, and guessing parameters c;.

P(yj =1) = ¢i + (1 — ¢;)InvLogit{a;(0; — bi)},
0j ~ N(O, ].) ai >0, ¢ € [0, 1]

@ Hierarchical priors
log(a;) ~ N(pa, 73)

b ~ N(pp, 03)
log(c;) ~ N(pic,0?)
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Bayesian 3PL IRT

P(y,-j = 1) =ci+ (1 — c,-)InvLogit{a,-(Gj — b,)}

. bayesmh y, likelihood(dbernoulli(

{c:}+(1~{c:})*invlogit ({a:}*({theta:}-{b:}))))

redefine(a:i.item)
redefine(c:i.item)

prior({theta:i.id},
prior({a:i.item},
prior({b:i.item},
prior({c:i.item},

redefine(b:i.item)
redefine(theta:i.id)

normal(0, 1))

lognormal ({mua}, {varal}))
normal ({mub}, {varb}))
lognormal ({muc}, {varc}))

prior ({mua}{mub}{muc}, normal(0, 0.1))
prior({vara}{varb}{varc}, igamma(10, 1))

You can find more details in our Stata blog entry:

response theory models using bayesmh.

Nikolay Balov (Stata)

Bayesian hierarchical models in Stata

/17
11/
/17
11/
11/
/17
11/
/17
/17
/17
11/
/17

Bayesian binary item

2016 Stata Conference

53 / 55



Conclusion

The Bayesian hierarchical modeling approach is a powerful tool that
facilitates

@ the representation of complex multilevel data structures
@ the specification of objective priors

@ the modeling by exploiting intra-group correlation across panels
(pooling information across panels)

@ the inference by providing intuitive and comprehensive answers to
research questions

The current suite of commands for Bayesian analysis in Stata makes
hierarchical modeling accessible for a wide variety of problems.
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