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Description
xtvar fits vector autoregressive (VAR) models to panel data. Similar to VAR models for time-series

data, xtvar models each dependent variable as a function of its own lags, the lags of all other
dependent variables, and a panel-level fixed effect. Other explanatory variables can be added to the
model as well; these variables can be predetermined, fully exogenous, or endogenous.

Quick start
Fit a panel-data VAR model with dependent variables y1, y2, and y3 using xtset data

xtvar y1 y2 y3

Same as above, but use three lags of the dependent variables instead of one lag
xtvar y1 y2 y3, lags(3)

Same as above, but limit the number of lags of the dependent variables used as instruments to two
xtvar y1 y2 y3, lags(3) maxldep(2)

Same as above, but include exogenous variables x1 and x2

xtvar y1 y2 y3, lags(3) maxldep(2) exogenous(x1 x2)

Same as above, but use first differences instead of the default forward-orthogonal deviations
xtvar y1 y2 y3, lags(3) maxldep(2) exogenous(x1 x2) fd

Same as above, but use the one-step generalized method of moments (GMM) estimator instead of the
default two-step estimator

xtvar y1 y2 y3, lags(3) maxldep(2) exogenous(x1 x2) fd onestep

Menu
Statistics > Longitudinal/panel data > Dynamic panel data (DPD) > Panel-data VAR estimation
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2 xtvar — Panel-data vector autoregressive models+

Syntax
xtvar depvarlist

[
if
] [

in
] [

, options
]

options Description

Model

lags(#) specify the number of lags for the dependent variables;
default is lags(1)

fodeviation use forward-orthogonal deviations to remove fixed effects;
the default

fd use first differences to remove fixed effects
minldep(#) specify minimum number of lags of dependent, endogenous, and

predetermined variables to use as instruments;
default is minldep(1)

maxldep(#) specify maximum lags of dependent, endogenous, and
predetermined variables to use as instruments; default is all lags

collapse collapse moment conditions from all time periods within each panel

Additional regressors

exogenous(varlist) specify strictly exogenous regressors
endogenous(varlist) specify endogenous variables
predetermined(varlist) specify predetermined variables

SE/Robust

vce(vcetype) vcetype may be wcrobust, robust, bootstrap, or jackknife;
default is vce(wcrobust) for the two-step estimator
and vce(robust) for the one-step estimator

Reporting

level(#) set confidence level; default is level(95)

display options control columns and column formats, row spacing, and line width

GMM

winitial(xt | identity) specify initial weight matrix; default is winitial(xt)

onestep use the one-step GMM estimator rather than the two-step
GMM estimator

coeflegend display legend instead of statistics

You must xtset your data before using xtvar; see [XT] xtset.
depvarlist and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, collect, and statsby are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

� � �
Model �

lags(#) specifies the lags of the dependent variables to be included in the model. The default is
lags(1).

fodeviation requests that the fixed effects be removed from the model by applying the forward-
orthogonal-deviation (FOD) transformation to all variables in the model. This is the default.

fd requests that the fixed effects be removed from the model by taking first-difference (FD) transfor-
mation of all variables in the model.

minldep(#) specifies the minimum number of lags of the dependent, endogenous, and predetermined
variables that need to be available for use as instruments for an observation to be included in the
estimation sample.

maxldep(#) specifies the maximum number of lags of the dependent, endogenous, and predetermined
variables to use as instruments. The default is to use all available lags of all of these variables as
instruments. To request the default explicitly, specify maxldep(.).

The number of lags of the predetermined variables, vit, that will be used as instruments is actually
# + 1. This is because for time t, vi,t−1 is a valid instrument, but the same is not true for the
dependent variables or endogenous variables.

collapse requests that xtvar use a version of the moment conditions that sums across t within each
panel. The standard GMM estimator can be severely biased when the number of moment conditions
(which are based on the number of instruments) is large, as often happens with dynamic panel-data
models. Collapsing the moment conditions ameliorates that bias at the expense of yielding a
less-efficient estimator.

� � �
Additional regressors �

exogenous(varlist) specifies a list of strictly exogenous variables to be included as regressors in the
model.

endogenous(varlist) specifies a set of endogenous variables to be included in the model. By default,
all available lags for these endogenous variables will be used as instruments; additionally, at least
one lag of the endogenous variables must be available for an observation to be included in the
estimation sample. You can use the maxldep() option to specify the maximum number of lags to
use as instruments and the minldep() option to specify the minimum number of lags that need
to be available to use as instruments for an observation to be included in the estimation sample.

predetermined(varlist) specifies a set of predetermined variables to be included in the model. A
predetermined variable is a variable that at time t is affected by the error terms in previous time
periods but not affected by the error terms in the current time period, t. By default, all available
lags for these predetermined variables will be used as instruments; additionally, at least one lag of
the predetermined variables must be available for an observation to be included in the estimation
sample. You can use the maxldep() option to specify the maximum number of lags to use as
instruments and the minldep() option to specify the minimum number of lags that need to be
available to use as instruments for an observation to be included in the estimation sample.
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4 xtvar — Panel-data vector autoregressive models+

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to
some kinds of misspecification (wcrobust, robust) and that use bootstrap or jackknife methods
(bootstrap, jackknife); see [XT] vce options.

vce(wcrobust), the default with the two-step estimator, requests the Windmeijer (2005) robust
variance–covariance estimator, which corrects for the downward bias of the usual GMM cluster–
robust variance–covariance estimator. This option is not available if you request the one-step
estimator with the onestep option.

vce(robust), the default with the one-step estimator, requests the robust (sandwich) GMM
variance–covariance estimator (VCE), which allows for intragroup correlation at the panel level.
This is the default if you specify the onestep option. In small samples, this performs well
with the one-step GMM estimator but is downward biased with the two-step estimator.

vce(bootstrap) and vce(jackknife) request VCEs based on the bootstrap or jackknife, re-
spectively, where sampling is done at the panel level.

� � �
Reporting �

level(#); see [R] Estimation options.

display options: noci, nopvalues, vsquish, cformat(% fmt), pformat(% fmt), sformat(% fmt),
and nolstretch; see [R] Estimation options.

� � �
GMM �

winitial(xt | identity) specifies the initial weight matrix.

winitial(xt), the default, specifies an initial weight matrix based on the instruments specified
with the model; additionally, this matrix assumes the idiosyncratic errors are homoskedastic.
The exact form of the matrix depends on whether the FOD or FD transform is used to remove
the model’s fixed effects. See Estimators in Methods and formulas for more details.

winitial(identity) requests that the identity matrix be used as the initial weight matrix.

onestep specifies that the one-step estimator be calculated; the default is to use the two-step estimator.

The following option is available with xtvar but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples stata.com

Remarks are presented under the following headings:

Introduction
Panel-data VAR model formulation
Fitting a panel-data VAR model with xtvar
Modifying lags
Reducing moment conditions by collapsing the instrument matrix
Lag-order selection
Including endogenous covariates
Lag exclusion tests
Granger causality test
Verifying the stability condition of the VAR
IRFs
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Introduction

In a panel-data VAR model, each dependent variable is modeled as a function of its own lags,
the lags of all other dependent variables, a panel-level fixed effect, and possibly other additional
covariates. Therefore, panel-data VAR models combine elements of dynamic panel-data estimators
and elements of time-series VAR models. To better understand the estimators implemented by xtvar,
you should familiarize yourself with the Arellano and Bond (1991) estimator for dynamic panels
(described in [XT] xtabond) as well as time-series VARs (described in [TS] var).

Below, we provide a short formal introduction to panel-data VAR models and their estimation;
you can find more technical details in Methods and formulas. Then we provide a practical guide on
how to fit a panel-data VAR model using xtvar and how to specify options that address common
issues that arise with these models. We demonstrate how to check whether your model satisfies the
moment conditions that are necessary for correct specification. We then examine the options available
to reduce the number of moment conditions in the model and discuss in which cases you might
want to use them. Additionally, we present the postestimation tools available after xtvar that can
be used for diagnostics, testing, and interpretation. Many of these commands are ones you would
use after fitting a VAR model using var. For instance, we discuss impulse–response functions (IRFs),
which can be obtained by using the irf commands, to see the effects of a shock on an endogenous
variable on itself or other endogenous variables; Granger causality tests, which can be performed by
using vargranger; model selection that can be performed by using xtvarsoc; and lag-exclusion
restrictions that can be tested by using varwle.

Panel-data VAR model formulation
Here we introduce basic aspects of a panel-data VAR model. As we mentioned above, this model

combines elements of a dynamic panel-data model and elements of a VAR model. A benefit of a
panel-data VAR model over a dynamic panel-data model is that we can model multiple dependent
variables and their intertemporal relation. A benefit over a VAR model is that we can account for
time-invariant heterogeneity. From both frameworks, we get the benefit of being able to explore
dynamic behavior.

Panel-data VAR models express each of a set of K variables as a linear function of p of its own lags,
p lags of the other K − 1 variables, and, optionally, other covariates. The most general panel-data
VAR model with p lags that xtvar accommodates is

yit = A1yi,t−1 + A2yi,t−2 + · · ·+ Apyi,t−p + Bxit + Cwit + Dvit + ui + εit (1)

where

yit is a K × 1 vector of dependent variables;

A1,A2, . . . ,Ap are K ×K matrices of parameters;

xit is an M1 × 1 vector of strictly exogenous variables;

B is a K ×M1 matrix of parameters;

wit is an M2 × 1 vector of endogenous variables;

C is a K ×M2 matrix of parameters;

vit is an M3 × 1 vector of predetermined variables;

D is a K ×M3 matrix of parameters;

ui is a K × 1 fixed-effects vector;

εit is a K × 1 vector of serially uncorrelated idiosyncratic errors;

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
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i = 1, . . . , N denotes the ith panel; and

t = 1, . . . , T denotes the tth time period.

Note that (1) does not include a constant term because it cannot be identified together with the fixed
effects ui.

Strictly exogenous variables, xit, are uncorrelated with past, present, or future realizations of the
error term. Endogenous regressors, wit, on the other hand, may be correlated with the present and past
realizations of the error term. Predetermined variables, vit, represent an intermediate case; they are not
correlated with the present period’s error term but may be correlated with past realizations of it. Both
endogenous and predetermined variables are assumed to be uncorrelated with the future realizations
of the error term. The sets of exogenous, endogenous, and predetermined variables determine the
instrument set to be used and the complexity of your model.

To simplify our discussion, suppose that the only covariates in the model are the lags of the
dependent variables. Thus, we have

yit = A1yi,t−1 + A2yi,t−2 + · · ·+ Apyi,t−p + ui + εit (2)

To fit this model, we first need to remove the fixed-effect term ui. xtvar provides two ways to do
that: using either the FD transformation or the FOD transformation. See Eliminating the fixed effect
in Methods and formulas for full descriptions of these transformations.

Applying the FD transformation to (2), we obtain

(yit − yi,t−1) = A1 (yi,t−1 − yi,t−2) + · · ·+ Ap (yi,t−p − yi,t−p−1) + (εit − εi,t−1)

Using tildes to represent transformed variables, we can write this more succinctly as

ỹit = A1ỹi,t−1 + A2ỹi,t−2 + · · ·+ Apỹi,t−p + ε̃it (3)

While we used the FD transformation, the discussion that follows also applies if ỹ and ε̃ were produced
by the FOD transformation.

Note that the first period at which we can evaluate (3) is t = p+ 2.

We have removed the fixed-effect term, but the transformed regressor ỹi,t−1 is still endogenous
because it is correlated with the transformed error ε̃i,t−1 (through its dependence on εi,t−1). As
shown by Nerlove (1967) and Nickell (1981) in the single-equation context, failing to account for
this endogeneity may result in considerable bias, specially when T is small.

We must therefore find suitable instruments, zit, that are correlated with our endogenous regressors
but not with our error term. We use the moment conditions E{vec(zitε̃

′
it)} = 0 and GMM to estimate

our parameters. The asymptotics of the GMM estimator rely on the number of panels going to infinity,
so it is important that the number of panels in your data is not too small. For more background
on GMM, Hayashi (2000), Cameron and Trivedi (2022), and Wooldridge (2010) provide textbook
treatments. The monograph by Hall (2005) contains more detail. Also see [R] gmm. For more on the
specific application of the GMM estimator in the context of panel-data VAR models, see A concise
representation of the GMM estimator in Methods and formulas.

As in the dynamic panel literature (see Arellano and Bond [1991]), we can use the lags of
the dependent variables as instruments for our endogenous regressors. Specifically, for endogenous
regressor ỹi,t−1, we can use yi,t−2, yi,t−3, . . . , yi,1, as instruments. Similarly, for endogenous
regressor ỹi,t−2, we can use lags 3 and greater of yi,t as instruments, and so on.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
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The total number of moment conditions in our GMM estimator grows rapidly with the T and K. In
fact, the number of moment conditions in this simplified model with no additional covariates equals
(K2/2)(T − p − 1)(T + p − 2). This multiplicity of moment conditions (and the multiplicity of
instruments from which they are derived) poses serious challenges to estimation via GMM because
some of the instruments may be only weakly relevant. See Han and Phillips (2006), Stock and
Wright (2000), and Roodman (2009a).

xtvar has tools to ameliorate the issues arising from instrument proliferation. We can use the
maxldep() and collapse options. The maxldep() option caps the total number of lags used as
instruments for each endogenous regressor. So, for instance, specifying maxldep(2) requests that
at most two lags be used as instruments for each endogenous regressor. The collapse option, on
the other hand, reduces the number of moment conditions by taking averages of individual moment
conditions and specifying the GMM estimator in terms of the averaged conditions instead of the
individual ones. We will illustrate how to use the maxldep() and collapse options in the examples
below.

So far, we have mentioned issues that are inherent to dynamic panel-data models. We also need to
address the VAR dimension. We need to select the number of lags to include in our model, check that
we have a stationary process, verify that the relationships between dependent variables are meaningful
and have predictive power, and estimate the effects of shocks over time. We can do this with xtvar
and its postestimation tools as we will demonstrate in examples below.

Fitting a panel-data VAR model with xtvar

Example 1: Our first panel VAR

Blomquist and Dahlberg (1999) used a dataset consisting of 265 Swedish municipalities observed
over 9 years. For each municipality, the dataset has variables recording expenditures, revenues, and
grants from the central government. We want to fit a panel-data VAR to see how grants from the
central government affect municipalities’ expenditures and revenues over time. We first load in the
dataset and describe its panel structure:

. use https://www.stata-press.com/data/r18/swedishgov
(1979-1987 Swedish municipality data)

. xtdescribe

idcode: 114, 115, ..., 2584 n = 265
year: 1979, 1980, ..., 1987 T = 9

Delta(year) = 1 year
Span(year) = 9 periods
(idcode*year uniquely identifies each observation)

Distribution of T_i: min 5% 25% 50% 75% 95% max
9 9 9 9 9 9 9

Freq. Percent Cum. Pattern

265 100.00 100.00 111111111

265 100.00 XXXXXXXXX

The data have already been xtset to specify that idcode is the panel identifier and year is the
time variable. The output from xtdescribe shows that we have nine years of data and that there are
no gaps in our dataset. xtvar supports datasets with gaps, but we defer that discussion until later.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
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We fit a panel-data VAR with dependent variables expenditures, revenue, and grants as
follows:

. xtvar expenditure revenues grants

Panel-data vector autoregression Number of obs = 1,855
Group variable: idcode Number of groups = 265
Time variable: year Obs per group:

min = 7
Number of moment conditions = 252 avg = 7.0

max = 7
Fixed-effects transform: FOD
Two-step results

(Std. err. adjusted for 265 clusters in idcode)

WC robust
Coefficient std. err. z P>|z| [95% conf. interval]

expenditures
expenditures

L1. .2839341 .06484 4.38 0.000 .1568501 .4110182

revenues
L1. -.0451041 .0622281 -0.72 0.469 -.167069 .0768607

grants
L1. -1.68128 .2770326 -6.07 0.000 -2.224254 -1.138307

revenues
expenditures

L1. .2568554 .0781264 3.29 0.001 .1037304 .4099804

revenues
L1. .0598285 .0709236 0.84 0.399 -.0791791 .1988361

grants
L1. -2.24419 .2805223 -8.00 0.000 -2.794003 -1.694376

grants
expenditures

L1. .0164546 .0165141 1.00 0.319 -.0159124 .0488215

revenues
L1. -.0404274 .0143271 -2.82 0.005 -.068508 -.0123468

grants
L1. .3179538 .0506388 6.28 0.000 .2187037 .4172039

Hansen’s test of overid. restrictions: chi2(243) = 264.16 Prob > chi2 = 0.168
GMM-type instruments: L(2/.).(expenditures revenues grants)

The first part of the output summarizes the panel structure of the estimation sample. The right-hand
side shows that we have 265 groups (or panels) and 7 observations per group. The left-hand side
shows that we used the FOD transformation and the default two-step GMM estimator with 252 moment
conditions.

The coefficient table shows the estimated coefficients, standard errors, and related information.
Our panel-data VAR includes three dependent variables, so there are three equations displayed in the
table. We also have, by default, one lag of each dependent variable, so for each equation we see the
coefficients for the first lag of each of the three variables.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
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Standard errors are labeled WC robust, meaning that they are based on the correction proposed in
Windmeijer (2005) and thus robust to arbitrary within-panel correlation. We recommend using these
standard errors with the two-step GMM estimator.

The footer of the table provides two valuable pieces of information: Hansen’s J test of overiden-
tifying restrictions and the instruments used to fit the model. A rejection of Hansen’s test indicates
that the moment conditions necessary for the correct specification of the model do not seem to hold.
In this case, the test did not reject the null hypothesis that the moment conditions of our model hold.

Modifying lags

While Hansen’s J test did not indicate a problem with our model, we have reasons to believe
that the effect of government grants on expenditures and revenues may last for more than one period.
This would imply that our model with just one lag is misspecified. In the next examples, we explore
models with more lags to address this issue, and we use postestimation tools to select the optimal
number of lags and test their relevance in the model.

Example 2: Adding lags and restricting the number used as instruments

To allow for dependence among dependent variables beyond the first lag, we can specify the
lags() option; here we use two lags of the dependent variables by specifying lags(2).

In example 1, we used all available lags of the dependent variables as instruments. This resulted in
252 moment conditions. As we mentioned before, having a proliferation of instruments and moment
conditions makes our estimates less reliable. To reduce the number of moment conditions in the
model, we specify the maxldep(2) option and fit our model using at most two lags as instruments
for each endogenous regressor.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
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. xtvar expenditures revenues grants, lags(2) maxldep(2)

Panel-data vector autoregression Number of obs = 1,590
Group variable: idcode Number of groups = 265
Time variable: year Obs per group:

min = 6
Number of moment conditions = 108 avg = 6.0

max = 6
Fixed-effects transform: FOD
Two-step results

(Std. err. adjusted for 265 clusters in idcode)

WC robust
Coefficient std. err. z P>|z| [95% conf. interval]

expenditures
expenditures

L1. .1956019 .1147648 1.70 0.088 -.0293329 .4205367
L2. .0017664 .100328 0.02 0.986 -.1948728 .1984056

revenues
L1. -.163357 .1162282 -1.41 0.160 -.39116 .0644459
L2. -.3363544 .1003698 -3.35 0.001 -.5330756 -.1396332

grants
L1. -4.08135 .6900914 -5.91 0.000 -5.433904 -2.728796
L2. -1.883438 .2732505 -6.89 0.000 -2.418999 -1.347877

revenues
expenditures

L1. .1709229 .1220747 1.40 0.161 -.0683391 .4101848
L2. .0525276 .1051278 0.50 0.617 -.1535191 .2585742

revenues
L1. -.092228 .1237745 -0.75 0.456 -.3348216 .1503656
L2. -.32843 .0984127 -3.34 0.001 -.5213154 -.1355446

grants
L1. -4.7028 .6957627 -6.76 0.000 -6.06647 -3.33913
L2. -2.054873 .2618687 -7.85 0.000 -2.568126 -1.54162

grants
expenditures

L1. .0162825 .018789 0.87 0.386 -.0205433 .0531083
L2. .0180168 .0164781 1.09 0.274 -.0142796 .0503132

revenues
L1. -.0281669 .0177173 -1.59 0.112 -.0628921 .0065583
L2. -.0162105 .0161942 -1.00 0.317 -.0479506 .0155296

grants
L1. .2331196 .0762458 3.06 0.002 .0836807 .3825586
L2. .1016583 .0487391 2.09 0.037 .0061315 .1971852

Hansen’s test of overid. restrictions: chi2(90) = 228.48 Prob > chi2 = 0.000
GMM-type instruments: L(2/3).(expenditures revenues grants)

The bottom of the output now indicates that we have instrumented each of the endogenous regressors
using lags two and three (L(2/3)) of the dependent variables when both are available. Otherwise, we
instrumented the endogenous regressor using just lag two. The number of moment conditions is now
108 versus 252 in example 1. We have made progress in reducing the number of moment conditions.
However, Hansen’s J test provides strong evidence that our moment conditions are not valid. So we

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
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would hesitate to use these results without further investigation. You can verify that when we fit the
model specifying maxldep(1) or maxldep(3), we continue to reject the null hypothesis that our
moment conditions are valid.

One possibility is that our lag specification of the model is still inadequate. If we do not include
enough lags in the model, then the errors could be serially correlated. In that case, lags two and
greater of the dependent variables are no longer valid instruments. Let’s explore a model with four
lags of the dependent variables as regressors and a maximum of two lags of the dependent variables
to be used as instruments.

. xtvar expenditures revenues grants, lags(4) maxldep(2)

Panel-data vector autoregression Number of obs = 1,060
Group variable: idcode Number of groups = 265
Time variable: year Obs per group:

min = 4
Number of moment conditions = 72 avg = 4.0

max = 4
Fixed-effects transform: FOD
Two-step results

(Std. err. adjusted for 265 clusters in idcode)

WC robust
Coefficient std. err. z P>|z| [95% conf. interval]

expenditures
expenditures

L1. .3043156 .2596238 1.17 0.241 -.2045376 .8131689
L2. .176059 .2198797 0.80 0.423 -.2548973 .6070153
L3. .0807466 .2439179 0.33 0.741 -.3973237 .558817
L4. .362827 .4003709 0.91 0.365 -.4218855 1.147539

revenues
L1. -.2788411 .2972961 -0.94 0.348 -.8615308 .3038486
L2. -.2349415 .2596951 -0.90 0.366 -.7439345 .2740515
L3. -.2040393 .2356327 -0.87 0.387 -.6658708 .2577923
L4. -.5232187 .3816921 -1.37 0.170 -1.271321 .224884

grants
L1. 1.012279 .9715139 1.04 0.297 -.891853 2.916412
L2. .3069275 .4503541 0.68 0.496 -.5757503 1.189605
L3. 1.000217 .5569212 1.80 0.072 -.0913287 2.091762
L4. .077072 1.548516 0.05 0.960 -2.957963 3.112107

revenues
expenditures

L1. .5287675 .2030516 2.60 0.009 .1307937 .9267412
L2. .3753373 .1738501 2.16 0.031 .0345973 .7160773
L3. .2828897 .1838684 1.54 0.124 -.0774858 .6432651
L4. .693354 .3521214 1.97 0.049 .0032087 1.383499

revenues
L1. -.4533828 .2293747 -1.98 0.048 -.902949 -.0038167
L2. -.4150536 .207767 -2.00 0.046 -.8222694 -.0078378
L3. -.4150709 .1865944 -2.22 0.026 -.7807891 -.0493527
L4. -.7522478 .3355086 -2.24 0.025 -1.409833 -.0946629

grants
L1. .0457337 .7650976 0.06 0.952 -1.45383 1.545298
L2. -.1807682 .3181763 -0.57 0.570 -.8043823 .442846
L3. .5877744 .5370399 1.09 0.274 -.4648045 1.640353
L4. -.5295232 1.330482 -0.40 0.691 -3.137221 2.078174
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grants
expenditures

L1. -.0747673 .0932016 -0.80 0.422 -.2574391 .1079044
L2. -.039655 .0806699 -0.49 0.623 -.1977651 .118455
L3. -.1083643 .0865062 -1.25 0.210 -.2779134 .0611848
L4. -.0165543 .1265477 -0.13 0.896 -.2645833 .2314747

revenues
L1. .0551585 .1044118 0.53 0.597 -.1494848 .2598018
L2. .0471306 .0934546 0.50 0.614 -.1360369 .2302982
L3. .1051582 .0851519 1.23 0.217 -.0617365 .2720529
L4. -.0509242 .1199238 -0.42 0.671 -.2859705 .184122

grants
L1. -.2410357 .2761211 -0.87 0.383 -.7822232 .3001517
L2. -.0788769 .141957 -0.56 0.578 -.3571075 .1993537
L3. .2370528 .2222193 1.07 0.286 -.1984889 .6725946
L4. .2673538 .4635082 0.58 0.564 -.6411055 1.175813

Hansen’s test of overid. restrictions: chi2(36) = 38.80 Prob > chi2 = 0.345
GMM-type instruments: L(2/3).(expenditures revenues grants)

As we can see from Hansen’s J test, we cannot reject the null that the moment conditions in our
model hold. We were previously concerned about both the lag structure and the number of instruments.
Hansen’s J test suggests that the lag structure was the more relevant concern in our case.

Reducing moment conditions by collapsing the instrument matrix

Collapsing the instrument matrix (and thus collapsing the moment conditions) is another alternative
to address the issues that come with instrument proliferation. We explore it in the next example.

Example 3: Collapsing the instrument matrix

We refit our municipal finance model with two lags. This time we use all available lags as
instruments but request the collapsed version of the instrument matrix by specifying the collapse
option. This reduces the number of moment conditions because the GMM estimation now uses average
moment conditions across time instead of individual moment conditions.
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. xtvar expenditures revenues grants, lags(2) collapse

Panel-data vector autoregression Number of obs = 1,590
Group variable: idcode Number of groups = 265
Time variable: year Obs per group:

min = 6
Number of moment conditions = 63 (collapsed) avg = 6.0

max = 6
Fixed-effects transform: FOD
Two-step results

(Std. err. adjusted for 265 clusters in idcode)

WC robust
Coefficient std. err. z P>|z| [95% conf. interval]

expenditures
expenditures

L1. .1900148 .1513004 1.26 0.209 -.1065285 .4865581
L2. .0327313 .147236 0.22 0.824 -.2558458 .3213085

revenues
L1. -.2920254 .1556137 -1.88 0.061 -.5970226 .0129719
L2. -.4337591 .1341645 -3.23 0.001 -.6967167 -.1708014

grants
L1. -5.062357 .9626468 -5.26 0.000 -6.94911 -3.175604
L2. -2.221608 .4108095 -5.41 0.000 -3.02678 -1.416436

revenues
expenditures

L1. .1919241 .1543727 1.24 0.214 -.1106408 .494489
L2. .095686 .1481062 0.65 0.518 -.1945967 .3859688

revenues
L1. -.2275803 .1544383 -1.47 0.141 -.5302737 .0751132
L2. -.4275827 .1291448 -3.31 0.001 -.6807018 -.1744635

grants
L1. -5.526232 .9128089 -6.05 0.000 -7.315304 -3.737159
L2. -2.382141 .3992335 -5.97 0.000 -3.164624 -1.599658

grants
expenditures

L1. .0107939 .0220194 0.49 0.624 -.0323634 .0539512
L2. .0176607 .0170148 1.04 0.299 -.0156878 .0510092

revenues
L1. -.0191644 .0198971 -0.96 0.335 -.058162 .0198332
L2. -.0103149 .016148 -0.64 0.523 -.0419645 .0213346

grants
L1. .3128186 .0756299 4.14 0.000 .1645867 .4610504
L2. .1347204 .0584898 2.30 0.021 .0200826 .2493582

Hansen’s test of overid. restrictions: chi2(45) = 211.25 Prob > chi2 = 0.000
GMM-type instruments: L(2/.).(expenditures revenues grants)

The number of moment conditions after collapsing is 63, which is considerably smaller than with
the previous examples. In the header of the output, the moment conditions are labeled “(collapsed)”
to indicate that xtvar used a collapsed instrument matrix as we requested.
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Despite the significant reduction in the number of moment conditions, we see that Hansen’s J
test still suggests our moment conditions are not valid. As we mentioned at the end of the previous
example, the real solution is to increase the number of lags we include in the model.

Lag-order selection
So far, we have explored how we can use different options to modify the model we fit and what

this implies regarding the number of parameters, the instruments in our model, and Hansen’s J test.
Rather than fitting many models manually and comparing results, we can use the xtvarsoc command
to help select the number of lags to satisfy the moment conditions.

Example 4: Reconsidering the lag order

After fitting a model with xtvar, we can use xtvarsoc to obtain model- and moment-selection
criteria (MMSC) to help determine the correct lag length in our model. MMSC are an adaption of the
Akaike (1973) information criterion (AIC), Schwarz’s (1978) Bayesian information criterion (BIC),
and Hannan and Quinn (1979) information criterion (HQIC) for panel-data VAR models. Panel-data
VARs are fit using GMM, and no distributional assumptions are made; this precludes the computation
of a likelihood function and the standard information criteria.

Andrews and Lu (2001) developed variants of the AIC, BIC, and HQIC for use with dynamic
panel-data models. They refer to their statistics as MMSC (rather than using lag-order selection criteria
terminology used with time-series VARs) because their statistics can be used not only to select a lag
length but also to select a set of instruments conditional on lag length. We will refer to the three of
Andrews and Lu’s statistics implemented by xtvarsoc as MMSC-AIC, MMSC-BIC, and MMSC-HQIC.
These statistics are based on Hansen’s J test statistic rather than the maximized likelihood function
value, and they apply penalty factors for the sample size and number of overidentifying restrictions.
Here we use xtvarsoc to obtain the MMSC statistics for a range of panel-data VAR models based
on the instrument specification of our model with two lags and a maximum of two lags used as
instruments. We will request that xtvarsoc consider models with up to four lags. We type

. xtvar expenditures revenues grants, lags(2) maxldep(2)
(output omitted )

. xtvarsoc, maxlag(4)

Model- and moment-selection criteria

Hansen’s MMSC- MMSC- MMSC-
Lag N MC J df p AIC BIC HQIC

1 1060 72 206.44 63 0.000 80.443 -232.42* -38.129
2 1060 72 182.98 54 0.000 74.977 -193.19 -26.656
3 1060 72 103.72 45 0.000 13.72 -209.75 -70.974
4 1060 72 38.80 36 0.345 -33.199* -211.98 -100.95*

* indicates minimum value within column.
Note: Maximum lag order specified exceeds lags used at estimation; using

reduced sample.
GMM-type instruments: L(2/3).(expenditures revenues grants)

xtvarsoc computed the MMSC for models with from one to four lags. Your first inclination may
be to look at the MMSC statistics to find the best model. Before you do that, though, you need to
make sure that the numbers are comparable and relevant. In particular, you should look at the sample
size, number of moment conditions, and Hansen’s J test. Once those check out, then you can search
for the best model on the basis of the MMSC statistics.
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We first verify that the sample size is the same across models. The sample size reported in each
row is 1,060. Our data have 265 panels, implying 1060/265 = 4 observations per panel. There is a
note near the bottom of the output indicating xtvarsoc used a reduced sample; we used 2 lags in our
xtvar specification and are using xtvarsoc for models with up to 4 lags. For MMSC comparisons
to be valid, the statistics must be computed on the same sample of data. xtvarsoc first fits a model
using the highest number of lags requested and then uses that model’s estimation sample for models
with fewer lags. That generally results in a constant sample size across lags, though we cannot rule
out the possibility that an odd pattern of missing data could cause the number of observations to
change across different model lags. xtvarsoc will issue an error message if it detects that the sample
size is not constant across estimates.

When comparing models to determine the optimal lag length, you must also make sure that the
same set of instruments is being used across models. The final line of the output shows we are using
lags 2 and 3 of our left-hand-side variables as instruments, just as we used when fitting our original
model. The column labeled MC, which stands for moment conditions, indicates that each of the 4
candidate models here were fit using 72 moment conditions. Our original model used 108 moment
conditions, while the models fit here used 72; the difference stems from the smaller sample size here
because of our request to consider a model with 4 lags.

The number of moment conditions must be the same across models with different lag lengths when
choosing the number of lags. In [XT] xtvar postestimation, we show how to use the MMSC statistics
to select the optimal set of instruments instead of the optimal number of lags. There we will require
the number of lags in different models to be the same. Either the number of lags or the number of
moment conditions can change across models to make valid comparisons but not both at the same
time. xtvarsoc will exit with an error message if it detects that comparisons will not be valid.

The column marked Hansen’s J contains Hansen’s J test statistic for each model, and the
columns marked df and p contain, respectively, the corresponding degrees of freedom and p values.
The degrees of freedom change across models because the number of estimated parameters changes;
that this column’s values change does not invalidate MMSC comparisons. In this example, we reject
the null hypothesis that our moment conditions are valid for models with one, two, and three lags.
Based on Hansen’s J test, we are left with just one model: the one with four lags.

Having verified that the sample size and the number of moment conditions remain constant across
models and having tested for instrument validity, now we are ready to consider the MMSC statistics.
As with standard information criteria, a model with a lower value is to be preferred over a model with
a higher value. Here the MMSC-AIC and MMSC-HQIC select a model with four lags, which is fortuitous
because that model is the only one for which the moment conditions are valid based on Hansen’s
J test. The MMSC-BIC selects a model with one lag, though we would probably reject that model
because of Hansen’s J test. Andrews and Lu (2001) performed Monte Carlo analyses and recommend
the MMSC-BIC as the best all-around criterion to use, assuming the orthogonality conditions are valid.

Including endogenous covariates

Example 5: Endogenous covariates

Suppose we are primarily interested in the relationship between grants and expenditures, but
we suspect that revenues are also endogenously determined. In other words, there is a dynamic
relationship between grants and expenditures, while revenues have a contemporaneous effect.
An alternative to fitting a three-variable panel-data VAR model is to fit a two-variable model and include
revenues as an additional endogenous covariate. Below, we fit this model using the endogenous()
option and again requesting that at most two lags of each variable be used as instruments.
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. xtvar expenditures grants, lags(2) maxldep(2) endogenous(revenues)

Panel-data vector autoregression Number of obs = 1,590
Group variable: idcode Number of groups = 265
Time variable: year Obs per group:

min = 6
Number of moment conditions = 72 avg = 6.0

max = 6
Fixed-effects transform: FOD
Two-step results

(Std. err. adjusted for 265 clusters in idcode)

WC robust
Coefficient std. err. z P>|z| [95% conf. interval]

expenditures
expenditures

L1. -.036028 .0217366 -1.66 0.097 -.0786309 .0065749
L2. -.0580125 .0204245 -2.84 0.005 -.0980438 -.0179813

grants
L1. .6735404 .2300296 2.93 0.003 .2226906 1.12439
L2. .2240255 .1219378 1.84 0.066 -.0149682 .4630192

revenues .9932527 .0296293 33.52 0.000 .9351804 1.051325

grants
expenditures

L1. -.0068636 .0076561 -0.90 0.370 -.0218693 .008142
L2. .003658 .0068504 0.53 0.593 -.0097685 .0170846

grants
L1. .3318416 .0841429 3.94 0.000 .1669245 .4967586
L2. .16419 .045025 3.65 0.000 .0759426 .2524374

revenues .0083887 .0098906 0.85 0.396 -.0109966 .027774

Hansen’s test of overid. restrictions: chi2(62) = 142.48 Prob > chi2 = 0.000
Added endogenous: revenues
GMM-type instruments: L(2/3).(expenditures grants revenues)

The coefficients on revenues are 0.99 and 0.01 in the equations for expenditures and grants,
respectively. When revenues are treated as endogenous covariates, the results of this model indicate
that they have a positive effect on expenditures but are not relevant for grants.

Lag exclusion tests

Example 6: Wald lag exclusion tests

After we fit a panel-data VAR model, one hypothesis of interest is that all the endogenous variables
at a given lag are jointly zero. varwle reports Wald tests of this hypothesis for each equation and for
all equations jointly. We refit our panel-data VAR model using four lags of the dependent variables
as covariates, which is the only specification we have fit so far in which the validity of the moment
conditions has not been rejected by Hansen’s J test.

. xtvar expenditures revenues grants, lags(4) maxldep(2)
(output omitted )
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. varwle

Equation: expenditures

lag chi2 df Prob > chi2

1 6.100499 3 0.107
2 4.914952 3 0.178
3 10.01386 3 0.018
4 33.88895 3 0.000

Equation: revenues

lag chi2 df Prob > chi2

1 10.6371 3 0.014
2 5.669409 3 0.129
3 14.89268 3 0.002
4 21.80127 3 0.000

Equation: grants

lag chi2 df Prob > chi2

1 4.001778 3 0.261
2 3.773334 3 0.287
3 2.394958 3 0.495
4 46.76529 3 0.000

Equation: All

lag chi2 df Prob > chi2

1 22.40912 9 0.008
2 14.22638 9 0.114
3 21.47419 9 0.011
4 89.77261 9 0.000

The first block of output refers to the equation for expenditures. Line 1 of this output reports
a Wald test for the first lag of the 3 dependent variables. Here the χ2 statistic is 6.10 (p ≈ 0.107),
so we cannot reject the null hypothesis that the 3 coefficients are jointly 0.

The first line in the first block is equivalent to typing

. test [expenditures]_b[L1.expenditures] ///
[expenditures]_b[L1.revenues] ///
[expenditures]_b[L1.grants]

but varwle does all the work for us and assembles the results into nice tables. The remaining lines
in the first block test the same set of coefficients on the model variables at lags two through four.
The next two blocks perform similar tests for the other two equations.

The final block is arguably more useful. It tests all the coefficients of all the variables for all
equations at a particular lag. Referring back to (1), each line of the final block contains a test of the
hypothesis that A` = 0 for ` = 1, 2, 3, or 4. If you fit a model with multiple lags and find that
the last lag’s coefficient matrix provides evidence to support the null hypothesis, you could consider
refitting your model without that lag.

What is perhaps surprising about our results is that for expenditures the first two lags provide
evidence to support the null and similarly for the first three lags of grants. However, for all three
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variables, the fourth lag’s coefficients do not provide evidence to support the null hypothesis, perhaps
suggesting a slow response. In terms of the A coefficient matrices, we find that our estimates Â1,
Â3, and Â4 do not provide evidence to support the null hypothesis.

Granger causality test

Granger causality tests are a popular tool in the VAR analyst’s toolkit. Granger causality tests, in
the simplest case, test whether lags of one variable are useful in predicting the values of another
variable. More formally, variable x Granger-causes variable y if for all s > 0 the mean squared error
(MSE) of a forecast of yt+s based on (yt−1, yt−2, . . . , xt−1, xt−2, . . .) is lower than a forecast using
only (yt−1, yt−2, . . .). See Hamilton (1994, chap. 11). The extension to variables x and z jointly
Granger-causing variable y is immediate.

Just as with time-series VARs, we can conduct Granger causality tests after panel-data VARs by
performing Wald tests of the joint significance of the parameters associated with the lags of one or
more variables in an equation. In our example, to see if revenues Granger-causes expenditures,
we would test the hypothesis that the coefficients on L1.revenues, L2.revenues, L3.revenues,
and L4.revenues in the equation for expenditures are jointly equal to zero. vargranger makes
that, and much more, very easy.

Example 7: Granger causality

Typing vargranger after fitting our four-lag model, we obtain

. vargranger

Granger causality Wald tests

Equation Excluded chi2 df Prob > chi2

expenditures revenues 5.0979 4 0.277
expenditures grants 5.0767 4 0.280
expenditures ALL 34.47 8 0.000

revenues expenditures 9.3224 4 0.054
revenues grants 3.4496 4 0.486
revenues ALL 20.979 8 0.007

grants expenditures 5.5802 4 0.233
grants revenues 7.5613 4 0.109
grants ALL 59.35 8 0.000

Consider the first line of output, which refers to the equation for expenditures. Under column
Excluded, we see the revenues variable. This line of output is therefore a test of whether rev-
enues Granger-causes expenditures. In other words, by including revenues in the equation for
expenditures, do we obtain a lower forecast MSE for expenditures than if we had not included
revenues? Here the χ2 statistic is 5.10 with 4 degrees of freedom. Because the corresponding
p-value is large (0.277), we cannot reject the null hypothesis that revenues does not Granger-causes
expenditures. If we were building a forecast model of expenditures, this line of output suggest
that we would not lower our forecast MSE by including revenues.

Similarly, the second line of output provides no evidence that grants Granger-causes expendi-
tures, either.
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The results in the third line stand in contrast to the first two lines’ results. Shown in column
Excluded is the keyword ALL, which represents all variables in the equation for expenditures
other than (lags of) expenditures itself. This line contains a Wald test that the coefficients on the
lags of both revenues and grants are all jointly equal to zero. It is a test of whether revenues
and grants jointly Granger-causes expenditures. Here we reject the null hypothesis of no Granger
causality and conclude that revenues and grants do Granger-causes expenditures.

These results suggest neither revenues nor grants Granger-causes expenditures, conditional
on the other variable being in the model. However, the two variables do jointly Granger-causes
expenditures.

The last three lines of output, pertaining to grants, show a similar pattern to those for expen-
ditures.

Verifying the stability condition of the VAR

Example 8: Checking stability

For the relationships implied by our estimates to be meaningful, we need to verify that we have
a stationary process. To check whether our fitted VAR represents a stable dynamic process, we use

. varstable, graph
(output omitted )
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Figure 1. Checking the stability of our panel-data VAR model

Our panel-data VAR model contains 3 variables and 4 lags, so the companion matrix will have
3× 4 = 12 eigenvalues, some of which are conjugate pairs. Looking at figure 1, we see that all the
eigenvalues lie within the unit circle. This indicates that our panel-data VAR model does satisfy the
stability condition. We could have alternatively displayed the values and modulus of the eigenvalues
in a table by simply omitting the graph option after varstable.

Because our model represents a stable dynamic process, we can proceed to compute and analyze
IRFs.
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IRFs
An IRF measures the effect across time of a shock to an endogenous variable on itself or

another endogenous variable. After fitting a panel-data VAR using xtvar, you can obtain simple IRFs,
cumulative IRFs, orthogonalized IRFs, and cumulative orthogonalized IRFs. A full description of IRFs
and how you obtain them in Stata is in [TS] irf. Here we cover the highlights to get you started.

In Stata, an IRF set is a special dataset that contains one or more IRF results. An IRF result refers
to the IRFs, cumulative IRFs, and other statistics as well as their standard errors and is obtained
by calling irf create one time. Stata has several commands for manipulating IRF sets and results
within IRF sets. For our purposes, though, we can accomplish everything we will do just by using
irf create and specifying appropriate options.

Example 9: Simple IRFs

We first create the IRF results from our current four-lag model that is still in memory, and we
store them under the name four lags. We will store those results in an IRF set called example1,
and we will create the IRFs for nine steps:

. irf create four_lags, set(example1) step(9)
(file example1.irf created)
(file example1.irf now active)
(file example1.irf updated)

If IRF set example1 already contained results stored under the name four lags, the previous
command would have issued an error message. If that happens and you wish to replace the existing
results with that name, you can specify replace within the set() option.

With an IRF result available, we can plot the IRFs:
. irf graph irf, irf(four_lags)

When we used irf create, we made irf set example1 active, and Stata remembered that action.
Therefore, when we use the irf graph command without the set() option, we use this currently
active IRF set and obtain the following graph:

-4

-2

0

2

4

-4

-2

0

2

4

-4

-2

0

2

4

0 5 10 0 5 10 0 5 10

four_lags, expenditures, expenditures four_lags, expenditures, grants four_lags, expenditures, revenues

four_lags, grants, expenditures four_lags, grants, grants four_lags, grants, revenues

four_lags, revenues, expenditures four_lags, revenues, grants four_lags, revenues, revenues

95% CI Impulse–response function

Step

Graphs by irfname, impulse variable, and response variable

Figure 2. IRFs of our panel-data VAR model

The first row of graphs shows the effect of a shock to expenditures on expenditures themselves,
grants, and revenues. In the second row, we see the effects of a shock to grants on each variable.
And in the last row, we see the effects of a shock to revenues on each variable.
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Simple IRFs are often uninformative because they assume that a shock happens to a single variable
in isolation. In the vast majority of applications, shocks affect multiple variables at the same time.
One solution is to use orthogonalized IRFs, and the most common way to orthogonalize shocks is with
the Cholesky decomposition of the error covariance matrix. See Hamilton (1994), Lütkepohl (2005),
and Kilian and Lütkepohl (2017) for more information.

Getting Cholesky-orthogonalized IRFs after fitting a panel-data VAR requires no additional work:
earlier when we called irf create before plotting simple IRFs, it automatically created the or-
thogonalized IRFs as well as the cumulative variants of both of those types of IRFs. To view the
orthogonalized IRFs, we just tell irf graph or a similar command to plot the orthogonalized IRFs
instead.

Example 10: Orthogonalized IRFs

To create tables or graphs of orthogonalized IRFs, we simply change the stat from irf to oirf in
the table or graph specification. Here we use the irf cgraph command to combine graphs of two
of the orthogonalized IRFs of interest. We plot the effects of an orthogonalized shock to grants on
revenues and expenditures:

. irf cgraph (four_lags grants revenues oirf)
> (four_lags grants expenditures oirf)
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Figure 3. Orthogonalized IRFs of our panel-data VAR model

The orthogonalized IRF graphs both have wide confidence intervals that include 0. We do not have
evidence that a random shock to grants has an effect on revenues or expenditures.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow


22 xtvar — Panel-data vector autoregressive models+

Stored results
xtvar stores the following in e():

Scalars
e(N) number of observations
e(n zc) number of columns of instrument matrix
e(J) Hansen’s J statistic
e(p J) p-value for Hansen test
e(df J) degrees of freedom for Hansen test
e(rank weight) rank of final weight matrix
e(k) number of parameters
e(k eq) number of equations
e(N clust) number of clusters
e(N g) number of groups
e(g min) smallest group size
e(g max) largest group size
e(g avg) average group size
e(tmin) first period in estimation sample
e(tmax) last period in estimation sample
e(maxldep act) largest lag order actually used for instruments
e(maxldep) maximum number of instruments requested
e(minldep) minimum number of instruments requested
e(lags) number of lags in model

Macros
e(cmd) xtvar
e(cmdline) command as typed
e(depvar) names of dependent variables
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(winit type) type of initial weight matrix used
e(transform) specified transform for removing fixed effects
e(collapse) collapse, if specified
e(predetermined) predetermined variables, if specified
e(endogenous) additional endogenous variables, if specified
e(exogenous) exogenous variables, if specified
e(onestep) onestep, if specified
e(ivar) group variable specified in xtset
e(tvar) time variable specified in xtset
e(tsfmt) display format for time variable
e(datasignaturevars) variables used in calculation of checksum
e(datasignature) checksum from datasignature
e(properties) b V
e(predict) program used to implement predict
e(eqnames) names of equations

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.
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Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
Eliminating the fixed effect
Constructing the instrument matrix
Dealing with gaps and missing data
Restricting instrument lags
Collapsing the instrument matrix
Adding other covariates

Exogenous regressors
Endogenous regressors
Predetermined regressors
The number of instruments revisited

A concise representation of the GMM estimator
Estimators

One-step estimator
Two-step estimator

Hansen’s J statistic

Introduction

The panel-data VAR model with p lags, K regressands, M1 strictly exogenous variables xit, M2

additional endogenous variables wit, and M3 predetermined variables vit is

yit = A1yi,t−1 + A2yi,t−2 + · · ·+ Apyi,t−p + Bxit + Cwit + Dvit + ui + εit (4)

where i indexes panels 1 through N , t indexes time from 1 to T , ui is a K × 1 fixed-effect vector,
and εit is a K × 1 vector of idiosyncratic i.i.d shocks. A1, . . . ,Ap,B,C, and D are parameter
matrices to be estimated.

Fully exogenous variables are uncorrelated with past, present, or future realizations of the error
term. Therefore, they satisfy the condition E{vec(xitε

′
is)} = 0 for all s and t.

Endogenous variables, on the other hand, are not correlated with future realizations of the error term
but may be correlated with present or past realizations of it. This means that E{vec(witε

′
is)} = 0

for s > t, but possibly E{vec(witε
′
is)} 6= 0 for s ≤ t.

Predetermined variables represent an intermediate case. They are not correlated with future or
present realizations of the error term but may be correlated with past realizations of it. Therefore,
they satisfy E{vec(vitε

′
is)} = 0 for s ≥ t, but possibly E{vec(vitε

′
is)} 6= 0 for s < t.

Eliminating the fixed effect

The first task in estimating the panel-data VAR model is to eliminate the fixed effect term ui using
either the FD transformation or the FOD transformation.

For an arbitrary variable hit, the FD transformation is

hFD
it = hit − hi,t−1

for t = 2, . . . , T . Note that, if hit is missing, then both hFD
it and hFD

i,t+1 will be missing.
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The FOD transformation, introduced by Arellano and Bover (1995), is defined as follows. Let
Ω(i, t) denote the set of periods for which hiτ is nonmissing for τ = t+ 1, . . . , T . Let #Ω(i,t) denote
the number of elements in set Ω(i, t). Then

hFOD
it =

√
#Ω(i,t)

#Ω(i,t) + 1

hit − 1

#Ω(i,t)

∑
τ∈Ω(i,t)

hiτ


and exists for t = 1, . . . , T − 1. To make the formulas provided below work regardless of which
transform is used, we use the common practice of storing the value hFOD

it in period t+ 1.

We adopt the tilde diacritic to represent a variable that has undergone one of these transformations:
h̃it = hFD

it or h̃it = hFOD
it depending on whether the fd or fod option was specified with xtvar.

For vectors like yit or xit, we apply the transform to each element within the vector individually.

Applying either the FD or the FOD transformation has the effect of eliminating ui from (4) as
follows:

ỹit = A1ỹi,t−1 + A2ỹi,t−2 + · · ·+ Apỹi,t−p + Bx̃it + Cw̃it + Dṽit + ε̃it

The FOD transformation is often preferred over the FD transformation because it usually results in
fewer observations being dropped because of gaps. The following data illustrate this:

t x x_fd x_fod

1. 1 1 . .
2. 2 2 1 -1.5652476
3. 3 . . -.8660254
4. 4 4 . .
5. 5 5 1 -.70710678

We have five periods t, and variable x runs from 1 to 5 but is missing when t = 3. Variable
x fd represents the FD transformation applied to x. Period 1 is missing because we do not have x at
t = 0. x fd is also missing for both periods t = 3 and t = 4 because x is missing at t = 3. Now
consider variable x fod, the FOD transform of x. Period t = 1 is again missing, but the gap in x at
t = 3 causes us to lose only one observation for x fod at t = 4.

Besides the greater number of observations, Hayakawa (2009) provides Monte Carlo evidence
showing that the GMM estimator with the FOD transformation yields an estimate of the autoregression
parameter with lower bias than the estimator with the FD transformation in the single equation case.

Constructing the instrument matrix

The second task in estimating the panel-data VAR model is to construct the instrument matrix Zi
for the transformed variables.

To simplify the exposition, suppose first that the only covariates in the model are the lags of the
dependent variables. Therefore, after applying either the FOD or the FD transformation, we have

ỹit = A1ỹi,t−1 + A2ỹi,t−2 + · · ·+ Apỹi,t−p + ε̃it

Note that each matrix of coefficients in the model is of dimension K ×K, and therefore there
are pK2 parameters to estimate in total.
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To estimate these parameters consistently, we need to instrument the endogenous regressors with
the lags of the dependent variables. Start with endogenous regressor ỹi,t−1. Given the assumptions
in the model, we can instrument this endogenous regressor using zit = [y′i,t−2,y

′
i,t−3, . . . ,y

′
i1]′ as

instruments. This implies that the moment conditions associated with this endogenous regressor are
given by E{vec(zitε̃

′
it)} = 0. Because vector zit has Rt = K(t − 2) rows and the error vector

ε̃it has K elements, we have a total of KRt = K2(t − 2) moment conditions associated with
endogenous regressors ỹi,t−1. For the next endogenous regressor, ỹi,t−2, we proceed similarly. We
use as instruments zi,t−1 = [y′i,t−3,y

′
i,t−4, . . . ,y

′
i1]′ and thus obtain KRt−1 = K2(t− 3) moment

conditions. Proceeding in the same way for all the endogenous regressors, we obtain a total of∑T
t=p+2KRt = (K2/2)(T − p− 1)(T + p− 2) moment conditions.

In tables 1a, 1b, and 1c, we show the number of parameters, instruments, and moment conditions
for models with a varying number of variables, lags, and panel sizes. As you can see, even when the
dataset has just 7 observations per panel, the number of moment conditions can become unwieldy,
especially as the number of variables in the model increases. When the dataset has 10 or more
observations per panel, tables 1a, 1b, and 1c lay bare the need to control the number of instruments.

Table 1a. Parameters, instruments, and moment conditions for K=2

T=5 T=7 T=10 T=15

Lag order p 2 3 2 3 4 2 3 4 2 3 4

Parameters 8 12 8 12 16 8 12 16 8 12 16
Instruments 10 6 28 24 19 70 66 60 180 176 170

Moments 20 12 56 48 36 140 132 120 360 352 340

Table 1b. Parameters, instruments, and moment conditions for K=3

T=5 T=7 T=10 T=15

Lag order p 2 3 2 3 4 2 3 4 2 3 4

Parameters 18 27 18 27 36 18 27 36 18 27 36
Instruments 15 9 42 36 27 105 99 90 270 264 255

Moments 45 27 126 108 81 315 297 270 810 792 765

Table 1c. Parameters, instruments, and moment conditions for K=4

T=5 T=7 T=10 T=15

Lag order p 2 3 2 3 4 2 3 4 2 3 4

Parameters 32 48 32 48 64 32 48 64 32 48 64
Instruments 20 12 56 48 36 140 132 120 360 352 340

Moments 80 48 224 192 144 560 528 480 1,440 1,408 1,360

The panel-data VAR estimator is implemented at the panel level. Therefore, our next step is to
consider the appropriate instrument matrix for an entire panel i.
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Define ξi ≡ [̃εi,p+2, ε̃i,p+3, . . . , ε̃iT ]′ as the (T − p− 1)×K matrix of errors for panel i. The
T − p − 1 rows of the matrix correspond to the number of periods at which we can evaluate the
model after transforming our variables. The K columns correspond to the errors for each of the K
equations. Thus, we can write the moment conditions for an entire panel as E{vec(Z′iξi)} = 0,
where we define Zi as the block-diagonal matrix

Zi =


z′i,p+2 0 0 . . . 0
0 z′i,p+3 0 . . . 0
0 0 z′i,p+4 . . . 0
...

...
...

. . .
...

0 0 0 . . . z′iT

 (5)

and where 0 represents a vector of 0s, the length of which is implied by its position in the matrix.
Definition (5) makes Zi look relatively compact, but it conceals just how many columns it contains—
and hence how many moment conditions our estimator will use. We denote the number of rows of
Z as Zr and the number of columns as Zc.

To get an idea of how large Zi can be, let us look at Zi for a bivariate panel-data VAR(2) model where
we use first differencing to remove the fixed effects and further assume that T = 6. The first period
at which we can evaluate the model is t = 4, so the matrix Zi will have Zr = (6− 4 + 1) = 3 rows.
Recalling that we usedRt to denote the number of rows in zit, we will obtain Zc = R4+R5+R6 = 18
columns. Then

Zi =

y′i2 y′i1 0 0 0 0 0 0 0
0 0 y′i3 y′i2 y′i1 0 0 0 0
0 0 0 0 0 y′i4 y′i3 y′i2 y′i1

 (6)

With these definitions, E{vec(Z′iξi)} = 0 is equivalent to E{vec(zitε̃
′
it)} = 0 for t = 4, 5, and

6. There are a total of KZc = 2× 18 = 36 scalar moment conditions.

Returning to the general case, the number of rows of Zi is Zr = T −p−1, the number of periods
at which we can evaluate the model. The number of columns depends on the panel dimension T ,
the model’s lag order p, and K, the number of variables that make up yit. This works out to be
Zc =

∑T
t=p+2Rt = (K/2)(T −p−1)(T +p−2) columns. The total number of moment conditions

therefore equals KZc = (K2/2)(T − p− 1)(T + p− 2). Notice that the number of instruments is
quadratic in T . Adding more observations to each panel causes the number of instruments to grow
rapidly.

xtvar provides two ways to control the number of instruments and hence moment conditions in
a panel-data VAR model. One method controls the number of lags of the dependent variables that are
used as instruments (see Restricting instrument lags). The other method, which has come to be known
as “collapsing”, results in a GMM estimator that replaces the moment conditions E{vec(zitε̃

′
it)} = 0

with an alternative that averages those moment conditions over time (see Collapsing the instrument
matrix).
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Dealing with gaps and missing data

Here we show how xtvar creates Zi when there are gaps in the data. Gaps pose two problems: first,
the regression equations cannot be evaluated when either left-hand-side or right-hand-side variables
are missing; and second, gaps reduce the number of available instruments. Whether the gaps are
caused by some periods being absent from the data or because some variables contain missing values,
the solution in both cases is essentially a strategic placement of zeros in Zi.

Consider data in which we have three panels and six time periods. Suppose we want to fit a VAR(1)
model with two variables, y1 and y2, using these data.

id t y1 y2

1. 1 1 1 2
2. 1 2 2 3
3. 1 3 3 6
4. 1 4 4 4
5. 1 5 5 7
6. 1 6 6 9

7. 2 1 1 1
8. 2 2 2 6
9. 2 4 4 7

10. 2 5 5 6
11. 2 6 6 8

12. 3 1 1 3
13. 3 2 2 5
14. 3 3 3 5
15. 3 4 4 6
16. 3 5 5 5
17. 3 6 .a .b

The first panel is balanced; we have valid data for all six time periods. The second panel has a
gap: no data are recorded for t = 3. Finally, the third panel contains missing values for y1 and y2
at t = 6.

The maximum time period in our data is T = 6, and we are considering a panel VAR model with
one lag. Therefore, each Zi will have 4 rows, corresponding to t = 3, 4, 5, and 6. The number of
columns is (K/2)(T − p− 1)(T + p− 2) = 1(6− 2)(6− 1) = 20. Z1 will be just as (5) shows,

Z1 =


1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 3 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 3 6 2 3 1 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 4 4 3 6 2 3 1 2
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Turning to the second panel, that y1 and y2 are missing for t = 3 implies that we will have fewer
available instruments in periods t = 5 and t = 6. The missing values also affect the time periods at
which we can evaluate the regression equations, and if we cannot evaluate the regression equations
for a certain period, we make the corresponding row in Zi contain all zeros. After applying the FOD
transformation to y1 and y2, our data for the second panel look like this:

id t y1 y2 fod_y1 fod_y2

1. 2 1 1 1 . .
2. 2 2 2 6 -4.011887 -6.326437
3. 2 4 4 7 . .
4. 2 5 5 6 -2.236068 -1.341641
5. 2 6 6 8 -1.732051 -2.886751

After taking the FOD transform, we cannot evaluate the regression equations for t = 3, 4, or 5.
We can at least evaluate them when t = 6, though in that period we cannot use the values of y1 and
y2 at t = 3 as instruments, and we must put 0s where they would go if they were not missing. We
have

Z2 =


0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 4 7 0 0 2 6 1 1


Finally, when a gap occurs at the end of the panel, as in our third panel, we cannot evaluate the

regression equations for the last period, so we put a vector of 0s in the row of Z3 corresponding to
t = 6. Earlier periods, however, are not affected and so we have

Z3 =


1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 5 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 3 5 2 5 1 3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Missing values and gaps cause more problems for panel-data VARs than for many other estimators.

The value at time t is used at a minimum for both the regression equation for time t and t + 1,
because we use lags as regressors; in short, a missing value for one time period could easily result in
many observations being omitted from the regression equation. To make matters worse, the FOD and
FD transformations can result in the loss of additional periods from our regression equation. Finally,
when we have missing values and gaps, we need to consider how they affect the instruments available
for later periods as well. xtvar does its best to accommodate gaps, but the nature of the estimator
limits the tolerance of gaps.
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Restricting instrument lags

One way to reduce the dimensionality of Zi is to use a fixed number of lags to instrument each
endogenous regressor, rather than using all the available lags. If we use a maximum of lmax lags of
the dependent variables as instruments for each endogenous regressor, then the panel-level instrument
matrix Zi will still have Zr = T − p − 1 rows. However, now the number of columns is at most
Zc = Klmax(T−p−1), which is linear in T : for each time period we add, the number of instruments
increases by just Klmax.

Table 2a. Using two lags as instruments with K=2

T=5 T=7 T=10 T=15

Lag order p 2 3 2 3 4 2 3 4 2 3 4

Parameters 8 12 8 12 16 8 12 16 8 12 16
Instruments 8 4 16 12 8 28 24 20 48 44 40

Moments 16 8 32 24 16 56 48 40 96 88 80

Table 2b. Using two lags as instruments with K=3

T=5 T=7 T=10 T=15

Lag order p 2 3 2 3 4 2 3 4 2 3 4

Parameters 18 27 18 27 36 18 27 36 18 27 36
Instruments 12 6 24 18 12 42 36 30 72 66 60

Moments 36 18 72 54 36 126 108 90 216 198 180

Table 2c. Using two lags as instruments with K=4

T=5 T=7 T=10 T=15

Lag order p 2 3 2 3 4 2 3 4 2 3 4

Parameters 32 48 32 48 64 32 48 64 32 48 64
Instruments 16 8 32 24 16 56 48 40 96 88 80

Moments 64 32 128 96 64 224 192 160 384 352 320

In tables 2a, 2b, and 2c, we show the number of parameters, instruments, and moment conditions
for the same constellation of models as in tables 1a, 1b, and 1c, except that here we use just two lags
of the dependent variables as instruments. We have certainly made progress limiting the proliferation
of instruments. Models with three or four variables and just two or three lags still have many moment
conditions in comparison with the number of parameters; but we have only one case in which the
ratio exceeds 10. When T = 5, we can no longer fit panel-data VAR(3) models when we use lmax = 2
because we do not have enough instruments. In these cases, though, even when using all available
instruments, the models are just identified, so Hansen’s J statistic would not be available to test the
validity of the moment conditions. If we do limit ourselves to just two moment conditions, then the
panel-data VAR(4) model is just identified when T = 7.

You use the option maxldep() with xtvar to limit the number of lags of yit to use as instruments.
For example, if you specify maxldep(3), then xtvarwill use yi,t−2, yi,t−3, and yi,t−4 as instruments.
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Collapsing the instrument matrix

The second method provided by xtvar to control the number of moment conditions has come to be
known as “collapsing” the instrument matrix, and it amounts to taking averages of individual moment
conditions across time. You can request this method by specifying option collapse with xtvar.
Roodman (2009b) introduced the concept of collapsing in his community-contributed xtabond2
command, and he mentions several other authors who have implemented this method of reducing the
number of moment conditions.

Consider the Zi matrix shown in (6) for a bivariate panel-data VAR(2) model with T = 6. When
we collapse an instrument matrix, we first move the leading 0 vectors in each row to the end of the
row, and then we remove columns consisting of all 0s. The matrix Zi in that example becomes

ZCi =

y′i2 y′i1 0 0
y′i3 y′i2 y′i1 0
y′i4 y′i3 y′i2 y′i1

 (7)

The number of rows still equals 3 because t = 4 is the first period in which we can evaluate a
panel-data VAR(2) model and T = 6. However, now the number of columns equals K(6− 2) = 4K
because at period T = 6 we have 4 available lags to use as instruments in that period.

When the “collapsing” procedure is applied to a general K-variable panel VAR(p) model with T
observations per panel, the number of rows remains the same, but the number of columns reduces
to ZCc = K(T − p). As with the case where we limit the number of lags used as instruments, by
collapsing we again have an instrument matrix for which the number of columns is linear in T rather
than quadratic.

When we collapse the instrument matrix, we are changing the moment conditions used to
identify the parameters. In the full panel-data VAR(p) model, we wrote the moment conditions as
E{vec(zitε̃

′
it)} = 0 or, equivalently, E(y

(k)
i,τ ε̃

(k′)
it ) = 0 for all k and k′ from 1 to K and for all

τ < t− 1. Each dependent variable lagged two periods or more is hypothesized to be uncorrelated
with the time-t transformed error term.

Examining (7) in the context of the panel-level moment conditions E(ZCi ε̃t) = 0 reveals that
our collapsed instrument matrix implies something different. Performing the necessary multiplication,
we see that the first K moment conditions can be written as E(

∑T
t=p+2 y

(k)
i,t−2ε

(k′)
i,t ) = 0 for all k

and k′ from 1 to K. The total number of moment conditions when we use ZCi rather than Zi is
KZCc = K2(T − 2).

With the uncollapsed instrument matrix, the GMM estimator tries to make each term within that
summation as close to zero as possible. Because E(ε̃i) = 0, our collapsed moment conditions still
imply the terms within that summation have expectation zero. However, now we only ask the GMM
estimator only to make sums (averages) across those terms as close to zero as possible. In that sense,
the moment conditions with the collapsed instrument matrix are “weaker” because having an average
of terms equal to zero is much easier than having each term equal to zero.

Adding other covariates

xtvar allows three types of additional covariates. Strictly exogenous regressors xit are uncor-
related with past, present, and future realizations of the error term. Other regressors wit may be
endogenous, meaning that they are correlated with past and present realizations of the error. xtvar
also accommodates an intermediate class of variables vit that is predetermined, meaning that the
current value of vit is affected by errors from previous time periods but not errors from the current
period.
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Exogenous regressors

Letting the M1 × 1 vector xit represent strictly exogenous variables, we can write our panel-data
VAR model with such covariates as

yit = A1yi,t−1 + A2yi,t−2 + · · ·+ Apyi,t−p + Bxit + ui + εit (8)

Strictly exogenous variables are uncorrelated with past, present, or future realizations of the error
term. They satisfy the condition E{vec(xitε

′
is)} = 0 for all s and t. After applying the FD or FOD

transform to remove the fixed-effect term from (8), we can use the transformed variant of xit as its
own instrument. The full-instrument matrix Zi analogous to the one shown in (5) is now

Zi =


z′i,p+2 0 0 . . . 0 x̃′i,p+2

0 z′i,p+3 0 . . . 0 x̃′i,p+3

0 0 z′i,p+4 . . . 0 x̃′i,p+4

...
...

...
. . .

...
...

0 0 0 . . . z′iT x̃′iT

 (9)

Including xit adds M1 columns to Zi regardless of K, p, or T .

Endogenous regressors

Endogenous regressors affect yit, and your theory implies that those variables may be correlated
with the present and past realizations of the error term. These variables are represented by M2 × 1
vector wit, and we have that E{vec(witε

′
is)} 6= 0 for s ≤ t. Under this definition, wit and εit

may be contemporaneously correlated, and past periods’ errors may affect wit as well. Adding these
variables to our model, we have

yit = A1yi,t−1 + A2yi,t−2 + · · ·+ Apyi,t−p + Bxit + Cwit + ui + εit

Predetermined regressors

Predetermined regressors are not correlated with the present period’s error term but are correlated
with past realizations of the error term. We represent these regressors with the M3 × 1 vector vit,
and we have that E{vec(vitε

′
is)} 6= 0 for s < t. Including these variables completes our model:

yit = A1yi,t−1 + A2yi,t−2 + · · ·+ Apyi,t−p + Bxit + Cwit + Dvit + ui + εit

By taking the first difference of this equation, you will see that the transformed regressor vit−vi,t1
will be correlated with the transformed error term ε̃it = εit − ε̃i,t−1. However, vi,t−1 is a valid
instrument for the transformed regressor because vi,t−1 is not correlated with εi,t−1. In addition,
vi,t−2, vi,t−3, . . . are valid instruments. We can continue to use the definition of Zi as in (5) or (9)
if we again redefine zit. Now we have

zit =
[
y′i,t−2,y

′
i,t−3, . . .y

′
i1, . . .w

′
i,t−2,w

′
i,t−3, . . .w

′
i1,v

′
i,t−1,v

′
i,t−2, . . .v

′
i1

]′
We have more lags to use as instruments for predetermined variables versus endogenous ones;

each additional predetermined variable adds (1/2)(T − p− 1)(T + p) columns to Zi.

When you specify option maxldep(#) to limit the number of lags of the dependent variables to
use as instruments, the number of lags of predetermined variables used as instruments will equal
# + 1 because vi,t−1 is a valid instrument while yi,t−1 and wi,t−1 are not.
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The number of instruments revisited

Earlier in Constructing the instrument matrix, we showed that for a panel-data VAR with K
dependent variables and p lags and no additional covariates, the number of columns in Zi was given
by

Zc = cols (Zi) =
K

2
(T − p− 1) (T + p− 2)

unless you use option collapse, maxldep(), or minldep().

Taking stock of the full model with additional covariates, we see Zi can have many columns, as
shown below,

Zc =
K

2
(T − p− 1) (T + p− 2)︸ ︷︷ ︸

Lags of yit

+ M1︸︷︷︸
cols(xit)

+
M2

2
(T − p− 1) (T + p− 2)︸ ︷︷ ︸

Lags of wit

+
M3

2
(T − p− 1) (T + p)︸ ︷︷ ︸

Lags of vit

=
M2 +K

2
(T − p− 1) (T + p− 2) +

M3

2
(T − p− 1) (T + p) +M1 (10)

and the number of moment conditions is KZc. When a model includes additional endogenous or
predetermined variables, you likely need to specify the maxldep() or collapse option to keep the
number of instruments and moment conditions manageable. If you specify option maxldep(), then
the number of columns of Zi is limited to

Zc = M1 + {lmax (K +M2 +M3) +M3} (T − p− 1)

The maxldep() option reduces the growth rate of instruments from quadratic to linear, which is
often the difference between being able to fit a model and not being able to fit it.

A concise representation of the GMM estimator

We now write our model at the panel level as

yi = Xiθ+ ei (11)

for regressand vector yi, regressor matrixXi, parameter vector θ, and residual vector ei. Additionally,
we write the instrument matrix of the model as Zi. The definition of these matrices is given below.
The model in (11) does not contain the panel-level fixed effects because all the matrices in the
equation are defined in terms of transformed variables.

Writing the model as such simplifies deriving our estimator because, after all, (11) is just a linear
regression equation we are to fit using GMM. Therefore, all the usual single-equation results regarding
the consistency and asymptotic normality of GMM estimators apply in our case as long as our VAR
process is stationary.

Before we can define the matrices used in (11), we need to create some other matrices. For each
matrix composed of variables, the rows of the matrix will represent the periods in which we can
evaluate our regression equation.
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Define the (T − p− 1)×K matrix

Ỹi = [ỹi,p+2, ỹi,p+2, . . . , ỹi,T ]

Earlier, we had defined
ξi ≡ [̃εi,p+2, ε̃i,p+3, . . . , ε̃iT ]′

as the (T − p− 1)×K matrix of residuals, and we retain that definition here.

Define

X̃i =


ỹ′i,p+1 ỹ′i,p . . . ỹ′i,2 x̃′i,p+2 w̃′i,p+2 ṽ′i,p+2

ỹ′i,p+2 ỹ′i,p+1 . . . ỹ′i,3 x̃′i,p+3 w̃′i,p+3 ṽ′i,p+3

...
...

. . .
...

...
...

...
ỹ′i,T−1 ỹ′i,T−2 . . . ỹ′i,T−p x̃′i,p+3 w̃′i,p+3 ṽ′i,p+3


with dimensions (T − p− 1)× (pK +M), where M = M1 +M2 +M3.

By concatenating the individual parameter matrices horizontally, define

Θ = [A1,A2, . . . ,Ap,B,C,D]

Matrix Θ has dimensions K × (pK +M).

Finally, the instrument matrix Zi is defined in (9) using the zit defined in (12); its dimensions
are (T − p− 1)× Zc, where Zc is the long expression in (10).

Now we can define the matrices in (11) as follows: yi = vec(Ỹi) is the K(T − p − 1) × 1
regressand vector; Xi = X̃i⊗ IK is the K(T −p−1)×K(pK+M) regressor matrix; θ = vec(Θ)
is the K(pK +M)× 1 vector of parameters; and ei = vec(ξi) is the K(T − p− 1)× 1 vector of
errors. Additionally, the K(T − p− 1)×KZc instrument matrix is given by Zi = Zi ⊗ IK .

Finally, we define

QZ′X =
1

N

N∑
i=1

Z′iXi

and

QZ′y =
1

N

N∑
i=1

Z′iyi

Estimators
xtvar estimates the parameters of model (4) using the GMM. By default, xtvar uses the two-step

GMM estimator unless you specify option onestep, in which case the one-step GMM estimator is
used. The two-step estimator makes use of results from the one-step estimator, so we describe the
one-step estimator first.
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One-step estimator

Equation (11) is a single-equation linear regression model with endogenous covariate Xi and
corresponding instrument matrix Zi, so the one-step estimator θ̂1 is

θ̂1 =
(
Q′Z′XW0QZ′X

)−1
Q′Z′XW0QZ′y

where W0 is an initial weight matrix with dimensions KZc ×KZc, which we describe next.

You control the initial weight matrix W0 with option winitial(). If you specify wini-
tial(identity) then xtvar sets W0 to the identity matrix of appropriate size. We generally
do not recommend using the identity matrix as the initial weight matrix for the GMM estimator, as
better alternatives exist; we include it as an option here for compatibility reasons.

Alternatively, you may specify winitial(xt), which creates an initial weight matrix appropriate
for dynamic panel models. We have

W0 = N

(∑
i

Z′iΩZi

)−1

⊗ IK

If fod is specified, then
Ω = IT−p−1

If fd is specified, then

Ω =



−2 −1 0 0 0 0 0
−1 2 −1 0 0 0 0

0 −1 2
. . . 0 0 0

0
. . .

. . .
. . . 0 0 0

0 0 0
. . . 2 −1 0

0 0 0 0 −1 2 −1
0 0 0 0 0 −1 2


These initial weight matrices assume that for residual vector εit elements εitj and εitk are

independently and identically distributed for j 6= k. Matrix Ω is proportional to the covariance matrix
of the transformed residual ε̃it. (The constant of proportionality cancels out of all the formulas we
use involving Ω.) The form of Ω in the case of using first differences to remove the fixed effects
follows from the fact that even though we assume εit is independent across t (and i), by taking first
differences, the transformed residual will follow a first-order moving average process with coefficient
θ = −(1/2).

If you specify the onestep option, then xtvar reports a cluster–robust variance–covariance matrix
of θ̂1 that allows for arbitrary within-cluster correlation. We have

Var(θ̂1) =
(
Q′Z′XW0QZ′X

)−1
Q′Z′XW0Ŝ1W0QZ′X

(
Q′Z′XW0QZ′X

)−1

where

Ŝ1 =
1

N

∑
i

Z′iê1iê
′
1iZi (12)

and ê1i are the residuals from the first step.
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Two-step estimator

To compute the two-step estimator, we first obtain the one-step estimated parameter vector θ̂1, use
it to compute the residuals ê1i, and use those to compute Ŝ1 as shown in (12). Hansen (1982) shows
that to obtain the optimal GMM estimator, we should use as a weight matrix the inverse of the VCE

of the moment conditions. Ŝ1 is a consistent estimator of that VCE, so we use as our second-step
weight matrix Ŵ1 = Ŝ−1

1 . The two-step estimator is then

θ̂2 =
(
Q′Z′XŴ1QZ′X

)−1

Q′Z′XŴ1QZ′y

The default VCE is the Windmeijer (2005) robust VCE given by

Var(θ̂2) =
1

N
V2 +

1

N
(DV2 + V2D

′) +DVar(θ̂1)D′

where

V2 =
(
Q′Z′XŴ1QZ′X

)−1

∂S (θ)

∂θj
= − 1

N

∑
i

(
Q

[j]
Z′X ê′1iZi + ê1iZ

′
iQ

[j]′

Z′X

)
D[j] = −V2Q

′
Z′XŴ1

∂S (θ)

∂θj
Ŵ1ḡ

(
θ̂2

)
ḡ
(
θ̂2

)
=

1

N

∑
i

Z′iê2i

and [j] corresponds to the jth column of a matrix and ê2i are the residuals of the two-step estimator.

Hansen’s J statistic
Hansen’s J statistic is N times the GMM objective function as in

J = N

(
1

N

∑
i

Z′iê1i

)′
Ŵ

(
1

N

∑
i

Z′iê1i

)

where Ŵ is the weight matrix used, either the one-step or two-step weight matrix.

Acknowledgment
We thank Brian Poi of Poi Consulting LLC for his advice on and review of the xtvar command.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow


36 xtvar — Panel-data vector autoregressive models+

References
Akaike, H. 1973. Information theory and an extension of the maximum likelihood principle. In Second International

Symposium on Information Theory, ed. B. N. Petrov and F. Csaki, 267–281. Budapest: Akailseoniai–Kiudo.

Andrews, D. W. K., and B. Lu. 2001. Consistent model and moment selection procedures for GMM estimation with
application to dynamic panel data models. Journal of Econometrics 101: 123–164. https://doi.org/10.1016/S0304-
4076(00)00077-4.

Arellano, M., and S. Bond. 1991. Some tests of specification for panel data: Monte Carlo evidence and an application
to employment equations. Review of Economic Studies 58: 277–297. https://doi.org/10.2307/2297968.

Arellano, M., and O. Bover. 1995. Another look at the instrumental variable estimation of error-components models.
Journal of Econometrics 68: 29–51. https://doi.org/10.1016/0304-4076(94)01642-D.

Blomquist, S., and M. Dahlberg. 1999. Small sample properties of LIML and jackknife IV estimators: Experiments with
weak instruments. Journal of Applied Econometrics 14: 69–88. https://doi.org/10.1002/(SICI)1099-1255(199901/02)
14:1〈69::AID-JAE521〉3.0.CO;2-7.

Cameron, A. C., and P. K. Trivedi. 2022. Microeconometrics Using Stata. 2nd ed. College Station, TX: Stata Press.

Hall, A. R. 2005. Generalized Method of Moments. Oxford: Oxford University Press.

Hamilton, J. D. 1994. Time Series Analysis. Princeton, NJ: Princeton University Press.

Han, C., and P. C. B. Phillips. 2006. GMM with many moment conditions. Econometrica 74: 147–192.
https://doi.org/10.1111/j.1468-0262.2006.00652.x.

Hannan, E. J., and B. G. Quinn. 1979. The determination of the order of an autoregression. Journal of the Royal
Statistical Society, Series B 41: 190–195. https://doi.org/10.1111/j.2517-6161.1979.tb01072.x.

Hansen, L. P. 1982. Large sample properties of generalized method of moments estimators. Econometrica 50:
1029–1054. https://doi.org/10.2307/1912775.

Hayakawa, K. 2009. First difference or forward orthogonal deviation—which transformation should be used in dynamic
panel data models?: A simulation study. Economics Bulletin 29: 2008–2017.

Hayashi, F. 2000. Econometrics. Princeton, NJ: Princeton University Press.

Kilian, L., and H. Lütkepohl. 2017. Structural Vector Autoregressive Analysis. Cambridge: Cambridge University
Press. https://doi.org/10.1017/9781108164818.

Lütkepohl, H. 2005. New Introduction to Multiple Time Series Analysis. New York: Springer.

Nerlove, M. 1967. Experimental evidence on the estimation of dynamic economic relations from a time series of
cross-section. Economics Studies Quarterly 18: 42–74. https://doi.org/10.11398/economics1950.18.3 42.

Nickell, S. J. 1981. Biases in dynamic models with fixed effects. Econometrica 49: 1417–1426.
https://doi.org/10.2307/1911408.

Roodman, D. 2009a. A note on the theme of too many instruments. Oxford Bulletin of Economics and Statistics 71:
135–158. https://doi.org/10.1111/j.1468-0084.2008.00542.x.

. 2009b. How to do xtabond2: An introduction to difference and system GMM in Stata. Stata Journal 9: 86–136.

Schwarz, G. 1978. Estimating the dimension of a model. Annals of Statistics 6: 461–464.
https://doi.org/10.1214/aos/1176344136.

Stock, J. H., and J. H. Wright. 2000. GMM with weak identification. Econometrica 68: 1055–1096.
https://doi.org/10.1111/1468-0262.00151.

Windmeijer, F. 2005. A finite sample correction for the variance of linear efficient two-step GMM estimators. Journal
of Econometrics 126: 25–51. https://doi.org/10.1016/j.jeconom.2004.02.005.

Wooldridge, J. M. 2010. Econometric Analysis of Cross Section and Panel Data. 2nd ed. Cambridge, MA: MIT Press.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://doi.org/10.1016/S0304-4076(00)00077-4
https://doi.org/10.1016/S0304-4076(00)00077-4
https://doi.org/10.2307/2297968
https://doi.org/10.1016/0304-4076(94)01642-D
https://doi.org/10.1002/(SICI)1099-1255(199901/02)14:1<69::AID-JAE521>3.0.CO;2-7
https://doi.org/10.1002/(SICI)1099-1255(199901/02)14:1<69::AID-JAE521>3.0.CO;2-7
http://www.stata-press.com/books/microeconometrics-stata
https://doi.org/10.1111/j.1468-0262.2006.00652.x
https://doi.org/10.1111/j.1468-0262.2006.00652.x
https://doi.org/10.1111/j.2517-6161.1979.tb01072.x
https://doi.org/10.2307/1912775
https://doi.org/10.1017/9781108164818
http://www.stata.com/bookstore/imtsa.html
https://doi.org/10.11398/economics1950.18.3_42
https://doi.org/10.2307/1911408
https://doi.org/10.2307/1911408
https://doi.org/10.1111/j.1468-0084.2008.00542.x
https://doi.org/10.1177/1536867X0900900106
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1111/1468-0262.00151
https://doi.org/10.1111/1468-0262.00151
https://doi.org/10.1016/j.jeconom.2004.02.005
http://www.stata.com/bookstore/cspd.html


xtvar — Panel-data vector autoregressive models+ 37

Also see
[XT] xtvar postestimation — Postestimation tools for xtvar+

[XT] xtset — Declare data to be panel data

[TS] forecast — Econometric model forecasting

[TS] var intro — Introduction to vector autoregressive models

[TS] var — Vector autoregressive models+

[U] 20 Estimation and postestimation commands

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and
Stata Press are registered trademarks with the World Intellectual Property Organization
of the United Nations. StataNow and NetCourseNow are trademarks of StataCorp
LLC. Other brand and product names are registered trademarks or trademarks of their
respective companies. Copyright c© 1985–2023 StataCorp LLC, College Station, TX,
USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/xtxtvarpostestimation.pdf#xtxtvarpostestimation
https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/xtxtset.pdf#xtxtset
https://www.stata.com/manuals/tsforecast.pdf#tsforecast
https://www.stata.com/manuals/tsvarintro.pdf#tsvarintro
https://www.stata.com/manuals/tsvar.pdf#tsvar
https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

