
Title stata.com

datetime — Date and time values and variables

Syntax Description Remarks and examples References Also see

Syntax
Syntax is presented under the following headings:

Types of dates and their human readable forms (HRFs)
Stata internal form (SIF)
HRF-to-SIF conversion functions
Displaying SIFs in HRF
Building SIFs from components
SIF-to-SIF conversion
Extracting time-of-day components from SIFs
Extracting date components from SIFs
Conveniently typing SIF values
Obtaining and working with durations
Using dates and times from other software

Also see

[D] datetime translation String to numeric date translation functions
[D] datetime display formats Display formats for dates and times

Types of dates and their human readable forms (HRFs)

Date type Examples of HRFs

datetime 20jan2010 09:15:22.120

date 20jan2010, 20/01/2010, . . .

weekly date 2010w3
monthly date 2010m1
quarterly date 2010q1
half-yearly date 2010h1
yearly date 2010

The styles of the HRFs in the table above are merely examples. Perhaps you prefer 2010.01.20;
Jan. 20, 2010; 2010-1; etc.

With the exception of yearly dates, HRFs are usually stored in string variables. If you are reading
raw data, read the HRFs into strings.

HRFs are not especially useful except for reading by humans, and thus Stata provides another way
of recording dates called Stata internal form (SIF). You can convert HRF dates to SIF.

1

http://stata.com
http://www.stata.com/manuals13/ddatetimetranslation.pdf#ddatetimetranslation
http://www.stata.com/manuals13/ddatetimedisplayformats.pdf#ddatetimedisplayformats

2 datetime — Date and time values and variables

Stata internal form (SIF)

The numeric values in the table below are equivalent to the string values in the table in the previous
section.

SIF type Examples in SIF Units

datetime/c 1,579,598,122,120 milliseconds since 01jan1960 00:00:00.000,
assuming 86,400 s/day

datetime/C 1,579,598,146,120 milliseconds since 01jan1960 00:00:00.000,
adjusted for leap seconds*

date 18,282 days since 01jan1960 (01jan1960 = 0)
weekly date 2,601 weeks since 1960w1
monthly date 600 months since 1960m1
quarterly date 200 quarters since 1960q1
half-yearly date 100 half-years since 1960h1
yearly date 2010 years since 0000

* SIF datetime/C is equivalent to coordinated universal time (UTC). In UTC, leap seconds are
periodically inserted because the length of the mean solar day is slowly increasing. See
Why there are two SIF datetime encodings in [D] datetime translation.

SIF values are stored as regular Stata numeric variables.

You can convert HRFs into SIFs by using HRF-to-SIF conversion functions; see the next section,
called HRF-to-SIF conversion functions.

You can make the numeric SIF readable by placing the appropriate %fmt on the numeric variable;
see Displaying SIFs in HRF, below.

You can convert from one SIF type to another by using SIF-to-SIF conversion functions; see
SIF-to-SIF conversion, below.

SIF dates are convenient because you can subtract them to obtain time between dates, for example,

datetime2 − datetime1= milliseconds between datetime1 and datetime2
(divide by 1,000 to obtain seconds)

date2 − date1 = days between date1 and date2

week2 − week1 = weeks between week1 and week2

month2 − month1 = months between month1 and month2

half2 − half1 = half-years between half1 and half2

year2 − year1 = years between year1 and year2

http://www.stata.com/manuals13/ddatetimetranslation.pdf#ddatetimetranslationRemarksandexamplesWhytherearetwoSIFdatetimeencodings
http://www.stata.com/manuals13/ddatetimetranslation.pdf#ddatetimetranslation

datetime — Date and time values and variables 3

In the remaining text, we will use the following notation:

tc: a Stata double variable containing SIF datetime/c values
tC: a Stata double variable containing SIF datetime/C values

td: a Stata variable containing SIF date values

tw: a Stata variable containing SIF weekly date values
tm: a Stata variable containing SIF monthly date values
tq: a Stata variable containing SIF quarterly date values
th: a Stata variable containing SIF half-yearly date values
ty: a Stata variable containing SIF yearly date values

HRF-to-SIF conversion functions

Function to convert
SIF type HRF to SIF Note

datetime/c tc = clock(HRFstr, mask) tc must be double

datetime/C tC = Clock(HRFstr, mask) tC must be double

date td = date(HRFstr, mask) td may be float or long

weekly date tw = weekly(HRFstr, mask) tw may be float or int
monthly date tm = monthly(HRFstr, mask) tm may be float or int
quarterly date tq = quarterly(HRFstr, mask) tq may be float or int
half-yearly date th = halfyearly(HRFstr, mask) th may be float or int
yearly date ty = yearly(HRFstr, mask) ty may be float or int

Warning: To prevent loss of precision, datetime SIFs must be stored as doubles.

Examples:

1. You have datetimes stored in the string variable mystr, an example being “2010.07.12
14:32”. To convert to SIF datetime/c, you type

. gen double eventtime = clock(mystr, "YMDhm")

The mask "YMDhm" specifies the order of the datetime components. In this case, they are
year, month, day, hour, and minute.

2. You have datetimes stored in mystr, an example being “2010.07.12 14:32:12”. You type

. gen double eventtime = clock(mystr, "YMDhms")

Mask element s specifies seconds. In example 1, there were no seconds; in this example,
there are.

3. You have datetimes stored in mystr, an example being “2010 Jul 12 14:32”. You type

. gen double eventtime = clock(mystr, "YMDhm")

This is the same command that you typed in example 1. In the mask, you specify the order
of the components; Stata figures out the style for itself. In example 1, months were numeric.
In this example, they are spelled out (and happen to be abbreviated).

4 datetime — Date and time values and variables

4. You have datetimes stored in mystr, an example being “July 12, 2010 2:32 PM”. You
type

. gen double eventtime = clock(mystr, "MDYhm")

Stata automatically looks for AM and PM, in uppercase and lowercase, with and without
periods.

5. You have datetimes stored in mystr, an example being “7-12-10 14.32”. The 2-digit year
is to be interpreted as being prefixed with 20. You type

. gen double eventtime = clock(mystr, "MD20Yhm")

6. You have datetimes stored in mystr, an example being “14:32 on 7/12/2010”. You type

. gen double eventtime = clock(mystr, "hm#MDY")

The # sign between m and M means, “ignore one thing between minute and month”, which
in this case is the word “on”. Had you omitted the # from the mask, the new variable
eventtime would have contained missing values.

7. You have a date stored in mystr, an example being “22/7/2010”. In this case, you want
to create an SIF date instead of a datetime. You type

. gen eventdate = date(mystr, "DMY")

Typing

. gen double eventtime = clock(mystr, "DMY")

would have worked, too. Variable eventtime would contain a different coding from that
contained by eventdate; namely, it would contain milliseconds from 1jan1960 rather than
days (1,595,376,000,000 rather than 18,465). Datetime value 1,595,376,000,000 corresponds
to 22jul2010 00:00:00.000.

See [D] datetime translation for more information about the HRF-to-SIF conversion functions.

Displaying SIFs in HRF

Display format to
SIF type present SIF in HRF

datetime/c %tc

datetime/C %tC

date %td

weekly date %tw

monthly date %tm

quarterly date %tq

half-yearly date %th

yearly date %ty

The display formats above are the simplest forms of each of the SIFs. You can control how each
type of SIF date is displayed; see [D] datetime display formats.

http://www.stata.com/manuals13/ddatetimetranslation.pdf#ddatetimetranslation
http://www.stata.com/manuals13/ddatetimedisplayformats.pdf#ddatetimedisplayformats

datetime — Date and time values and variables 5

Examples:

1. You have datetimes stored in string variable mystr, an example being “2010.07.12 14:32”.
To convert to SIF datetime/c and make the new variable readable when displayed, you type

. gen double eventtime = clock(mystr, "YMDhm")

. format eventtime %tc

2. You have a date stored in mystr, an example being “22/7/2010”. To convert to an SIF date
and make the new variable readable when displayed, you type

. gen eventdate = date(mystr, "DMY")

. format eventdate %td

Building SIFs from components

Function to build
SIF type from components

datetime/c tc = mdyhms(M, D, Y, h, m, s)
tc = dhms(td, h, m, s)
tc = hms(h, m, s)

datetime/C tC = Cmdyhms(M, D, Y, h, m, s)
tC = Cdhms(td, h, m, s)
tC = Chms(h, m, s)

date td = mdy(M, D, Y)

weekly date tw = yw(Y, W)

monthly date tm = ym(Y, M)

quarterly date tq = yq(Y, Q)
half-yearly date th = yh(Y, H)

yearly date ty = y(Y)

Warning: SIFs for datetimes must be stored as doubles.

Examples:

1. Your dataset has three variables, mo, da, and yr, with each variable containing a date
component in numeric form. To convert to SIF date, you type

. gen eventdate = mdy(mo, da, yr)

. format eventdate %td

2. Your dataset has two numeric variables, mo and yr. To convert to SIF date corresponding to
the first day of the month, you type

. gen eventdate = mdy(mo, 1, yr)

. format eventdate %td

3. Your dataset has two numeric variables, da and yr, and one string variable, month,
containing the spelled-out month. In this case, do not use the building-from-component
functions. Instead, construct a new string variable containing the HRF and then convert the
string using the HRF-to-SIF conversion functions:

. gen str work = month + " " + string(da) + " " + string(yr)

. gen eventdate = date(work, "MDY")

. format eventdate %td

6 datetime — Date and time values and variables

SIF-to-SIF conversion

To:
From: datetime/c datetime/C date
datetime/c tC = Cofc(tc) td = dofc(tc)
datetime/C tc = cofC(tC) td = dofC(tC)
date tc = cofd(td) tC = Cofd(td)
weekly td = dofw(tw)
monthly td = dofm(tm)
quarterly td = dofq(tq)
half-yearly td = dofh(th)
yearly td = dofy(ty)

To:
From: weekly monthly quarterly
date tw = wofd(td) tm = mofd(td) tq = qofd(td)

To:
From: half-yearly yearly
date th = hofd(td) ty = yofd(td)

To convert between missing entries, use two functions, going through date or datetime as appropriate.
For example, quarterly of monthly is tq = qofd(dofm(tm)).

Examples:

1. You have the SIF datetime/c variable eventtime and wish to create the new variable
eventdate containing just the date from the datetime variable. You type

. gen eventdate = dofc(eventtime)

. format eventdate %td

2. You have the SIF date variable eventdate and wish to create the new SIF datetime/c variable
eventtime from it. You type

. gen double eventtime = cofd(eventdate)

. format eventtime %tc

The time components of the new variable will be set to the default 00:00:00.000.

3. You have the SIF quarterly variable eventqtr and wish to create the new SIF date variable
eventdate from it. You type

. gen eventdate = dofq(eventqtr)

. format eventdate %tq

The new variable, eventdate, will contain 01jan dates for quarter 1, 01apr dates for
quarter 2, 01jul dates for quarter 3, and 01oct dates for quarter 4.

4. You have the SIF datetime/c variable admittime and wish to create the new SIF quarterly
variable admitqtr from it. You type

. gen admitqtr = qofd(dofc(admittime))

. format admitqtr %tq

Because there is no qofc() function, you use qofd(dofc()).

datetime — Date and time values and variables 7

Extracting time-of-day components from SIFs

Desired component Function Example

hour of day hh(tc) or hhC(tC) 14
minutes of day mm(tc) or mmC(tC) 42
seconds of day ss(tc) or ssC(tC) 57.123

Notes:
0 ≤ hh(tc) ≤ 23, 0 ≤ hhC(tC) ≤ 23
0 ≤ mm(tc) ≤ 59, 0 ≤ mmC(tC) ≤ 59
0 ≤ ss(tc) < 60, 0 ≤ ssC(tC) < 61 (sic)

Example:

1. You have the SIF datetime/c variable admittime. You wish to create the new variable
admithour equal to the hour and fraction of hour within the day of admission. You type

. gen admithour = hh(admittime) + mm(admittime)/60 + ss(admittime)/3600

Extracting date components from SIFs

Desired component Function Example*

calendar year year(td) 2013
calendar month month(td) 7
calendar day day(td) 5

day of week dow(td) 2
(0=Sunday)

Julian day of year doy(td) 186
(1=first day)

week within year week(td) 27
(1=first week)

quarter within year quarter(td) 3
(1=first quarter)

half within year halfyear(td) 2
(1=first half)

* All examples are with td=mdy(7,5,2013).
All functions require an SIF date as an argument. To extract components from other SIFs,

use the appropriate SIF-to-SIF conversion function to convert to an SIF date, for example,
quarter(dofq(tq)).

Examples:

1. You wish to obtain the day of week Sunday, Monday, . . . , corresponding to the SIF date
variable eventdate. You type

. gen day_of_week = dow(eventdate)

The new variable, day of week, contains 0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

8 datetime — Date and time values and variables

2. You wish to obtain the day of week Sunday, Monday, . . . , corresponding to the SIF datetime/c
variable eventtime. You type

. gen day_of_week = dow(dofc(eventtime))

3. You have the SIF date variable evdate and wish to create the new SIF date variable evdate r
from it. evdate r will contain the same date as evdate but rounded back to the first of
the month. You type

. gen evdate_r = mdy(month(evdate), 1, year(evdate))

In the above solution, we used the date-component extraction functions month() and year()
and used the build-from-components function mdy().

Conveniently typing SIF values

You can type SIF values by just typing the number, such as 16,237 or 1,402,920,000,000, as in

. gen before = cond(hiredon < 16237, 1, 0) if !missing(hiredon)

. drop if admittedon < 1402920000000

Easier to type is

. gen before = cond(hiredon < td(15jun2004), 1, 0) if !missing(hiredon)

. drop if admittedon < tc(15jun2004 12:00:00)

You can type SIF date values by typing the date inside td(), as in td(15jun2004).

You can type SIF datetime/c values by typing the datetime inside tc(), as in tc(15jun2004
12:00:00).

td() and tc() are called pseudofunctions because they translate what you type into their numerical
equivalents. Pseudofunctions require only that you specify the datetime components in the expected
order, so rather than 15jun2004 above, we could have specified 15 June 2004, 15-6-2004, or 15/6/2004.

The SIF pseudofunctions and their expected component order are

Desired SIF type Pseudofunction

datetime/c tc([day-month-year] hh:mm[:ss [.sss]])

datetime/C tC([day-month-year] hh:mm[:ss [.sss]])

date td(day-month-year)

weekly date tw(year-week)

monthly date tm(year-month)

quarterly date tq(year-quarter)

half-yearly date th(year-half)

yearly date none necessary; just type year

The day-month-year in tc() and tC() are optional. If you omit them, 01jan1960 is assumed.
Doing so produces time as an offset, which can be useful in, for example,

. gen six_hrs_later = eventtime + tc(6:00)

datetime — Date and time values and variables 9

Obtaining and working with durations

SIF values are simply durations from 1960. SIF datetime/c values record the number of milliseconds
from 1jan1960 00:00:00; SIF date values record the number of days from 1jan1960, and so on.

To obtain the time between two SIF variables—the duration—subtract them:

. gen days_employed = curdate - hiredate

. gen double ms_inside = discharge_time - admit_time

To obtain a new SIF that is equal to an old SIF before or after some amount of time, just add or
subtract the desired durations:

. gen lastdate = hiredate + days_employed

. format lastdate %td

. gen double admit_time = discharge_time - ms_inside

. format admit_time %tc

Remember to use the units of the SIF variables. SIF dates are in terms of days, SIF weekly dates
are in terms of weeks, etc., and SIF datetimes are in terms of milliseconds. Concerning milliseconds,
it is often easier to use different units and conversion functions to convert to milliseconds:

. gen hours_inside = hours(discharge_time - admit_time)

. gen admit_time = discharge_time - msofhours(hours_inside)

. format admit_time %tc

Function hours() converts milliseconds to hours. Function msofhours() converts hours to
milliseconds. The millisecond conversion functions are

Function Purpose

hours(ms) convert milliseconds to hours; returns ms/(60 × 60 × 1000)

minutes(ms) convert milliseconds to minutes; returns ms/(60 × 1000)

seconds(ms) convert milliseconds to seconds; returns ms/1000

msofhours(h) convert hours to milliseconds; returns h × 60 × 60 × 1000

msofminutes(m) convert minutes to milliseconds; returns m × 60 × 1000

msofseconds(s) convert seconds to milliseconds; returns s × 1000

If you plan on using returned values to add to or subtract from a datetime SIF, be sure they are
stored as doubles.

Using dates and times from other software

Most software stores dates and times numerically as durations from some sentinel date in specified
units, but they differ on the sentinel date and the units. If you have imported data, it is usually
possible to adjust the numeric date and datetime values to SIF.

10 datetime — Date and time values and variables

Converting SAS dates:

SAS provides dates measured as the number of days since 01jan1960. This is the same coding
as used by Stata:

. gen statadate = sasdate

. format statadate %td

SAS provides datetimes measured as the number of seconds since 01jan1960 00:00:00, assuming
86,400 seconds/day. To convert to SIF datetime/c, type

. gen double statatime = (sastime*1000)

. format statatime %tc

It is important that variables containing SAS datetimes, such as sastime above, be imported
into Stata as doubles.

Converting SPSS dates:

SPSS provides dates and datetimes measured as the number of seconds since 14oct1582 00:00:00,
assuming 86,400 seconds/day. To convert to SIF datetime/c, type

. gen double statatime = (spsstime*1000) + tc(14oct1582 00:00)

. format statatime %tc

To convert to SIF date, type

. gen statadate = dofc((spsstime*1000) + tc(14oct1582 00:00))

. format statadate %td

Converting R dates:

R stores dates as days since 01jan1970. To convert to SIF date, type

. gen statadate = rdate - td(01jan1970)

. format statadate %td

R stores datetimes as the number of UTC-adjusted seconds since 01jan1970 00:00:00. To convert
to SIF datetime/C, type

. gen double statatime = rtime - tC(01jan1970 00:00)

. format statatime %tC

To convert to SIF datetime/c, type

. gen double statatime = cofC(rtime - tC(01jan1970 00:00))

. format statatime %tc

There are issues of which you need to be aware when working with datetime/C values; see
Why there are two SIF datetime encodings and Advice on using datetime/c and datetime/C,
both in [D] datetime translation.

Converting Excel dates:

If you have data in an Excel format file, you may want to use the import excel command.
If the Excel file contains numerically encoded dates, import excel will read those dates and
properly code them in SIF. You do not need to perform any conversion after importing your
data with import excel.

On the other hand, if you copy and paste a spreadsheet into Stata’s editor, dates and datetimes
are pasted as strings in HRF. The discussion below concerns converting such HRF datetime
strings to SIF numeric values.

http://www.stata.com/manuals13/ddatetimetranslation.pdf#ddatetimetranslationRemarksandexamplesWhytherearetwoSIFdatetimeencodings
http://www.stata.com/manuals13/ddatetimetranslation.pdf#ddatetimetranslationRemarksandexamplesAdviceonusingdatetime/canddatetime/C
http://www.stata.com/manuals13/ddatetimetranslation.pdf#ddatetimetranslation

datetime — Date and time values and variables 11

Excel has used different date systems across operating systems. Excel for Windows used the
“1900 Date System”. Excel for Mac used the “1904 Date System”. More recently, Excel has
been standardizing on the 1900 Date System on all operating systems.

Regardless of operating system, Excel can use either encoding. See
http://support.microsoft.com/kb/214330 for instructions on converting workbooks between date
systems.

Converted dates will be off by four years if you choose the wrong date system.

Converting Excel 1900-Date-System dates:

For dates on or after 01mar1900, Excel stores dates as days since 30dec1899. To convert to a
Stata date,

. gen statadate = exceldate + td(30dec1899)

. format statadate %td

Excel can store dates between 01jan1900 and 28feb1900, but the formula above will not handle
those two months. See http://www.cpearson.com/excel/datetime.htm for more information.

For datetimes on or after 01mar1900 00:00:00, Excel stores datetimes as days plus fraction of
day since 30dec1899 00:00:00. To convert with a one-second resolution to a Stata datetime,

. gen statatime = round((exceltime+td(30dec1899))*86400)*1000

. format statatime %tc

Converting Excel 1904-Date-System dates:

For dates on or after 01jan1904, Excel stores dates as days since 01jan1904. To convert to a
Stata date,

. gen statadate = exceldate + td(01jan1904)

. format statadate %td

For datetimes on or after 01jan1904 00:00:00, Excel stores datetimes as days plus fraction of
day since 01jan1904 00:00:00. To convert with a one-second resolution to a Stata datetime,

. gen statatime = round((exceltime+td(01jan1904))*86400)*1000

. format statatime %tc

Converting OpenOffice dates:

OpenOffice uses the Excel 1900 Date System described above.

Converting Unix time:

Unix time is stored as the number of seconds since midnight, 01jan1970. To convert to a Stata
datetime,

. generate double statatime = unixtime + mdyhms(1,1,1970,0,0,0)

To convert to a Stata date,

. generate statadate = dofc(unixtime + mdyhms(1,1,1970,0,0,0))

Description
Syntax above provides a complete overview of Stata’s date and time values. Also see [D] datetime

translation and [D] datetime display formats for additional information.

http://support.microsoft.com/kb/214330
http://www.cpearson.com/excel/datetime.htm
http://www.stata.com/manuals13/ddatetimetranslation.pdf#ddatetimetranslation
http://www.stata.com/manuals13/ddatetimetranslation.pdf#ddatetimetranslation
http://www.stata.com/manuals13/ddatetimedisplayformats.pdf#ddatetimedisplayformats

12 datetime — Date and time values and variables

Remarks and examples stata.com

The best way to learn about Stata’s date and time functions is to experiment with them using the
display command; see [P] display.

. display date("5-12-1998", "MDY")
14011

. display %td date("5-12-1998", "MDY")
12may1998

. display clock("5-12-1998 11:15", "MDY hm")
1.211e+12

. display %20.0gc clock("5-12-1998 11:15", "MDY hm")
1,210,590,900,000

. display %tc clock("5-12-1998 11:15", "MDY hm")
12may1998 11:15:00

With display, you can specify a format in front of the expression to specify how the result is to
be formatted.

References
Cox, N. J. 2010. Stata tip 68: Week assumptions. Stata Journal 10: 682–685.

. 2012. Stata tip 111: More on working with weeks. Stata Journal 12: 565–569.

Dyck, A. 2011. Working with Unix timestamps in Stata. Statabytes.
http://statabytes.andrewdyck.com/blog/working-with-unix-timestamps-in-stata/.

Gould, W. W. 2011. Using dates and times from other software. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2011/01/05/using-dates-and-times-from-other-software/.

Also see
[D] datetime business calendars — Business calendars

[D] datetime display formats — Display formats for dates and times

[D] datetime translation — String to numeric date translation functions

http://stata.com
http://www.stata.com/manuals13/pdisplay.pdf#pdisplay
http://www.stata-journal.com/article.html?article=dm0052
http://www.stata-journal.com/article.html?article=dm0065
http://statabytes.andrewdyck.com/blog/working-with-unix-timestamps-in-stata/
http://statabytes.andrewdyck.com/blog/working-with-unix-timestamps-in-stata/
http://blog.stata.com/2011/01/05/using-dates-and-times-from-other-software/
http://blog.stata.com/2011/01/05/using-dates-and-times-from-other-software/
http://www.stata.com/manuals13/ddatetimebusinesscalendars.pdf#ddatetimebusinesscalendars
http://www.stata.com/manuals13/ddatetimedisplayformats.pdf#ddatetimedisplayformats
http://www.stata.com/manuals13/ddatetimetranslation.pdf#ddatetimetranslation

