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Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals, for example,
[U] 27 Overview of Stata estimation commands; [R] regress; and [D] reshape. The first ex-
ample is a reference to chapter 27, Overview of Stata estimation commands, in the User’s Guide;
the second is a reference to the regress entry in the Base Reference Manual; and the third is a
reference to the reshape entry in the Data Management Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:
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me — Introduction to multilevel mixed-effects models

Description Quick start Syntax Remarks and examples
Acknowledgments References Also see

Description
Mixed-effects models are characterized as containing both fixed effects and random effects. The

fixed effects are analogous to standard regression coefficients and are estimated directly. The random
effects are not directly estimated (although they may be obtained postestimation) but are summarized
according to their estimated variances and covariances. Random effects may take the form of either
random intercepts or random coefficients, and the grouping structure of the data may consist of
multiple levels of nested groups. As such, mixed-effects models are also known in the literature as
multilevel models and hierarchical models. Mixed-effects commands fit mixed-effects models for a
variety of distributions of the response conditional on normally distributed random effects.

Mixed-effects linear regression
mixed Multilevel mixed-effects linear regression

Mixed-effects generalized linear model
meglm Multilevel mixed-effects generalized linear models

Mixed-effects censored regression
metobit Multilevel mixed-effects tobit regression
meintreg Multilevel mixed-effects interval regression

Mixed-effects binary regression
melogit Multilevel mixed-effects logistic regression
meprobit Multilevel mixed-effects probit regression
mecloglog Multilevel mixed-effects complementary log–log regression

Mixed-effects ordinal regression
meologit Multilevel mixed-effects ordered logistic regression
meoprobit Multilevel mixed-effects ordered probit regression

Mixed-effects count-data regression
mepoisson Multilevel mixed-effects Poisson regression
menbreg Multilevel mixed-effects negative binomial regression

1



2 me — Introduction to multilevel mixed-effects models

Mixed-effects multinomial regression
Although there is no memlogit command, multilevel mixed-effects multinomial
logistic models can be fit using gsem; see [SEM] Example 41g.

Mixed-effects survival model
mestreg Multilevel mixed-effects parametric survival models

Nonlinear mixed-effects regression
menl Nonlinear mixed-effects regression

Postestimation tools specific to mixed-effects commands
estat df Calculate and display degrees of freedom for fixed effects
estat group Summarize the composition of the nested groups
estat icc Estimate intraclass correlations
estat recovariance Display the estimated random-effects covariance matrices
estat sd Display variance components as standard deviations and correlations
estat wcorrelation Display within-cluster correlations and standard deviations

Quick start

Linear mixed-effects models

Linear model of y on x with random intercepts by id

mixed y x || id:

Three-level linear model of y on x with random intercepts by doctor and patient

mixed y x || doctor: || patient:

Linear model of y on x with random intercepts and coefficients on x by id

mixed y x || id: x

Same model with covariance between the random slope and intercept

mixed y x || id: x, covariance(unstructured)

Linear model of y on x with crossed random effects for id and week

mixed y x || _all: R.id || _all: R.week

Same model specified to be more computationally efficient

mixed y x || _all: R.id || week:

Full factorial repeated-measures ANOVA of y on a and b with random effects by field

mixed y a##b || field:
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Generalized linear mixed-effects models

Logistic model of y on x with random intercepts by id, reporting odds ratios

melogit y x || id: , or

Same model specified as a GLM

meglm y x || id:, family(bernoulli) link(logit)

Three-level ordered probit model of y on x with random intercepts by doctor and patient

meoprobit y x || doctor: || patient:

Nonlinear mixed-effects models

Nonlinear mixed-effects regression of y on x1 and x2 with parameters {b0}, {b1}, {b2}, and {b3}
and random intercepts U0 by id

menl y = ({b0}+{b1}*x1+{U0[id]})/(1+exp(-(x2-{b2})/{b3}))

Same as above, but using the more efficient specification of the linear combination
menl y = ({lc: x1 U0[id]})/(1+exp(-(x2-{b2})/{b3}))

Same as above, but using define() to specify the linear combination
menl y = {lc:}/(1+exp(-(x2-{b2})/{b3})), define(lc: x1 U0[id])

Include a random slope on continuous variable x1 in the define() option, and allow correlation
between random slopes U1 and intercepts U0

menl y = {lc:}/(1+exp(-(x2-{b2})/{b3})), ///
define(lc: x1 U0[id] c.x1#U1[id]) covariance(U0 U1, unstructured)

Specify a heteroskedastic within-subject error structure that varies as a power of predicted mean
values yhat

menl y = {lc:}/(1+exp(-(x2-{b2})/{b3})), ///
define(lc: x1 U0[id] c.x1#U1[id]) ///
covariance(U0 U1, unstructured) resvariance(power _yhat)

Three-level nonlinear regression of y on x1 with random intercepts W0 and slopes W1 on continuous
x1 by lev2 and with random intercepts S0 and slopes S1 on x1 by lev3, with lev2 nested within
lev3, using unstructured covariance for W0 and W1 and exchangeable covariance for S0 and S1

menl y = {phi1:}+{b1}*cos({b2}*x1), ///
define(phi1: x1 W0[lev3] S0[lev3>lev2] ///

c.x1#(W1[lev3] S1[lev3>lev2])) ///
covariance(W0 W1, unstructured) covariance(S0 S1, exchangeable)
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Syntax
Linear mixed-effects models

mixed depvar fe equation
[
|| re equation

] [
|| re equation . . .

] [
, options

]
where the syntax of the fixed-effects equation, fe equation, is[

indepvars
] [

if
] [

in
] [

weight
] [

, fe options
]

and the syntax of a random-effects equation, re equation, is the same as below for a generalized
linear mixed-effects model.

Generalized linear mixed-effects models

mecmd depvar fe equation
[
|| re equation

] [
|| re equation . . .

] [
, options

]
where the syntax of the fixed-effects equation, fe equation, is[

indepvars
] [

if
] [

in
] [

, fe options
]

and the syntax of a random-effects equation, re equation, is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all
representing one group comprising all observations.

Nonlinear mixed-effects models

menl depvar = <menlexpr>
[

if
] [

in
] [

, options
]

<menlexpr> defines a nonlinear regression function as a substitutable expression that contains model
parameters and random effects specified in braces {}, as in exp({b}+{U[id]}); see Random-effects
substitutable expressions in [ME] menl for details.
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Remarks and examples
Remarks are presented under the following headings:

Introduction
Using mixed-effects commands
Mixed-effects models

Linear mixed-effects models
Generalized linear mixed-effects models
Survival mixed-effects models
Nonlinear mixed-effects models
Alternative mixed-effects model specification
Likelihood calculation
Computation time and the Laplacian approximation
Diagnosing convergence problems
Distribution theory for likelihood-ratio test

Examples
Two-level models
Covariance structures
Three-level models
Crossed-effects models
Nonlinear models

Introduction

Multilevel models have been used extensively in diverse fields, from the health and social sciences
to econometrics. Mixed-effects models for binary outcomes have been used, for example, to analyze
the effectiveness of toenail infection treatments (Lesaffre and Spiessens 2001) and to model union
membership of young males (Vella and Verbeek 1998). Ordered outcomes have been studied by, for
example, Tutz and Hennevogl (1996), who analyzed data on wine bitterness, and De Boeck and
Wilson (2004), who studied verbal aggressiveness. For applications of mixed-effects models for count
responses, see, for example, the study on police stops in New York City (Gelman and Hill 2007)
and the analysis of the number of patents (Hall, Griliches, and Hausman 1986). Rabe-Hesketh
and Skrondal (2022) provide more examples of linear and generalized linear mixed-effects models.
Nonlinear mixed-effects (NLME) models are popular in, for example, population pharmacokinetics,
bioassays, and studies of biological and agricultural growth processes.

For a comprehensive treatment of mixed-effects models, see, for example, Searle, Casella, and
McCulloch (1992); Verbeke and Molenberghs (2000); Raudenbush and Bryk (2002); Hedeker and
Gibbons (2006); McCulloch, Searle, and Neuhaus (2008); and Rabe-Hesketh and Skrondal (2022).
For NLME models, see, for example, Davidian and Giltinan (1995); Vonesh and Chinchilli (1997);
Demidenko (2013); Pinheiro and Bates (2000); and Davidian and Giltinan (2003).
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Shayle R. Searle (1928–2013) was born in New Zealand. He obtained his PhD in animal breeding
from Cornell University in 1958, with a minor in statistics. Prior to moving to New York, he
worked as a research statistician for the New Zealand Dairy Board, which provided the data that
he would analyze for his thesis. After completing his doctoral degree, he worked as a research
associate and published several articles. He later returned to his post as a statistician in New
Zealand, a position which would have a lasting influence on his career.

Through his analysis of dairy production data, Searle made advancements in estimation methods
for unbalanced data and published a book on this topic. He later returned to Cornell University,
teaching courses in matrix algebra, linear regression models, and estimation of variance compo-
nents. Searle was one of the first few statisticians to use matrices in statistics, and he wrote a
couple of books applying matrix algebra to economics and statistics. In 2001, he published a
book on mixed models, which proved to be a significant contribution considering that not many
statisticians were well acquainted with random effects in the 1950s. His contributions did not go
unnoticed: he was awarded the Alexander von Humboldt U.S. Senior Scientist Award and was
elected a fellow of the Royal Statistical Society and of the American Statistical Association.� �

� �
George Casella (1951–2012) was born in Bronx, New York. After obtaining a PhD in statistics
from Purdue University, he went on to join the faculty at Rutgers University, and later Cornell
University, where he taught for 19 years, and the University of Florida. He published on topics
such as confidence estimation, Bayesian analysis, and empirical Bayes methods. In general, his
work was motivated by applications to science, and in particular, his work on variable selection
and clustering was motivated by genetics. Casella coauthored a book with Roger Berger that
introduced many graduate students to mathematical statistics. He coauthored another book with
Christian P. Robert on Monte Carlo methods. In addition to his own published work, Casella
was an editor for three journals: Statistical Science, Journal of the American Statistical Society,
and Journal of the Royal Statistical Society.

Casella’s many contributions are reflected in his election to fellowship on behalf of four different
associations and institutes and being made a foreign member of the Spanish Royal Academy of
Sciences. He acquired the Spanish language during a year he spent in Spain for sabbatical and
even gave talks on Monte Carlo methods in Spanish. Aside from his academic accomplishments,
Casella completed 13 marathons and spent time as a volunteer firefighter.� �

Using mixed-effects commands

Below we summarize general capabilities of the mixed-effects commands. We let mecmd stand
for any mixed-effects command, such as mixed, melogit, or meprobit, except menl. menl models
the mean function nonlinearly and thus has a different syntax; see [ME] menl.

1. Fit a two-level random-intercept model with levelvar defining the second level:

. mecmd depvar
[

indepvars
]
. . . || levelvar:, . . .

https://www.stata.com/giftshop/bookmarks/series10/casella/
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2. Fit a two-level random-coefficients model containing the random-effects covariates revars at the
level levelvar:

. mecmd depvar
[

indepvars
]
. . . || levelvar: revars, . . .

This model assumes an independent covariance structure between the random effects; that is, all
covariances are assumed to be 0. There is no statistical justification, however, for imposing any
particular covariance structure between random effects at the onset of the analysis. In practice,
models with an unstructured random-effects covariance matrix, which allows for distinct variances
and covariances between all random-effects covariates (revars) at the same level, must be explored
first; see Other covariance structures and example 3 in [ME] melogit for details.

Stata’s commands use the default independent covariance structure for computational feasibility.
Numerical methods for fitting mixed-effects models are computationally intensive—computation
time increases significantly as the number of parameters increases; see Computation time and the
Laplacian approximation for details. The unstructured covariance is the most general and contains
many parameters, which may result in an unreasonable computation time even for relatively simple
random-effects models. Whenever feasible, however, you should start your statistical analysis
by fitting mixed-effects models with an unstructured covariance between random effects, as we
show next.

3. Specify the unstructured covariance between the random effects in the above:

. mecmd depvar
[

indepvars
]
. . . || levelvar: revars, covariance(unstructured) . . .

4. Fit a three-level nested model with levelvar1 defining the third level and levelvar2 defining the
second level:

. mecmd depvar
[

indepvars
]
. . . || levelvar1: || levelvar2:, . . .

5. Fit the above three-level nested model as a two-level model with exchangeable covariance structure
at the second level (mixed only):

. mecmd depvar
[

indepvars
]
. . . || levelvar1: R.levelvar2, cov(exchangeable) . . .

See example 11 in [ME] mixed for details about this equivalent specification. This specification
may be useful for a more efficient fitting of random-effects models with a mixture of crossed
and nested effects.

6. Fit higher-level nested models:

. mecmd depvar
[

indepvars
]
. . . || levelvar1: || levelvar2: || levelvar3: || . . .

7. Fit a two-way crossed-effects model with the all: notation for each random-effects equation:

. mecmd depvar
[

indepvars
]
. . . || _all: R.factor1 || _all: R.factor2 . . .

When you use the all: notation for each random-effects equation, the total dimension of the
random-effects design equals r1 + r2, where r1 and r2 are the numbers of levels in factor1 and
factor2, respectively. This specification may be infeasible for some mixed-effects models; see
item 8 below for a more efficient specification of this model.

8. Fit a two-way crossed-effects model with the all: notation for the first random-effects equation
only:

. mecmd depvar
[

indepvars
]
. . . || _all: R.factor1 || factor2:, . . .

Compared with the specification in item 7, this specification requires only r1 + 1 parameters and
is thus more efficient; see Crossed-effects models for details.
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9. Fit a two-way full-factorial random-effects model:

. mecmd depvar
[

indepvars
]
. . . || _all: R.factor1 || factor2: || factor1: . . .

10. Fit a two-level mixed-effects model with a blocked-diagonal covariance structure between revars1
and revars2:

. mecmd depvar
[

indepvars
]
. . . || levelvar: revars1, noconstant ///

|| levelvar: revars2, noconstant . . .

11. Fit a linear mixed-effects model where the correlation between the residual errors follows an
autoregressive process of order 1:

. mixed depvar
[

indepvars
]
. . . || levelvar:, residuals(ar 1, t(time)) . . .

More residual error structures are available; see [ME] mixed for details.

12. Fit a two-level linear mixed-effects model accounting for sampling weights expr1 at the first
(residual) level and for sampling weights expr2 at the level of levelvar:

. mixed depvar
[

indepvars
]
[pweight=expr1] . . . || levelvar:, pweight(expr2) . . .

Mixed-effects commands—with the exception of mixed—allow constraints on both fixed-effects
and random-effects parameters. We provide several examples below of imposing constraints on
variance components.

13. Fit a mixed-effects model with the variance of the random intercept on levelvar constrained to
be 16:

. constraint 1 _b[var(_cons[levelvar]):_cons]=16

. mecmd depvar
[

indepvars
]
. . . || levelvar:, constraints(1) . . .

14. Fit a mixed-effects model with the variance of the random intercept on levelvar and the variance
of the random slope on revar to be equal:

. constraint 1 _b[var(revar[levelvar]):_cons] = _b[var(_cons[levelvar]):_cons]

. mecmd depvar
[

indepvars
]
. . . || levelvar: revar, constraints(1) . . .

Note that the constraints above are equivalent to imposing an identity covariance structure for
the random-effects equation:

. mecmd depvar
[

indepvars
]
. . . || levelvar: revar, cov(identity) . . .

15. Assuming four random slopes revars, fit a mixed-effects model with the variance components at
the level of levelvar constrained to have a banded structure:

. mat p = (1,.,.,. \ 2,1,.,. \ 3,2,1,. \ 4,3,2,1)

. mecmd depvar
[

indepvars
]
. . . || levelvar: revars, noconstant ///

covariance(pattern(p)) . . .

16. Assuming four random slopes revars, fit a mixed-effects model with the variance components at
the level of levelvar constrained to the specified numbers, and with all the covariances constrained
to be 0:

. mat f = diag((1,2,3,4))

. mecmd depvar
[

indepvars
]
. . . || levelvar: revars, noconstant ///

covariance(fixed(f)) . . .

The variance components in models in items 15 and 16 can also be constrained by using the
constraints() option, but using covariance(pattern()) or covariance(fixed()) is more
convenient.
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Mixed-effects models

Linear mixed-effects models

Linear mixed-effects (LME) models for continuous responses are a generalization of linear regression
allowing for the inclusion of random deviations (effects) other than those associated with the overall
error term. In matrix notation,

y = Xβ+ Zu + ε (1)

where y is the n× 1 vector of responses, X is an n× p design/covariate matrix for the fixed effects
β, and Z is the n× q design/covariate matrix for the random effects u. The n× 1 vector of errors
ε is assumed to be multivariate normal with mean 0 and variance matrix σ2

εR.

The fixed portion of (1), Xβ, is analogous to the linear predictor from a standard OLS regression
model with β being the regression coefficients to be estimated. For the random portion of (1), Zu+ε,
we assume that u has variance–covariance matrix G and that u is orthogonal to ε so that

Var
[

u
ε

]
=

[
G 0
0 σ2

εR

]
The random effects u are not directly estimated (although they may be predicted) but instead are
characterized by the elements of G, known as variance components, that are estimated along with
the error-covariance parameters that include the overall error variance σ2

ε and the parameters that are
contained within R.

The general forms of the design matrices X and Z allow estimation for a broad class of linear
models: blocked designs, split-plot designs, growth curves, multilevel or hierarchical designs, etc.
They also allow a flexible method of modeling within-cluster correlation. Subjects within the same
cluster can be correlated as a result of a shared random intercept, or through a shared random slope
on age (for example), or both. The general specification of G also provides additional flexibility: the
random intercept and random slope could themselves be modeled as independent, or correlated, or
independent with equal variances, and so forth. The general structure of R also allows for within-cluster
errors to be heteroskedastic and correlated and allows flexibility in exactly how these characteristics
can be modeled.

In clustered-data situations, it is convenient not to consider all n observations at once but instead
to organize the mixed model as a series of M independent groups (or clusters)

yj = Xjβ+ Zjuj + εj (2)

for j = 1, . . . ,M , with cluster j consisting of nj observations. The response yj comprises the rows
of y corresponding with the jth cluster, with Xj and εj defined analogously. The random effects uj
can now be thought of as M realizations of a q × 1 vector that is normally distributed with mean 0
and q × q variance matrix Σ. The matrix Zj is the nj × q design matrix for the jth cluster random
effects. Relating this to (1),

Z =


Z1 0 · · · 0
0 Z2 · · · 0
...

...
. . .

...
0 0 0 ZM

 ; u =

 u1
...

uM

 ; G = IM ⊗ Σ; R = IM ⊗ Λ

where Λ denotes the variance matrix of the level-1 errors and ⊗ is the Kronecker product.
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The mixed-model formulation (2) is from Laird and Ware (1982) and offers two key advantages.
First, it makes specifications of random-effects terms easier. If the clusters are schools, you can
simply specify a random effect at the school level, as opposed to thinking of what a school-level
random effect would mean when all the data are considered as a whole (if it helps, think Kronecker
products). Second, representing a mixed-model with (2) generalizes easily to more than one set of
random effects. For example, if classes are nested within schools, then (2) can be generalized to
allow random effects at both the school and the class-within-school levels.

By our convention on counting and ordering model levels, (2) is a two-level model, with extensions
to three, four, or any number of levels. The observation yij is for individual i within cluster j, and the
individuals compose the first level, whereas the clusters compose the second level of the model. In a
hypothetical three-level model with classes nested within schools, the observations within classes (the
students, presumably) would constitute the first level, the classes would constitute the second level,
and the schools would constitute the third level. This differs from certain citations in the classical
ANOVA literature and texts such as Pinheiro and Bates (2000) but is the standard in the vast literature
on hierarchical models, for example, Skrondal and Rabe-Hesketh (2004).

In Stata, you can use mixed to fit linear mixed-effects models; see [ME] mixed for a detailed
discussion and examples. Various predictions, statistics, and diagnostic measures are available after
fitting an LME model with mixed. For the most part, calculation centers around obtaining estimates
of random effects; see [ME] mixed postestimation for a detailed discussion and examples.

Generalized linear mixed-effects models

Generalized linear mixed-effects (GLME) models, also known as generalized linear mixed models
(GLMMs), are extensions of generalized linear models allowing for the inclusion of random deviations
(effects). In matrix notation,

g
{
E(y|X,u)

}
= Xβ+ Zu, y ∼ F (3)

where y is the n×1 vector of responses from the distributional family F , X is an n×p design/covariate
matrix for the fixed effects β, and Z is an n× q design/covariate matrix for the random effects u.
The Xβ + Zu part is called the linear predictor and is often denoted as η. g(·) is called the link
function and is assumed to be invertible such that

E(y|u) = g−1(Xβ+ Zu) = H(η) = µ

For notational convenience here and throughout this manual entry, we suppress the dependence of y
on X. Substituting various definitions for g(·) and F results in a wide array of models. For instance,
if g(·) is the logit function and y is distributed as Bernoulli, we have

logit
{
E(y|u)

}
= Xβ+ Zu, y ∼ Bernoulli

or mixed-effects logistic regression. If g(·) is the natural log function and y is distributed as Poisson,
we have

ln
{
E(y|u)

}
= Xβ+ Zu, y ∼ Poisson

or mixed-effects Poisson regression.

For the random portion of (3), Zu, we assume that u has variance–covariance matrix G such that

Var(u) = G
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The random effects u are not directly estimated (although they may be predicted) but instead are
characterized by the elements of G, known as variance components.

Analogously to (2), in clustered-data situations, we can write

E(yj |uj) = g−1(Xjβ+ Zjuj) yj ∼ F

with all the elements defined as before. In terms of the whole dataset, we now have

Z =


Z1 0 · · · 0
0 Z2 · · · 0
...

...
. . .

...
0 0 0 ZM

 ; u =

 u1
...

uM

 ; G = IM ⊗ Σ

In Stata, you can use meglm to fit mixed-effects models for nonlinear responses. Some combinations
of families and links are so common that we implemented them as separate commands in terms of
meglm.

Command meglm equivalent

melogit family(bernoulli) link(logit)

meprobit family(bernoulli) link(probit)

mecloglog family(bernoulli) link(cloglog)

meologit family(ordinal) link(logit)

meoprobit family(ordinal) link(probit)

mepoisson family(poisson) link(log)

menbreg family(nbinomial) link(log)

When no family–link combination is specified, meglm defaults to a Gaussian family with an
identity link. Thus meglm can be used to fit linear mixed-effects models; however, for those models
we recommend using the more specialized mixed, which, in addition to meglm capabilities, allows
for modeling of the structure of the within-cluster errors; see [ME] mixed for details.

Various predictions, statistics, and diagnostic measures are available after fitting a GLME model
with meglm and other me commands. For the most part, calculation centers around obtaining estimates
of random effects; see [ME] meglm postestimation for a detailed discussion and examples.

Survival mixed-effects models

Parametric survival mixed-effects models use a trivariate response variable (t0, t, d), where each
response corresponds to a period under observation (t0, t] and results in either failure (d = 1) or
right-censoring (d = 0) at time t. See [ST] streg for background information on parametric survival
models. Two often-used models for adjusting survivor functions for the effects of covariates are the
accelerated failure-time (AFT) model and the multiplicative or proportional hazards (PH) model.

In the AFT parameterization, the natural logarithm of the survival time, log t, is expressed as a
linear function of the covariates. When we incorporate random effects, this yields the model

log(tj) = Xjβ+ Zjuj + vj
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where log(·) is an elementwise function, and vj is a vector of observation-level errors. The distri-
butional form of the error term determines the regression model.

In the PH model, the covariates have a multiplicative effect on the hazard function

h(tj) = h0(tj) exp(Xjβ+ Zjuj)

where all the functions are elementwise, and h0(·) is a baseline hazard function. The functional form
of h0(·) determines the regression model.

In Stata, you can use mestreg to fit multilevel mixed-effects parametric survival models for the
following distributions and parameterizations.

Distribution Parameterization
exponential PH, AFT

loglogistic AFT

weibull PH, AFT

lognormal AFT

gamma AFT

mestreg is suitable only for data that have been set using the stset command. By using stset
on your data, you define the variables t0, t, and d, which serve as the trivariate response. See
[ME] mestreg for more details about the command. Various predictions, statistics, and diagnostic
measures are available after fitting a mixed-effects survival model with mestreg; see [ME] mestreg
postestimation for a detailed discussion and examples.

Nonlinear mixed-effects models

NLME models are models containing both fixed effects and random effects where some of, or all,
the fixed and random effects enter the model nonlinearly. They can be viewed as a generalization of
LME models, in which the conditional mean of the outcome given the random effects is a nonlinear
function of the coefficients and random effects. Alternatively, they can be considered as an extension
of nonlinear regression models for independent data (see [R] nl), in which coefficients may incorporate
random effects, allowing them to vary across different levels of hierarchy and thus inducing correlation
within observations at the same level.

Using the notation from Linear mixed-effects models for LME models for clustered data, we can
write an NLME model as

yj = µ (Aj ,β,uj) + εj

where µ(·) is a real-valued vector function and Aj is an nj × l matrix of covariates for the jth
cluster, which includes both within-subject and between-subject covariates. Do not be surprised to
see the Aj matrix here instead of the more familiar fixed-effects and random-effects design matrices
Xj and Zj from previous sections. Because both covariates and parameters can enter the model
nonlinearly in NLME, we cannot express the regression function as a function containing the linear
term Xjβ+ Zjuj as we can for LME and GLME models. The distributional assumptions on uj’s and
εj’s are the same as for the LME models.

Parameters of NLME models often have scientifically meaningful interpretations, and research
questions are formed based on them. To allow parameters to reflect phenomena of interest, NLME
models are often formulated by using a multistage formulation; see Alternative mixed-effects model
specification below for examples.
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We can formulate our previous NLME model as a two-stage hierarchical model:

Stage 1: Individual-level model yij = m
(
xwij , φj

)
+ εij , i = 1, . . . , nj

Stage 2: Group-level model φj = d
(
xbj , β, uj

)
, j = 1, . . . ,M

In stage 1, we model the response by using a function m(·), which describes within-subject
behavior. This function depends on subject-specific parameters φj’s, which have a natural physical
interpretation, and a vector of within-subject covariates xwij . In stage 2, we use a known vector-valued
function d(·) to model between-subject behavior, that is, to model φj’s and to explain how they
vary across subjects. The d(·) function incorporates random effects and, optionally, a vector of
between-subject covariates xbj . The general idea is to specify a common functional form for each
subject in stage 1 and then allow some parameters to vary randomly across subjects in stage 2.

You can use the menl command to fit NLME models to continuous outcomes; see [ME] menl. menl
supports both the single-equation and multistage model formulations. It supports different covariance
structures for random effects and can model heteroskedasticity and correlations within lowest-level
groups. Various predictions, statistics, and diagnostic measures are available after fitting an NLME
model; see [ME] menl postestimation.

For an introductory example, see Nonlinear models.

Alternative mixed-effects model specification

In this section, we present a hierarchical or multistage formulation of mixed-effects models where
each level is described by its own set of equations. This formulation is common for NLME models;
see Nonlinear mixed-effects models.

Consider a random-intercept model that we write here in general terms:

yij = β0 + β1xij + uj + εij (4)

This single-equation specification contains both level-1 and level-2 effects. In the hierarchical form,
we specify a separate equation for each level.

yij = γ0j + β1xij + εij

γ0j = β00 + u0j
(5)

The equation for the intercept γ0j consists of the overall mean intercept β00 and a cluster-specific
random intercept u0j . To fit this model by using, for example, mixed, we must translate the multiple-
equation notation into a single-equation form. We substitute the second equation into the first one
and rearrange terms.

yij = β00 + u0j + β1xij + εij

= β00 + β1xij + u0j + εij
(6)

Note that model (6) is the same as model (4) with β00 ≡ β0 and u0j ≡ uj . Thus the syntax for
our generic random-intercept model is

. mixed y x || id:

where id is the variable designating the clusters.
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We can extend model (5) to include a random slope. We do so by specifying an additional equation
for the slope on xij .

yij = γ0j + γ1jxij + εij

γ0j = β00 + u0j

γ1j = β10 + u1j

(7)

The additional equation for the slope γ1j consists of the overall mean slope β10 and a cluster-specific
random slope u1j . We substitute the last two equations into the first one to obtain a reduced-form
model.

yij = (β00 + u0j) + (β10 + u1j)xij + εij

= β00 + β10xij + u0j + u1jxij + εij

The syntax for this model becomes

. mixed y x || id: x, covariance(unstructured)

where we specified an unstructured covariance structure for the level-2 u terms.

Here we further extend the random-slope random-intercept model (7) by adding a level-2 covariate
zj into the level-2 equations.

yij = γ0j + γ1jxij + εij

γ0j = β00 + β01zj + u0j

γ1j = β10 + β11zj + u1j

We substitute as before to obtain a single-equation form:

yij = (β00 + β01zj + u0j) + (β10 + β11zj + u1j)xij + εij

= β00 + β01zj + β10xij + β11zjxij + u0j + u1jxij + εij

Now the fixed-effects portion of the equation contains a constant and variables x, z, and their
interaction. Assuming both x and z are continuous variables, we can use the following Stata syntax
to fit this model:

. mixed y x z c.x#c.z || id: x, covariance(unstructured)

Although the menl command is not as suitable for fitting LME models as mixed, it can accommodate
a multistage formulation. For example, (5) can be fit in menl as

. menl y = {gamma0:}+{b1}*x, define(gamma0: {b00}+{U0[id]})

and (7) as

. menl y = {gamma0:}+{gamma1:}*x, define(gamma0: {b00}+{U0[id]}) ///
define(gamma1: {b10}+{U1[id]})

In the above menl’s specifications, gamma0 and gamma1 can be specified more efficiently by using
linear combinations; see [ME] menl for details.

We refer you to Raudenbush and Bryk (2002) and Rabe-Hesketh and Skrondal (2022) for a
more thorough discussion and further examples of multistage mixed-model formulations, including
three-level models.
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Likelihood calculation

The key to fitting mixed models lies in estimating the variance components, and for that there exist
many methods. Most of the early literature in LME models dealt with estimating variance components
in ANOVA models. For simple models with balanced data, estimating variance components amounts
to solving a system of equations obtained by setting expected mean-squares expressions equal to their
observed counterparts. Much of the work in extending the ANOVA method to unbalanced data for
general ANOVA designs is attributed to Henderson (1953).

The ANOVA method, however, has its shortcomings. Among these is a lack of uniqueness in that
alternative, unbiased estimates of variance components could be derived using other quadratic forms
of the data in place of observed mean squares (Searle, Casella, and McCulloch 1992, 38–39). As a
result, ANOVA methods gave way to more modern methods, such as minimum norm quadratic unbiased
estimation (MINQUE) and minimum variance quadratic unbiased estimation (MIVQUE); see Rao (1973)
for MINQUE and LaMotte (1973) for MIVQUE. Both methods involve finding optimal quadratic forms
of the data that are unbiased for the variance components.

Stata uses maximum likelihood (ML) to fit LME and GLME models. The ML estimates are based
on the usual application of likelihood theory, given the distributional assumptions of the model. In
addition, for linear mixed-effects models, mixed offers the method of restricted maximum likelihood
(REML). The basic idea behind REML (Thompson 1962) is that you can form a set of linear contrasts
of the response that do not depend on the fixed effects β but instead depend only on the variance
components to be estimated. You then apply ML methods by using the distribution of the linear
contrasts to form the likelihood; see the Methods and formulas section of [ME] mixed for a detailed
discussion of ML and REML methods in the context of linear mixed-effects models.

Log-likelihood calculations for fitting any mixed-effects model require integrating out the random
effects. For LME models, this integral has a closed-form solution; for GLME and NLME models, it
does not. In dealing with this difficulty, early estimation methods avoided the integration altogether.
Two such popular methods are the closely related penalized quasilikelihood (PQL) and marginal
quasilikelihood (MQL) (Breslow and Clayton 1993). Both PQL and MQL use a combination of iterative
reweighted least squares (see [R] glm) and standard estimation techniques for fitting LME models.
Efficient computational methods for fitting LME models have existed for some time (Bates and
Pinheiro 1998; Littell et al. 2006), and PQL and MQL inherit this computational efficiency. However,
both of these methods suffer from two key disadvantages. First, they have been shown to be biased,
and this bias can be severe when clusters are small or intracluster correlation is high (Rodrı́guez and
Goldman 1995; Lin and Breslow 1996). Second, because they are “quasilikelihood” methods and not
true likelihood methods, their use prohibits comparing nested models via likelihood-ratio (LR) tests,
blocking the main avenue of inference involving variance components.

The advent of modern computers has brought with it the development of more computationally
intensive methods, such as bias-corrected PQL (Lin and Breslow 1996), Bayesian Markov-Chain Monte
Carlo, and simulated maximum likelihood, just to name a few; see Ng et al. (2006) for a discussion
of these alternate strategies (and more) for mixed-effects models for binary outcomes.

One widely used modern method is to directly estimate the integral required to calculate the log
likelihood by Gauss–Hermite quadrature or some variation thereof. Because the log likelihood itself
is estimated, this method has the advantage of permitting LR tests for comparing nested models.
Also, if done correctly, quadrature approximations can be quite accurate, thus minimizing bias. Stata
commands for fitting GLME models such as meglm support three types of Gauss–Hermite quadratures:
mean–variance adaptive Gauss–Hermite quadrature (MVAGH), mode-curvature adaptive Gauss–Hermite
quadrature (MCAGH), and nonadaptive Gauss–Hermite quadrature (GHQ); see Methods and formulas
of [ME] meglm for a detailed discussion of these quadrature methods. A fourth method, the Laplacian
approximation, that does not involve numerical integration is also offered; see Computation time
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and the Laplacian approximation below and Methods and formulas of [ME] meglm for a detailed
discussion of the Laplacian approximation method.

In the context of NLME models, the use of an adaptive quadrature to fit these models can be often
computationally infeasible. A popular alternative method used to fit NLME models is the linearization
method of Lindstrom and Bates (1990), also known as the conditional first-order linearization method.
It is based on a first-order Taylor-series approximation of the mean function and essentially linearizes
the mean function with respect to fixed and random effects. The linearization method is computationally
efficient because it avoids the intractable integration, but the approximation cannot be made arbitrarily
accurate. Despite its potential limiting accuracy, the linearization method has proven the most popular
in practice (Fitzmaurice et al. 2009, sec 5.4.8). The linearization method of Lindstrom and Bates (1990),
with extensions from Pinheiro and Bates (1995), is the method of estimation in menl.

Computation time and the Laplacian approximation

Like many programs that fit generalized linear mixed models, me commands can be computationally
intensive. This is particularly true for large datasets with many lowest-level clusters, models with
many random coefficients, models with many estimable parameters (both fixed effects and variance
components), or any combination thereof.

Computation time will also depend on hardware and other external factors but in general is
(roughly) a function of p2{M +M(NQ)qt}, where p is the number of estimable parameters, M is
the number of lowest-level (smallest) clusters, NQ is the number of quadrature points, and qt is the
total dimension of the random effects, that is, the total number of random intercepts and coefficients
at all levels.

For a given model and a given dataset, the only prevailing factor influencing computation time
is (NQ)qt . However, because this is a power function, this factor can get prohibitively large. For
example, using five quadrature points for a model with one random intercept and three random
coefficients, we get (NQ)qt = 54 = 625. Even a modest increase to seven quadrature points would
increase this factor by almost fourfold (74 = 2,401), which, depending on M and p, could drastically
slow down estimation. When fitting mixed-effects models, you should always assess whether the
approximation is adequate by refitting the model with a larger number of quadrature points. If the
results are essentially the same, the lower number of quadrature points can be used.

However, we do not deny a tradeoff between speed and accuracy, and in that spirit we give you
the option to choose a (possibly) less accurate solution in the interest of getting quicker results.
Toward this end is the limiting case of NQ = 1, otherwise known as the Laplacian approximation; see
Methods and formulas of [ME] meglm. The computational benefit is evident—1 raised to any power
equals 1—and the Laplacian approximation has been shown to perform well in certain situations
(Liu and Pierce 1994; Tierney and Kadane 1986). When using Laplacian approximation, keep the
following in mind:

1. Fixed-effects parameters and their standard errors are well approximated by the Laplacian method.
Therefore, if your interest lies primarily here, then the Laplacian approximation may be a viable
alternative.

2. Estimates of variance components exhibit bias, particularly the variances.

3. The model log likelihood and comparison LR test are in fair agreement with statistics obtained via
quadrature methods.

Although this is by no means the rule, we find the above observations to be fairly typical based
on our own experience. Pinheiro and Chao (2006) also make observations similar to points 1 and 2
on the basis of their simulation studies: bias due to Laplace (when present) tends to exhibit itself
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more in the estimated variance components than in the estimates of the fixed effects as well as at the
lower levels in higher-level models.

Item 3 is of particular interest, because it demonstrates that the Laplacian approximation can
produce a decent estimate of the model log likelihood. Consequently, you can use the Laplacian
approximation during the model building phase of your analysis, during which you are comparing
competing models by using LR tests. Once you settle on a parsimonious model that fits well, you
can then increase the number of quadrature points and obtain more accurate parameter estimates for
further study.

Of course, sometimes the Laplacian approximation will perform either better or worse than observed
here. This behavior depends primarily on cluster size and intracluster correlation, but the relative
influence of these factors is unclear. The idea behind the Laplacian approximation is to approximate
the posterior density of the random effects given the response with a normal distribution; see Methods
and formulas of [ME] meglm. Asymptotic theory dictates that this approximation improves with larger
clusters. Of course, the key question, as always, is “How large is large enough?” Also, there are data
situations where the Laplacian approximation performs well even with small clusters. Therefore, it
is difficult to make a definitive call as to when you can expect the Laplacian approximation to yield
accurate results across all aspects of the model.

Furthermore, the Pinheiro and Chao (2006) algorithm for the random-effects mode and curvature
estimates, available with option intmethod(pclaplace), can speed up computations dramatically
for hierarchical models with four or more levels, especially when random slopes are included.

In conclusion, consider our above advice as a rule of thumb based on empirical evidence.

Diagnosing convergence problems

Given the flexibility of mixed-effects models, you will find that some models fail to converge when
used with your data. The default gradient-based method used by mixed-effects commands, except
menl, is the Newton–Raphson algorithm, requiring the calculation of a gradient vector and Hessian
(second-derivative) matrix; see [R] ml.

A failure to converge can take any one of three forms:

1. repeated nonconcave or backed-up iterations without convergence;

2. a Hessian (second-derivative) calculation that has become asymmetric, unstable, or has missing
values; or

3. the message “standard error calculation has failed” when computing standard errors.

All three situations essentially amount to the same thing: the Hessian calculation has become unstable,
most likely because of a ridge in the likelihood function, a subsurface of the likelihood in which all
points give the same value of the likelihood and for which there is no unique solution.

Such behavior is usually the result of one of the following two situations:

A. A model that is not identified given the data, for example, fitting the three-level nested random
intercept model

yjk = xjkβ+ u
(3)
k + u

(2)
jk + εjk

without any replicated measurements at the (j, k) level, that is, with only one i per (j, k)

combination. This model is unidentified for such data because the random intercepts u(2)jk are
confounded with the overall errors εjk.
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B. A model that contains a variance component whose estimate is really close to 0. When this occurs,
a ridge is formed by an interval of values near 0, which produce the same likelihood and look
equally good to the optimizer.

For LME models, one useful way to diagnose problems of nonconvergence is to rely on the
expectation-maximization (EM) algorithm (Dempster, Laird, and Rubin 1977), normally used by mixed
only as a means of refining starting values; see Diagnosing convergence problems of [ME] mixed for
details.

If your data and model are nearly unidentified, as opposed to fully unidentified, you may be
able to obtain convergence with standard errors by changing some of the settings of the gradient-
based optimization. Adding the difficult option can be particularly helpful if you are seeing
many “nonconcave” messages; you may also consider changing the technique() or using the
nonrtolerance option; see [R] Maximize.

Regardless of how the convergence problem revealed itself, you may try to obtain better starting
values; see Obtaining better starting values in [ME] meglm for details.

Achieving convergence and diagnosing convergence problems can be even more challenging with
NLME models. As with other mixed-effects models, complicated variance–covariance structures for
random effects and errors can often lead to overparameterized models that fail to converge. In addition,
highly nonlinear mean specifications can lead to multiple solutions and thus to potential convergence to
a local maximum. menl uses the linearization estimation method that alternates between the penalized
least-squares estimation of the fixed-effects parameters and the Newton–Raphson estimation of the
random-effects parameters of the approximating LME model, which was the result of the linearization
of the original NLME model. This alternating method does not provide a joint Hessian matrix for all
parameters, so there is no check for the tolerance of the scaled gradient, and thus the convergence
cannot be established in its strict sense. The convergence is declared based on the stopping rules
described in Methods and formulas of [ME] menl. Exploring different initial values to investigate
convergence is particularly important with NLME models; see Obtaining initial values in [ME] menl.

Distribution theory for likelihood-ratio test

When determining the asymptotic distribution of an LR test comparing two nested mixed-effects
models, issues concerning boundary problems imposed by estimating strictly positive quantities (that
is, variances) can complicate the situation. For example, when performing LR tests involving linear
mixed-effects models (whether comparing with linear regression within mixed or comparing two
separate linear mixed-effects models with lrtest), you may thus sometimes see a test labeled as
chibar rather than the usual chi2, or you may see a chi2 test with a note attached stating that the
test is conservative or possibly conservative depending on the hypothesis being tested.

At the heart of the issue is the number of variances being restricted to 0 in the reduced model.
If there are none, the usual asymptotic theory holds, and the distribution of the test statistic is χ2

with degrees of freedom equal to the difference in the number of estimated parameters between both
models.

When there is only one variance being set to 0 in the reduced model, the asymptotic distribution
of the LR test statistic is a 50:50 mixture of a χ2

p and a χ2
p+1 distribution, where p is the number

of other restricted parameters in the reduced model that are unaffected by boundary conditions. Stata
labels such test statistics as chibar and adjusts the significance levels accordingly. See Self and
Liang (1987) for the appropriate theory or Gutierrez, Carter, and Drukker (2001) for a Stata-specific
discussion.
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When more than one variance parameter is being set to 0 in the reduced model, however, the
situation becomes more complicated. For example, consider a comparison test versus linear regression
for a mixed model with two random coefficients and unstructured covariance matrix

Σ =

[
σ2
0 σ01

σ01 σ2
1

]
Because the random component of the mixed model comprises three parameters (σ2

0 , σ01, σ
2
1),

on the surface it would seem that the LR comparison test would be distributed as χ2
3. However, two

complications need to be considered. First, the variances σ2
0 and σ2

1 are restricted to be positive, and
second, constraints such as σ2

1 = 0 implicitly restrict the covariance σ01 to be 0 as well. From a
technical standpoint, it is unclear how many parameters must be restricted to reduce the model to
linear regression.

Because of these complications, appropriate and sufficiently general distribution theory for the
more-than-one-variance case has yet to be developed. Theory (for example, Stram and Lee [1994])
and empirical studies (for example, McLachlan and Basford [1988]) have demonstrated that, whatever
the distribution of the LR test statistic, its tail probabilities are bounded above by those of the χ2

distribution with degrees of freedom equal to the full number of restricted parameters (three in the
above example).

The mixed and me commands use this reference distribution, the χ2 with full degrees of freedom,
to produce a conservative test and place a note in the output labeling the test as such. Because the
displayed significance level is an upper bound, rejection of the null hypothesis based on the reported
level would imply rejection on the basis of the actual level.

Examples

Two-level models

Example 1: Growth-curve model

Consider a longitudinal dataset, used by both Ruppert, Wand, and Carroll (2003) and Diggle
et al. (2002), consisting of weight measurements of 48 pigs on 9 successive weeks. Pigs are
identified by the variable id. Each pig experiences a linear trend in growth, but overall weight
measurements vary from pig to pig. Because we are not really interested in these particular 48 pigs
per se, we instead treat them as a random sample from a larger population and model the between-pig
variability as a random effect, or in the terminology of (2), as a random-intercept term at the pig
level. We thus wish to fit the model

weightij = β0 + β1weekij + uj + εij

for i = 1, . . . , 9 weeks and j = 1, . . . , 48 pigs. The fixed portion of the model, β0 + β1weekij ,
simply states that we want one overall regression line representing the population average. The random
effect uj serves to shift this regression line up or down according to each pig. Because the random
effects occur at the pig level (id), we fit the model by typing
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. use https://www.stata-press.com/data/r18/pig
(Longitudinal analysis of pig weights)

. mixed weight week || id:

Performing EM optimization ...

Performing gradient-based optimization:
Iteration 0: Log likelihood = -1014.9268
Iteration 1: Log likelihood = -1014.9268

Computing standard errors ...

Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 25337.49
Log likelihood = -1014.9268 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0390124 159.18 0.000 6.133433 6.286359
_cons 19.35561 .5974059 32.40 0.000 18.18472 20.52651

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Identity
var(_cons) 14.81751 3.124225 9.801716 22.40002

var(Residual) 4.383264 .3163348 3.805112 5.04926

LR test vs. linear model: chibar2(01) = 472.65 Prob >= chibar2 = 0.0000

We explain the output in detail in example 1 of [ME] mixed. Here we only highlight the most important
points.

1. The first estimation table reports the fixed effects. We estimate β0 = 19.36 and β1 = 6.21.

2. The second estimation table shows the estimated variance components. The first section of the
table is labeled id: Identity, meaning that these are random effects at the id (pig) level and
that their variance–covariance matrix is a multiple of the identity matrix; that is, Σ = σ2

uI. The
estimate of σ̂2

u is 14.82 with standard error 3.12.

3. The row labeled var(Residual) displays the estimated standard deviation of the overall error
term; that is, σ̂2

ε = 4.38. This is the variance of the level-one errors or the variance of the residuals.

4. An LR test comparing the model with one-level ordinary linear regression is provided and is highly
significant for these data.
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We can predict the random intercept uj and list the predicted random intercept for the first 10
pigs by typing

. predict r_int, reffects

. egen byte tag = tag(id)

. list id r_int if id<=10 & tag

id r_int

1. 1 -1.683105
10. 2 .8987018
19. 3 -1.952043
28. 4 -1.79068
37. 5 -3.189159

46. 6 -3.780823
55. 7 -2.382344
64. 8 -1.952043
73. 9 -6.739143
82. 10 1.16764

In example 3 of [ME] mixed, we show how to fit a random-slope model for these data, and in
example 1 of [ME] mixed postestimation, we show how to plot the estimated regression lines for
each of the pigs.

Example 2: Split-plot design

Here we replicate the example of a split-plot design from Kuehl (2000, 477). The researchers
investigate the effects of nitrogen in four different chemical forms and the effects of thatch accumulation
on the quality of golf turf. The experimental plots were arranged in a randomized complete block
design with two replications. After two years of nitrogen treatment, the second treatment factor, years
of thatch accumulation, was added to the experiment. Each of the eight experimental plots was split
into three subplots. Within each plot, the subplots were randomly assigned to accumulate thatch for
a period of 2, 5, and 8 years.
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. use https://www.stata-press.com/data/r18/clippings, clear
(Turfgrass experiment)

. describe

Contains data from https://www.stata-press.com/data/r18/clippings.dta
Observations: 24 Turfgrass experiment

Variables: 4 21 Feb 2022 14:57

Variable Storage Display Value
name type format label Variable label

chlorophyll float %9.0g Chlorophyll content (mg/g) of
grass clippings

thatch byte %9.0g Years of thatch accumulation
block byte %9.0g Replication
nitrogen byte %17.0g nitrolab Nitrogen fertilizer

Sorted by:

Nitrogen treatment is stored in the variable nitrogen, and the chemicals used are urea, ammonium
sulphate, isobutylidene diurea (IBDU), and sulphur-coated urea (urea SC). The length of thatch
accumulation is stored in the variable thatch. The response is the chlorophyll content of grass
clippings, recorded in mg/g and stored in the variable chlorophyll. The block variable identifies
the replication group.

There are two sources of variation in this example corresponding to the whole-plot errors and the
subplot errors. The subplot errors are the residual errors. The whole-plot errors represents variation
in the chlorophyll content across nitrogen treatments and replications. We create the variable wpunit
to represent the whole-plot units that correspond to the levels of the nitrogen treatment and block
interaction.

. egen wpunit = group(nitrogen block)

. mixed chlorophyll ibn.nitrogen##ibn.thatch ibn.block, noomitted noconstant ||
> wpunit:, reml
note: 8.thatch omitted because of collinearity.
note: 1.nitrogen#8.thatch omitted because of collinearity.
note: 2.nitrogen#8.thatch omitted because of collinearity.
note: 3.nitrogen#8.thatch omitted because of collinearity.
note: 4.nitrogen#2.thatch omitted because of collinearity.
note: 4.nitrogen#5.thatch omitted because of collinearity.
note: 4.nitrogen#8.thatch omitted because of collinearity.
note: 2.block omitted because of collinearity.

Performing EM optimization ...

Performing gradient-based optimization:
Iteration 0: Log restricted-likelihood = -13.212401
Iteration 1: Log restricted-likelihood = -13.203147
Iteration 2: Log restricted-likelihood = -13.203125
Iteration 3: Log restricted-likelihood = -13.203125
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Computing standard errors ...

Mixed-effects REML regression Number of obs = 24
Group variable: wpunit Number of groups = 8

Obs per group:
min = 3
avg = 3.0
max = 3

Wald chi2(13) = 2438.36
Log restricted-likelihood = -13.203125 Prob > chi2 = 0.0000

chlorophyll Coefficient Std. err. z P>|z| [95% conf. interval]

nitrogen
Urea 5.245833 .3986014 13.16 0.000 4.464589 6.027078

Ammonium s.. 5.945833 .3986014 14.92 0.000 5.164589 6.727078
IBDU 7.945834 .3986014 19.93 0.000 7.164589 8.727078

Urea (SC) 8.595833 .3986014 21.56 0.000 7.814589 9.377078

thatch
2 -1.1 .4632314 -2.37 0.018 -2.007917 -.1920828
5 .1500006 .4632314 0.32 0.746 -.7579163 1.057917

nitrogen#
thatch

Urea#2 -.1500005 .6551081 -0.23 0.819 -1.433989 1.133988
Urea#5 .0999994 .6551081 0.15 0.879 -1.183989 1.383988

Ammonium s.. #
2 .8999996 .6551081 1.37 0.169 -.3839887 2.183988

Ammonium s.. #
5 -.1000006 .6551081 -0.15 0.879 -1.383989 1.183988

IBDU#2 -.2000005 .6551081 -0.31 0.760 -1.483989 1.083988
IBDU#5 -1.950001 .6551081 -2.98 0.003 -3.233989 -.6660124

block
1 -.2916666 .2643563 -1.10 0.270 -.8097955 .2264622

Random-effects parameters Estimate Std. err. [95% conf. interval]

wpunit: Identity
var(_cons) .0682407 .1195933 .0021994 2.117345

var(Residual) .2145833 .1072917 .080537 .5717376

LR test vs. linear model: chibar2(01) = 0.53 Prob >= chibar2 = 0.2324
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We can calculate the cell means for source of nitrogen and years of thatch accumulation by using
margins.

. margins thatch#nitrogen

Predictive margins Number of obs = 24

Expression: Linear prediction, fixed portion, predict()

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

thatch#
nitrogen
2#Urea 3.85 .3760479 10.24 0.000 3.11296 4.58704

2 #
Ammonium s.. 5.6 .3760479 14.89 0.000 4.86296 6.33704

2#IBDU 6.5 .3760479 17.29 0.000 5.76296 7.23704
2#Urea (SC) 7.35 .3760479 19.55 0.000 6.61296 8.087041

5#Urea 5.35 .3760479 14.23 0.000 4.61296 6.087041
5 #

Ammonium s.. 5.85 .3760479 15.56 0.000 5.11296 6.58704
5#IBDU 6 .3760479 15.96 0.000 5.26296 6.73704

5#Urea (SC) 8.6 .3760479 22.87 0.000 7.86296 9.337041
8#Urea 5.1 .3760479 13.56 0.000 4.36296 5.837041

8 #
Ammonium s.. 5.8 .3760479 15.42 0.000 5.06296 6.53704

8#IBDU 7.8 .3760479 20.74 0.000 7.06296 8.537041
8#Urea (SC) 8.45 .3760479 22.47 0.000 7.712959 9.18704

It is easier to see the effect of the treatments if we plot the impact of the four nitrogen and the
three thatch treatments. We can use marginsplot to plot the means of chlorophyll content versus
years of thatch accumulation by nitrogen source.
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. marginsplot, ytitle(Chlorophyll (mg/g)) title("")
> subtitle("Mean chlorophyll content of grass clippings versus"
> "nitrogen source for years of thatch accumulation") xsize(3) ysize(3.2)
> legend(cols(1) position(5) ring(0) region(lwidth(none)))
> ylabel(0(2)10, angle(0))

Variables that uniquely identify margins: thatch nitrogen
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We can see an increase in the mean chlorophyll content over the years of thatch accumulation for
all but one nitrogen source.

The marginal means can be obtained by using margins on one variable at a time.

. margins thatch

Predictive margins Number of obs = 24

Expression: Linear prediction, fixed portion, predict()

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

thatch
2 5.825 .188024 30.98 0.000 5.45648 6.19352
5 6.45 .188024 34.30 0.000 6.08148 6.81852
8 6.7875 .188024 36.10 0.000 6.41898 7.15602
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. margins nitrogen

Predictive margins Number of obs = 24

Expression: Linear prediction, fixed portion, predict()

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

nitrogen
Urea 4.766667 .2643563 18.03 0.000 4.248538 5.284796

Ammonium s.. 5.75 .2643563 21.75 0.000 5.231871 6.268129
IBDU 6.766667 .2643563 25.60 0.000 6.248538 7.284796

Urea (SC) 8.133333 .2643563 30.77 0.000 7.615205 8.651462

Marchenko (2006) shows more examples of fitting other experimental designs using linear mixed-
effects models.

Example 3: Binomial counts

We use the data taken from Agresti (2013, 219) on graduate school applications to the 23 departments
within the College of Liberal Arts and Sciences at the University of Florida during the 1997–1998
academic year. The dataset contains the department ID (department), the number of applications
(napplied), and the number of students admitted (nadmitted) cross-classified by gender (female).

. use https://www.stata-press.com/data/r18/admissions, clear
(Graduate school admissions data)

. describe

Contains data from https://www.stata-press.com/data/r18/admissions.dta
Observations: 46 Graduate school admissions data

Variables: 4 25 Feb 2022 09:28
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

department byte %8.0g dept Department ID
nadmitted byte %8.0g Number of admissions
napplied int %9.0g Number of applications
female byte %8.0g 1 if female; 0 if male

Sorted by:

We wish to investigate whether admission decisions are independent of gender. Given department
and gender, the probability of admission follows a binomial model, that is, Pr(Yij = yij) =
Binomial(nij , πij), where i = {0, 1} and j = 1, . . . , 23. We fit a mixed-effects binomial logistic
model with a random intercept at the department level.
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. melogit nadmitted female || department:, binomial(napplied) or

Fitting fixed-effects model:

Iteration 0: Log likelihood = -302.47786
Iteration 1: Log likelihood = -300.00004
Iteration 2: Log likelihood = -299.99934
Iteration 3: Log likelihood = -299.99934

Refining starting values:

Grid node 0: Log likelihood = -145.08843

Fitting full model:

Iteration 0: Log likelihood = -145.08843
Iteration 1: Log likelihood = -140.8514
Iteration 2: Log likelihood = -140.61709
Iteration 3: Log likelihood = -140.61628
Iteration 4: Log likelihood = -140.61628

Mixed-effects logistic regression Number of obs = 46
Binomial variable: napplied
Group variable: department Number of groups = 23

Obs per group:
min = 2
avg = 2.0
max = 2

Integration method: mvaghermite Integration pts. = 7

Wald chi2(1) = 2.14
Log likelihood = -140.61628 Prob > chi2 = 0.1435

nadmitted Odds ratio Std. err. z P>|z| [95% conf. interval]

female 1.176898 .1310535 1.46 0.144 .9461357 1.463944
_cons .7907009 .2057191 -0.90 0.367 .4748457 1.316655

department
var(_cons) 1.345383 .460702 .6876497 2.632234

Note: Estimates are transformed only in the first equation to odds ratios.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chibar2(01) = 318.77 Prob >= chibar2 = 0.0000

The odds of being admitted are higher for females than males but without statistical significance.
The estimate of σ̂2

u is 1.35 with the standard error of 0.46. An LR test comparing the model with
the one-level binomial regression model favors the random-intercept model, indicating that there is a
significant variation in the number of admissions between departments.

We can further assess the model fit by performing a residual analysis. For example, here we predict
and plot Anscombe residuals.



28 me — Introduction to multilevel mixed-effects models

. predict anscres, anscombe
(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)

. twoway (scatter anscres department if female, msymbol(S))
> (scatter anscres department if !female, msymbol(T)),
> yline(-2 2) xline(1/23, lwidth(vvthin) lpattern(dash))
> xlabel(1/23) legend(label(1 "females") label(2 "males"))
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Anscombe residuals are constructed to be approximately normally distributed, thus residuals that
are above two in absolute value are usually considered outliers. In the graph above, the residual
for female admissions in department 2 is a clear outlier, suggesting a poor fit for that particular
observation; see [ME] meglm postestimation for more information about Anscombe residuals and
other model diagnostics tools.

Covariance structures

Example 4: Growth-curve model with correlated random effects

Here we extend the model from example 1 of [ME] me to allow for a random slope on week and
an unstructured covariance structure between the random intercept and the random slope on week.
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. use https://www.stata-press.com/data/r18/pig, clear
(Longitudinal analysis of pig weights)

. mixed weight week || id: week, covariance(unstructured)

Performing EM optimization ...

Performing gradient-based optimization:
Iteration 0: Log likelihood = -868.96185
Iteration 1: Log likelihood = -868.96185

Computing standard errors ...

Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 4649.17
Log likelihood = -868.96185 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0910745 68.18 0.000 6.031393 6.388399
_cons 19.35561 .3996387 48.43 0.000 18.57234 20.13889

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Unstructured
var(week) .3715251 .0812958 .2419532 .570486

var(_cons) 6.823363 1.566194 4.351297 10.69986
cov(week,_cons) -.0984378 .2545767 -.5973991 .4005234

var(Residual) 1.596829 .123198 1.372735 1.857505

LR test vs. linear model: chi2(3) = 764.58 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

The unstructured covariance structure allows for correlation between the random effects. Other
covariance structures supported by mixed, besides the default independent, include identity and
exchangeable; see [ME] mixed for details. You can also specify multiple random-effects equations
at the same level, in which case the covariance types can be combined to form more complex
blocked-diagonal covariance structures; see example 5 below.

We can predict the fitted values and plot the estimated regression line for each of the pigs. The
fitted values are based on both the fixed and the random effects.
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. predict wgt_hat, fitted

. twoway connected wgt_hat week if id<=10, connect(L) ytitle("Predicted weight")
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Example 5: Blocked-diagonal covariance structures

In this example, we fit a logistic mixed-effects model with a blocked-diagonal covariance structure
of random effects.

We use the data from the 1989 Bangladesh fertility survey (Huq and Cleland 1990), which polled
1,934 Bangladeshi women on their use of contraception. The women sampled were from 60 districts,
identified by the variable district. Each district contained either urban or rural areas (variable
urban) or both. The variable c use is the binary response, with a value of 1 indicating contraceptive
use. Other covariates include mean-centered age and a factor variable for the number of children.
Below we fit a standard logistic regression model amended to have random coefficients for the
children factor variable and an overall district random intercept.

. use https://www.stata-press.com/data/r18/bangladesh, clear
(Bangladesh Fertility Survey, 1989)
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. melogit c_use i.urban age i.children
> || district: i.children, cov(exchangeable)
> || district:, or nolog baselevel nofvlabel

Mixed-effects logistic regression Number of obs = 1,934
Group variable: district Number of groups = 60

Obs per group:
min = 2
avg = 32.2
max = 118

Integration method: mvaghermite Integration pts. = 7

Wald chi2(5) = 100.01
Log likelihood = -1206.2397 Prob > chi2 = 0.0000
( 1) [/]var(1.children[district]) - [/]var(3.children[district]) = 0
( 2) [/]cov(1.children[district],2.children[district]) -

[/]cov(2.children[district],3.children[district]) = 0
( 3) [/]cov(1.children[district],3.children[district]) -

[/]cov(2.children[district],3.children[district]) = 0
( 4) [/]var(2.children[district]) - [/]var(3.children[district]) = 0

c_use Odds ratio Std. err. z P>|z| [95% conf. interval]

urban
0 1 (constrained)
1 2.105163 .2546604 6.15 0.000 1.660796 2.668426

age .9735765 .0077461 -3.37 0.001 .9585122 .9888775

children
0 1 (constrained)
1 2.992596 .502149 6.53 0.000 2.153867 4.157931
2 3.879345 .7094125 7.41 0.000 2.710815 5.551584
3 3.774627 .7055812 7.11 0.000 2.616744 5.444863

_cons .1859471 .0274813 -11.38 0.000 .1391841 .2484214

district
var(

1.children) .0841518 .0880698 .0108201 .654479
var(

2.children) .0841518 .0880698 .0108201 .654479
var(

3.children) .0841518 .0880698 .0108201 .654479
var(_cons) .1870273 .0787274 .0819596 .426786

district
cov(

1.children,
2.children) .0616875 .0844681 0.73 0.465 -.1038669 .2272419

cov(
1.children,
3.children) .0616875 .0844681 0.73 0.465 -.1038669 .2272419

cov(
2.children,
3.children) .0616875 .0844681 0.73 0.465 -.1038669 .2272419

Note: Estimates are transformed only in the first equation to odds ratios.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(3) = 44.57 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
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The fixed effects can be interpreted just as you would the output from logit. Urban women have
roughly double the odds of using contraception as compared with their rural counterparts. Having
any number of children will increase the odds from three- to fourfold when compared with the base
category of no children. Contraceptive use also decreases with age.

Because we specified cov(exchangeable), the estimated variances for the children factor
levels are constrained to be the same, and the estimated covariances for the children factor levels
are constrained to be the same. More complex covariance structures with constraints can be specified
using covariance(pattern()) and covariance(fixed()); see example 6 below.

Example 6: Meta analysis

In this example, we present a mixed-effects model for meta analysis of clinical trials. The term
“meta-analysis” refers to a statistical analysis that involves summary data from similar but independent
studies. The model can be fit directly with the meta suite of commands; however, in this example,
we will fit it with meglm to illustrate the use of constraints.

Turner et al. (2000) performed a study of nine clinical trials examining the effect of taking diuretics
during pregnancy on the risk of pre-eclampsia. The summary data consist of the log odds-ratio
(variable lnor) estimated from each study, and the corresponding estimated variance (variable var).
The square root of the variance is stored in the variable std and the trial identifier is stored in the
variable trial.

. use https://www.stata-press.com/data/r18/diuretics
(Meta analysis of clinical trials studying diuretics and pre-eclampsia)

. list

trial lnor var std

1. 1 .04 .16 .4
2. 2 -.92 .12 .3464102
3. 3 -1.12 .18 .4242641
4. 4 -1.47 .3 .5477226
5. 5 -1.39 .11 .3316625

6. 6 -.3 .01 .1
7. 7 -.26 .12 .3464102
8. 8 1.09 .69 .8306624
9. 9 .14 .07 .2645751

In a random-effects modeling of summary data, the observed log odds-ratios are treated as a
continuous outcome and assumed to be normally distributed, and the true treatment effect varies
randomly among the trials. The random-effects model can be written as

yi ∼ N(θ + νi, σ
2
i )

νi ∼ N(0, τ2)

where yi is the observed treatment effect corresponding to the ith study, θ+ νi is the true treatment
effect, σ2

i is the variance of the observed treatment effect, and τ is the between-trial variance
component. Our aim is to estimate θ, the global mean.
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Notice that the responses yi do not provide enough information to estimate this model, because
we cannot estimate the group-level variance component from a dataset that contains one observation
per group. However, we already have estimates for the σi’s, therefore we can constrain each σi to
be equal to its estimated value, which will allow us to estimate θ and τ . We use meglm to estimate
this model because the mixed command does not support constraints.

In meglm, one way to constrain a group of individual variances to specific values is by using the fixed
covariance structure (an alternative way is to define each constraint individually with the constraint
command and specify them in the constraints() option). The covariance(fixed()) option
requires a Stata matrix defining the constraints, thus we first create matrix f with the values of σi,
stored in variable var, on the main diagonal. We will use this matrix to constrain the variances.

. mkmat var, mat(f)

. matrix f = diag(f)

In the random-effects equation part, we need to specify nine random slopes, one for each trial.
Because random-effects equations support factor variables (see [U] 11.4.3 Factor variables), we can
use the ibn.trial notation. Because the model is computationally demanding, we use Laplacian
approximation instead of the default mean-variance adaptive quadrature; see Computation time and
the Laplacian approximation above for details.



34 me — Introduction to multilevel mixed-effects models

. meglm lnor || _all: ibn.trial, nocons cov(fixed(f)) intm(laplace) nocnsreport

Fitting fixed-effects model:

Iteration 0: Log likelihood = -10.643432
Iteration 1: Log likelihood = -10.643432

Refining starting values:

Grid node 0: Log likelihood = -10.205455

Fitting full model:

Iteration 0: Log likelihood = -10.205455
Iteration 1: Log likelihood = -9.4851561 (backed up)
Iteration 2: Log likelihood = -9.4587068
Iteration 3: Log likelihood = -9.4552982
Iteration 4: Log likelihood = -9.4552759
Iteration 5: Log likelihood = -9.4552759

Mixed-effects GLM Number of obs = 9
Family: Gaussian
Link: Identity
Group variable: _all Number of groups = 1

Obs per group:
min = 9
avg = 9.0
max = 9

Integration method: laplace

Wald chi2(0) = .
Log likelihood = -9.4552759 Prob > chi2 = .

lnor Coefficient Std. err. z P>|z| [95% conf. interval]

_cons -.5166151 .2059448 -2.51 0.012 -.9202594 -.1129707

_all
var(1.trial) .16 (constrained)
var(2.trial) .12 (constrained)
var(3.trial) .18 (constrained)
var(4.trial) .3 (constrained)
var(5.trial) .11 (constrained)
var(6.trial) .01 (constrained)
var(7.trial) .12 (constrained)
var(8.trial) .69 (constrained)
var(9.trial) .07 (constrained)

var(e.lnor) .2377469 .1950926 .0476023 1.187413

We estimate θ̂ = −0.52, which agrees with the estimate reported by Turner et al. (2000).

We can fit the above model in a more efficient way. We can consider the trials as nine independent
random variables, each with variance unity, and each being multiplied by a different standard error.
To accomplish this, we treat trial as a random-effects level, use the standard deviations of the log
odds-ratios as a random covariate at the trial level, and constrain the variance component of trial
to unity.
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. constraint 1 _b[/var(std[trial])] = 1

. meglm lnor || trial: std, nocons constraints(1)

Fitting fixed-effects model:

Iteration 0: Log likelihood = -10.643432
Iteration 1: Log likelihood = -10.643432

Refining starting values:

Grid node 0: Log likelihood = -10.205455

Fitting full model:

Iteration 0: Log likelihood = -10.205455
Iteration 1: Log likelihood = -9.4851164 (backed up)
Iteration 2: Log likelihood = -9.45869
Iteration 3: Log likelihood = -9.4552794
Iteration 4: Log likelihood = -9.4552759
Iteration 5: Log likelihood = -9.4552759

Mixed-effects GLM Number of obs = 9
Family: Gaussian
Link: Identity
Group variable: trial Number of groups = 9

Obs per group:
min = 1
avg = 1.0
max = 1

Integration method: mvaghermite Integration pts. = 7

Wald chi2(0) = .
Log likelihood = -9.4552759 Prob > chi2 = .
( 1) [/]var(std[trial]) = 1

lnor Coefficient Std. err. z P>|z| [95% conf. interval]

_cons -.5166151 .2059448 -2.51 0.012 -.9202594 -.1129708

trial
var(std) 1 (constrained)

var(e.lnor) .2377469 .1950926 .0476023 1.187413

The results are the same, but this model took a fraction of the time compared with the less efficient
specification.

Three-level models

The methods we have discussed so far extend from two-level models to models with three or
more levels with nested random effects. By “nested”, we mean that the random effects shared within
lower-level subgroups are unique to the upper-level groups. For example, assuming that classroom
effects would be nested within schools would be natural, because classrooms are unique to schools.
Below we illustrate a three-level mixed-effects ordered probit model.

Example 7: Three-level ordinal response model

In this example, we fit a three-level ordered probit model. The data are from the Television,
School, and Family Smoking Prevention and Cessation Project (Flay et al. 1988; Rabe-Hesketh and
Skrondal 2022, chap. 11), where schools were randomly assigned into one of four groups defined
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by two treatment variables. Students within each school are nested in classes, and classes are nested
in schools. The dependent variable is the tobacco and health knowledge (THK) scale score collapsed
into four ordered categories. We regress the outcome on the treatment variables and their interaction
and control for the pretreatment score.

. use https://www.stata-press.com/data/r18/tvsfpors, clear
(Television, School, and Family Project)

. meoprobit thk prethk cc##tv || school: || class:

Fitting fixed-effects model:

Iteration 0: Log likelihood = -2212.775
Iteration 1: Log likelihood = -2127.8111
Iteration 2: Log likelihood = -2127.7612
Iteration 3: Log likelihood = -2127.7612

Refining starting values:

Grid node 0: Log likelihood = -2195.6424

Fitting full model:

Iteration 0: Log likelihood = -2195.6424 (not concave)
Iteration 1: Log likelihood = -2167.9576 (not concave)
Iteration 2: Log likelihood = -2140.2644 (not concave)
Iteration 3: Log likelihood = -2128.6948 (not concave)
Iteration 4: Log likelihood = -2119.9225
Iteration 5: Log likelihood = -2117.0947
Iteration 6: Log likelihood = -2116.7004
Iteration 7: Log likelihood = -2116.6981
Iteration 8: Log likelihood = -2116.6981

Mixed-effects oprobit regression Number of obs = 1,600

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

school 28 18 57.1 137
class 135 1 11.9 28

Integration method: mvaghermite Integration pts. = 7

Wald chi2(4) = 124.20
Log likelihood = -2116.6981 Prob > chi2 = 0.0000

thk Coefficient Std. err. z P>|z| [95% conf. interval]

prethk .238841 .0231446 10.32 0.000 .1934784 .2842036
1.cc .5254813 .1285816 4.09 0.000 .2734659 .7774967
1.tv .1455573 .1255827 1.16 0.246 -.1005803 .3916949

cc#tv
1 1 -.2426203 .1811999 -1.34 0.181 -.5977656 .1125251

/cut1 -.074617 .1029791 -.2764523 .1272184
/cut2 .6863046 .1034813 .4834849 .8891242
/cut3 1.413686 .1064889 1.204972 1.622401

school
var(_cons) .0186456 .0160226 .0034604 .1004695

school>class
var(_cons) .0519974 .0224014 .0223496 .1209745

LR test vs. oprobit model: chi2(2) = 22.13 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
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Notes:

1. Our model now has two random-effects equations, separated by ||. The first is a random intercept
(constant only) at the school level (level three), and the second is a random intercept at the
class level (level two). The order in which these are specified (from left to right) is significant—
meoprobit assumes that class is nested within school.

2. The information on groups is now displayed as a table, with one row for each grouping. You can
suppress this table with the nogroup or the noheader option, which will also suppress the rest
of the header.

3. The variance-component estimates are now organized and labeled according to level. The variance
component for class is labeled school>class to emphasize that classes are nested within schools.

The above extends to models with more than two levels of nesting in the obvious manner, by
adding more random-effects equations, each separated by ||. The order of nesting goes from left to
right as the groups go from biggest (highest level) to smallest (lowest level).

Crossed-effects models

Not all mixed-effects models contain nested levels of random effects.

Example 8: Crossed random effects

Returning to our longitudinal analysis of pig weights, suppose that we wish to fit

weightij = β0 + β1weekij + ui + vj + εij (8)

for the i = 1, . . . , 9 weeks and j = 1, . . . , 48 pigs and

ui ∼ N(0, σ2
u); vj ∼ N(0, σ2

v); εij ∼ N(0, σ2
ε )

all independently. That is, we assume an overall population-average growth curve β0 + β1week and
a random pig-specific shift. In other words, the effect due to week, ui, is systematic to that week and
common to all pigs. The rationale behind (8) could be that, assuming that the pigs were measured
contemporaneously, we might be concerned that week-specific random factors such as weather and
feeding patterns had significant systematic effects on all pigs.

Model (8) is an example of a two-way crossed-effects model, with the pig effects vj being crossed
with the week effects ui. One way to fit such models is to consider all the data as one big cluster,
and treat ui and vj as a series of 9 + 48 = 57 random coefficients on indicator variables for week
and pig. The random effects u and the variance components G are now represented as
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u =



u1
...
u9
v1
...
v48


∼ N(0,G); G =

[
σ2
uI9 0
0 σ2

vI48

]

Because G is block diagonal, it can be represented as repeated-level equations. All we need is an ID
variable to identify all the observations as one big group and a way to tell mixed-effects commands to
treat week and pig as crossed-effects factor variables (or equivalently, as two sets of overparameterized
indicator variables identifying weeks and pigs, respectively). The mixed-effects commands support
the special group designation all for the former and the R.varname notation for the latter.

. use https://www.stata-press.com/data/r18/pig
(Longitudinal analysis of pig weights)

. mixed weight week || _all: R.id || _all: R.week

Performing EM optimization ...

Performing gradient-based optimization:
Iteration 0: Log likelihood = -1013.824
Iteration 1: Log likelihood = -1013.824

Computing standard errors ...

Mixed-effects ML regression Number of obs = 432
Group variable: _all Number of groups = 1

Obs per group:
min = 432
avg = 432.0
max = 432

Wald chi2(1) = 13258.28
Log likelihood = -1013.824 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0539313 115.14 0.000 6.104192 6.315599
_cons 19.35561 .6333982 30.56 0.000 18.11418 20.59705

Random-effects parameters Estimate Std. err. [95% conf. interval]

_all: Identity
var(R.id) 14.83623 3.126142 9.816733 22.42231

_all: Identity
var(R.week) .0849874 .0868856 .0114588 .6303302

var(Residual) 4.297328 .3134404 3.724888 4.957741

LR test vs. linear model: chi2(2) = 474.85 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

We estimate σ̂2
u = 0.08 and σ̂2

v = 14.84.

The R.varname notation is equivalent to giving a list of overparameterized (none dropped) indicator
variables for use in a random-effects specification. When you use R.varname, mixed-effects commands
handle the calculations internally rather than creating the indicators in the data. Because the set of
indicators is overparameterized, R.varname implies noconstant.
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Note that the column dimension of our random-effects design is 57. Computation time and memory
requirements grow (roughly) quadratically with the dimension of the random effects. As a result,
fitting such crossed-effects models is feasible only when the total column dimension is small to
moderate. For this reason, mixed-effects commands use the Laplacian approximation as the default
estimation method for crossed-effects models; see Computation time and the Laplacian approximation
above for more details.

It is often possible to rewrite a mixed-effects model in a way that is more computationally efficient.
For example, we can treat pigs as nested within the all group, yielding the equivalent and more
efficient (total column dimension 10) way to fit (8):

. mixed weight week || _all: R.week || id:

The results of both estimations are identical, but the latter specification, organized at the cluster (pig)
level with random-effects dimension 1 (a random intercept) is much more computationally efficient.
Whereas with the first form we are limited in how many pigs we can analyze, there is no such
limitation with the second form.

All the mixed-effects commands—except mixed—automatically attempt to recast the less efficient
model specification into a more efficient one. However, this automatic conversion may not be sufficient
for some complicated mixed-effects specifications, especially if both crossed and nested effects are
involved. Therefore, we strongly encourage you to always specify the more efficient syntax; see Rabe-
Hesketh and Skrondal (2022) and Marchenko (2006) for additional techniques to make calculations
more efficient in more complex mixed-effects models.

Nonlinear models

NLME models are popular in population pharmacokinetics, bioassays, studies of biological and
agricultural growth processes, and other applications, where the mean function is a nonlinear function
of fixed and random effects. Remarks and examples of [ME] menl provide many examples of fitting
different NLME models by using menl, including a pharmacokinetics model in example 15. Here we
consider simple data from Draper and Smith (1998) that contain trunk circumference (in mm) of five
different orange trees measured over seven different time points.
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Let’s plot our data first.

. use https://www.stata-press.com/data/r18/orange
(Growth of orange trees (Draper and Smith, 1998))

. twoway scatter circumf age, connect(L) ylabel(#6 175)
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Consider the following nonlinear growth model for these data,

circumfij =
β1

1 + exp
{
−
(
ageij − β2

)
/β3
} + εij

where εij’s are i.i.d. N(0, σ2
ε ). In this model, β1 can be interpreted as the average asymptotic trunk

circumference of trees as ageij → ∞. We can crudely estimate it as the average of the trunk
circumference values at the last observed time point, which for these data is roughly 175 mm. β2 is
the age at which a tree attains half of the average asymptotic trunk circumference β1; that is, if we set
ageij = β2, then E(circumfij) = 0.5β1. β3 is a scale parameter that represents the number of days
it takes for a tree to grow from 50% to about 73% of the average asymptotic trunk circumference.
That is, if we set age = t0.73 = β2 + β3, then E(circumfij) = β1/{1 + exp(−1)} = 0.73β1 and
then β3 = t0.73 − β2.

The above model can be easily fit by using, for example, nl; see [R] nl. However, if we study the
graph more carefully, we will notice that there is an increasing variability in the trunk circumferences
of trees as they approach their limiting age. So it may be more reasonable to allow β1 to vary between
trees,

circumfij =
β1 + u1j

1 + exp
{
−
(
ageij − β2

)
/β3
} + εij (9)

where u1j’s are i.i.d. N(0, σ2
u1

). We use menl to fit this model.

The specification of NLME models in menl is fairly straightforward. Following the dependent
variable and the equality sign (=), we specify the expression for the mean function as a usual Stata
expression but with parameters and random effects enclosed in curly braces ({}).
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. menl circumf = ({b1}+{U1[tree]})/(1+exp(-(age-{b2})/{b3}))

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -131.58458

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 35
Group variable: tree Number of groups = 5

Obs per group:
min = 7
avg = 7.0
max = 7

Linearization log likelihood = -131.58458

circumf Coefficient Std. err. z P>|z| [95% conf. interval]

/b1 191.049 16.15403 11.83 0.000 159.3877 222.7103
/b2 722.556 35.15082 20.56 0.000 653.6616 791.4503
/b3 344.1624 27.14739 12.68 0.000 290.9545 397.3703

Random-effects parameters Estimate Std. err. [95% conf. interval]

tree: Identity
var(U1) 991.1514 639.4637 279.8776 3510.038

var(Residual) 61.56371 15.89568 37.11466 102.1184

In the above specification, we used {U1[tree]} to include random intercepts at the tree level in
our model. U1 is the name or label associated with these random intercepts.

The output of menl is similar to that of mixed—the header information is displayed first, fixed-
effects parameter estimates are displayed in the first or the fixed-effects parameter table, and the
estimates of variance components are displayed in the second or the random-effects parameter table.

The header information is similar to that of mixed, but unlike mixed, menl in general does
not report a model χ2 statistic in the header because a test of the joint significance of all fixed-
effects parameters (except the constant term) may not be relevant in a nonlinear model. menl also
reports the so-called linearization log likelihood. menl uses the linearization method of Lindstrom
and Bates (1990), with extensions from Pinheiro and Bates (1995), for estimation. This method is
based on the approximation of the NLME model by an LME model, in which a first-order Taylor-series
approximation is used to linearize the nonlinear mean function with respect to fixed and random
effects; see Introduction and Methods and formulas in [ME] menl for details. The linearization log
likelihood is the log likelihood of this approximating LME model. We can use this log likelihood
for model comparison of different NLME models and to form likelihood-ratio tests, but note that
this is not the log likelihood of the corresponding NLME model. Depending on the accuracy of the
approximation, the linearization log likelihood may be close to the true NLME log likelihood.

As part of Stata’s standard estimation output, menl reports z tests against zeros for the estimated
fixed-effects parameters. Testing a parameter against zero may or may not be of interest, or may not
even be appropriate, in a nonlinear model. In our example, {b3} is the denominator of a fraction,
so the test of {b3} against zero may not be feasible in this model. Instead, we may be interested in
testing {b3} against, for example, 300, which would correspond to testing whether the average trunk
circumference of orange trees increases from 50% to 73% of its asymptotic value in 300 days. We
can perform this test by using, for instance, the test command; see [R] test. As a side note, setting
β3 = 0 in (9) results in a simple random-intercept model, in a limiting sense.
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From the random-effects table, the variability in limiting growth β1 between trees, labeled as
var(U1), is statistically significant in this model with an estimate of 991 (mm2) and a 95% CI of
[280, 3510].

We can rewrite (9) as a two-stage model,

circumfij =
φ1j

1 + exp
{
−
(
ageij − φ2j

)
/φ3j

} + εij (10)

where the stage 2 specification is

φj =

φ1jφ2j
φ3j

 =

β1 + u1j
β2
β3

 (11)

The model defined by (10) and (11) is the same as that defined by (9) but with a different
parameterization.

In menl, we can accommodate this two-stage formulation with the define() option. For example,
we can fit the two-stage model defined by (10) and (11) as follows:

. menl circumf = {phi1:}/(1+exp(-(age-{b2})/{b3})), define(phi1: {b1}+{U1[tree]})

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -131.58458

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 35
Group variable: tree Number of groups = 5

Obs per group:
min = 7
avg = 7.0
max = 7

Linearization log likelihood = -131.58458

phi1: {b1}+{U1[tree]}

circumf Coefficient Std. err. z P>|z| [95% conf. interval]

/b1 191.049 16.15403 11.83 0.000 159.3877 222.7103
/b2 722.556 35.15082 20.56 0.000 653.6616 791.4503
/b3 344.1624 27.14739 12.68 0.000 290.9545 397.3703

Random-effects parameters Estimate Std. err. [95% conf. interval]

tree: Identity
var(U1) 991.1514 639.4637 279.8776 3510.038

var(Residual) 61.56371 15.89568 37.11466 102.1184

The results are identical to the previous model. Here we defined a substitutable expression phi1 in
the define() option as a function of {b1} and {U1[tree]} and included it in our main expression
as {phi1:}. Including a colon (:) in {phi1:} is important to notify menl that it is a substitutable
expression rather than a simple scalar parameter {phi1}.

In general, we can accommodate multistage formulations by using the define() option repeatedly.
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More conveniently, we can use a linear-combination specification (see Linear combinations in
[ME] menl) within the define() option to define the linear combination {b1}+{U1[tree]}.

. menl circumf = {phi1:}/(1+exp(-(age-{b2})/{b3})), define(phi1: U1[tree], xb)

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -131.58458

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 35
Group variable: tree Number of groups = 5

Obs per group:
min = 7
avg = 7.0
max = 7

Linearization log likelihood = -131.58458

phi1: U1[tree], xb

circumf Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
_cons 191.049 16.15403 11.83 0.000 159.3877 222.7103

/b2 722.556 35.15082 20.56 0.000 653.6616 791.4503
/b3 344.1624 27.14739 12.68 0.000 290.9545 397.3703

Random-effects parameters Estimate Std. err. [95% conf. interval]

tree: Identity
var(U1) 991.1514 639.4637 279.8776 3510.038

var(Residual) 61.56371 15.89568 37.11466 102.1184

The {phi1: U1[tree], xb} specification used in the define() option, but without curly braces,
creates a linear combination named phi1 that contains a constant {phi1: cons} and random intercepts
{U1} at the tree level. In the linear-combination specification, the constant is included automatically
unless you specify the noconstant option such as {phi1: U1[tree], xb noconstant}. Also,
you do not specify curly braces around random effects within the linear-combination specification.
If we had covariates, say, x1 and x2, that we also wanted to include in the linear combination, we
would have used {phi1: x1 x2 U1[tree]}. Notice that we did not specify the xb option in the
previous linear combination. When a linear combination contains more than one term, this option is
implied. When a linear combination contains only one term, such as in {phi1: U1[tree], xb},
the xb option must be specified to request that menl treat the specification as a linear combination
instead of a scalar parameter; see Random-effects substitutable expressions in [ME] menl for details.

Instead of using define(), we could have similarly specified the linear combination directly in
the main expression:

. menl circumf = {phi1: U1[tree], xb}/(1+exp(-(age-{b2})/{b3}))
(output omitted )

However, by using the define() option, we simplified the look of the main equation.
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We can extend the stage 2 specification (11) to allow, for example, β2 to vary across trees by
including random intercepts at the tree level for φ2j ,

φj =

φ1jφ2j
φ3j

 =

β1 + u1j
β2 + u2j

β3


We can then fit the corresponding model by using menl as follows:

. menl circumf = {phi1:}/(1+exp(-(age-{phi2:})/{b3})),
> define(phi1: U1[tree], xb) define(phi2: U2[tree], xb)

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -131.60539
Iteration 2: Linearization log likelihood = -131.5827
Iteration 3: Linearization log likelihood = -131.5805
Iteration 4: Linearization log likelihood = -131.58027
Iteration 5: Linearization log likelihood = -131.58026

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 35
Group variable: tree Number of groups = 5

Obs per group:
min = 7
avg = 7.0
max = 7

Linearization log likelihood = -131.58026

phi1: U1[tree], xb
phi2: U2[tree], xb

circumf Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
_cons 190.5939 16.211 11.76 0.000 158.8209 222.3669

phi2
_cons 719.6027 35.77597 20.11 0.000 649.4831 789.7223

/b3 342.0794 26.42036 12.95 0.000 290.2965 393.8624

Random-effects parameters Estimate Std. err. [95% conf. interval]

tree: Independent
var(U1) 1012.15 666.2808 278.557 3677.698
var(U2) 503.2308 2401.324 .0436507 5801534

var(Residual) 59.27073 18.21298 32.45482 108.2434

The large standard error for the estimate of the variance component var(U2) suggests that our model
is overparameterized—a common problem when fitting NLME models. We could verify this, for
instance, by computing information criteria ([R] estimates stats) or by performing a likelihood-ratio
test ([R] lrtest).

By default, menl assumes an independent covariance structure for the random effects such as
U1 and U2 in our example. We can specify, for example, an unstructured model by using the
covariance() option. We demonstrate this only for illustration, given that our simpler model that
assumed independence between U1 and U2 was already overparameterized.
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. menl circumf = {phi1:}/(1+exp(-(age-{phi2:})/{b3})),
> define(phi1: U1[tree], xb) define(phi2: U2[tree], xb)
> covariance(U1 U2, unstructured)

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -130.90452
Iteration 2: Linearization log likelihood = -130.90205
Iteration 3: Linearization log likelihood = -130.90177
Iteration 4: Linearization log likelihood = -130.90177

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 35
Group variable: tree Number of groups = 5

Obs per group:
min = 7
avg = 7.0
max = 7

Linearization log likelihood = -130.90177

phi1: U1[tree], xb
phi2: U2[tree], xb

circumf Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
_cons 189.8349 17.20035 11.04 0.000 156.1228 223.5469

phi2
_cons 709.5333 37.24229 19.05 0.000 636.5397 782.5268

/b3 340.4731 25.52176 13.34 0.000 290.4514 390.4948

Random-effects parameters Estimate Std. err. [95% conf. interval]

tree: Unstructured
var(U1) 1180.097 775.0821 325.7263 4275.46
var(U2) 1469.879 2777.134 36.22873 59636.18

cov(U1,U2) 1015.504 1124.568 -1188.609 3219.617

var(Residual) 56.07332 16.20294 31.82681 98.79146

In menl, we need to list the names of the random effects in the covariance() option for which we
want to specify a covariance structure other than the independent one used by default.

In our example, parameters φ1j and φ2j were modeled as linear functions of random effects and
parameters β1 and β2. The relationship does not have to be linear; see example 15 in [ME] menl.

This example has a small number of trees or clusters, so REML estimation would have been more
appropriate. We could have obtained REML estimates in our examples by specifying the reml option
with menl.

See [ME] menl for more examples of and details about the menl command.
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Title

estat df — Calculate degrees of freedom for fixed effects

Description Menu for estat Syntax Options
Remarks and examples Stored results Also see

Description
estat df is for use after estimation with mixed.

estat df calculates and displays the degrees of freedom (DF) for each fixed effect using the
specified methods. This allows for a comparison of different DF methods. estat df can also be used
to continue with postestimation using a different DF method without rerunning the model.

Menu for estat
Statistics > Postestimation

Syntax

estat df
[
, method(df methods) post

[
(df method)

]
eim oim

]
collect is allowed; see [U] 11.1.10 Prefix commands.

Options
method(df methods) specifies a list of methods to compute DF. The supported methods are residual,

repeated, anova, satterthwaite, and kroger; more than one method may be specified. Meth-
ods satterthwaite and kroger are only available with REML estimation. If option dfmethod()
was not specified in the most recently fit mixed model, then option method() is required. See
Small-sample inference for fixed effects under Remarks and examples in [ME] mixed for more
details.

post causes estat df to behave like a Stata estimation command. When post is specified, estat
df will post the DF for each fixed effect as well as everything related to the DF computation to
e() for the method specified in method(). Thus, after posting, you could continue to use this DF
for other postestimation commands. For example, you could use test, small to perform Wald
F tests on linear combination of the fixed effects.

post may also be specified using the syntax post(df method). You must use this syntax if you
specify multiple df methods in option method(). With this syntax, estat df computes the DF
using the method specified in post() and stores the results in e(). Only one computation method
may be specified using the syntax post().

The df method specified in post() must be one of the DF methods specified in option method().
If only one method is specified in option method(), then one can simply use post to make this
DF method active for postestimation and for mixed replay.

eim specifies that the expected information matrix be used in the DF computation. It can be used
only when method() contains kroger or satterthwaite. eim is the default.
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oim specifies that the observed information matrix be used in the DF computation. It can be used
only when method() contains kroger or satterthwaite.

Remarks and examples

Example 1: Changing the degrees of freedom method

To illustrate the use of estat df, we refit the dental veneer data from example 14 of [ME] mixed
using the Kenward–Roger method (option dfmethod(kroger)) to compute the DF for fixed effects.

. use https://www.stata-press.com/data/r18/veneer
(Dental veneer data)

. mixed gcf followup base_gcf cda age || patient: followup,
> covariance(unstructured) || tooth:, reml nolog dfmethod(kroger)

Mixed-effects REML regression Number of obs = 110

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

patient 12 2 9.2 12
tooth 55 2 2.0 2

DF method: Kenward--Roger DF: min = 10.41
avg = 28.96
max = 50.71

F(4, 27.96) = 1.47
Log restricted-likelihood = -420.92761 Prob > F = 0.2370

gcf Coefficient Std. err. t P>|t| [95% conf. interval]

followup .3009815 1.938641 0.16 0.879 -3.96767 4.569633
base_gcf -.0183127 .1466261 -0.12 0.901 -.3132419 .2766164

cda -.329303 .5533506 -0.60 0.554 -1.440355 .7817493
age -.5773932 .2350491 -2.46 0.033 -1.098324 -.056462

_cons 45.73862 13.21824 3.46 0.002 18.53866 72.93858

Random-effects parameters Estimate Std. err. [95% conf. interval]

patient: Unstructured
var(followup) 41.88772 18.79997 17.38009 100.9535

var(_cons) 524.9851 253.0205 204.1287 1350.175
cov(followup,_cons) -140.4229 66.57623 -270.9099 -9.935904

tooth: Identity
var(_cons) 47.45738 16.63034 23.8792 94.3165

var(Residual) 48.86704 10.50523 32.06479 74.47382

LR test vs. linear model: chi2(4) = 91.12 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
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Rather than specifying option dftable(pvalue) or dftable(ci) at estimation, we can display
the covariate-specific DFs during postestimation by typing

. estat df

Degrees of freedom

Kenward--Roger

gcf
followup 10.96355
base_gcf 47.2708

cda 50.70932
age 10.41127

_cons 25.43377

estat df can also compare different DF methods using the method() option. For example, we
can compare the Kenward–Roger method with the Satterthwaite method by typing

. estat df, method(kroger satterthwaite)

Degrees of freedom

Kenward--Roger Satterthwaite

gcf
followup 10.96355 10.96355
base_gcf 47.2708 47.2708

cda 50.70932 50.70932
age 10.41127 10.41127

_cons 25.43377 25.43377

The two methods produce the same estimates of DFs for single-hypothesis tests, but the results
differ for multiple-hypotheses tests; see example 4 of [ME] mixed postestimation for details.

Suppose that we decide to proceed with the Satterthwaite method in subsequent analysis. Rather
than retyping our mixed command with the dfmethod(satterthwaite) option, we can post the
Satterthwaite DFs using the post option of estat df.

. estat df, method(satterthwaite) post

Degrees of freedom

Satterthwaite

gcf
followup 10.96355
base_gcf 47.2708

cda 50.70932
age 10.41127

_cons 25.43377

The returned values associated with dfmethod(kroger) from the mixed command will be replaced
with those of dfmethod(satterthwaite).



52 estat df — Calculate degrees of freedom for fixed effects

Stored results
estat df stores the following in r():

Macros
r(dfmethods) DF methods

Matrices
r(df) parameter-specific DFs for each method specified in method()
r(V df) variance–covariance matrix of the estimators when kroger method is specified

If post() is specified, estat df also stores the following in e():

Scalars
e(F) overall F test statistic for the method specified in post()
e(ddf m) model DDF for the method specified in post()
e(df max) maximum DF for the method specified in post()
e(df avg) average DF for the method specified in post()
e(df min) minimum DF for the method specified in post()

Macros
e(dfmethod) DF method specified in post()
e(dftitle) title for DF method

Matrices
e(df) parameter-specific DFs for the method specified in post()
e(V df) variance–covariance matrix of the estimators when kroger method is posted

Also see
[ME] mixed — Multilevel mixed-effects linear regression

[U] 20 Estimation and postestimation commands



Title

estat group — Summarize the composition of the nested groups

Description Menu for estat Syntax Remarks and examples
Also see

Description

estat group reports the number of groups and minimum, average, and maximum group sizes
for each level of the model. Model levels are identified by the corresponding group variable in the
data. Because groups are treated as nested, the information in this summary may differ from what
you would get if you used the tabulate command on each group variable individually.

Menu for estat
Statistics > Postestimation

Syntax

estat group

Remarks and examples
See example 3 in [ME] mixed postestimation and example 4 in [ME] menl postestimation.

Also see
[ME] mecloglog — Multilevel mixed-effects complementary log–log regression

[ME] meglm — Multilevel mixed-effects generalized linear models

[ME] meintreg — Multilevel mixed-effects interval regression

[ME] melogit — Multilevel mixed-effects logistic regression

[ME] menbreg — Multilevel mixed-effects negative binomial regression

[ME] menl — Nonlinear mixed-effects regression

[ME] meologit — Multilevel mixed-effects ordered logistic regression

[ME] meoprobit — Multilevel mixed-effects ordered probit regression

[ME] mepoisson — Multilevel mixed-effects Poisson regression

[ME] meprobit — Multilevel mixed-effects probit regression

[ME] mestreg — Multilevel mixed-effects parametric survival models

[ME] metobit — Multilevel mixed-effects tobit regression

[ME] mixed — Multilevel mixed-effects linear regression

[U] 20 Estimation and postestimation commands
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Title

estat icc — Estimate intraclass correlations

Description Menu for estat Syntax Option
Remarks and examples Stored results Methods and formulas Also see

Description
estat icc is for use after estimation with mixed, meintreg, metobit, melogit, meprobit,

meologit, meoprobit, and mecloglog. estat icc is also for use after estimation with meglm in
cases when the fitted model is a linear, logit, probit, ordered logit, ordered probit, or complementary
log–log mixed-effects model.

estat icc displays the intraclass correlation for pairs of responses at each nested level of the model.
Intraclass correlations are available for random-intercept models or for random-coefficients models
conditional on random-effects covariates being equal to 0. They are not available for crossed-effects
models or with residual error structures other than independent structures.

Menu for estat
Statistics > Postestimation

Syntax

estat icc
[
, level(#)

]
collect is allowed; see [U] 11.1.10 Prefix commands.

Option
level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

Remarks and examples
See, for instance, example 2 in [ME] mixed postestimation and examples 1 and 4 in [ME] melogit

postestimation.

Stored results
estat icc stores the following in r():
Scalars

r(icc#) level-# intraclass correlation
r(se#) standard errors of level-# intraclass correlation
r(level) confidence level of confidence intervals

Macros
r(label#) label for level #

Matrices
r(ci#) vector of confidence intervals (lower and upper) for level-# intraclass correlation

For a G-level nested model, # can be any integer between 2 and G.
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Methods and formulas

Intraclass correlations
Consider a simple, two-level random-intercept model, stated in terms of a latent linear response,

where only yij = I(y∗ij > 0) is observed for the latent variable,

y∗ij = β + u
(2)
j + ε

(1)
ij

with i = 1, . . . , nj and level-2 groups j = 1, . . . ,M . Here β is an unknown fixed intercept, u(2)j
is a level-2 random intercept, and ε(1)ij is a level-1 error term. In a mixed-effects linear, probit, and
ordered probit regression, errors are assumed to be normally distributed with mean 0 and variance
γ. In a mixed-effects logistic and ordered logistic regression, errors are assumed to be logistic with
mean 0 and variance γ. Random intercepts are assumed to be normally distributed with mean 0 and
variance σ2

2 and to be independent of error terms.

The intraclass correlation for this model is

ρ = Corr(y∗ij , y
∗
i′j) =

σ2
2

γ + σ2
2

where γ = σ2
1 for a mixed-effects linear regression, γ = 1 for a mixed-effects probit and ordered

probit regression, γ = π2/3 for a mixed-effects logistic and ordered logistic regression, and γ = π2/6
for a mixed-effects complementary log–log regression. The intraclass correlation corresponds to the
correlation between the latent responses i and i′ from the same group j.

Now consider a three-level nested random-intercept model,

y∗ijk = β + u
(2)
jk + u

(3)
k + ε

(1)
ijk

for measurements i = 1, . . . , njk and level-2 groups j = 1, . . . ,M1k nested within level-3 groups
k = 1, . . . ,M2. Here u(2)jk is a level-2 random intercept, u(3)k is a level-3 random intercept, and ε(1)ijk
is a level-1 error term. The random intercepts are assumed to be normally distributed with mean
0 and variances σ2

2 and σ2
3 , respectively, and to be mutually independent. The error terms are also

independent of the random intercepts.

We can consider two types of intraclass correlations for this model. We will refer to them as
level-2 and level-3 intraclass correlations. The level-3 intraclass correlation is

ρ(3) = Corr(y∗ijk, y
∗
i′j′k) =

σ2
3

γ + σ2
2 + σ2

3

This is the correlation between latent responses i and i′ from the same level-3 group k and from
different level-2 groups j and j′.

The level-2 intraclass correlation is

ρ(2) = Corr(y∗ijk, y
∗
i′jk) =

σ2
2 + σ2

3

γ + σ2
2 + σ2

3

This is the correlation between latent responses i and i′ from the same level-3 group k and level-2
group j. (Note that level-1 intraclass correlation is undefined.)
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More generally, for a G-level nested random-intercept model, the g-level intraclass correlation is
defined as

ρ(g) =

∑G
l=g σ

2
l

γ +
∑G
l=2 σ

2
l

The above formulas also apply in the presence of fixed-effects covariates X in a random-
effects model. In this case, intraclass correlations are conditional on fixed-effects covariates and are
referred to as residual intraclass correlations. estat icc also uses the same formulas to compute
intraclass correlations for random-coefficients models, assuming 0 baseline values for the random-
effects covariates, and labels them as conditional intraclass correlations.

Intraclass correlations will always fall in [0,1] because variance components are nonnegative. To
accommodate the range of an intraclass correlation, we use the logit transformation to obtain confidence
intervals. We use the delta method to estimate the standard errors of the intraclass correlations.

Let ρ̂(g) be a point estimate of the intraclass correlation and ŜE(ρ̂(g)) be its standard error. The
(1− α)× 100% confidence interval for logit(ρ(g)) is

logit(ρ̂(g))± zα/2
ŜE(ρ̂(g))

ρ̂(g)(1− ρ̂(g))

where zα/2 is the 1−α/2 quantile of the standard normal distribution and logit(x) = ln{x/(1−x)}.
Let ku be the upper endpoint of this interval, and let kl be the lower. The (1−α)×100% confidence
interval for ρ(g) is then given by (

1

1 + e−kl
,

1

1 + e−ku

)

Also see
[ME] mecloglog — Multilevel mixed-effects complementary log–log regression

[ME] meglm — Multilevel mixed-effects generalized linear models

[ME] meintreg — Multilevel mixed-effects interval regression

[ME] melogit — Multilevel mixed-effects logistic regression

[ME] meologit — Multilevel mixed-effects ordered logistic regression

[ME] meoprobit — Multilevel mixed-effects ordered probit regression

[ME] meprobit — Multilevel mixed-effects probit regression

[ME] metobit — Multilevel mixed-effects tobit regression

[ME] mixed — Multilevel mixed-effects linear regression

[U] 20 Estimation and postestimation commands



Title

estat recovariance — Display estimated random-effects covariance matrices

Description Menu for estat Syntax Options
Remarks and examples Stored results Also see

Description
estat recovariance is for use after estimation with menl and mixed.

estat recovariance displays the estimated variance–covariance matrix of the random effects
for each level in the model.

Menu for estat
Statistics > Postestimation

Syntax

estat recovariance
[
, relevel(levelvar) correlation matlist options

]
collect is allowed; see [U] 11.1.10 Prefix commands.

Options

relevel(levelvar) specifies the level in the model for which the random-effects covariance matrix
is to be displayed. By default, the covariance matrices for all levels in the model are displayed.
levelvar is the name of the model level and is either the name of the variable describing the
grouping at that level or is all, a special designation for a group comprising all the estimation
data. The all designation is not supported with menl.

correlation displays the covariance matrix as a correlation matrix.

matlist options are style and formatting options that control how the matrix (or matrices) is displayed;
see [P] matlist for a list of options that are available.

Remarks and examples
For menl, the rows and columns of the matrix are labeled with full random-effects names as they

are defined in the model.

For other commands, the rows and columns of the matrix are labeled as cons for the random
intercepts; for random coefficients, the label is the name of the associated variable in the data.

See example 1 in [ME] mixed postestimation.
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Stored results
estat recovariance stores the following in r():

Scalars
r(relevels) number of levels

Matrices
r(Cov#) level-# random-effects covariance matrix
r(Corr#) level-# random-effects correlation matrix (if option correlation was specified)

For a G-level nested model, # can be any integer between 2 and G.

Also see
[ME] menl — Nonlinear mixed-effects regression

[ME] mixed — Multilevel mixed-effects linear regression

[U] 20 Estimation and postestimation commands



Title

estat sd — Display variance components as standard deviations and correlations

Description Menu for estat Syntax Options
Remarks and examples Stored results Also see

Description
estat sd displays the random-effects and within-group error parameter estimates as standard

deviations and correlations.

Menu for estat
Statistics > Postestimation

Syntax

estat sd
[
, variance verbose post coeflegend

]
collect is allowed; see [U] 11.1.10 Prefix commands.

Options

variance specifies that estat sd display the random-effects and within-group error parameter
estimates as variances and covariances. If the post option is specified, the estimated variances
and covariances and their respective standard errors are posted to e(). variance is allowed only
after mixed and menl.

verbose specifies that the full estimation table be displayed. By default, only the random-effects and
within-group error parameters are displayed. This option is implied when post is specified.

post causes estat sd to behave like a Stata estimation (e-class) command. estat sd posts the
vector of calculated standard deviation and correlation parameters along with the corresponding
variance–covariance matrix to e(), so that you can treat the estimated parameters just as you
would results from any other estimation command. For example, you could use test to perform
simultaneous tests of hypotheses on the parameters, or you could use lincom to create linear
combinations.

The following option is not shown in the dialog box:

coeflegend specifies that the legend of the coefficients and how to specify them in an expression
be displayed rather than displaying the statistics for the coefficients. This option is allowed only
if post is also specified.
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Remarks and examples
See example 1 in [ME] mixed postestimation and example 16 in [ME] menl.

Stored results
estat sd stores the following in r():

Matrices
r(b) coefficient vector
r(V) variance–covariance matrix of the estimators
r(table) table of results

If post is specified, estat sd stores the following in e():

Macros
e(cmd) estat sd
e(properties) b V

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Also see
[ME] mecloglog — Multilevel mixed-effects complementary log–log regression

[ME] meglm — Multilevel mixed-effects generalized linear models

[ME] meintreg — Multilevel mixed-effects interval regression

[ME] melogit — Multilevel mixed-effects logistic regression

[ME] menbreg — Multilevel mixed-effects negative binomial regression

[ME] menl — Nonlinear mixed-effects regression

[ME] meologit — Multilevel mixed-effects ordered logistic regression

[ME] meoprobit — Multilevel mixed-effects ordered probit regression

[ME] mepoisson — Multilevel mixed-effects Poisson regression

[ME] meprobit — Multilevel mixed-effects probit regression

[ME] mestreg — Multilevel mixed-effects parametric survival models

[ME] metobit — Multilevel mixed-effects tobit regression

[ME] mixed — Multilevel mixed-effects linear regression

[U] 20 Estimation and postestimation commands



Title

estat wcorrelation — Display within-cluster correlations and standard deviations

Description Menu for estat Syntax Options
Remarks and examples Stored results Methods and formulas Reference
Also see

Description

estat wcorrelation is for use after estimation with menl and mixed.

estat wcorrelation displays the overall correlation matrix for a given cluster calculated on the
basis of the design of the random effects and their assumed covariance and the correlation structure
of the residuals. This allows for a comparison of different multilevel models in terms of the ultimate
within-cluster correlation matrix that each model implies.

Menu for estat
Statistics > Postestimation

Syntax

estat wcorrelation
[
, options

]
options Description

at(at spec) specify the cluster for which you want the correlation matrix; default
is the first two-level cluster encountered in the data

all display correlation matrix for all the data
covariance display the covariance matrix instead of the correlation matrix
list list the data corresponding to the correlation matrix
nosort list the rows and columns of the correlation matrix in the order they

were originally present in the data
iterate(#) maximum number of iterations to compute random effects;

default is iterate(50); only for use after menl
tolerance(#) convergence tolerance when computing random effects;

default is tolerance(1e-6); only for use after menl
nrtolerance(#) scaled gradient tolerance when computing random effects;

default is nrtolerance(1e-5); only for use after menl
nonrtolerance ignore the nrtolerance() option; only for use after menl
format(% fmt) set the display format; default is format(%6.3f)

matlist options style and formatting options that control how matrices are displayed

collect is allowed; see [U] 11.1.10 Prefix commands.
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Options

at(at spec) specifies the cluster of observations for which you want the within-cluster correlation
matrix. at spec is

relevel var = value
[

, relevel var = value . . .
]

For example, if you specify

. estat wcorrelation, at(school = 33)

you get the within-cluster correlation matrix for those observations in school 33. If you specify

. estat wcorrelation, at(school = 33 classroom = 4)

you get the correlation matrix for classroom 4 in school 33.

If at() is not specified, then you get the correlations for the first level-two cluster encountered
in the data. This is usually what you want.

all specifies that you want the correlation matrix for all the data. This is not recommended unless
you have a relatively small dataset or you enjoy seeing large n× n matrices. However, this can
prove useful in some cases.

covariance specifies that the within-cluster covariance matrix be displayed instead of the default
correlations and standard deviations.

list lists the model data for those observations depicted in the displayed correlation matrix. With
linear mixed-effects models, this option is also useful if you have many random-effects design
variables and you wish to see the represented values of these design variables.

nosort lists the rows and columns of the correlation matrix in the order that they were originally
present in the data. Normally, estat wcorrelation will first sort the data according to level
variables, by-group variables, and time variables to produce correlation matrices whose rows and
columns follow a natural ordering. nosort suppresses this.

iterate(#) specifies the maximum number of iterations when computing estimates of the random
effects. The default is iterate(50). This option is only for use after menl.

tolerance(#) specifies a convergence tolerance when computing estimates of the random effects.
The default is tolerance(1e-6). This option is only for use after menl.

nrtolerance(#) and nonrtolerance control the tolerance for the scaled gradient when computing
estimates of the random effects. These options are only for use after menl.

nrtolerance(#) specifies the tolerance for the scaled gradient. Convergence is declared when
g(−H−1)g′ is less than nrtolerance(#), where g is the gradient row vector and H is the
approximated Hessian matrix from the current iteration. The default is nrtolerance(1e-5).

nonrtolerance specifies that the default nrtolerance() criterion be turned off.

format(% fmt) sets the display format for the standard deviation vector and correlation matrix. The
default is format(%6.3f).

matlist options are style and formatting options that control how the matrix (or matrices) is displayed;
see [P] matlist for a list of options that are available.
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Remarks and examples

Example 1: Displaying within-cluster correlations for different clusters

Here we fit a model where different clusters have different within-cluster correlations, and we show
how to display them for different clusters. We use the Asian children weight data from example 6 of
[ME] mixed.

. use https://www.stata-press.com/data/r18/childweight
(Weight data on Asian children)

. mixed weight age || id: age, covariance(unstructured)

Performing EM optimization ...

Performing gradient-based optimization:
Iteration 0: Log likelihood = -344.37065
Iteration 1: Log likelihood = -342.83814
Iteration 2: Log likelihood = -342.71861
Iteration 3: Log likelihood = -342.71777
Iteration 4: Log likelihood = -342.71777

Computing standard errors ...

Mixed-effects ML regression Number of obs = 198
Group variable: id Number of groups = 68

Obs per group:
min = 1
avg = 2.9
max = 5

Wald chi2(1) = 755.27
Log likelihood = -342.71777 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

age 3.459671 .1258878 27.48 0.000 3.212936 3.706407
_cons 5.110496 .149478 34.19 0.000 4.817524 5.403468

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Unstructured
var(age) .2023928 .12429 .0607393 .6744041

var(_cons) .0970259 .1108024 .0103473 .9098067
cov(age,_cons) .1401334 .0566912 .0290206 .2512461

var(Residual) 1.357922 .1650507 1.070075 1.723199

LR test vs. linear model: chi2(3) = 27.38 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
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We use estat wcorrelation to display the within-cluster correlations for the first cluster.

. estat wcorrelation, list

Standard deviations and correlations for id = 45:

Standard deviations:

obs 1 2 3 4 5

sd 1.224 1.314 1.448 1.506 1.771

Correlations:

obs 1 2 3 4 5

1 1.000
2 0.141 1.000
3 0.181 0.274 1.000
4 0.193 0.293 0.376 1.000
5 0.230 0.348 0.447 0.477 1.000

Data:

id weight age

1. 45 5.171 .136893
2. 45 10.86 .657084
3. 45 13.15 1.21834
4. 45 13.2 1.42916
5. 45 15.88 2.27242

We specified the list option to display the data associated with the cluster. The next cluster in
the dataset has ID 258. To display the within-cluster correlations for this cluster, we specify the at()
option.

. estat wcorrelation, at(id=258) list

Standard deviations and correlations for id = 258:

Standard deviations:

obs 1 2 3 4

sd 1.231 1.320 1.424 1.782

Correlations:

obs 1 2 3 4

1 1.000
2 0.152 1.000
3 0.186 0.270 1.000
4 0.244 0.356 0.435 1.000

Data:

id weight age

1. 258 5.3 .19165
2. 258 9.74 .687201
3. 258 9.98 1.12799
4. 258 11.34 2.30527

The within-cluster correlations for this model depend on age. The values for age in the two clusters
are different, as are the corresponding within-cluster correlations.
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See example 1 of [ME] mixed postestimation for a model fit where each cluster had the same
model-implied within-cluster correlations.

Stored results
estat wcorrelation stores the following in r():

Matrices
r(sd) standard deviations
r(Corr) within-cluster correlation matrix
r(Cov) within-cluster variance–covariance matrix
r(G) variance–covariance matrix of random effects
r(Z) model-based design matrix
r(R) variance–covariance matrix of level-one errors
r(path) path identifying cluster for which correlation is reported

Results r(G), r(Z), and r(R) are available only after mixed. Result r(path) is available only after
menl.

Methods and formulas
Methods and formulas are presented under the following headings:

Linear mixed-effects model
Nonlinear mixed-effects model

Linear mixed-effects model

A two-level linear mixed model of the form

yj = Xjβ+ Zjuj + εj

implies the marginal model
yj = Xjβ+ ε∗j

where ε∗j ∼ N(0,Vj), Vj = ZjGZ′j + R. In a marginal model, the random part is described in
terms of the marginal or total residuals ε∗j , and Vj is the covariance structure of these residuals.

estat wcorrelation calculates the marginal covariance matrix Ṽj for cluster j and by default
displays the results in terms of standard deviations and correlations. This allows for a comparison of
different multilevel models in terms of the ultimate within-cluster correlation matrix that each model
implies.

Calculation of the marginal covariance matrix extends naturally to higher-level models; see, for
example, chapter 4.8 in West, Welch, and Gałecki (2022).

Nonlinear mixed-effects model
For nonlinear mixed-effects models, there is no closed-form expression for the marginal covariance

matrix Cov(yj). This is because it is expressed in terms of a q-dimensional integral (q is the number
of random effects in the model), which, in general, is analytically intractable. Under the linear
mixed-effects approximation, the marginal covariance matrix is estimated by V̂j = ẐjΣ̂Ẑ′j + σ̂2Λ̂j ,

where Ẑj , Σ̂, and Λ̂j are defined in Methods and formulas of [ME] menl.
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estat wcorrelation calculates the estimated marginal covariance matrix V̂j for cluster j and
by default displays the results in terms of standard deviations and correlations.

Under the linear mixed-effects approximation, estimation of the marginal covariance matrix extends
naturally to higher-level models; see, for example, chapter 4.8 in West, Welch, and Gałecki (2022).

Reference
West, B. T., K. B. Welch, and A. T. Gałecki. 2022. Linear Mixed Models: A Practical Guide Using Statistical

Software. 3rd ed. Boca Raton, FL: CRC Press.

Also see
[ME] menl — Nonlinear mixed-effects regression

[ME] mixed — Multilevel mixed-effects linear regression

[U] 20 Estimation and postestimation commands

http://www.stata.com/bookstore/linear-mixed-models/
http://www.stata.com/bookstore/linear-mixed-models/


Title

mecloglog — Multilevel mixed-effects complementary log–log regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Reference Also see

Description

mecloglog fits mixed-effects models for binary or binomial responses. The conditional distribution
of the response given the random effects is assumed to be Bernoulli, with probability of success
determined by the inverse complementary log–log function.

Quick start
Two-level complementary log–log model of y on x with random intercepts by lev2

mecloglog y x || lev2:

Add binary variable a and random coefficients for a
mecloglog y x a || lev2: a

Same as above, but allow the random effects to be correlated
mecloglog y x a || lev2: a, covariance(unstructured)

Three-level random-intercept model of y on x with lev2 nested within lev3

mecloglog y x || lev3: || lev2:

Crossed-effects model of y on x with two-way crossed random effects by factors a and b

mecloglog y x || _all:R.a || b:

Menu
Statistics > Multilevel mixed-effects models > Complementary log–log regression
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68 mecloglog — Multilevel mixed-effects complementary log–log regression

Syntax
mecloglog depvar fe equation

[
|| re equation

] [
|| re equation . . .

] [
, options

]
where the syntax of fe equation is[

indepvars
] [

if
] [

in
] [

weight
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all
representing one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation
offset(varname) include varname in model with coefficient constrained to 1
asis retain perfect predictor variables

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
fweight(varname) frequency weights at higher levels
iweight(varname) importance weights at higher levels
pweight(varname) sampling weights at higher levels



mecloglog — Multilevel mixed-effects complementary log–log regression 69

options Description

Model

binomial(varname | #) set binomial trials if data are in binomial form
constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)

eform report exponentiated coefficients
nocnsreport do not display constraints
notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intmethod(intmethod) integration method
intpoints(#) set the number of integration (quadrature) points for all levels;

default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values
startgrid

[
(gridspec)

]
perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead
dnumerical use numerical derivative techniques
collinear keep collinear variables
coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated
fixed(matname) user-selected variances and covariances constrained to specified

values; the remaining variances and covariances unrestricted
pattern(matname) user-selected variances and covariances constrained to be equal;

the remaining variances and covariances unrestricted
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intmethod Description

mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature
ghermite nonadaptive Gauss–Hermite quadrature
laplace Laplacian approximation; the default for crossed random-effects

models

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see

[BAYES] bayes: mecloglog.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified.

Weights are not supported under the Laplacian approximation or for crossed models.
startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog

box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any of or all the random-effects equations.

offset(varname) specifies that varname be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

asis forces retention of perfect predictor variables and their associated, perfectly predicted observations
and may produce instabilities in maximization; see [R] probit.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent) unless a crossed random-effects model is fit, in which case the
default is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2
unique parameters.

covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures
provide a convenient way to impose constraints on variances and covariances of random effects.
Each specification requires a matname that defines the restrictions placed on variances and
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covariances. Only elements in the lower triangle of matname are used, and row and column names
of matname are ignored. A missing value in matname means that a given element is unrestricted.
In a fixed(matname) covariance structure, (co)variance (i, j) is constrained to equal the
value specified in the i, jth entry of matname. In a pattern(matname) covariance structure,
(co)variances (i, j) and (k, l) are constrained to be equal if matname[i, j] = matname[k, l].

fweight(varname) specifies frequency weights at higher levels in a multilevel model, whereas
frequency weights at the first level (the observation level) are specified in the usual manner, for
example, [fw=fwtvar1]. varname can be any valid Stata variable name, and you can specify
fweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wt1] || school: . . . , fweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2
would hold the second-level (the school-level) frequency weights.

iweight(varname) specifies importance weights at higher levels in a multilevel model, whereas
importance weights at the first level (the observation level) are specified in the usual manner,
for example, [iw=iwtvar1]. varname can be any valid Stata variable name, and you can specify
iweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: . . . , iweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) importance weights, and wt2
would hold the second-level (the school-level) importance weights.

pweight(varname) specifies sampling weights at higher levels in a multilevel model, whereas
sampling weights at the first level (the observation level) are specified in the usual manner, for
example, [pw=pwtvar1]. varname can be any valid Stata variable name, and you can specify
pweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wt1] || school: . . . , pweight(wt2) . . .

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would
hold the second-level (the school-level) sampling weights.

binomial(varname | #) specifies that the data are in binomial form; that is, depvar records the number
of successes from a series of binomial trials. This number of trials is given either as varname,
which allows this number to vary over the observations, or as the constant #. If binomial() is
not specified (the default), depvar is treated as Bernoulli, with any nonzero, nonmissing values
indicating positive responses.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is
specified, robust variances are clustered at the highest level in the multilevel model.

� � �
Reporting �

level(#); see [R] Estimation options.

eform reports exponentiated coefficients and corresponding standard errors and confidence intervals.
This option may be specified either at estimation or upon replay.

nocnsreport; see [R] Estimation options.
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notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model.
mvaghermite performs mean–variance adaptive Gauss–Hermite quadrature; mcaghermite per-
forms mode-curvature adaptive Gauss–Hermite quadrature; ghermite performs nonadaptive Gauss–
Hermite quadrature; and laplace performs the Laplacian approximation, equivalent to mode-
curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in
which case the default integration method is laplace. The Laplacian approximation has been
known to produce biased parameter estimates; however, the bias tends to be more prominent in
the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be
prohibitively intensive even for a small number of levels. For this reason, the integration method
defaults to the Laplacian approximation. You may override this behavior by specifying a different
integration method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option
is not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases as a function of the number of quadrature points raised to a power
equaling the dimension of the random-effects specification. In crossed random-effects models and
in models with many levels or many random coefficients, this increase can be substantial.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. Those that require
special mention for mecloglog are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

The following options are available with mecloglog but are not shown in the dialog box:

startvalues(svmethod), startgrid
[
(gridspec)

]
, noestimate, and dnumerical; see [ME]

meglm.

collinear, coeflegend; see [R] Estimation options.
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Remarks and examples
Mixed-effects complementary log–log (cloglog) regression is cloglog regression containing both

fixed effects and random effects. In longitudinal data and panel data, random effects are useful for
modeling intracluster correlation; that is, observations in the same cluster are correlated because they
share common cluster-level random effects.

mecloglog allows for many levels of random effects. However, for simplicity, we here consider
the two-level model, where for a series of M independent clusters, and conditional on a set of fixed
effects xij and a set of random effects uj ,

Pr(yij = 1|xij ,uj) = H(xijβ+ zijuj) (1)

for j = 1, . . . ,M clusters, with cluster j consisting of i = 1, . . . , nj observations. The responses are
the binary-valued yij , and we follow the standard Stata convention of treating yij = 1 if depvarij 6= 0
and treating yij = 0 otherwise. The 1 × p row vector xij are the covariates for the fixed effects,
analogous to the covariates you would find in a standard cloglog regression model, with regression
coefficients (fixed effects) β. For notational convenience here and throughout this manual entry, we
suppress the dependence of yij on xij .

The 1 × q vector zij are the covariates corresponding to the random effects and can be used to
represent both random intercepts and random coefficients. For example, in a random-intercept model,
zij is simply the scalar 1. The random effects uj are M realizations from a multivariate normal
distribution with mean 0 and q× q variance matrix Σ. The random effects are not directly estimated
as model parameters but are instead summarized according to the unique elements of Σ, known
as variance components. One special case of (1) places zij = xij , so that all covariate effects are
essentially random and distributed as multivariate normal with mean β and variance Σ.

Finally, because this is cloglog regression, H(·) is the inverse of the complementary log–log function
that maps the linear predictor to the probability of a success (yij = 1) withH(v) = 1− exp{− exp(v)}.

Model (1) may also be stated in terms of a latent linear response, where only yij = I(y∗ij > 0)
is observed for the latent

y∗ij = xijβ+ zijuj + εij

The errors εij are independent and identically extreme-value (Gumbel) distributed with the mean
equal to Euler’s constant and variance σ2

ε = π2/6, independently of uj . This nonsymmetric error
distribution is an alternative to the symmetric error distribution underlying logistic and probit analysis
and is usually used when the positive (or negative) outcome is rare.

Below we present two short examples of mixed-effects cloglog regression; refer to [ME] me and
[ME] meglm for examples of other random-effects models. A two-level cloglog model can also be
fit using xtcloglog with the re option; see [XT] xtcloglog. In the absence of random effects,
mixed-effects cloglog regression reduces to standard cloglog regression; see [R] cloglog.

Example 1: Two-level random-intercept model

In example 1 of [XT] xtcloglog, we analyze unionization of women in the United States over
the period 1970–1988. The women are identified by the variable idcode. Here we refit that model
with mecloglog. Because the original example used 12 integration points by default, we request 12
integration points as well.

. use https://www.stata-press.com/data/r18/union
(NLS Women 14-24 in 1968)
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. mecloglog union age grade not_smsa south##c.year || idcode:, intpoints(12)

Fitting fixed-effects model:

Iteration 0: Log likelihood = -14237.139
Iteration 1: Log likelihood = -13546.159
Iteration 2: Log likelihood = -13540.611
Iteration 3: Log likelihood = -13540.607
Iteration 4: Log likelihood = -13540.607

Refining starting values:

Grid node 0: Log likelihood = -11104.448

Fitting full model:

Iteration 0: Log likelihood = -11104.448
Iteration 1: Log likelihood = -10617.891
Iteration 2: Log likelihood = -10537.919
Iteration 3: Log likelihood = -10535.946
Iteration 4: Log likelihood = -10535.941
Iteration 5: Log likelihood = -10535.941

Mixed-effects cloglog regression Number of obs = 26,200
Group variable: idcode Number of groups = 4,434

Obs per group:
min = 1
avg = 5.9
max = 12

Integration method: mvaghermite Integration pts. = 12

Wald chi2(6) = 248.12
Log likelihood = -10535.941 Prob > chi2 = 0.0000

union Coefficient Std. err. z P>|z| [95% conf. interval]

age .0128542 .0119441 1.08 0.282 -.0105559 .0362642
grade .0699965 .0138551 5.05 0.000 .0428409 .097152

not_smsa -.1982009 .0649258 -3.05 0.002 -.3254531 -.0709488
1.south -2.049901 .4892644 -4.19 0.000 -3.008842 -1.090961

year -.0006158 .0123999 -0.05 0.960 -.0249191 .0236875

south#c.year
1 .0164457 .0060685 2.71 0.007 .0045516 .0283399

_cons -3.277375 .6610552 -4.96 0.000 -4.57302 -1.981731

idcode
var(_cons) 3.489803 .1630921 3.184351 3.824555

LR test vs. cloglog model: chibar2(01) = 6009.33 Prob >= chibar2 = 0.0000

The estimates are practically the same. xtcloglog reports the estimated variance component as a
standard deviation, σ̂u = 1.86. mecloglog reports σ̂2

u = 3.49, the square root of which is 1.87. We
find that age and education each have a positive effect on union membership, although the former is
not statistically significant. Women who live outside of metropolitan areas are less likely to unionize.

The estimated variance of the random intercept at the individual level, σ̂2, is 3.49 with standard
error 0.16. The reported likelihood-ratio test shows that there is enough variability between women to
favor a mixed-effects cloglog regression over an ordinary cloglog regression; see Distribution theory
for likelihood-ratio test in [ME] me for a discussion of likelihood-ratio testing of variance components.
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Example 2: Three-level random-intercept model

Rabe-Hesketh, Toulopoulou, and Murray (2001) analyzed data from a study that measured the
cognitive ability of patients with schizophrenia compared with their relatives and control subjects.
Cognitive ability was measured as the successful completion of the “Tower of London”, a computerized
task, measured at three levels of difficulty. For all but one of the 226 subjects, there were three
measurements (one for each difficulty level). Because patients’ relatives were also tested, a family
identifier, family, was also recorded.

We fit a cloglog model with response dtlm, the indicator of cognitive function, and with covariates
difficulty and a set of indicator variables for group, with the controls (group==1) being the base
category. We also allow for random effects due to families and due to subjects within families. The first
is a random intercept (constant only) at the family level, and the second is a random intercept at the
subject level. The order in which these are specified (from left to right) is significant—mecloglog
assumes that subject is nested within family. The equations are separated by ||.
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. use https://www.stata-press.com/data/r18/towerlondon
(Tower of London data)

. mecloglog dtlm difficulty i.group || family: || subject:

Fitting fixed-effects model:

Iteration 0: Log likelihood = -337.21921
Iteration 1: Log likelihood = -313.79023
Iteration 2: Log likelihood = -313.56906
Iteration 3: Log likelihood = -313.56888
Iteration 4: Log likelihood = -313.56888

Refining starting values:

Grid node 0: Log likelihood = -314.57061

Fitting full model:

Iteration 0: Log likelihood = -314.57061 (not concave)
Iteration 1: Log likelihood = -308.82101
Iteration 2: Log likelihood = -305.71841
Iteration 3: Log likelihood = -305.26804
Iteration 4: Log likelihood = -305.26516
Iteration 5: Log likelihood = -305.26516

Mixed-effects cloglog regression Number of obs = 677

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

family 118 2 5.7 27
subject 226 2 3.0 3

Integration method: mvaghermite Integration pts. = 7

Wald chi2(3) = 83.32
Log likelihood = -305.26516 Prob > chi2 = 0.0000

dtlm Coefficient Std. err. z P>|z| [95% conf. interval]

difficulty -1.342844 .1501508 -8.94 0.000 -1.637135 -1.048554

group
2 -.1331007 .269389 -0.49 0.621 -.6610935 .3948922
3 -.7714314 .3097099 -2.49 0.013 -1.378452 -.164411

_cons -1.6718 .2290325 -7.30 0.000 -2.120695 -1.222905

family
var(_cons) .2353453 .2924064 .0206122 2.687117

family>
subject

var(_cons) .7737687 .4260653 .2629714 2.276742

LR test vs. cloglog model: chi2(2) = 16.61 Prob > chi2 = 0.0002

Note: LR test is conservative and provided only for reference.

After adjusting for the random-effects structure, the probability of successful completion of the
Tower of London decreases dramatically as the level of difficulty increases. Also, schizophrenics
(group==3) tended not to perform as well as the control subjects.

The above extends to models with more than two levels of nesting by adding more random-effects
equations, each separated by ||.
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Stored results
mecloglog stores the following in e():
Scalars

e(N) number of observations
e(k) number of parameters
e(k dv) number of dependent variables
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k f) number of fixed-effects parameters
e(k r) number of random-effects parameters
e(k rs) number of variances
e(k rc) number of covariances
e(df m) model degrees of freedom
e(ll) log likelihood
e(N clust) number of clusters
e(chi2) χ2

e(p) p-value for model test
e(ll c) log likelihood, comparison model
e(chi2 c) χ2, comparison test
e(df c) degrees of freedom, comparison test
e(p c) p-value for comparison test
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) meglm
e(cmd2) mecloglog
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression (first-level weights)
e(fweightk) fweight variable for kth highest level, if specified
e(iweightk) iweight variable for kth highest level, if specified
e(pweightk) pweight variable for kth highest level, if specified
e(covariates) list of covariates
e(ivars) grouping variables
e(model) cloglog
e(title) title in estimation output
e(link) cloglog
e(family) bernoulli or binomial
e(clustvar) name of cluster variable
e(offset) offset
e(binomial) binomial number of trials
e(intmethod) integration method
e(n quad) number of integration points
e(chi2type) Wald; type of model χ2

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
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e(marginswexp) weight expression for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(N g) group counts
e(g min) group-size minimums
e(g avg) group-size averages
e(g max) group-size maximums
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,
and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
mecloglog is a convenience command for meglm with a cloglog link and a bernoulli or

binomial family; see [ME] meglm.

Model (1) assumes Bernoulli data, a special case of the binomial. Because binomial data are also
supported by mecloglog (option binomial()), the methods presented below are in terms of the
more general binomial mixed-effects model.

For a two-level binomial model, consider the response yij as the number of successes from a
series of rij Bernoulli trials (replications). For cluster j, j = 1, . . . ,M , the conditional distribution
of yj = (yj1, . . . , yjnj )

′, given a set of cluster-level random effects uj , is

f(yj |uj) =

nj∏
i=1

[(
rij
yij

){
H(ηij)

}yij {
1−H(ηij)

}rij−yij]

= exp

(
nj∑
i=1

[
yij log

{
H(ηij)

}
− (rij − yij) exp(ηij) + log

(
rij
yij

)])
for ηij = xijβ+ zijuj + offsetij and H(v) = 1− exp{− exp(v)}.

Defining rj = (rj1, . . . , rjnj )
′ and

c (yj , rj) =

nj∑
i=1

log
(
rij
yij

)
where c(yj , rj) does not depend on the model parameters, we can express the above compactly in
matrix notation,

f(yj |uj) = exp
[
y′j log

{
H(ηj)

}
− (rj − yj)

′ exp(ηj) + c (yj , rj)
]
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where ηj is formed by stacking the row vectors ηij . We extend the definitions of the functions H(·),
log(·), and exp(·) to be vector functions where necessary.

Because the prior distribution of uj is multivariate normal with mean 0 and q× q variance matrix
Σ, the likelihood contribution for the jth cluster is obtained by integrating uj out of the joint density
f(yj ,uj),

Lj(β,Σ) = (2π)−q/2 |Σ|−1/2
∫
f(yj |uj) exp

(
−u′jΣ

−1uj/2
)
duj

= exp {c (yj , rj)} (2π)−q/2 |Σ|−1/2
∫

exp {h (β,Σ,uj)} duj
(2)

where
h (β,Σ,uj) = y′j log

{
H(ηj)

}
− (rj − yj)

′ exp(ηj)− u′jΣ
−1uj/2

and for convenience, in the arguments of h(·) we suppress the dependence on the observable data
(yj , rj ,Xj ,Zj).

The integration in (2) has no closed form and thus must be approximated; see Methods and
formulas in [ME] meglm for details.

mecloglog supports multilevel weights and survey data; see Methods and formulas in [ME] meglm
for details.

Reference
Rabe-Hesketh, S., T. Toulopoulou, and R. M. Murray. 2001. Multilevel modeling of cognitive function in schizophrenic

patients and their first degree relatives. Multivariate Behavioral Research 36: 279–298. https://doi.org/10.1207/
S15327906MBR3602 07.

Also see
[ME] mecloglog postestimation — Postestimation tools for mecloglog

[ME] melogit — Multilevel mixed-effects logistic regression

[ME] meprobit — Multilevel mixed-effects probit regression

[ME] me — Introduction to multilevel mixed-effects models

[BAYES] bayes: mecloglog — Bayesian multilevel complementary log–log regression

[SEM] Intro 5 — Tour of models (Multilevel mixed-effects models)

[SVY] svy estimation — Estimation commands for survey data

[XT] xtcloglog — Random-effects and population-averaged cloglog models

[U] 20 Estimation and postestimation commands

https://doi.org/10.1207/S15327906MBR3602_07
https://doi.org/10.1207/S15327906MBR3602_07
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mecloglog postestimation — Postestimation tools for mecloglog

Postestimation commands predict margins
Remarks and examples Methods and formulas Also see

Postestimation commands
The following postestimation command is of special interest after mecloglog:

Command Description

estat group summarize the composition of the nested groups
estat icc estimate intraclass correlations
estat sd display variance components as standard deviations and correlations

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian

information criteria (AIC, CAIC, AICc, and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
etable table of estimation results
∗hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
∗lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combi-

nations of coefficients
predict means, probabilities, densities, REs, residuals, etc.
predictnl point estimates, standard errors, testing, and inference for generalized pre-

dictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

∗hausman and lrtest are not appropriate with svy estimation results.
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predict

Description for predict

predict creates a new variable containing predictions such as mean responses; linear predictions;
density and distribution functions; standard errors; and Pearson, deviance, and Anscombe residuals.

Menu for predict

Statistics > Postestimation

Syntax for predict

Syntax for obtaining predictions of the outcome and other statistics

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
] [

, statistic options
]

Syntax for obtaining estimated random effects and their standard errors

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, reffects

[
re options

]
Syntax for obtaining ML scores

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, scores

statistic Description

Main

mu mean response; the default
eta fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp standard error of the fixed-portion linear prediction
density predicted density function
distribution predicted distribution function
pearson Pearson residuals
deviance deviance residuals
anscombe Anscombe residuals

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample.
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options Description

Main

conditional(ctype) compute statistic conditional on estimated random effects; default is
conditional(ebmeans)

marginal compute statistic marginally with respect to the random effects
nooffset make calculation ignoring offset or exposure

Integration

int options integration options

pearson, deviance, anscombe may not be combined with marginal.

ctype Description

ebmeans empirical Bayes means of random effects; the default
ebmodes empirical Bayes modes of random effects
fixedonly prediction for the fixed portion of the model only

re options Description

Main

ebmeans use empirical Bayes means of random effects; the default
ebmodes use empirical Bayes modes of random effects
reses(stub* | newvarlist) calculate standard errors of empirical Bayes estimates

Integration

int options integration options

int options Description

intpoints(#) use # quadrature points to compute marginal predictions and empirical
Bayes means

iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators

tolerance(#) set convergence tolerance for computing statistics involving empirical
Bayes estimators

Options for predict

� � �
Main �

mu, the default, calculates the predicted mean, that is, the probability of a positive outcome.

eta, xb, stdp, density, distribution, pearson, deviance, anscombe, scores, condi-
tional(), marginal, and nooffset; see [ME] meglm postestimation.

reffects, ebmeans, ebmodes, and reses(); see [ME] meglm postestimation.

� � �
Integration �

intpoints(), iterate(), and tolerance(); see [ME] meglm postestimation.
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margins

Description for margins

margins estimates margins of response for mean responses and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . . )

[
predict(statistic . . . ) . . .

] [
options

]
statistic Description

mu mean response; the default
eta fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp not allowed with margins

density not allowed with margins

distribution not allowed with margins

pearson not allowed with margins

deviance not allowed with margins

anscombe not allowed with margins

reffects not allowed with margins

scores not allowed with margins

Options conditional(ebmeans) and conditional(ebmodes) are not allowed with margins.
Option marginal is assumed where applicable if conditional(fixedonly) is not specified.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples
Various predictions, statistics, and diagnostic measures are available after fitting a mixed-effects

complementary log–log model with mecloglog. Here we show a short example of predicted proba-
bilities and predicted random effects; refer to [ME] meglm postestimation for additional examples.

Example 1: Obtaining predicted probabilities and random effects

In example 2 of [ME] mecloglog, we analyzed the cognitive ability (dtlm) of patients with
schizophrenia compared with their relatives and control subjects, by using a three-level complementary
log–log model with random effects at the family and subject levels. Cognitive ability was measured
as the successful completion of the “Tower of London”, a computerized task, measured at three levels
of difficulty.
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. use https://www.stata-press.com/data/r18/towerlondon
(Tower of London data)

. mecloglog dtlm difficulty i.group || family: || subject:

Fitting fixed-effects model:

(output omitted )
Mixed-effects cloglog regression Number of obs = 677

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

family 118 2 5.7 27
subject 226 2 3.0 3

Integration method: mvaghermite Integration pts. = 7

Wald chi2(3) = 83.32
Log likelihood = -305.26516 Prob > chi2 = 0.0000

dtlm Coefficient Std. err. z P>|z| [95% conf. interval]

difficulty -1.342844 .1501508 -8.94 0.000 -1.637135 -1.048554

group
2 -.1331007 .269389 -0.49 0.621 -.6610935 .3948922
3 -.7714314 .3097099 -2.49 0.013 -1.378452 -.164411

_cons -1.6718 .2290325 -7.30 0.000 -2.120695 -1.222905

family
var(_cons) .2353453 .2924064 .0206122 2.687117

family>
subject

var(_cons) .7737687 .4260653 .2629714 2.276742

LR test vs. cloglog model: chi2(2) = 16.61 Prob > chi2 = 0.0002

Note: LR test is conservative and provided only for reference.

We obtain predicted probabilities based on the contribution of both fixed effects and random effects
by typing

. predict pr
(option mu assumed)
(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)

As the note says, the predicted values are based on the posterior means of random effects. You can
use the modes option to obtain predictions based on the posterior modes of random effects.

We obtain predictions of the posterior means themselves by typing

. predict re*, reffects
(calculating posterior means of random effects)
(using 7 quadrature points)

Because we have one random effect at the family level and another random effect at the subject
level, Stata saved the predicted posterior means in the variables re1 and re2, respectively. If you are
not sure which prediction corresponds to which level, you can use the describe command to show
the variable labels.
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Here we list the data for family 16:

. list family subject dtlm pr re1 re2 if family==16, sepby(subject)

family subject dtlm pr re1 re2

208. 16 5 1 .486453 .4184933 .2760492
209. 16 5 0 .1597047 .4184933 .2760492
210. 16 5 0 .0444156 .4184933 .2760492

211. 16 34 1 .9659582 .4184933 1.261488
212. 16 34 1 .5862808 .4184933 1.261488
213. 16 34 1 .205816 .4184933 1.261488

214. 16 35 0 .5571261 .4184933 -.1616545
215. 16 35 1 .1915688 .4184933 -.1616545
216. 16 35 0 .0540124 .4184933 -.1616545

We can see that the predicted random effects (re1) at the family level are the same for all members
of the family. Similarly, the predicted random effects (re2) at the individual level are constant within
each individual.

Methods and formulas
Methods and formulas for predicting random effects and other statistics are given in Methods and

formulas of [ME] meglm postestimation.

Also see
[ME] mecloglog — Multilevel mixed-effects complementary log–log regression

[ME] meglm postestimation — Postestimation tools for meglm

[U] 20 Estimation and postestimation commands
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meglm — Multilevel mixed-effects generalized linear models

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

meglm fits multilevel mixed-effects generalized linear models. meglm allows a variety of distributions
for the response conditional on normally distributed random effects.

Quick start
Without weights

Random-effects probit regression of y on x1 with random intercepts by lev2

meglm y x1 || lev2:, family(binomial) link(probit)

Same as above, but fit a logit model and report odds ratios
meglm y x1 || lev2:, family(binomial) or

Two-level gamma model of y with fixed and random coefficients on x1

meglm y x1 || lev2: x1, family(gamma)

Nested three-level random-intercept Poisson model reporting incidence-rate ratios
meglm y x1 || lev3: || lev2:, family(poisson) irr

Two-level linear regression of y on x1 and x2 with random intercepts by lev2, random coefficients
on x2, and robust standard errors

meglm y x1 x2 || lev2: x2, vce(robust)

With weights

Two-level linear regression of y on x with random intercepts by psu for two-stage sampling with
PSU-level and observation-level sampling weights wvar2 and wvar1, respectively

meglm y x [pweight=wvar1] || psu:, pweight(wvar2)

Add secondary sampling stage with units identified by ssu having weights wvar2 and PSU-level
weights wvar3 for a three-level random-intercept model

meglm y x [pw=wvar1] || psu:, pw(wvar3) || ssu:, pw(wvar2)

Same as above, but svyset data first
svyset psu, weight(wvar3) || ssu, weight(wvar2) || _n, weight(wvar1)
svy: meglm y x || psu: || ssu:
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Menu
Statistics > Multilevel mixed-effects models > Generalized linear models (GLM)

Syntax
meglm depvar fe equation

[
|| re equation

] [
|| re equation . . .

] [
, options

]
where the syntax of fe equation is[

indepvars
] [

if
] [

in
] [

weight
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all
representing one group comprising all observations.

fe options Description

Model

noconstant suppress the constant term from the fixed-effects equation
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1
asis retain perfect predictor variables

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
fweight(varname) frequency weights at higher levels
iweight(varname) importance weights at higher levels
pweight(varname) sampling weights at higher levels
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options Description

Model

family(family) distribution of depvar; default is family(gaussian)

link(link) link function; default varies per family
constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)

eform report exponentiated fixed-effects coefficients
irr report fixed-effects coefficients as incidence-rate ratios
or report fixed-effects coefficients as odds ratios
nocnsreport do not display constraints
notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intmethod(intmethod) integration method
intpoints(#) set the number of integration (quadrature) points for all levels;

default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values
startgrid

[
(gridspec)

]
perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead
dnumerical use numerical derivative techniques
collinear keep collinear variables
coeflegend display legend instead of statistics
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vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated
fixed(matname) user-selected variances and covariances constrained to specified

values; the remaining variances and covariances unrestricted
pattern(matname) user-selected variances and covariances constrained to be equal;

the remaining variances and covariances unrestricted

family Description

gaussian Gaussian (normal); the default
bernoulli Bernoulli
binomial

[
# | varname

]
binomial; default number of binomial trials is 1

gamma gamma
nbinomial

[
mean | constant

]
negative binomial; default dispersion is mean

ordinal ordinal
poisson Poisson

link Description

identity identity
log log
logit logit
probit probit
cloglog complementary log–log

intmethod Description

mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature
pcaghermite Pinheiro–Chao mode-curvature adaptive Gauss–Hermite

quadrature
ghermite nonadaptive Gauss–Hermite quadrature
laplace Laplacian approximation; the default for crossed random-effects

models
pclaplace Pinheiro–Chao Laplacian approximation
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indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see

[BAYES] bayes: meglm.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified.

Weights are not supported under the Laplacian approximation or for crossed models.
startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog

box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any of or all the random-effects equations.

exposure(varnamee) specifies a variable that reflects the amount of exposure over which the depvar
events were observed for each observation; ln(varnamee) is included in the fixed-effects portion
of the model with the coefficient constrained to be 1.

offset(varnameo) specifies that varnameo be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

asis forces retention of perfect predictor variables and their associated, perfectly predicted observations
and may produce instabilities in maximization; see [R] probit.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent) unless a crossed random-effects model is fit, in which case the
default is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2
unique parameters.

covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures
provide a convenient way to impose constraints on variances and covariances of random effects.
Each specification requires a matname that defines the restrictions placed on variances and
covariances. Only elements in the lower triangle of matname are used, and row and column names
of matname are ignored. A missing value in matname means that a given element is unrestricted.
In a fixed(matname) covariance structure, (co)variance (i, j) is constrained to equal the
value specified in the i, jth entry of matname. In a pattern(matname) covariance structure,
(co)variances (i, j) and (k, l) are constrained to be equal if matname[i, j] = matname[k, l].
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fweight(varname) specifies frequency weights at higher levels in a multilevel model, whereas
frequency weights at the first level (the observation level) are specified in the usual manner, for
example, [fw=fwtvar1]. varname can be any valid Stata variable name, and you can specify
fweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wt1] || school: . . . , fweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2
would hold the second-level (the school-level) frequency weights.

iweight(varname) specifies importance weights at higher levels in a multilevel model, whereas
importance weights at the first level (the observation level) are specified in the usual manner,
for example, [iw=iwtvar1]. varname can be any valid Stata variable name, and you can specify
iweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: . . . , iweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) importance weights, and wt2
would hold the second-level (the school-level) importance weights.

pweight(varname) specifies sampling weights at higher levels in a multilevel model, whereas
sampling weights at the first level (the observation level) are specified in the usual manner, for
example, [pw=pwtvar1]. varname can be any valid Stata variable name, and you can specify
pweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wt1] || school: . . . , pweight(wt2) . . .

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would
hold the second-level (the school-level) sampling weights.

family(family) specifies the distribution of depvar; family(gaussian) is the default.

link(link) specifies the link function; the default is the canonical link for the family() specified
except for the gamma and negative binomial families.

If you specify both family() and link(), not all combinations make sense. You may choose
from the following combinations:

identity log logit probit cloglog

Gaussian D x
Bernoulli D x x
binomial D x x
gamma D
negative binomial D
ordinal D x x
Poisson D
D denotes the default.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is
specified, robust variances are clustered at the highest level in the multilevel model.
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� � �
Reporting �

level(#); see [R] Estimation options.

eform reports exponentiated fixed-effects coefficients and corresponding standard errors and confidence
intervals. This option may be specified either at estimation or upon replay.

irr reports estimated fixed-effects coefficients transformed to incidence-rate ratios, that is, exp(β)
rather than β. Standard errors and confidence intervals are similarly transformed. This option
affects how results are displayed, not how they are estimated or stored. irr may be specified
either at estimation or upon replay. This option is allowed for count models only.

or reports estimated fixed-effects coefficients transformed to odds ratios, that is, exp(β) rather than β.
Standard errors and confidence intervals are similarly transformed. This option affects how results
are displayed, not how they are estimated. or may be specified at estimation or upon replay. This
option is allowed for logistic models only.

nocnsreport; see [R] Estimation options.

notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model.
mvaghermite performs mean–variance adaptive Gauss–Hermite quadrature; mcaghermite and
pcaghermite perform mode-curvature adaptive Gauss–Hermite quadrature; ghermite performs
nonadaptive Gauss–Hermite quadrature; and laplace and pclaplace perform the Laplacian
approximation, equivalent to mode-curvature adaptive Gaussian quadrature with one integration
point. Techniques pcaghermite and pclaplace are available only with family(binomial) and
family(bernoulli) combined with link(logit) and with family(poisson); these techniques
obtain the random-effects mode and curvature using the efficient hierarchical decomposition
algorithm described in Pinheiro and Chao (2006). For hierarchical models, this algorithm takes
advantage of the design structure to minimize memory use and utilizes a series of orthogonal
triangulations to compute the factored random-effects Hessian indirectly, avoiding the sparse full
Hessian. Techniques mcaghermite and laplace use Cholesky factorization on the full Hessian.
For four- and higher-level hierarchical designs, there can be dramatic computation-time differences.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in
which case the default integration method is laplace. The Laplacian approximation has been
known to produce biased parameter estimates; however, the bias tends to be more prominent in
the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be
prohibitively intensive even for a small number of levels. For this reason, the integration method
defaults to the Laplacian approximation. You may override this behavior by specifying a different
integration method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option
is not allowed with intmethod(laplace).
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The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases as a function of the number of quadrature points raised to a power
equaling the dimension of the random-effects specification. In crossed random-effects models and
in models with many levels or many random coefficients, this increase can be substantial.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. Those that require
special mention for meglm are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

The following options are available with meglm but are not shown in the dialog box:

startvalues(svmethod) specifies how starting values are to be computed. Starting values specified
in from() override the computed starting values.

startvalues(zero) specifies that starting values be set to 0.

startvalues(constantonly) builds on startvalues(zero) by fitting a constant-only model
to obtain estimates of the intercept and auxiliary parameters, and it substitutes 1 for the variances
of random effects.

startvalues(fixedonly
[
, iterate(#)

]
) builds on startvalues(constantonly) by fitting

a full fixed-effects model to obtain estimates of coefficients along with intercept and auxiliary
parameters, and it continues to use 1 for the variances of random effects. This is the default
behavior. iterate(#) limits the number of iterations for fitting the fixed-effects model.

startvalues(iv
[
, iterate(#)

]
) builds on startvalues(fixedonly) by using instrumental-

variable methods with generalized residuals to obtain variances of random effects. iterate(#)
limits the number of iterations for fitting the instrumental-variable model.

startvalues(iterate(#)) limits the number of iterations for fitting the default model (fixed
effects).

startgrid
[
(gridspec)

]
performs a grid search on variance components of random effects to improve

starting values. No grid search is performed by default unless the starting values are found to be
not feasible, in which case meglm runs startgrid() to perform a “minimal” search involving
q3 likelihood evaluations, where q is the number of random effects. Sometimes this resolves the
problem. Usually, however, there is no problem and startgrid() is not run by default. There
can be benefits from running startgrid() to get better starting values even when starting values
are feasible.

startgrid() is a brute-force approach that tries various values for variances and covariances
and chooses the ones that work best. You may already be using a default form of startgrid()
without knowing it. If you see meglm displaying Grid node 1, Grid node 2, . . . following Grid
node 0 in the iteration log, that is meglm doing a default search because the original starting values
were not feasible. The default form tries 0.1, 1, and 10 for all variances of all random effects.

startgrid(numlist) specifies values to try for variances of random effects.

startgrid(covspec) specifies the particular variances and covariances in which grid searches
are to be performed. covspec is name[level] for variances and name1[level]*name2[level] for
covariances. For example, the variance of the random intercept at level id is specified as cons[id],
and the variance of the random slope on variable week at the same level is specified as week[id].
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The residual variance for the linear mixed-effects model is specified as e.depvar, where depvar
is the name of the dependent variable. The covariance between the random slope and the random
intercept above is specified as cons[id]*week[id].

startgrid(numlist covspec) combines the two syntaxes. You may also specify startgrid()
multiple times so that you can search the different ranges for different variances and covariances.

noestimate specifies that the model is not to be fit. Instead, starting values are to be shown (as
modified by the above options if modifications were made), and they are to be shown using the
coeflegend style of output.

dnumerical specifies that during optimization, the gradient vector and Hessian matrix be computed
using numerical techniques instead of analytical formulas. By default, analytical formulas for com-
puting the gradient and Hessian are used for all integration methods except intmethod(laplace).

collinear, coeflegend; see [R] Estimation options.

Remarks and examples

For a general introduction to me commands, see [ME] me. For additional examples of mixed-effects
models for binary and binomial outcomes, see [ME] melogit, [ME] meprobit, and [ME] mecloglog.
For additional examples of mixed-effects models for ordinal responses, see [ME] meologit and
[ME] meoprobit. For additional examples of mixed-effects models for multinomial outcomes, see
[SEM] Example 41g. For additional examples of mixed-effects models for count outcomes, see
[ME] mepoisson and [ME] menbreg. For additional examples of mixed-effects parametric survival
models, see [ME] mestreg. For additional examples of mixed-effects models for censored outcomes,
see [ME] metobit and [ME] meintreg.

Remarks are presented under the following headings:

Introduction
Two-level models for continuous responses
Two-level models for nonlinear responses
Three-level models for nonlinear responses
Crossed-effects models
Obtaining better starting values
Survey data
Video example

Introduction

meglm fits multilevel mixed-effects generalized linear models of the form

g
{
E(y|X,u)

}
= Xβ+ Zu, y ∼ F (1)

where y is the n×1 vector of responses from the distributional family F , X is an n×p design/covariate
matrix for the fixed effects β, and Z is the n× q design/covariate matrix for the random effects u.
The Xβ + Zu part is called the linear predictor, and it is often denoted as η. The linear predictor
also contains the offset or exposure variable when offset() or exposure() is specified. g(·) is
called the link function and is assumed to be invertible such that

E(y|X,u) = g−1(Xβ+ Zu) = H(η) = µ
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For notational convenience here and throughout this manual entry, we suppress the dependence of y
on X. Substituting various definitions for g(·) and F results in a wide array of models. For instance,
if y is distributed as Gaussian (normal) and g(·) is the identity function, we have

E(y) = Xβ+ Zu, y ∼ normal

or mixed-effects linear regression. If g(·) is the logit function and y is distributed as Bernoulli, we
have

logit
{
E(y)

}
= Xβ+ Zu, y ∼ Bernoulli

or mixed-effects logistic regression. If g(·) is the natural log function and y is distributed as Poisson,
we have

ln
{
E(y)

}
= Xβ+ Zu, y ∼ Poisson

or mixed-effects Poisson regression. In fact, some combinations of families and links are so common
that we implemented them as separate commands in terms of meglm.

Command meglm equivalent

melogit family(bernoulli) link(logit)

meprobit family(bernoulli) link(probit)

mecloglog family(bernoulli) link(cloglog)

meologit family(ordinal) link(logit)

meoprobit family(ordinal) link(probit)

mepoisson family(poisson) link(log)

menbreg family(nbinomial) link(log)

When no family–link combination is specified, meglm defaults to a Gaussian family with an
identity link. Thus meglm can be used to fit linear mixed-effects models; however, for those models
we recommend using the more specialized mixed, which, in addition to meglm capabilities, allows
for modeling of the structure of the residual errors; see [ME] mixed for details.

The random effects u are assumed to be distributed as multivariate normal with mean 0 and q× q
variance matrix Σ. The random effects are not directly estimated (although they may be predicted),
but instead are characterized by the variance components, the elements of G = Var(u).

The general forms of the design matrices X and Z allow estimation for a broad class of generalized
mixed-effects models: blocked designs, split-plot designs, growth curves, multilevel or hierarchical
designs, etc. They also allow a flexible method of modeling within-cluster correlation. Subjects within
the same cluster can be correlated as a result of a shared random intercept, or through a shared random
slope on a covariate, or both. The general specification of variance components also provides additional
flexibility—the random intercept and random slope could themselves be modeled as independent, or
correlated, or independent with equal variances, and so forth.

Comprehensive treatments of mixed models are provided by, for example, Searle, Casella, and
McCulloch (1992); Verbeke and Molenberghs (2000); Raudenbush and Bryk (2002); Hedeker and
Gibbons (2006); McCulloch, Searle, and Neuhaus (2008); and Rabe-Hesketh and Skrondal (2022).

The key to fitting mixed models lies in estimating the variance components, and for that there
exist many methods; see, for example, Breslow and Clayton (1993); Lin and Breslow (1996); Bates
and Pinheiro (1998); and Ng et al. (2006). meglm uses maximum likelihood (ML) to estimate model
parameters. The ML estimates are based on the usual application of likelihood theory, given the
distributional assumptions of the model.
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Returning to (1): in clustered-data situations, it is convenient not to consider all n observations at
once but instead to organize the mixed model as a series of M independent groups (or clusters)

g{E(yj)} = Xjβ+ Zjuj (2)

for j = 1, . . . ,M , with cluster j consisting of nj observations. The response yj comprises the rows
of y corresponding with the jth cluster, with Xj defined analogously. The random effects uj can
now be thought of as M realizations of a q × 1 vector that is normally distributed with mean 0
and q × q variance matrix Σ. The matrix Zi is the nj × q design matrix for the jth cluster random
effects. Relating this to (1), note that

Z =


Z1 0 · · · 0
0 Z2 · · · 0
...

...
. . .

...
0 0 0 ZM

 ; u =

 u1
...

uM

 ; G = IM ⊗ Σ

where IM is the M ×M identity matrix and ⊗ is the Kronecker product.

The mixed-model formula (2) is from Laird and Ware (1982) and offers two key advantages. First,
it makes specifications of random-effects terms easier. If the clusters are schools, you can simply
specify a random effect at the school level, as opposed to thinking of what a school-level random
effect would mean when all the data are considered as a whole (if it helps, think Kronecker products).
Second, representing a mixed-model with (2) generalizes easily to more than one set of random
effects. For example, if classes are nested within schools, then (2) can be generalized to allow random
effects at both the school and the class-within-school levels.

Two-level models for continuous responses

We begin with a simple application of (2).

Example 1: Two-level linear mixed model

Consider a longitudinal dataset, used by both Ruppert, Wand, and Carroll (2003) and Diggle
et al. (2002), consisting of weight measurements of 48 pigs on 9 successive weeks. Pigs are
identified by the variable id. Each pig experiences a linear trend in growth but overall weight
measurements vary from pig to pig. Because we are not really interested in these particular 48 pigs
per se, we instead treat them as a random sample from a larger population and model the between-pig
variability as a random effect, or in the terminology of (2), as a random-intercept term at the pig
level. We thus wish to fit the model

weightij = β0 + β1weekij + uj + εij

for i = 1, . . . , 9 weeks and j = 1, . . . , 48 pigs. The fixed portion of the model, β0 + β1weekij ,
simply states that we want one overall regression line representing the population average. The random
effect uj serves to shift this regression line up or down according to each pig. Because the random
effects occur at the pig level (id), we fit the model by typing
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. use https://www.stata-press.com/data/r18/pig
(Longitudinal analysis of pig weights)

. meglm weight week || id:

Fitting fixed-effects model:

Iteration 0: Log likelihood = -1251.2506
Iteration 1: Log likelihood = -1251.2506

Refining starting values:

Grid node 0: Log likelihood = -1150.6253

Fitting full model:

Iteration 0: Log likelihood = -1150.6253 (not concave)
Iteration 1: Log likelihood = -1036.1793
Iteration 2: Log likelihood = -1017.912
Iteration 3: Log likelihood = -1014.9537
Iteration 4: Log likelihood = -1014.9268
Iteration 5: Log likelihood = -1014.9268

Mixed-effects GLM Number of obs = 432
Family: Gaussian
Link: Identity
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Integration method: mvaghermite Integration pts. = 7

Wald chi2(1) = 25337.48
Log likelihood = -1014.9268 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0390124 159.18 0.000 6.133433 6.286359
_cons 19.35561 .5974047 32.40 0.000 18.18472 20.52651

id
var(_cons) 14.81745 3.124202 9.801687 22.39989

var(e.weight) 4.383264 .3163349 3.805112 5.049261

LR test vs. linear model: chibar2(01) = 472.65 Prob >= chibar2 = 0.0000

At this point, a guided tour of the model specification and output is in order:

1. By typing weight week, we specified the response, weight, and the fixed portion of the model
in the same way that we would if we were using regress or any other estimation command. Our
fixed effects are a coefficient on week and a constant term.

2. When we added || id:, we specified random effects at the level identified by the group variable
id, that is, the pig level (level two). Because we wanted only a random intercept, that is all we
had to type.

3. The estimation log displays a set of iterations from optimizing the log likelihood. By default, these
are Newton–Raphson iterations, but other methods are available by specifying the appropriate
maximize options; see [R] Maximize.

4. The header describes the model, presents a summary of the random-effects group, reports the
integration method used to fit the model, and reports a Wald test against the null hypothesis that all
the coefficients on the independent variables in the mean equation are 0. Here the null hypothesis
is rejected at all conventional levels. You can suppress the group information with the nogroup
or the noheader option, which will suppress the rest of the header as well.
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5. The estimation table reports the fixed effects, followed by the random effects, followed by the
overall error term.

a. For the fixed-effects part, we estimate β0 = 19.36 and β1 = 6.21.

b. The random-effects equation is labeled id, meaning that these are random effects at the id
(pig) level. We have only one random effect at this level, the random intercept. The variance
of the level-two errors, σ2

u, is estimated as 14.82 with standard error 3.12.

c. The row labeled var(e.weight) displays the estimated variance of the overall error term:
σ̂2
ε = 4.38. This is the variance of the level-one errors, that is, the residuals.

6. Finally, a likelihood-ratio test comparing the model with ordinary linear regression is provided and
is highly significant for these data. See Distribution theory for likelihood-ratio test in [ME] me for
a discussion of likelihood-ratio testing of variance components.

See Remarks and examples in [ME] mixed for further analysis of these data including a random-slope
model and a model with an unstructured covariance structure.

Two-level models for nonlinear responses

By specifying different family–link combinations, we can fit a variety of mixed-effects models for
nonlinear responses. Here we replicate one of the models from example 2 of melogit.

Example 2: Two-level logistic regression model

Ng et al. (2006) analyzed a subsample of data from the 1989 Bangladesh fertility survey (Huq and
Cleland 1990), which polled 1,934 Bangladeshi women on their use of contraception. The women
sampled were from 60 districts, identified by the variable district. Each district contained either
urban or rural areas (variable urban) or both. The variable c use is the binary response, with a value
of 1 indicating contraceptive use. Other covariates include mean-centered age and a factor variable
for the number of children.

We fit a standard logistic regression model, amended to have a random intercept for each district
and a random slope on the urban factor variable. We fit the model by typing

. use https://www.stata-press.com/data/r18/bangladesh
(Bangladesh Fertility Survey, 1989)

. meglm c_use i.urban age i.children
> || district: i.urban, family(bernoulli) link(logit) nofvlabel

Fitting fixed-effects model:

Iteration 0: Log likelihood = -1229.5485
Iteration 1: Log likelihood = -1228.5268
Iteration 2: Log likelihood = -1228.5263
Iteration 3: Log likelihood = -1228.5263

Refining starting values:

Grid node 0: Log likelihood = -1215.8592

Fitting full model:

Iteration 0: Log likelihood = -1215.8592 (not concave)
Iteration 1: Log likelihood = -1209.6285
Iteration 2: Log likelihood = -1205.7903
Iteration 3: Log likelihood = -1205.1337
Iteration 4: Log likelihood = -1205.0034
Iteration 5: Log likelihood = -1205.0025
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Iteration 6: Log likelihood = -1205.0025

Mixed-effects GLM Number of obs = 1,934
Family: Bernoulli
Link: Logit
Group variable: district Number of groups = 60

Obs per group:
min = 2
avg = 32.2
max = 118

Integration method: mvaghermite Integration pts. = 7

Wald chi2(5) = 97.30
Log likelihood = -1205.0025 Prob > chi2 = 0.0000

c_use Coefficient Std. err. z P>|z| [95% conf. interval]

1.urban .7143927 .1513595 4.72 0.000 .4177335 1.011052
age -.0262261 .0079656 -3.29 0.001 -.0418384 -.0106138

children
1 1.128973 .1599347 7.06 0.000 .815507 1.442439
2 1.363165 .1761804 7.74 0.000 1.017857 1.708472
3 1.352238 .1815608 7.45 0.000 .9963853 1.708091

_cons -1.698137 .1505019 -11.28 0.000 -1.993115 -1.403159

district
var(1.urban) .2741013 .2131525 .059701 1.258463

var(_cons) .2390807 .0857012 .1184191 .4826891

LR test vs. logistic model: chi2(2) = 47.05 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Because we did not specify a covariance structure for the random effects (u1j , u0j)
′, meglm used the

default independent structure:

Σ = Var
[
u1j
u0j

]
=

[
σ2
u1 0
0 σ2

u0

]
with σ̂2

u1 = 0.27 and σ̂2
u0 = 0.24. You can request a different covariance structure by specifying the

covariance() option. See examples 1–3 in melogit for further analysis of these data, and see
[ME] me and [ME] mixed for further examples of covariance structures.

Three-level models for nonlinear responses

Two-level models extend naturally to models with three or more levels with nested random effects.
Here we replicate the model from example 2 of [ME] meologit.

Example 3: Three-level ordered logistic regression model

We use the data from the Television, School, and Family Smoking Prevention and Cessation
Project (Flay et al. 1988; Rabe-Hesketh and Skrondal 2022, chap. 11), where schools were randomly
assigned into one of four groups defined by two treatment variables. Students within each school are
nested in classes, and classes are nested in schools. The dependent variable is the tobacco and health
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knowledge (THK) scale score collapsed into four ordered categories. We regress the outcome on the
treatment variables, social resistance classroom curriculum and TV intervention, and their interaction
and control for the pretreatment score.

. use https://www.stata-press.com/data/r18/tvsfpors
(Television, School, and Family Project)

. meglm thk prethk cc##tv || school: || class:, family(ordinal) link(logit)

Fitting fixed-effects model:

Iteration 0: Log likelihood = -2212.775
Iteration 1: Log likelihood = -2125.509
Iteration 2: Log likelihood = -2125.1034
Iteration 3: Log likelihood = -2125.1032

Refining starting values:

Grid node 0: Log likelihood = -2152.1514

Fitting full model:

Iteration 0: Log likelihood = -2152.1514 (not concave)
Iteration 1: Log likelihood = -2125.9213 (not concave)
Iteration 2: Log likelihood = -2120.1861
Iteration 3: Log likelihood = -2115.6177
Iteration 4: Log likelihood = -2114.5896
Iteration 5: Log likelihood = -2114.5881
Iteration 6: Log likelihood = -2114.5881

Mixed-effects GLM Number of obs = 1,600
Family: Ordinal
Link: Logit

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

school 28 18 57.1 137
class 135 1 11.9 28

Integration method: mvaghermite Integration pts. = 7

Wald chi2(4) = 124.39
Log likelihood = -2114.5881 Prob > chi2 = 0.0000

thk Coefficient Std. err. z P>|z| [95% conf. interval]

prethk .4085273 .039616 10.31 0.000 .3308814 .4861731
1.cc .8844369 .2099124 4.21 0.000 .4730161 1.295858
1.tv .236448 .2049065 1.15 0.249 -.1651614 .6380575

cc#tv
1 1 -.3717699 .2958887 -1.26 0.209 -.951701 .2081612

/cut1 -.0959459 .1688988 -.4269815 .2350896
/cut2 1.177478 .1704946 .8433151 1.511642
/cut3 2.383672 .1786736 2.033478 2.733865

school
var(_cons) .0448735 .0425387 .0069997 .2876749

school>class
var(_cons) .1482157 .0637521 .063792 .3443674

LR test vs. ologit model: chi2(2) = 21.03 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
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Notes:

1. Our model now has two random-effects equations, separated by ||. The first is a random intercept
(constant only) at the school level (level three), and the second is a random intercept at the class
level (level two). The order in which these are specified (from left to right) is significant—meglm
assumes that class is nested within school.

2. The information on groups is now displayed as a table, with one row for each grouping. You can
suppress this table with the nogroup or the noheader option, which will suppress the rest of the
header, as well.

3. The variance-component estimates are now organized and labeled according to level. The variance
component for class is labeled school>class to emphasize that classes are nested within schools.

We refer you to example 2 of [ME] meologit and example 1 of [ME] meologit postestimation for
a substantive interpretation of the results.

The above extends to models with more than two levels of nesting by adding more random-effects
equations, each separated by ||. The order of nesting goes from left to right as the groups go from
biggest (highest level) to smallest (lowest level).

Crossed-effects models
Not all mixed models contain nested levels of random effects. In this section, we consider a

crossed-effects model, that is, a mixed-effects model in which the levels of random effects are not
nested; see [ME] me for more information on crossed-effects models.

Example 4: Crossed-effects logistic regression model

We use the salamander cross-breeding data from Karim and Zeger (1992) as analyzed in Rabe-
Hesketh and Skrondal (2022, sec. 16.8). The salamanders come from two populations—whiteside
and roughbutt—and are labeled whiteside males (wsm), whiteside females (wsf), roughbutt males
(rbm), and roughbutt females (rbf). Male identifiers are recorded in the variable male, and female
identifiers are recorded in the variable female. The salamanders were divided into groups such that
each group contained 60 male–female pairs, with each salamander having three potential partners
from the same population and three potential partners from the other population. The outcome (y) is
coded 1 if there was a successful mating and is coded 0 otherwise; see the references for a detailed
description of the mating experiment.

We fit a crossed-effects logistic regression for successful mating, where each male has the same
value of his random intercept across all females, and each female has the same value of her random
intercept across all males.

To fit a crossed-effects model in Stata, we use the all: R.varname syntax. We treat the entire
dataset as one super cluster, denoted all, and we nest each gender within the super cluster by using
the R.varname notation. R.male requests a random intercept for each level of male and imposes an
identity covariance structure on the random effects; that is, the variances of the random intercepts
are restricted to be equal for all male salamanders. R.female accomplishes the same for the female
salamanders. In Stata, we type
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. use https://www.stata-press.com/data/r18/salamander

. meglm y wsm##wsf || _all: R.male || _all: R.female, family(bernoulli)
> link(logit) or
note: crossed random-effects model specified; option intmethod(laplace)

implied.

Fitting fixed-effects model:

Iteration 0: Log likelihood = -223.13998
Iteration 1: Log likelihood = -222.78752
Iteration 2: Log likelihood = -222.78735
Iteration 3: Log likelihood = -222.78735

Refining starting values:

Grid node 0: Log likelihood = -211.58149

Fitting full model:

Iteration 0: Log likelihood = -211.58149
Iteration 1: Log likelihood = -209.33737 (not concave)
Iteration 2: Log likelihood = -209.30822
Iteration 3: Log likelihood = -209.27666
Iteration 4: Log likelihood = -209.27659
Iteration 5: Log likelihood = -209.27659

Mixed-effects GLM Number of obs = 360
Family: Bernoulli
Link: Logit
Group variable: _all Number of groups = 1

Obs per group:
min = 360
avg = 360.0
max = 360

Integration method: laplace

Wald chi2(3) = 42.55
Log likelihood = -209.27659 Prob > chi2 = 0.0000

y Odds ratio Std. err. z P>|z| [95% conf. interval]

1.wsm .4956232 .221259 -1.57 0.116 .2066109 1.188913
1.wsf .0547959 .0287997 -5.53 0.000 .0195602 .1535053

wsm#wsf
1 1 36.17442 21.75035 5.97 0.000 11.13283 117.5432

_cons 2.74053 1.050653 2.63 0.009 1.29272 5.809847

_all>male
var(_cons) 1.040939 .4983886 .4072683 2.660541

_all>female
var(_cons) 1.174381 .5404486 .476527 2.894215

Note: Estimates are transformed only in the first equation to odds ratios.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 27.02 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Because we specified a crossed-effects model, meglm defaulted to the method of Laplacian approxi-
mation to calculate the likelihood; see Computation time and the Laplacian approximation in [ME] me
for a discussion of computational complexity of mixed-effects models, and see Methods and formulas
below for the formulas used by the Laplacian approximation method.

The estimates of the random intercepts suggest that the heterogeneity among the female salamanders,
1.17, is larger than the heterogeneity among the male salamanders, 1.04.
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Setting both random intercepts to 0, the odds of successful mating for a roughbutt male–female
pair are given by the estimate of cons, 2.74. Rabe-Hesketh and Skrondal (2022, sec. 16.8) show
how to calculate the odds ratios for the other three salamander pairings.

The R.varname notation is equivalent to giving a list of overparameterized (none dropped) indicator
variables for use in a random-effects specification. When you specify R.varname, meglm handles the
calculations internally rather than creating the indicators in the data. Because the set of indicators is
overparameterized, R.varname implies noconstant.

Technical note

We fit the salamander model by using

. meglm y wsm##wsf || _all: R.male || _all: R.female . . .

as a direct way to demonstrate the R. notation. However, we can technically treat female salamanders
as nested within the all group, yielding the equivalent way to fit the model:

. meglm y wsm##wsf || _all: R.male || female: . . .

We leave it to you to verify that both produce identical results. As we note in example 8 of [ME] me,
the latter specification, organized at the cluster (female) level with random-effects dimension one (a
random intercept) is, in general, much more computationally efficient.

Obtaining better starting values

Given the flexibility of mixed-effects models, you will find that some models “fail to converge”
when used with your data; see Diagnosing convergence problems in [ME] me for details. What we
say below applies regardless of how the convergence problem revealed itself. You might have seen
the error message “initial values not feasible” or some other error message, or you might have an
infinite iteration log.

meglm provides two options to help you obtain better starting values: startvalues() and
startgrid().

startvalues(svmethod) allows you to specify one of four starting-value calculation methods:
zero, constantonly, fixedonly, or iv. By default, meglm uses startvalues(fixedonly).
Evidently, that did not work for you. Try the other methods, starting with startvalues(iv):

. meglm ..., ... startvalues(iv)

If that does not solve the problem, proceed through the others.

By the way, if you have starting values for some parameters but not others—perhaps you fit a
simplified model to get them—you can combine the options startvalues() and from():

. meglm ..., ... // simplified model

. matrix b = e(b)

. meglm ..., ... from(b) startvalues(iv) // full model

The other special option meglm provides is startgrid(), which can be used with or without
startvalues(). startgrid() is a brute-force approach that tries various values for variances and
covariances and chooses the ones that work best.
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1. You may already be using a default form of startgrid() without knowing it. If you see
meglm displaying Grid node 1, Grid node 2, . . . following Grid node 0 in the iteration log,
that is meglm doing a default search because the original starting values were not feasible.

The default form tries 0.1, 1, and 10 for all variances of all random effects and, if applicable,
for the residual variance.

2. startgrid(numlist) specifies values to try for variances of random effects.

3. startgrid(covspec) specifies the particular variances and covariances in which grid searches
are to be performed. Variances and covariances are specified in the usual way.
startgrid( cons[id] x[id] cons[id]*x[id]) specifies that 0.1, 1, and 10 be tried
for each member of the list.

4. startgrid(numlist covspec) combines the two syntaxes. You can specify startgrid()
multiple times so that you can search the different ranges for different variances and
covariances.

Our advice to you is the following:

1. If you receive an iteration log and it does not contain Grid node 1, Grid node 2, . . . , then
specify startgrid(.1 1 10). Do that whether the iteration log was infinite or ended with
some other error. In this case, we know that meglm did not run startgrid() on its own
because it did not report Grid node 1, Grid node 2, etc. Your problem is poor starting values,
not infeasible ones.

A synonym for startgrid(.1 1 10) is just startgrid without parentheses.

Be careful, however, if you have many random effects. Specifying startgrid() could run
a long time because it runs all possible combinations. If you have 10 random effects, that
means 103 = 1,000 likelihood evaluations.

If you have many random effects, rerun your difficult meglm command including option
iterate(#) and look at the results. Identify the problematic variances and search across
them only. Do not just look for variances going to 0. Variances getting really big can be
a problem, too, and even reasonable values can be a problem. Use your knowledge and
intuition about the model.

Perhaps you will try to fit your model by specifying startgrid(.1 1 10 cons[id] x[id]
cons[id]*x[id]).

Values 0.1, 1, and 10 are the default. Equivalent to specifying
startgrid(.1 1 10 cons[id] x[id] cons[id]*x[id]) is
startgrid( cons[id] x[id] cons[id]*x[id]).

Look at covariances as well as variances. If you expect a covariance to be negative but it is
positive, then try negative starting values for the covariance by specifying startgrid(-.1
-1 -10 cons[id]*x[id]).

Remember that you can specify startgrid() multiple times. Thus you might specify both
startgrid( cons[id] x[id]) and startgrid(-.1 -1 -10 cons[id]*x[id]).
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2. If you receive the message “initial values not feasible”, you know that meglm already tried
the default startgrid().

The default startgrid() only tried the values 0.1, 1, and 10, and only tried them on the
variances of random effects. You may need to try different values or try the same values on
covariances or variances of errors of observed endogenous variables.

We suggest you first rerun the model causing difficulty and include the noestimate option.
If, looking at the results, you have an idea of which variance or covariance is a problem, or if
you have few variances and covariances, we would recommend running startgrid() first.
On the other hand, if you have no idea as to which variance or covariance is the problem
and you have many of them, you will be better off if you first simplify the model. After
doing that, if your simplified model does not include all the variances and covariances, you
can specify a combination of from() and startgrid().

Survey data

Multilevel modeling of survey data is a little different from standard modeling in that weighted
sampling can take place at multiple levels in the model, resulting in multiple sampling weights. Most
survey datasets, regardless of the design, contain one overall inclusion weight for each observation in
the data. This weight reflects the inverse of the probability of ultimate selection, and by “ultimate” we
mean that it factors in all levels of clustered sampling, corrections for noninclusion and oversampling,
poststratification, etc.

For simplicity, in what follows, assume a simple two-stage sampling design where groups are
randomly sampled and then individuals within groups are sampled. Also assume that no additional
weight corrections are performed; that is, sampling weights are simply the inverse of the probability
of selection. The sampling weight for observation i in cluster j in our two-level sample is then
wij = 1/πij , where πij is the probability that observation i, j is selected. If you were performing a
standard analysis such as OLS regression with regress, you would simply use a variable holding wij
as your pweight variable, and the fact that it came from two levels of sampling would not concern
you. Perhaps you would type vce(cluster groupvar) where groupvar identifies the top-level groups
to get standard errors that control for correlation within these groups, but you would still use only
one weight variable.

Now take these same data and fit a two-level model with meglm. As seen in (5) in Methods and
formulas later in this entry, it is not sufficient to use the single sampling weight wij , because weights
enter the log likelihood at both the group level and the individual level. Instead, what is required
for a two-level model under this sampling design is wj , the inverse of the probability that group j
is selected in the first stage, and wi|j , the inverse of the probability that individual i from group j
is selected at the second stage conditional on group j already being selected. You cannot use wij
without making any assumptions about wj .

Given the rules of conditional probability, wij = wjwi|j . If your dataset has only wij , then you
will need to either assume equal probability sampling at the first stage (wj = 1 for all j) or find
some way to recover wj from other variables in your data; see Rabe-Hesketh and Skrondal (2006)
and the references therein for some suggestions on how to do this, but realize that there is little yet
known about how well these approximations perform in practice.

What you really need to fit your two-level model are data that contain wj in addition to either
wij or wi|j . If you have wij—that is, the unconditional inclusion weight for observation i, j—then
you need to divide wij by wj to obtain wi|j .
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Example 5: Two-level logistic regression model with weights

Rabe-Hesketh and Skrondal (2006) analyzed data from the 2000 Programme for International
Student Assessment (PISA) study on reading proficiency among 15-year-old American students, as
performed by the Organisation for Economic Co-operation and Development (OECD). The original
study was a three-stage cluster sample, where geographic areas were sampled at the first stage, schools
at the second, and students at the third. Our version of the data does not contain the geographic-areas
variable, so we treat this as a two-stage sample where schools are sampled at the first stage and
students at the second.

. use https://www.stata-press.com/data/r18/pisa2000
(Programme for International Student Assessment (PISA) 2000 data)

. describe

Contains data from https://www.stata-press.com/data/r18/pisa2000.dta
Observations: 2,069 Programme for International

Student Assessment (PISA) 2000
data

Variables: 11 12 Jun 2022 10:08
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

female byte %8.0g 1 if female
isei byte %8.0g International socioeconomic index
w_fstuwt float %9.0g Student-level weight
wnrschbw float %9.0g School-level weight
high_school byte %8.0g 1 if highest level by either

parent is high school
college byte %8.0g 1 if highest level by either

parent is college
one_for byte %8.0g 1 if one parent foreign born
both_for byte %8.0g 1 if both parents are foreign

born
test_lang byte %8.0g 1 if English (the test language)

is spoken at home
pass_read byte %8.0g 1 if passed reading proficiency

threshold
id_school int %8.0g School ID

Sorted by:

For student i in school j, where the variable id school identifies the schools, the variable
w fstuwt is a student-level overall inclusion weight (wij , not wi|j) adjusted for noninclusion and
nonparticipation of students, and the variable wnrschbw is the school-level weight wj adjusted for
oversampling of schools with more minority students. The weight adjustments do not interfere with
the methods prescribed above, and thus we can treat the weight variables simply as wij and wj ,
respectively.

Rabe-Hesketh and Skrondal (2006) fit a two-level logistic model for passing a reading proficiency
threshold. We will do the same using meglm, but first we must reproduce the “method 1” adjusted
weight variables that were used. The “method 1” adjustment scales the first-level weights so that they
sum to the effective sample size of their corresponding second-level cluster.

. sort id_school

. generate sqw = w_fstuwt * w_fstuwt

. by id_school: egen sumw = sum(w_fstuwt)

. by id_school: egen sumsqw = sum(sqw)

. generate pst1s1 = w_fstuwt*sumw/sumsqw
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The new variable pst1s1 holds the adjusted first-level weights. Rabe-Hesketh and Skrondal (2006)
also included the school mean socioeconomic index as a covariate in their analysis. We reproduce
this variable using egen.

. by id_school: egen mn_isei = mean(isei)

Here is the fitted model:

. meglm pass_read female isei mn_isei high_school college test_lang one_for
> both_for [pw=pst1s1], family(bernoulli) link(logit)
> || id_school:, pweight(wnrschbw)

(output omitted )
Mixed-effects GLM Number of obs = 2,069
Family: Bernoulli
Link: Logit
Group variable: id_school Number of groups = 148

Obs per group:
min = 1
avg = 14.0
max = 28

Integration method: mvaghermite Integration pts. = 7

Wald chi2(8) = 88.30
Log pseudolikelihood = -197395.98 Prob > chi2 = 0.0000

(Std. err. adjusted for 148 clusters in id_school)

Robust
pass_read Coefficient std. err. z P>|z| [95% conf. interval]

female .6221369 .1540088 4.04 0.000 .3202852 .9239887
isei .018215 .0048057 3.79 0.000 .0087959 .027634

mn_isei .0682472 .0164337 4.15 0.000 .0360378 .1004566
high_school .1028108 .477141 0.22 0.829 -.8323683 1.03799

college .4531688 .5053447 0.90 0.370 -.5372885 1.443626
test_lang .6251822 .3821182 1.64 0.102 -.1237557 1.37412

one_for -.1089314 .2739724 -0.40 0.691 -.6459075 .4280447
both_for -.2804038 .3264681 -0.86 0.390 -.9202696 .359462

_cons -5.877565 .954525 -6.16 0.000 -7.7484 -4.006731

id_school
var(_cons) .2955769 .1243375 .1295996 .6741201

Notes:

1. We specified the level-one weights using standard Stata weight syntax, that is,
[pw=pst1s1].

2. We specified the level-two weights via the pweight(wnrschbw) option as part of the random-
effects specification for the id school level. As such, it is treated as a school-level weight.
Accordingly, wnrschbw needs to be constant within schools, and meglm did check for that before
estimating.

3. As is the case with other estimation commands in Stata, standard errors in the presence of sampling
weights are robust.

4. Robust standard errors are clustered at the top level of the model, and this will always be true unless
you specify vce(cluster clustvar), where clustvar identifies an even higher level of grouping.
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Example 6: Two-level logistic regression model with survey weights

meglm also supports the svy prefix (see [SVY] svy) for the linearized variance estimator. Here we
refit the model from the previous example using the svy prefix after we svyset (see [SVY] svyset)
the survey design variables.

. svyset id_school, weight(wnrschbw) || _n, weight(pst1s1)
note: stage 1 is sampled with replacement; further stages will be ignored for

variance estimation.

Sampling weights: <none>
VCE: linearized

Single unit: missing
Strata 1: <one>

Sampling unit 1: id_school
FPC 1: <zero>

Weight 1: wnrschbw
Strata 2: <one>

Sampling unit 2: <observations>
FPC 2: <zero>

Weight 2: pst1s1

. svy: meglm pass_read female isei mn_isei high_school college test_lang
> one_for both_for, family(bernoulli) link(logit) || id_school:
(running meglm on estimation sample)

Survey: Mixed-effects GLM

Number of strata = 1 Number of obs = 2,069
Number of PSUs = 148 Population size = 346,373.74

Design df = 147
F(8, 140) = 10.51
Prob > F = 0.0000

Linearized
pass_read Coefficient std. err. t P>|t| [95% conf. interval]

female .6221369 .1540088 4.04 0.000 .3177796 .9264943
isei .018215 .0048057 3.79 0.000 .0087177 .0277122

mn_isei .0682472 .0164337 4.15 0.000 .0357704 .100724
high_school .1028108 .477141 0.22 0.830 -.8401311 1.045753

college .4531688 .5053447 0.90 0.371 -.5455101 1.451848
test_lang .6251822 .3821182 1.64 0.104 -.1299725 1.380337

one_for -.1089314 .2739724 -0.40 0.692 -.6503648 .432502
both_for -.2804038 .3264681 -0.86 0.392 -.925581 .3647734

_cons -5.877565 .954525 -6.16 0.000 -7.763929 -3.991201

id_school
var(_cons) .2955769 .1243375 .1287156 .6787495

Notes:

1. We svyset the design variables: id school is the PSU variable, wnrschbw contains weights
at the PSU level, n specifies that the students are identified by the individual observations, and
pst1s1 contains our adjusted student-level conditional weights.

2. svyset notes the lack of a finite population correction in the first stage and informs us that only
the first-stage unit information will be used in the linearized variance estimator. However, the svy
prefix will still pass the stage-two weights to meglm.

3. svy produces a different header, giving us an estimate of the population size, the design degrees
of freedom, and the number of first-stage sampling units.
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Video example

Tour of multilevel GLMs

Stored results
meglm stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k dv) number of dependent variables
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k cat) number of categories (with ordinal outcomes)
e(k f) number of fixed-effects parameters
e(k r) number of random-effects parameters
e(k rs) number of variances
e(k rc) number of covariances
e(df m) model degrees of freedom
e(ll) log likelihood
e(chi2) χ2

e(p) p-value for model test
e(ll c) log likelihood, comparison model
e(chi2 c) χ2, comparison test
e(df c) degrees of freedom, comparison test
e(p c) p-value for comparison test
e(N clust) number of clusters
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) gsem
e(cmd2) meglm
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression (first-level weights)
e(fweightk) fweight variable for kth highest level, if specified
e(iweightk) iweight variable for kth highest level, if specified
e(pweightk) pweight variable for kth highest level, if specified
e(covariates) list of covariates
e(ivars) grouping variables
e(model) name of marginal model
e(title) title in estimation output
e(link) link
e(family) family
e(clustvar) name of cluster variable
e(offset) offset
e(binomial) binomial number of trials (with binomial models)
e(dispersion) mean or constant (with negative binomial models)
e(intmethod) integration method
e(n quad) number of integration points
e(chi2type) Wald; type of model χ2

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program

https://www.youtube.com/watch?v=SbwApki_BnI&feature=youtu.be
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e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(cat) category values (with ordinal outcomes)
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(N g) group counts
e(g min) group-size minimums
e(g avg) group-size averages
e(g max) group-size maximums
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
Gauss–Hermite quadrature
Adaptive Gauss–Hermite quadrature
Laplacian approximation
Survey data

Introduction

Without a loss of generality, consider a two-level generalized mixed-effects model

E(yj |Xj ,uj) = g−1
(
Xjβ+ Zjuj

)
, y ∼ F

for j = 1, . . . ,M clusters, with the jth cluster consisting of nj observations, where, for the jth
cluster, yj is the nj × 1 response vector, Xj is the nj × p matrix of fixed predictors, Zj is the
nj × q matrix of random predictors, uj is the q× 1 vector of random effects, β is the p× 1 vector of
regression coefficients on the fixed predictors, and we use Σ to denote the unknown q × q variance
matrix of the random effects. For simplicity, we consider a model with no auxiliary parameters.
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Let ηj be the linear predictor, ηj = Xjβ + Zjuj , that also includes the offset or the exposure
variable when offset() or exposure() is specified. Let yij and ηij be the ith individual elements
of yj and ηj , i = 1, . . . , nj . Let f(yij |ηij) be the conditional density function for the response at
observation i. Because the observations are assumed to be conditionally independent, we can overload
the definition of f(·) with vector inputs to mean

logf(yj |ηj) =

ni∑
j=1

logf(yij |ηij)

The random effects uj are assumed to be multivariate normal with mean 0 and variance Σ. The
likelihood function for cluster j is given by

Lj(β,Σ) = (2π)−q/2|Σ|−1/2
∫
<q
f(yj |ηj) exp

(
−1

2
u′jΣ

−1uj

)
duj

= (2π)−q/2|Σ|−1/2
∫
<q

exp
{

logf(yj |ηj)−
1

2
u′jΣ

−1uj

}
duj

(3)

where < denotes the set of values on the real line and <q is the analog in q-dimensional space.

The multivariate integral in (3) is generally not tractable, so we must use numerical methods to
approximate the integral. We can use a change-of-variables technique to transform this multivariate
integral into a set of nested univariate integrals. Each univariate integral can then be evaluated
using a form of Gaussian quadrature. meglm supports three types of Gauss–Hermite quadratures:
mean–variance adaptive Gauss–Hermite quadrature (MVAGH), mode-curvature adaptive Gauss–Hermite
quadrature (MCAGH), and nonadaptive Gauss–Hermite quadrature (GHQ). meglm also offers the
Laplacian-approximation method, which is used as a default method for crossed mixed-effects models.
Below we describe the four methods. The methods described below are based on Skrondal and
Rabe-Hesketh (2004, chap. 6.3).

Gauss–Hermite quadrature

Let uj = Lvj , where vj is a q × 1 random vector whose elements are independently standard
normal variables and L is the Cholesky decomposition of Σ, Σ = LL′. Then ηj = Xjβ+ ZjLvj ,
and the likelihood in (3) becomes

Lj(β,Σ) = (2π)−q/2
∫
<q

exp
{

logf(yj |ηj)−
1

2
v′jvj

}
dvj

= (2π)−q/2
∫ ∞
−∞

. . .

∫ ∞
−∞

exp

{
logf(yj |ηj)−

1

2

q∑
k=1

v2jk

}
dvj1, . . . , dvjq

(4)

Consider a q-dimensional quadrature grid containing r quadrature points in each dimension. Let
ak = (ak1 , . . . , akq )

′ be a point on this grid, and let wk = (wk1 , . . . , wkq )
′ be the vector of

corresponding weights. The GHQ approximation to the likelihood is
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LGHQ
j (β,Σ) =

r∑
k1=1

. . .

r∑
kq=1

[
exp
{

logf(yj |ηjk)
} q∏
p=1

wkp

]

=

r∑
k1=1

. . .

r∑
kq=1

[
exp

{
nj∑
i=1

logf(yij |ηijk)

}
q∏
p=1

wkp

]

where

ηjk = Xjβ+ ZjLak

and ηijk is the ith element of ηjk.

Adaptive Gauss–Hermite quadrature

This section sets the stage for MVAGH quadrature and MCAGH quadrature.

Let’s reconsider the likelihood in (4). We use φ(vj) to denote a multivariate standard normal with
mean 0 and variance Iq , and we use φ(vj |µj ,Λj) to denote a multivariate normal with mean µj
and variance Λj .

For fixed model parameters, the posterior density for vj is proportional to

φ(vj)f(yj |ηj)

where

ηj = Xjβ+ ZjLvj

It is reasonable to assume that this posterior density can be approximated by a multivariate normal
density with mean vector µj and variance matrix Λj . Instead of using the prior density of vj as the
weighting distribution in the integral, we can use our approximation for the posterior density,

Lj(β,Σ) =

∫
<q

f(yj |ηj)φ(vj)

φ(vj |µj ,Λj)
φ(vj |µj ,Λj) dvj

Then the MVAGH approximation to the likelihood is

LMVAGH
j (β,Σ) =

r∑
k1=1

. . .

r∑
kq=1

[
exp
{

logf(yj |ηjk)
} q∏
p=1

w∗jkp

]

where

ηjk = Xjβ+ ZjLa∗jk

and a∗jk and w∗jkp are the abscissas and weights after an orthogonalizing transformation of ajk and
wjkp , respectively, which eliminates posterior covariances between the random effects.
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Estimates of µj and Λj are computed using one of two different methods. The mean µj and
variance Λj are computed iteratively by updating the posterior moments with the MVAGH approximation,
starting with a 0 mean vector and identity variance matrix. For the MCAGH approximation, µj and Λj
are computed by optimizing the integrand with respect to vj , where µj is the optimal value and Λj
is the curvature at µj .

Laplacian approximation

Consider the likelihood in (3) and denote the argument in the exponential function by

h(β,Σ,uj) = logf(yj |Xjβ+ Zjuj)−
1

2
u′jΣ

−1uj

The Laplacian approximation is based on a second-order Taylor expansion of h(β,Σ,uj) about the
value of uj that maximizes it. The first and second partial derivatives with respect to uj are

h′(β,Σ,uj) =
∂h(β,Σ,uj)

∂uj
= Z′j

∂ logf(yj |ηj)
∂ηj

− Σ−1uj

h′′(β,Σ,uj) =
∂2h(β,Σ,uj)

∂uj∂u′j
= Z′j

∂2 logf(yj |ηj)
∂ηj∂η

′
j

Zj − Σ−1

The maximizer of h(β,Σ,uj) is ûj such that h′(β,Σ, ûj) = 0. The integral in (3) is proportional
to the posterior density of uj given the data, so ûj is also the posterior mode.

Pinheiro and Chao (2006) show that the posterior mode, ûj , and curvature, h′′(β,Σ, ûj)−1, can be
efficiently computed as the iterative solution to a least-squares problem by using matrix decomposition
methods similar to those used in fitting linear mixed-effects models (Bates and Pinheiro 1998; Pinheiro
and Bates 2000).

Let

p̂j = Xjβ+ Zjûj

S1 =
∂ logf(yj |p̂j)

∂p̂j

S2 =
∂S1

∂p̂′j
=
∂2 logf(yj |p̂j)

∂p̂j∂p̂′j

Hj = h′′(β,Σ, ûj) = Z′jS2Zj − Σ−1

then

0 = h′(β,Σ, ûj) = Z′jS1 − Σ−1ûj
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Given the above, the second-order Taylor approximation takes the form

h(β,Σ,uj) ≈ h(β,Σ, ûj) +
1

2
(uj − ûj)

′Hj(uj − ûj)

because the first-order derivative term is 0. The integral is approximated by∫
<q

exp{h(β,Σ,uj)} duj ≈ (2π)q/2 |−Hj |−1/2 exp{h(β,Σ, ûj)}

Thus the Laplacian approximated log likelihood is

logLLap
j (β,Σ) = −1

2
log|Σ| − 1

2
log |−Hj |+ h(β,Σ, ûj)

The log likelihood for the entire dataset is simply the sum of the contributions of the M individual
clusters, namely, L(β,Σ) =

∑M
j=1 Lj(β,Σ).

Maximization of L(β,Σ) is performed with respect to (β,σ2), where σ2 is a vector comprising
the unique elements of Σ. Parameter estimates are stored in e(b) as (β̂, σ̂2), with the corresponding
variance–covariance matrix stored in e(V). In the presence of auxiliary parameters, their estimates
and standard errors are included in e(b) and e(V), respectively.

Survey data

In the presence of sampling weights, following Rabe-Hesketh and Skrondal (2006), the weighted
log pseudolikelihood for a two-level model is given as

L(β,Σ) =

M∑
j=1

wj log
∫ ∞
−∞

exp

{
nj∑
i=1

wi|j logf(yij |ηij)

}
φ(vj1) dvj1 (5)

where wj is the inverse of the probability of selection for the jth cluster; wi|j is the inverse of the
conditional probability of selection of individual i, given the selection of cluster j, f(·) is as defined
previously; and φ(·) is the standard multivariate normal density.

Weighted estimation is achieved through the direct application of wj and wi|j into the likelihood
calculations as detailed above to reflect replicated clusters for wj and replicated observations within
clusters for wi|j . Because this estimation is based on replicated clusters and observations, frequency
weights are handled similarly.

Weights are not allowed with crossed models or the Laplacian approximation.
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Postestimation commands
The following postestimation command is of special interest after meglm:

Command Description

estat group summarize the composition of the nested groups
estat icc estimate intraclass correlations
estat sd display variance components as standard deviations and correlations

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian

information criteria (AIC, CAIC, AICc, and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
etable table of estimation results
∗hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
∗lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combi-

nations of coefficients
predict means, probabilities, densities, REs, residuals, etc.
predictnl point estimates, standard errors, testing, and inference for generalized pre-

dictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

∗hausman and lrtest are not appropriate with svy estimation results.
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predict

Description for predict

predict creates a new variable containing predictions such as mean responses; linear predictions;
density and distribution functions; standard errors; and raw, Pearson, deviance, and Anscombe
residuals.

Menu for predict

Statistics > Postestimation

Syntax for predict

Syntax for obtaining predictions of the outcome and other statistics

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
] [

, statistic options
]

Syntax for obtaining estimated random effects and their standard errors

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, reffects

[
re options

]
Syntax for obtaining ML scores

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, scores

statistic Description

Main

mu mean response; the default
pr synonym for mu for ordinal and binary response models
eta fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp standard error of the fixed-portion linear prediction
density predicted density function
distribution predicted distribution function
residuals raw residuals; available only with the Gaussian family
pearson Pearson residuals
deviance deviance residuals
anscombe Anscombe residuals

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample.
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options Description

Main

conditional(ctype) compute statistic conditional on estimated random effects; default is
conditional(ebmeans)

marginal compute statistic marginally with respect to the random effects
nooffset make calculation ignoring offset or exposure
outcome(outcome) outcome category for predicted probabilities for ordinal models

Integration

int options integration options

pearson, deviance, anscombe may not be combined with marginal.
For ordinal outcomes, you specify one or k new variables in newvarlist with mu and pr, where k is the number of

outcomes. If you do not specify outcome(), these options assume outcome(#1).

ctype Description

ebmeans empirical Bayes means of random effects; the default
ebmodes empirical Bayes modes of random effects
fixedonly prediction for the fixed portion of the model only

re options Description

Main

ebmeans use empirical Bayes means of random effects; the default
ebmodes use empirical Bayes modes of random effects
reses(stub* | newvarlist) calculate standard errors of empirical Bayes estimates

Integration

int options integration options

int options Description

intpoints(#) use # quadrature points to compute marginal predictions and empirical
Bayes means

iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators

tolerance(#) set convergence tolerance for computing statistics involving empirical
Bayes estimators

Options for predict

� � �
Main �

mu, the default, calculates the expected value of the outcome.

pr calculates predicted probabilities and is a synonym for mu. This option is available only for ordinal
and binary response models.

eta calculates the fitted linear prediction.
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xb calculates the linear prediction xβ using the estimated fixed effects (coefficients) in the model.
This is equivalent to fixing all random effects in the model to their theoretical (prior) mean value
of 0.

stdp calculates the standard error of the fixed-effects linear predictor xβ.

density calculates the density function. This prediction is computed using the current values of the
observed variables, including the dependent variable.

distribution calculates the distribution function. This prediction is computed using the current
values of the observed variables, including the dependent variable.

residuals calculates raw residuals, that is, responses minus the fitted values. This option is available
only for the Gaussian family.

pearson calculates Pearson residuals. Pearson residuals that are large in absolute value may indicate
a lack of fit.

deviance calculates deviance residuals. Deviance residuals are recommended by McCullagh and
Nelder (1989) as having the best properties for examining the goodness of fit of a GLM. They are
approximately normally distributed if the model is correctly specified. They can be plotted against
the fitted values or against a covariate to inspect the model fit.

anscombe calculates Anscombe residuals, which are designed to closely follow a normal distribution.

conditional(ctype) and marginal specify how random effects are handled in computing statistic.

conditional() specifies that statistic will be computed conditional on specified or estimated
random effects.

conditional(ebmeans), the default, specifies that empirical Bayes means be used as the
estimates of the random effects. These estimates are also known as posterior mean estimates
of the random effects.

conditional(ebmodes) specifies that empirical Bayes modes be used as the estimates of the
random effects. These estimates are also known as posterior mode estimates of the random
effects.

conditional(fixedonly) specifies that all random effects be set to zero, equivalent to using
only the fixed portion of the model.

marginal specifies that the predicted statistic be computed marginally with respect to the random
effects, which means that statistic is calculated by integrating the prediction function with
respect to all the random effects over their entire support.

Although this is not the default, marginal predictions are often very useful in applied analysis.
They produce what are commonly called population-averaged estimates. They are also required
by margins.

nooffset is relevant only if you specified offset(varnameo) or exposure(varnamee) with meglm.
It modifies the calculations made by predict so that they ignore the offset or the exposure variable;
the linear prediction is treated as Xβ+Zu rather than Xβ+Zu+offset, or Xβ+Zu+ ln(exposure),
whichever is relevant.

outcome(outcome) specifies the outcome for which the predicted probabilities are to be calculated.
outcome() should contain either one value of the dependent variable or one of #1, #2, . . . , with
#1 meaning the first category of the dependent variable, #2 meaning the second category, etc.
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reffects calculates estimates of the random effects using empirical Bayes predictions. By default,
or if the ebmeans option is specified, empirical Bayes means are computed. With the ebmodes
option, empirical Bayes modes are computed. You must specify q new variables, where q is the
number of random-effects terms in the model. However, it is much easier to just specify stub*
and let Stata name the variables stub1, stub2, . . . , stubq for you.

ebmeans specifies that empirical Bayes means be used to predict the random effects.

ebmodes specifies that empirical Bayes modes be used to predict the random effects.

reses(stub* | newvarlist) calculates standard errors of the empirical Bayes estimators and stores the
result in newvarlist. This option requires the reffects option. You must specify q new variables,
where q is the number of random-effects terms in the model. However, it is much easier to just
specify stub* and let Stata name the variables stub1, stub2, . . . , stubq for you. The new variables
will have the same storage type as the corresponding random-effects variables.

The reffects and reses() options often generate multiple new variables at once. When this
occurs, the random effects (and standard errors) contained in the generated variables correspond
to the order in which the variance components are listed in the output of meglm. The generated
variables are also labeled to identify their associated random effect.

scores calculates the scores for each coefficient in e(b). This option requires a new variable list of
length equal to the number of columns in e(b). Otherwise, use the stub* syntax to have predict
generate enumerated variables with prefix stub.

� � �
Integration �

intpoints(#) specifies the number of quadrature points used to compute marginal predictions and
the empirical Bayes means; the default is the value from estimation.

iterate(#) specifies the maximum number of iterations when computing statistics involving empirical
Bayes estimators; the default is the value from estimation.

tolerance(#) specifies convergence tolerance when computing statistics involving empirical Bayes
estimators; the default is the value from estimation.
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margins

Description for margins

margins estimates margins of response for mean responses and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . . )

[
predict(statistic . . . ) . . .

] [
options

]
statistic Description

mu mean response; the default
pr synonym for mu for ordinal and binary response models
eta fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp not allowed with margins

density not allowed with margins

distribution not allowed with margins

residuals not allowed with margins

pearson not allowed with margins

deviance not allowed with margins

anscombe not allowed with margins

reffects not allowed with margins

scores not allowed with margins

Options conditional(ebmeans) and conditional(ebmodes) are not allowed with margins.
Option marginal is assumed where applicable if conditional(fixedonly) is not specified.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples
Various predictions, statistics, and diagnostic measures are available after fitting a mixed-effects

model using meglm. For the most part, calculation centers around obtaining predictions of the random
effects. Random effects are not estimated when the model is fit but instead need to be predicted after
estimation.
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Example 1: Obtaining estimates of random effects

In example 2 of [ME] meglm, we modeled the probability of contraceptive use among Bangladeshi
women by fitting a mixed-effects logistic regression model. To facilitate a more direct comparison
between urban and rural women, we specify no base level for the urban factor variable and eliminate
the constant from both the fixed-effects part and the random-effects part.

. use https://www.stata-press.com/data/r18/bangladesh
(Bangladesh Fertility Survey, 1989)

. meglm c_use ibn.urban age i.children, nocons nolog
> || district: ibn.urban, nocons family(bernoulli) link(logit) nofvlabel

Mixed-effects GLM Number of obs = 1,934
Family: Bernoulli
Link: Logit
Group variable: district Number of groups = 60

Obs per group:
min = 2
avg = 32.2
max = 118

Integration method: mvaghermite Integration pts. = 7

Wald chi2(6) = 120.59
Log likelihood = -1199.3268 Prob > chi2 = 0.0000
( 1) [c_use]_cons = 0

c_use Coefficient Std. err. z P>|z| [95% conf. interval]

urban
0 -1.712549 .1603689 -10.68 0.000 -2.026866 -1.398232
1 -.9004495 .1674683 -5.38 0.000 -1.228681 -.5722176

age -.0264472 .0080196 -3.30 0.001 -.0421652 -.0107291

children
1 1.132291 .1603052 7.06 0.000 .8180983 1.446483
2 1.358692 .1769369 7.68 0.000 1.011902 1.705482
3 1.354788 .1827459 7.41 0.000 .9966122 1.712963

_cons 0 (omitted)

district
var(0.urban) .3882825 .1284858 .2029918 .7427064
var(1.urban) .239777 .1403374 .0761401 .7550947

LR test vs. logistic model: chi2(2) = 58.40 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

This particular model allows for district random effects that are specific to the rural and urban
areas of that district and that can be interpreted as such. We can obtain predictions of posterior means
of the random effects and their standard errors by typing

. predict re_rural re_urban, reffects reses(se_rural se_urban)
(calculating posterior means of random effects)
(using 7 quadrature points)

The order in which we specified the variables to be generated corresponds to the order in which the
variance components are listed in meglm output. If in doubt, a simple describe will show how these
newly generated variables are labeled just to be sure.
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Having generated estimated random effects and standard errors, we can now list them for the first
10 districts:

. by district, sort: generate tag = (_n==1)

. list district re_rural se_rural re_urban se_urban if district <= 10 & tag,
> sep(0)

district re_rural se_rural re_urban se_urban

1. 1 -.9523374 .316291 -.5619418 .2329456
118. 2 -.0425217 .3819309 -5.01e-18 .4896702
138. 3 8.57e-18 .6231232 .2229486 .4658747
140. 4 -.2703357 .3980832 .574464 .3962131
170. 5 .0691029 .3101591 .0074569 .4650451
209. 6 -.3939819 .2759802 .2622263 .4177785
274. 7 -.1904756 .4043461 -6.86e-18 .4896702
292. 8 .0382993 .3177392 .2250237 .4654329
329. 9 -.3715211 .3919996 .0628076 .453568
352. 10 -.5624707 .4763545 -1.90e-17 .4896702

The estimated standard errors are conditional on the values of the estimated model parameters:
β and the components of Σ. Their interpretation is therefore not one of standard sample-to-sample
variability but instead one that does not incorporate uncertainty in the estimated model parameters;
see Methods and formulas. That stated, conditional standard errors can still be used as a measure of
relative precision, provided that you keep this caveat in mind.

You can also obtain predictions of posterior modes and compare them with the posterior means:

. predict mod_rural mod_urban, reffects ebmodes
(calculating posterior modes of random effects)

. list district re_rural mod_rural re_urban mod_urban if district <= 10 & tag,
> sep(0)

district re_rural mod_rural re_urban mod_urban

1. 1 -.9523374 -.9295366 -.5619418 -.5584528
118. 2 -.0425217 -.0306312 -5.01e-18 0
138. 3 8.57e-18 0 .2229486 .2223551
140. 4 -.2703357 -.2529507 .574464 .5644512
170. 5 .0691029 .0789803 .0074569 .0077525
209. 6 -.3939819 -.3803784 .2622263 .2595116
274. 7 -.1904756 -.1737696 -6.86e-18 0
292. 8 .0382993 .0488528 .2250237 .2244676
329. 9 -.3715211 -.3540084 .0628076 .0605462
352. 10 -.5624707 -.535444 -1.90e-17 0

The two sets of predictions are fairly close.

Because not all districts contain both urban and rural areas, some of the posterior modes are 0 and
some of the posterior means are practically 0. A closer examination of the data reveals that district
3 has no rural areas, and districts 2, 7, and 10 have no urban areas.

Had we imposed an unstructured covariance structure in our model, the estimated posterior modes
and posterior means in the cases in question would not be exactly 0 because of the correlation between
urban and rural effects. For instance, if a district has no urban areas, it can still yield a nonzero
(albeit small) random-effects estimate for a nonexistent urban area because of the correlation with its
rural counterpart; see example 2 of [ME] melogit postestimation for details.
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Example 2: Calculating predicted probabilities

Continuing with the model from example 1, we can obtain predicted probabilities, and unless
we specify the fixedonly option, these predictions will incorporate the estimated subject-specific
random effects ũj .

. predict pr, pr
(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)

The predicted probabilities for observation i in cluster j are obtained by applying the inverse link
function to the linear predictor, p̂ij = g−1(xijβ̂ + zijũj); see Methods and formulas for details.
By default or with the conditional(ebmeans) option, the calculation uses posterior means for ũj .
You can use the conditional(ebmodes) option to obtain predictions based on the posterior modes
for ˜̃uj .

. predict prm, pr conditional(ebmodes)
(predictions based on fixed effects and posterior modes of random effects)

We can list the two sets of predicted probabilities together with the actual outcome for some
district, let’s say district 38:

. list c_use pr prm if district == 38

c_use pr prm

1228. Yes .5783408 .5780864
1229. No .5326623 .5324027
1230. Yes .6411679 .6409279
1231. Yes .5326623 .5324027
1232. Yes .5718783 .5716228

1233. No .3447686 .344533
1234. No .4507973 .4505391
1235. No .1940524 .1976133
1236. No .2846738 .2893007
1237. No .1264883 .1290078

1238. No .206763 .2104961
1239. No .202459 .2061346
1240. No .206763 .2104961
1241. No .1179788 .1203522

The two sets of predicted probabilities are fairly close.

For mixed-effects models with many levels or many random effects, the calculation of the posterior
means of random effects or any quantities that are based on the posterior means of random effects
may take a long time. This is because we must resort to numerical integration to obtain the posterior
means. In contrast, the calculation of the posterior modes of random effects is usually orders of
magnitude faster because there is no numerical integration involved. For this reason, empirical modes
are often used in practice as an approximation to empirical means. Note that for linear mixed-effects
models, the two predictors are the same.
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We can compare the observed values with the predicted values by constructing a classification table.
Defining success as ŷij = 1 if p̂ij > 0.5 and defining ŷij = 0 otherwise, we obtain the following
table.

. generate p_use = pr > .5

. label var p_use "Predicted outcome"

. tab2 c_use p_use, row

-> tabulation of c_use by p_use

Key

frequency
row percentage

Use
contracept Predicted outcome

ion 0 1 Total

No 991 184 1,175
84.34 15.66 100.00

Yes 423 336 759
55.73 44.27 100.00

Total 1,414 520 1,934
73.11 26.89 100.00

The model correctly classified 84% of women who did not use contraceptives but only 44% of
women who did. In the next example, we will look at some residual diagnostics.
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Example 3: A look at residual diagnostics

Continuing our discussion from example 2, here we look at residual diagnostics. meglm offers
three kinds of predicted residuals for nonlinear responses—Pearson, Anscombe, and deviance. Of the
three, Anscombe residuals are designed to be approximately normally distributed; thus we can check
for outliers by plotting Anscombe residuals against observation numbers and seeing which residuals
are greater than 2 in absolute value.

. predict anscombe, anscombe
(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)

. generate n = _n

. label var n "observation number"

. twoway (scatter anscombe n if c_use) (scatter anscombe n if !c_use),
> yline(-2 2) legend(off) text(2.5 1400 "contraceptive use")
> text(-.1 500 "no contraceptive use")
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There seem to be some outliers among residuals that identify women who use contraceptives. We
could examine the observations corresponding to the outliers, or we could try fitting a model with
perhaps a different covariance structure, which we leave as an exercise.
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Example 4: Using predicted random effects for ranking purposes

In example 3 of [ME] meglm, we estimated the effects of two treatments on the tobacco and health
knowledge (THK) scale score of students in 28 schools. The dependent variable was collapsed into
four ordered categories, and we fit a three-level ordinal logistic regression.

. use https://www.stata-press.com/data/r18/tvsfpors, clear
(Television, School, and Family Project)

. meologit thk prethk i.cc##i.tv || school: || class:

Fitting fixed-effects model:

Iteration 0: Log likelihood = -2212.775
Iteration 1: Log likelihood = -2125.509
Iteration 2: Log likelihood = -2125.1034
Iteration 3: Log likelihood = -2125.1032

Refining starting values:

Grid node 0: Log likelihood = -2152.1514

Fitting full model:

(output omitted )
Mixed-effects ologit regression Number of obs = 1,600

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

school 28 18 57.1 137
class 135 1 11.9 28

Integration method: mvaghermite Integration pts. = 7

Wald chi2(4) = 124.39
Log likelihood = -2114.5881 Prob > chi2 = 0.0000

thk Coefficient Std. err. z P>|z| [95% conf. interval]

prethk .4085273 .039616 10.31 0.000 .3308814 .4861731
1.cc .8844369 .2099124 4.21 0.000 .4730161 1.295858
1.tv .236448 .2049065 1.15 0.249 -.1651614 .6380575

cc#tv
1 1 -.3717699 .2958887 -1.26 0.209 -.951701 .2081612

/cut1 -.0959459 .1688988 -.4269815 .2350896
/cut2 1.177478 .1704946 .8433151 1.511642
/cut3 2.383672 .1786736 2.033478 2.733865

school
var(_cons) .0448735 .0425387 .0069997 .2876749

school>class
var(_cons) .1482157 .0637521 .063792 .3443674

LR test vs. ologit model: chi2(2) = 21.03 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Not surprisingly, the level of knowledge before the intervention is a good predictor of the level of
knowledge after the intervention. The social resistance classroom curriculum is effective in raising
the knowledge score, but the TV intervention and the interaction term are not.

We can rank schools by their institutional effectiveness by plotting the random effects at the school
level.
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. predict re_school re_class, reffects reses(se_school se_class)
(calculating posterior means of random effects)
(using 7 quadrature points)

. generate lower = re_school - 1.96*se_school

. generate upper = re_school + 1.96*se_school

. egen tag = tag(school)

. gsort +re_school -tag

. generate rank = sum(tag)

. generate labpos = re_school + 1.96*se_school + .1

. twoway (rcap lower upper rank) (scatter re_school rank)
> (scatter labpos rank, mlabel(school) msymbol(none) mlabpos(0)),
> xtitle(rank) ytitle(Predicted posterior mean) legend(off)
> xscale(range(0 28)) xlabel(1/28) ysize(2)
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Although there is some variability in the predicted posterior means, we cannot see significant differences
among the schools in this example.

Methods and formulas
Continuing the discussion in Methods and formulas of [ME] meglm and using the definitions and

formulas defined there, we begin by considering the prediction of the random effects uj for the jth
cluster in a two-level model. Prediction of random effects in multilevel generalized linear models
involves assigning values to random effects, and there are many methods for doing so; see Skrondal
and Rabe-Hesketh (2009) and Skrondal and Rabe-Hesketh (2004, chap. 7) for a comprehensive
review. Stata offers two methods of predicting random effects: empirical Bayes means (also known
as posterior means) and empirical Bayes modes (also known as posterior modes). Below we provide
more details about the two methods.

Let θ̂ denote the estimated model parameters comprising β̂ and the unique elements of Σ̂.
Empirical Bayes (EB) predictors of the random effects are the means or modes of the empirical
posterior distribution with the parameter estimates θ replaced with their estimates θ̂. The method is
called “empirical” because θ̂ is treated as known. EB combines the prior information about the random
effects with the likelihood to obtain the conditional posterior distribution of random effects. Using
Bayes’s theorem, the empirical conditional posterior distribution of random effects for cluster j is
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ω(uj |yj ,Xj ,Zj ; θ̂) =
Pr(yj ,uj |Xj ,Zj ; θ̂)

Pr(yj |Xj ,Zj ; θ̂)

=
f(yj |uj ,Xj ,Zj ; β̂)φ(uj ; Σ̂)∫

f(yj |uj)φ(uj) duj

=
f(yj |uj ,Xj ,Zj ; β̂)φ(uj ; Σ̂)

Lj(θ̂)

The denominator is just the likelihood contribution of the jth cluster.

EB mean predictions of random effects, ũ, also known as posterior means, are calculated as

ũ =

∫
<q

uj ω(uj |yj ,Xj ,Zj ; θ̂) duj

=

∫
<q uj f(yj |uj ,Xj ,Zj ; β̂)φ(uj ; Σ̂) duj∫

<q f(yj |uj)φ(uj) duj

where we use the notation ũ rather than û to distinguish predicted values from estimates. This
multivariate integral is approximated by the mean–variance adaptive Gaussian quadrature; see Methods
and formulas of [ME] meglm for details about the quadrature. If you have multiple random effects
within a level or random effects across levels, the calculation involves orthogonalizing transformations
using the Cholesky transformation because the random effects are no longer independent under the
posterior distribution.

In a linear mixed-effects model, the posterior density is multivariate normal, and EB means are also
best linear unbiased predictors (BLUPs); see Skrondal and Rabe-Hesketh (2004, 227). In generalized
mixed-effects models, the posterior density tends to multivariate normal as cluster size increases.

EB modal predictions can be approximated by solving for the mode ˜̃uj in

∂

∂uj
logω(˜̃uj |yj ,Xj ,Zj ; θ̂) = 0

Because the denominator in ω(·) does not depend on u, we can omit it from the calculation to obtain

∂

∂uj
log
{
f(yj |uj ,Xj ,Zj ; β̂)φ(uj ; Σ̂)

}
=

∂

∂uj
logf

(
yj |uj ,Xj ,Zj ; β̂

)
+

∂

∂uj
logφ

(
uj ; Σ̂

)
= 0

The calculation of EB modes does not require numerical integration, and for that reason they are
often used in place of EB means. As the posterior density gets closer to being multivariate normal,
EB modes get closer and closer to EB means.

Just like there are many methods of assigning values to the random effects, there exist many methods
of calculating standard errors of the predicted random effects; see Skrondal and Rabe-Hesketh (2009)
for a comprehensive review.
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Stata uses the posterior standard deviation as the standard error of the posterior means predictor
of random effects. The EB posterior covariance matrix of the random effects is given by

cov(ũj |yj ,Xj ,Zj ; θ̂) =

∫
<q

(uj − ũj)(uj − ũj)
′ ω(uj |yj ,Xj ,Zj ; θ̂) duj

The posterior covariance matrix and the integrals are approximated by the mean–variance adaptive
Gaussian quadrature; see Methods and formulas of [ME] meglm for details about the quadrature.

Conditional standard errors for the estimated posterior modes are derived from standard theory of
maximum likelihood, which dictates that the asymptotic variance matrix of ˜̃uj is the negative inverse
of the Hessian, g′′(β,Σ, ˜̃uj).

In what follows, we show formulas using the posterior means estimates of random effects ũj ,
which are used by default or if the means option is specified. If the modes option is specified, ũj

are simply replaced with the posterior modes ˜̃uj in these formulas.

For any ith observation in the jth cluster in a two-level model, define the linear predictor as

η̂ij = xijβ̂+ zijũj

The linear predictor includes the offset or exposure variable if one was specified during estimation,
unless the nooffset option is specified. If the fixedonly option is specified, η̂ contains the linear
predictor for only the fixed portion of the model, η̂ij = xijβ̂.

The predicted mean, conditional on the random effects ũj , is

µ̂ij = g−1(η̂ij)

where g−1(·) is the inverse link function for µij = g−1(ηij) defined as follows for the available
links in link(link):

link Inverse link
identity ηij

logit 1/{1 + exp(−ηij)}
probit Φ(ηij)

log exp(ηij)

cloglog 1− exp{− exp(ηij)}

By default, random effects and any statistic based on them—mu, fitted, pearson, deviance,
anscombe—are calculated using posterior means of random effects unless option modes is specified,
in which case the calculations are based on posterior modes of random effects.

Raw residuals are calculated as the difference between the observed and fitted outcomes,

νij = yij − µ̂ij

and are only defined for the Gaussian family.

Let rij be the number of Bernoulli trials in a binomial model, α be the conditional overdispersion
parameter under the mean parameterization of the negative binomial model, and δ be the conditional
overdispersion parameter under the constant parameterization of the negative binomial model.
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Pearson residuals are raw residuals divided by the square root of the variance function

νPij =
νij

{V (µ̂ij)}1/2

where V (µ̂ij) is the family-specific variance function defined as follows for the available families in
family(family):

family Variance function V (µ̂ij)

bernoulli µ̂ij(1− µ̂ij)
binomial µ̂ij(1− µ̂ij/rij)
gamma µ̂2

ij

gaussian 1

nbinomial mean µ̂ij(1 + αµ̂ij)

nbinomial constant µ̂ij(1 + δ)

ordinal not defined
poisson µ̂ij

Deviance residuals are calculated as

νDij = sign(νij)
√
d̂ 2
ij
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where the squared deviance residual d̂ 2
ij is defined as follows:

family Squared deviance d̂ 2
ij

bernoulli −2 log(1− µ̂ij) if yij = 0

−2 log(µ̂ij) if yij = 1

binomial 2rij log
(

rij
rij − µ̂ij

)
if yij = 0

2yij log
(
yij
µ̂ij

)
+ 2(rij − yij) log

(
rij − yij
rij − µ̂ij

)
if 0 < yij < rij

2rij log
(
rij
µ̂ij

)
if yij = rij

gamma −2

{
log
(
yij
µ̂ij

)
− ν̂ij
µ̂ij

}
gaussian ν̂2ij

nbinomial mean 2 log (1 + αµ̂ij)α if yij = 0

2yij log
(
yij
µ̂ij

)
− 2

α (1 + αyij) log
(

1 + αyij
1 + αµ̂ij

)
otherwise

nbinomial constant not defined

ordinal not defined

poisson 2µ̂ij if yij = 0

2yij log
(
yij
µ̂ij

)
− 2ν̂ij otherwise
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Anscombe residuals, denoted νAij , are calculated as follows:

family Anscombe residual νAij

bernoulli
3
{
y
2/3
ij H(yij)− µ̂2/3

ij H(µ̂ij)
}

2
(
µ̂ij − µ̂2

ij

)1/6
binomial

3
{
y
2/3
ij H(yij/rij)− µ̂2/3

ij H(µ̂ij/rij)
}

2
(
µ̂ij − µ̂2

ij/rij
)1/6

gamma
3(y

1/3
ij − µ̂

1/3
ij )

µ̂
1/3
ij

gaussian νij

nbinomial mean
H(−αyij)−H(−αµ̂ij) + 1.5(y

2/3
ij − µ̂

2/3
ij )

(µ̂ij + αµ̂2
ij)

1/6

nbinomial constant not defined

ordinal not defined

poisson
3(y

2/3
ij − µ̂

2/3
ij )

2µ̂
1/6
ij

where H(t) is a specific univariate case of the Hypergeometric2F1 function (Wolfram 2003, 780),
defined here as H(t) = 2F1(2/3, 1/3, 5/3, t).

For a discussion of the general properties of the various residuals, see Hardin and Hilbe (2018,
chap. 4).
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Description

meintreg fits mixed-effects models for continuous responses where the dependent variable may
be measured as point data, interval-censored data, left-censored data, or right-censored data. Thus,
it is a generalization of the models fit by metobit. The dependent variable must be specified using
two variables that indicate how it was measured.

Quick start
Two-level interval regression on x with random intercepts by lev2 of the interval-measured dependent

variable with lower endpoint y lower and upper endpoint y upper

meintreg y_lower y_upper x || lev2:

Same as above, but with random coefficients for x
meintreg y_lower y_upper x || lev2: x

Three-level random-intercept model with lev2 nested within lev3

meintreg y_lower y_upper x || lev3: || lev2:

Crossed-effects model with two-way crossed random effects by factors a and b

meintreg y_lower y_upper x || _all:R.a || b:

Menu
Statistics > Multilevel mixed-effects models > Interval regression
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Syntax
meintreg depvarlower depvarupper fe equation

[
|| re equation

] [
|| re equation . . .

][
, options

]
where the syntax of fe equation is[

indepvars
] [

if
] [

in
] [

weight
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

The values in depvarlower and depvarupper should have the following form:

Type of data depvarlower depvarupper

point data a = [ a, a ] a a

interval data [ a, b ] a b

left-censored data (−∞, b ] . b

right-censored data [ a,+∞ ) a .

missing . .

levelvar is a variable identifying the group structure for the random effects at that level or is all
representing one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation
offset(varname) include varname in model with coefficient constrained to 1

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
fweight(varname) frequency weights at higher levels
iweight(varname) importance weights at higher levels
pweight(varname) sampling weights at higher levels



meintreg — Multilevel mixed-effects interval regression 137

options Description

Model

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intmethod(intmethod) integration method
intpoints(#) set the number of integration (quadrature) points for all levels;

default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values
startgrid

[
(gridspec)

]
perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead
dnumerical use numerical derivative techniques
collinear keep collinear variables
coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated
fixed(matname) user-selected variances and covariances constrained to specified

values; the remaining variances and covariances unrestricted
pattern(matname) user-selected variances and covariances constrained to be equal;

the remaining variances and covariances unrestricted
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intmethod Description

mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature
ghermite nonadaptive Gauss–Hermite quadrature
laplace Laplacian approximation; the default for crossed random-effects

models

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
depvarlower, depvarupper, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see

[BAYES] bayes: meintreg.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified.

Weights are not supported under the Laplacian approximation or for crossed models.
startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog

box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any of or all the random-effects equations.

offset(varname) specifies that varname be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent) unless a crossed random-effects model is fit, in which case the
default is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2
unique parameters.

covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures
provide a convenient way to impose constraints on variances and covariances of random effects.
Each specification requires a matname that defines the restrictions placed on variances and
covariances. Only elements in the lower triangle of matname are used, and row and column names
of matname are ignored. A missing value in matname means that a given element is unrestricted.
In a fixed(matname) covariance structure, (co)variance (i, j) is constrained to equal the
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value specified in the i, jth entry of matname. In a pattern(matname) covariance structure,
(co)variances (i, j) and (k, l) are constrained to be equal if matname[i, j] = matname[k, l].

fweight(varname) specifies frequency weights at higher levels in a multilevel model, whereas
frequency weights at the first level (the observation level) are specified in the usual manner, for
example, [fw=fwtvar1]. varname can be any valid Stata variable name, and you can specify
fweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wt1] || school: . . . , fweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2
would hold the second-level (the school-level) frequency weights.

iweight(varname) specifies importance weights at higher levels in a multilevel model, whereas
importance weights at the first level (the observation level) are specified in the usual manner,
for example, [iw=iwtvar1]. varname can be any valid Stata variable name, and you can specify
iweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: . . . , iweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) importance weights, and wt2
would hold the second-level (the school-level) importance weights.

pweight(varname) specifies sampling weights at higher levels in a multilevel model, whereas
sampling weights at the first level (the observation level) are specified in the usual manner, for
example, [pw=pwtvar1]. varname can be any valid Stata variable name, and you can specify
pweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wt1] || school: . . . , pweight(wt2) . . .

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would
hold the second-level (the school-level) sampling weights.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is
specified, robust variances are clustered at the highest level in the multilevel model.

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.
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� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model.
mvaghermite performs mean–variance adaptive Gauss–Hermite quadrature; mcaghermite per-
forms mode-curvature adaptive Gauss–Hermite quadrature; ghermite performs nonadaptive Gauss–
Hermite quadrature; and laplace performs the Laplacian approximation, equivalent to mode-
curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in
which case the default integration method is laplace. The Laplacian approximation has been
known to produce biased parameter estimates; however, the bias tends to be more prominent in
the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be
prohibitively intensive even for a small number of levels. For this reason, the integration method
defaults to the Laplacian approximation. You may override this behavior by specifying a different
integration method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option
is not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases as a function of the number of quadrature points raised to a power
equaling the dimension of the random-effects specification. In crossed random-effects models and
in models with many levels or many random coefficients, this increase can be substantial.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. Those that require
special mention for meintreg are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

The following options are available with meintreg but are not shown in the dialog box:

startvalues(svmethod), startgrid
[
(gridspec)

]
, noestimate, and dnumerical; see [ME]

meglm.

collinear, coeflegend; see [R] Estimation options.

Remarks and examples

Mixed-effects interval regression is regression for censored data containing both fixed effects and
random effects. meintreg fits mixed-effects regression models that account for left-, right-, and
interval-censoring. Thus, it is a generalization of the models fit by metobit. In longitudinal data and
panel data, random effects are useful for modeling intracluster correlation; that is, observations in the
same cluster are correlated because they share common cluster-level random effects.

Interval data arise naturally in many contexts, such as wage data where often you know only that a
person’s salary is between two values. If one of the interval’s endpoints is unknown, the observation
is censored. Interval data and right-censored data also arise in the area of survival analysis. meintreg
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can fit models for data where each observation represents interval data, left-censored data, right-
censored data, or point data. Regardless of the type of observation, the data should be stored in the
dataset as interval data; see Syntax.

Regardless of the type of censoring, the expected value of the underlying dependent variable—say,
y?—is modeled using the following linear prediction:

E(y?|X,u) = Xβ+ Zu (1)

X is an n×p design/covariate matrix, analogous to the covariates you would find in a standard linear
regression model, with regression coefficients (fixed effects) β. Z is the n× q design/covariate matrix
for the random effects u. This linear prediction also contains the offset when offset() is specified.

The columns of matrix Z are the covariates corresponding to the random effects and can be used
to represent both random intercepts and random coefficients. For example, in a random-intercepts
model, Z is simply the scalar 1. The random effects u are realizations from a multivariate normal
distribution with mean 0 and q× q variance matrix Σ. The random effects are not directly estimated
as model parameters but are instead summarized according to the unique elements of Σ, known as
variance components. One special case of (1) places Z = X so that all covariate effects are essentially
random and distributed as multivariate normal with mean β and variance Σ.

Below we present a short example of mixed-effects censored regression; refer to [ME] me and
[ME] meglm for additional examples of random-effects models. A two-level interval regression model
can also be fit using xtintreg; see [XT] xtintreg. In the absence of random effects, mixed-effects
censored regression reduces to standard censored regression; see [R] intreg.

Example 1: Three-level random-intercept model

Mastitis is a disease affecting dairy cows, consisting of an inflammatory reaction of the udder
tissue. Our fictional study was performed on 10 farms using a sample of 10 dairy cows taken from
each farm, and time to infection was recorded for each udder quarter for each cow in the sample. The
four udder quarters are clustered within the cow, and cows are nested within farms. This is loosely
based on nonfictional studies by Goethals et al. (2009) and Elghafghuf et al. (2014).

Cows were examined periodically. Thus, if a cow developed an infection, we do not know the exact
day the infection occurred; we only know that it occurred between the last infection-free examination
and the first examination where the infection was present. Some udder quarters did not develop an
infection by the end of the study, so these observations are right-censored. We include a binary
covariate, multiparous, which is equal to 1 for cows that have experienced more than one calving,
and 0 for cows with only one calving.

To fit a log-normal model to the data, which assumes that the outcome is always positive, we take
the log of our dependent variables and then use meintreg to apply a multilevel Gaussian model for
interval- and right-censored data.

. use https://www.stata-press.com/data/r18/mastitis
(Simulated data on udder infection of dairy cows)

. generate lnleft = ln(left)
(5 missing values generated)

. generate lnright = ln(right)
(82 missing values generated)



142 meintreg — Multilevel mixed-effects interval regression

. meintreg lnleft lnright i.multiparous || farm: || cow:

Fitting fixed-effects model:

Iteration 0: Log likelihood = -912.93005
Iteration 1: Log likelihood = -901.90184
Iteration 2: Log likelihood = -901.48206
Iteration 3: Log likelihood = -901.48176
Iteration 4: Log likelihood = -901.48176

Refining starting values:

Grid node 0: Log likelihood = -897.92167

Fitting full model:

Iteration 0: Log likelihood = -897.92167 (not concave)
Iteration 1: Log likelihood = -863.2033 (not concave)
Iteration 2: Log likelihood = -857.45304 (not concave)
Iteration 3: Log likelihood = -855.18135
Iteration 4: Log likelihood = -850.84325
Iteration 5: Log likelihood = -846.31976
Iteration 6: Log likelihood = -846.24446
Iteration 7: Log likelihood = -846.24426
Iteration 8: Log likelihood = -846.24426

Mixed-effects interval regression Number of obs = 400
Uncensored = 0
Left-censored = 5
Right-censored = 82
Interval-cens. = 313

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

farm 10 40 40.0 40
cow 100 4 4.0 4

Integration method: mvaghermite Integration pts. = 7

Wald chi2(1) = 8.75
Log likelihood = -846.24426 Prob > chi2 = 0.0031

Coefficient Std. err. z P>|z| [95% conf. interval]

1.multiparous -.5689113 .1923729 -2.96 0.003 -.9459552 -.1918674
_cons 5.644119 .1896383 29.76 0.000 5.272435 6.015803

farm
var(_cons) .0246795 .0258621 .0031648 .1924544

farm>cow
var(_cons) .2481394 .0497735 .1674773 .367651

var(e.lnleft) .2626232 .0257671 .2166796 .3183084

LR test vs. interval model: chi2(2) = 110.47 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

We see that infection was observed in 318 udder quarters, the 5 observations that are left-censored
and the 313 that are interval censored. The coefficient for multiparous is negative, which means
that the time to infection will be about 56.9% shorter for cows that experienced multiple calvings.

The within-cow variance is 0.248, and the residual variance is 0.263, while the within-farm variance
is smaller, about 0.025. A likelihood-ratio test comparing the model to an interval regression model
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without random effects is provided under the table and indicates that the three-level interval regression
model is preferred.

Stored results
meintreg stores the following in e():

Scalars
e(N) number of observations
e(N unc) number of uncensored observations
e(N lc) number of left-censored observations
e(N rc) number of right-censored observations
e(N int) number of interval-censored observations
e(k) number of parameters
e(k dv) number of dependent variables
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k f) number of fixed-effects parameters
e(k r) number of random-effects parameters
e(k rs) number of variances
e(k rc) number of covariances
e(df m) model degrees of freedom
e(ll) log likelihood
e(N clust) number of clusters
e(chi2) χ2

e(p) p-value for model test
e(ll c) log likelihood, comparison model
e(chi2 c) χ2, comparison test
e(df c) degrees of freedom, comparison test
e(p c) p-value for comparison test
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) meglm
e(cmd2) meintreg
e(cmdline) command as typed
e(depvar) names of dependent variables
e(wtype) weight type
e(wexp) weight expression (first-level weights)
e(fweightk) fweight variable for kth highest level, if specified
e(iweightk) iweight variable for kth highest level, if specified
e(pweightk) pweight variable for kth highest level, if specified
e(covariates) list of covariates
e(ivars) grouping variables
e(model) interval
e(title) title in estimation output
e(link) identity
e(family) gaussian
e(clustvar) name of cluster variable
e(offset) offset
e(intmethod) integration method
e(n quad) number of integration points
e(chi2type) Wald; type of model χ2

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(opt) type of optimization
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e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(N g) group counts
e(g min) group-size minimums
e(g avg) group-size averages
e(g max) group-size maximums
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
Without a loss of generality, consider a two-level regression model

E(y?j |Xj ,uj) = Xjβ+ Zjuj , y? ∼ normal

for j = 1, . . . ,M clusters, with the jth cluster consisting of nj observations, where, for the jth
cluster, y?j is the nj × 1 response vector, Xj is the nj × p matrix of fixed predictors, Zj is the
nj × q matrix of random predictors, uj is the q × 1 vector of random effects, and β is the p × 1
vector of regression coefficients on the fixed predictors. The random effects, uj , are assumed to be
multivariate normal with mean 0 and variance Σ.

Let ηj be the linear predictor, ηj = Xjβ + Zjuj , that also includes the offset variable when
offset() is specified. Let y?ij and ηij be the ith individual elements of y?j and ηj , i = 1, . . . , nj .

The dependent variable, yij , is a possibly left-, right-, or interval-censored version of y?ij , and it
is recorded using two variables.
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The conditional density function for the response at observation ij is then,

f(yLij , y
U
ij |ηij) =



(√
2πσε
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where C is the set of uncensored observations (yLij = yUij and both nonmissing), L is the set of
left-censored observations (yLij missing and yUij nonmissing), R is the set of right-censored observations
(yLij nonmissing and yUij missing), I is the set of interval-censored observations (yLij < yUij and both
nonmissing), and Φ(·) is the cumulative normal distribution.

Because the observations are assumed to be conditionally independent, the conditional log density
function for cluster j is

logf(yj |ηj) =

ni∑
j=1

logf(yij |ηij)

and the likelihood function for cluster j is given by

Lj(β,Σ) = (2π)−q/2|Σ|−1/2
∫
<q
f(yj |ηj) exp

(
−1

2
u′jΣ

−1uj

)
duj

= (2π)−q/2|Σ|−1/2
∫
<q

exp
{

logf(yj |ηj)−
1

2
u′jΣ

−1uj

}
duj

(2)

where < denotes the set of values on the real line and <q is the analog in q-dimensional space.

The integration in (2) has no closed form and thus must be approximated; see Methods and
formulas in [ME] meglm for details.

meintreg supports multilevel weights and survey data; see Methods and formulas in [ME] meglm
for details.
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Also see
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Postestimation commands predict margins
Remarks and examples Methods and formulas Also see

Postestimation commands
The following postestimation commands are of special interest after meintreg:

Command Description

estat group summarize the composition of the nested groups
estat icc estimate intraclass correlations
estat sd display variance components as standard deviations and correlations

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian

information criteria (AIC, CAIC, AICc, and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
etable table of estimation results
∗hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
∗lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combi-

nations of coefficients
predict means, probabilities, densities, REs, residuals, etc.
predictnl point estimates, standard errors, testing, and inference for generalized pre-

dictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

∗ hausman and lrtest are not appropriate with svy estimation results.

147
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predict

Description for predict

predict creates a new variable containing predictions such as linear predictions, standard errors,
probabilities, and expected values.

Menu for predict

Statistics > Postestimation

Syntax for predict

Syntax for obtaining predictions of the outcome and other statistics

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
] [

, statistic options
]

Syntax for obtaining estimated random effects and their standard errors

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, reffects

[
re options

]
Syntax for obtaining ML scores

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, scores

statistic Description

Main

eta fitted linear predictor; the default
xb linear predictor for the fixed portion of the model only
stdp standard error of the fixed-portion linear prediction
pr(a,b) Pr(a < y < b)
e(a,b) E(y | a < y < b)
ystar(a,b) E(y∗), y∗ = max{a,min(y, b)}

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample.

where a and b may be numbers or variables; a missing (a ≥ .) means −∞, and b missing (b ≥ .)
means +∞; see [U] 12.2.1 Missing values.
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options Description

Main

conditional(ctype) compute statistic conditional on estimated random effects; default is
conditional(ebmeans)

marginal compute statistic marginally with respect to the random effects
nooffset make calculation ignoring offset or exposure

Integration

int options integration options

ctype Description

ebmeans empirical Bayes means of random effects; the default
ebmodes empirical Bayes modes of random effects
fixedonly prediction for the fixed portion of the model only

re options Description

Main

ebmeans use empirical Bayes means of random effects; the default
ebmodes use empirical Bayes modes of random effects
reses(stub* | newvarlist) calculate standard errors of empirical Bayes estimates

Integration

int options integration options

int options Description

intpoints(#) use # quadrature points to compute marginal predictions and empirical
Bayes means

iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators

tolerance(#) set convergence tolerance for computing statistics involving empirical
Bayes estimators

Options for predict� � �
Main �

eta, the default, calculates the fitted linear prediction.

pr(a,b) calculates estimates of Pr(a < y < b), which is the probability that y would be observed
in the interval (a, b).

a and b may be specified as numbers or variable names; lb and ub are variable names;
pr(20,30) calculates Pr(20 < y < 30);
pr(lb,ub) calculates Pr(lb < y < ub); and
pr(20,ub) calculates Pr(20 < y < ub).

a missing (a ≥ .) means −∞; pr(.,30) calculates Pr(−∞ < y < 30);
pr(lb,30) calculates Pr(−∞ < y < 30) in observations for which lb ≥ .
(and calculates Pr(lb < y < 30) elsewhere).
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b missing (b ≥ .) means +∞; pr(20,.) calculates Pr(+∞ > y > 20);
pr(20,ub) calculates Pr(+∞ > y > 20) in observations for which ub ≥ .
(and calculates Pr(20 < y < ub) elsewhere).

e(a,b) calculates estimates of E(y | a < y < b), which is the expected value of y conditional on
y being in the interval (a, b), meaning that y is truncated. a and b are specified as they are for
pr().

ystar(a,b) calculates estimates of E(y∗), where y∗ = a if y ≤ a, y∗ = b if y ≥ b, and y∗ = y
otherwise, meaning that y∗ is the censored version of y. a and b are specified as they are for
pr().

xb, stdp, scores, conditional(), marginal, and nooffset; see [ME] meglm postestimation.

reffects, ebmeans, ebmodes, and reses(); see [ME] meglm postestimation.

� � �
Integration �

intpoints(), iterate(), tolerance(); see [ME] meglm postestimation.

margins

Description for margins

margins estimates margins of response for linear predictions, probabilities, and expected values.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . . )

[
predict(statistic . . . ) . . .

] [
options

]
statistic Description

eta fitted linear predictor; the default
xb linear predictor for the fixed portion of the model only
pr(a,b) Pr(a < y < b)
e(a,b) E(y | a < y < b)
ystar(a,b) E(y∗), y∗ = max{a,min(y, b)}
stdp not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples
Various predictions, statistics, and diagnostic measures are available after fitting a mixed-effects

interval regression model with meintreg.

The predict command allows us to compute marginal and conditional predictions. Unless stated
differently, we use the word “conditional” to mean “conditional on the empirical Bayes predictions
of the random effects”. The default prediction is the linear prediction, eta, which is the expected
value of the unobserved censored variable. Predictions of expected values for censored and truncated
versions of the response are also available.

Example 1: Obtaining conditional and marginal probabilities

In example 1 of [ME] meintreg, we fit a three-level mixed-effects interval regression to model log
time to udder tissue infection in dairy cows.

. use https://www.stata-press.com/data/r18/mastitis
(Simulated data on udder infection of dairy cows)

. generate lnleft = ln(left)
(5 missing values generated)

. generate lnright = ln(right)
(82 missing values generated)

. meintreg lnleft lnright i.multiparous || farm: || cow:

(output omitted )

Let’s assume that we want to predict the probability of infection within the first 90 days. Because
our dependent variable is log(y), we need to compute

Pr(0 < y < 90) = Pr{−∞ < log(y) < log(90)}

We can use the pr() option for predict to compute the probability that our dependent variable lies
in the interval [−∞, log(90)].

We first compute the probability conditional on the random effects. Because the lower level on
which we are conditioning on is cow, and we have only cow-level covariates, these predictions will
be constant within cow. We can see that all the predicted probabilities for farm 3 are below 0.21,
while the probabilities for farms 2 and 6 reach above 0.70 in some cases.
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. predict pr_cond, pr(.,log(90))
(predictions based on fixed effects and posterior means of random effects)

. twoway scatter pr_cond farm, ylabel(0(.1).8) xlabel(1(1)10)
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Now, we compute the marginal probabilities of infection within the first 90 days.

. predict pr_marg, pr(.,log(90)) marginal

. tabulate pr_marg multiparous

=1 if cows
experienced more than

Marginal one calving, 0
Pr(y<log(9 otherwise

0)) 0 1 Total

.0589298 40 0 40

.2158333 0 360 360

Total 40 360 400

Marginal predictions depend only on the covariate pattern (including covariates in the random-
effects part, if present in the model). Because we included only a binary covariate in the model, there
are only two predicted values, one for each value of the covariate. We see that the probability of
developing an infection in the first 90 days is higher for multiparous cows.

Alternatively, we can use margins to calculate the marginal probabilities. One advantage of using
margins is that we can obtain confidence intervals for the probabilities and the difference between
them.



meintreg postestimation — Postestimation tools for meintreg 153

. margins multiparous, predict(pr(.,log(90)))

Adjusted predictions Number of obs = 400
Model VCE: OIM

Expression: Pr(y<log(90)), predict(pr(.,log(90)))

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

multiparous
0 .0589298 .0305541 1.93 0.054 -.0009551 .1188147
1 .2158333 .0314158 6.87 0.000 .1542595 .2774071

. margins, dydx(multiparous) predict(pr(.,log(90)))

Conditional marginal effects Number of obs = 400
Model VCE: OIM

Expression: Pr(y<log(90)), predict(pr(.,log(90)))
dy/dx wrt: 1.multiparous

Delta-method
dy/dx std. err. z P>|z| [95% conf. interval]

1.multipar~s .1569036 .0396889 3.95 0.000 .0791148 .2346923

Note: dy/dx for factor levels is the discrete change from the base level.

The default option for predict, eta, computes the fitted linear prediction; we can use this option
to perform predictions for the uncensored unobserved response. We compute the conditional and
marginal predictions for the log time to infection.

. predict eta_cond
(option eta assumed)
(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)

. predict eta_marg, marginal
(option eta assumed)

. sort cow

. list cow multiparous eta_cond eta_marg in 1/8, sepby(cow)

cow multip~s eta_cond eta_marg

1. 1 0 5.486386 5.644119
2. 1 0 5.486386 5.644119
3. 1 0 5.486386 5.644119
4. 1 0 5.486386 5.644119

5. 2 1 5.101668 5.075207
6. 2 1 5.101668 5.075207
7. 2 1 5.101668 5.075207
8. 2 1 5.101668 5.075207

Comparing the conditional and marginal predictions, we see that the predicted log time to infection
for the first cow is slightly shorter than the one expected for a cow with this covariate pattern, and
the log time to infection for the second cow is slightly longer.
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Example 2: Calculating transformed predictions

Because our dependent variable is log transformed, we might want to compute predictions on the
original scale. To do that, we need to obtain predictions for the exponentiated dependent variable.

This exercise is helpful to understand the distribution of the different statistics. If we want to
predict the individual conditional time to infection, we need to obtain the conditional mean for
exp(y). Because the conditional distribution of exp(y) is lognormal with location parameter equal to
η̂ and scale parameter equal to σε (residual variance), then its (conditional) expected value is equal
to exp(η̂ + σ2

ε /2). Here we calculate the conditional time to infection and plot kernel densities for
multiparous and uniparous cows.

. generate time_cond = exp(eta_cond + _b[/var(e.lnleft)]/2)

. kdensity time_cond if multiparous == 0, xlabel(0(200)800) name(gr1)

. kdensity time_cond if multiparous == 1, xlabel(0(200)800) name(gr2)

. graph combine gr1 gr2
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The density estimator of the time to infection shows that multiparous cows tend to have shorter
times to infection than uniparous cows.

The marginal distribution of y is lognormal with location parameter xβ and the scale parameter
equal to the marginal variance; see Methods and formulas of [ME] metobit postestimation for the
description of the marginal variance. Thus the marginal expected value of the time to infection is
calculated as

. predict xb, xb

. generate time_marg = exp( xb + (_b[/var(_cons[farm])] +
> _b[/var(_cons[farm>cow])] + _b[/var(e.lnleft)])/2)

. tabulate time_marg multiparous

=1 if cows
experienced more than

one calving, 0
otherwise

time_marg 0 1 Total

209.1242 0 360 360
369.3851 40 0 40

Total 40 360 400
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As before, we see that the unconditional expected value for the time to infection is shorter for
multiparous cows.

Methods and formulas
Methods and formulas for predicting random effects and other statistics are given in Methods and

formulas of [ME] metobit postestimation.

Also see
[ME] meintreg — Multilevel mixed-effects interval regression

[U] 20 Estimation and postestimation commands



Title

melogit — Multilevel mixed-effects logistic regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

melogit fits mixed-effects models for binary and binomial responses. The conditional distribution
of the response given the random effects is assumed to be Bernoulli, with success probability determined
by the logistic cumulative distribution function.

Quick start
Without weights

Two-level logistic regression of y on x with random intercepts by lev2

melogit y x || lev2:

Mixed-effects model adding random coefficients for x
melogit y x || lev2: x

Same as above, but allow the random effects to be correlated
melogit y x || lev2: x, covariance(unstructured)

Three-level random-intercept model of y on x with lev2 nested within lev3

melogit y x || lev3: || lev2:

Crossed-effects model of y on x with two-way crossed random effects by factors a and b

melogit y x || _all:R.a || b:

With weights

Two-level logistic regression of y on x with random intercepts by lev2 and observation-level frequency
weights wvar1

melogit y x [fweight=wvar1] || lev2:

Two-level random-intercept model from a two-stage sampling design with PSUs identified by psu
using PSU-level and observation-level sampling weights wvar2 and wvar1, respectively

melogit y x [pweight=wvar1] || psu:, pweight(wvar2)

Add secondary sampling stage with units identified by ssu having weights wvar2 and PSU-level
weights wvar3 for a three-level random-intercept model

melogit y x [pw=wvar1] || psu:, pw(wvar3) || ssu:, pw(wvar2)

Same as above, but svyset data first
svyset psu, weight(wvar3) || ssu, weight(wvar2) || _n, weight(wvar1)
svy: melogit y x || psu: || ssu:

156
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Menu
Statistics > Multilevel mixed-effects models > Logistic regression

Syntax
melogit depvar fe equation

[
|| re equation

] [
|| re equation . . .

] [
, options

]
where the syntax of fe equation is[

indepvars
] [

if
] [

in
] [

weight
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all
representing one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation
offset(varname) include varname in model with coefficient constrained to 1
asis retain perfect predictor variables

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
fweight(varname) frequency weights at higher levels
iweight(varname) importance weights at higher levels
pweight(varname) sampling weights at higher levels
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options Description

Model

binomial(varname | #) set binomial trials if data are in binomial form
constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)

or report fixed-effects coefficients as odds ratios
nocnsreport do not display constraints
notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intmethod(intmethod) integration method
intpoints(#) set the number of integration (quadrature) points for all levels;

default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values
startgrid

[
(gridspec)

]
perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead
dnumerical use numerical derivative techniques
collinear keep collinear variables
coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated
fixed(matname) user-selected variances and covariances constrained to specified

values; the remaining variances and covariances unrestricted
pattern(matname) user-selected variances and covariances constrained to be equal;

the remaining variances and covariances unrestricted



melogit — Multilevel mixed-effects logistic regression 159

intmethod Description

mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature
pcaghermite Pinheiro–Chao mode-curvature adaptive Gauss–Hermite

quadrature
ghermite nonadaptive Gauss–Hermite quadrature
laplace Laplacian approximation; the default for crossed random-effects

models
pclaplace Pinheiro–Chao Laplacian approximation

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: mel-

ogit.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified.

Weights are not supported under the Laplacian approximation or for crossed models.
startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog

box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any of or all the random-effects equations.

offset(varname) specifies that varname be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

asis forces retention of perfect predictor variables and their associated, perfectly predicted observations
and may produce instabilities in maximization; see [R] probit.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent) unless a crossed random-effects model is fit, in which case the
default is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2
unique parameters.
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covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures
provide a convenient way to impose constraints on variances and covariances of random effects.
Each specification requires a matname that defines the restrictions placed on variances and
covariances. Only elements in the lower triangle of matname are used, and row and column names
of matname are ignored. A missing value in matname means that a given element is unrestricted.
In a fixed(matname) covariance structure, (co)variance (i, j) is constrained to equal the
value specified in the i, jth entry of matname. In a pattern(matname) covariance structure,
(co)variances (i, j) and (k, l) are constrained to be equal if matname[i, j] = matname[k, l].

fweight(varname) specifies frequency weights at higher levels in a multilevel model, whereas
frequency weights at the first level (the observation level) are specified in the usual manner, for
example, [fw=fwtvar1]. varname can be any valid Stata variable name, and you can specify
fweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wt1] || school: . . . , fweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2
would hold the second-level (the school-level) frequency weights.

iweight(varname) specifies importance weights at higher levels in a multilevel model, whereas
importance weights at the first level (the observation level) are specified in the usual manner,
for example, [iw=iwtvar1]. varname can be any valid Stata variable name, and you can specify
iweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: . . . , iweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) importance weights, and wt2
would hold the second-level (the school-level) importance weights.

pweight(varname) specifies sampling weights at higher levels in a multilevel model, whereas
sampling weights at the first level (the observation level) are specified in the usual manner, for
example, [pw=pwtvar1]. varname can be any valid Stata variable name, and you can specify
pweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wt1] || school: . . . , pweight(wt2) . . .

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would
hold the second-level (the school-level) sampling weights.

binomial(varname | #) specifies that the data are in binomial form; that is, depvar records the number
of successes from a series of binomial trials. This number of trials is given either as varname,
which allows this number to vary over the observations, or as the constant #. If binomial() is
not specified (the default), depvar is treated as Bernoulli, with any nonzero, nonmissing values
indicating positive responses.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is
specified, robust variances are clustered at the highest level in the multilevel model.

� � �
Reporting �

level(#); see [R] Estimation options.
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or reports estimated fixed-effects coefficients transformed to odds ratios, that is, exp(β) rather than β.
Standard errors and confidence intervals are similarly transformed. This option affects how results
are displayed, not how they are estimated. or may be specified either at estimation or upon replay.

nocnsreport; see [R] Estimation options.

notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model.
mvaghermite performs mean–variance adaptive Gauss–Hermite quadrature; mcaghermite and
pcaghermite perform mode-curvature adaptive Gauss–Hermite quadrature; ghermite performs
nonadaptive Gauss–Hermite quadrature; and laplace and pclaplace perform the Laplacian
approximation, equivalent to mode-curvature adaptive Gaussian quadrature with one integration
point. Techniques pcaghermite and pclaplace obtain the random-effects mode and curvature
using the efficient hierarchical decomposition algorithm described in Pinheiro and Chao (2006). For
hierarchical models, this algorithm takes advantage of the design structure to minimize memory use
and utilizes a series of orthogonal triangulations to compute the factored random-effects Hessian
indirectly, avoiding the sparse full Hessian. Techniques mcaghermite and laplace use Cholesky
factorization on the full Hessian. For four- and higher-level hierarchical designs, there can be
dramatic computation-time differences.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in
which case the default integration method is laplace. The Laplacian approximation has been
known to produce biased parameter estimates; however, the bias tends to be more prominent in
the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be
prohibitively intensive even for a small number of levels. For this reason, the integration method
defaults to the Laplacian approximation. You may override this behavior by specifying a different
integration method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option
is not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases as a function of the number of quadrature points raised to a power
equaling the dimension of the random-effects specification. In crossed random-effects models and
in models with many levels or many random coefficients, this increase can be substantial.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. Those that require
special mention for melogit are listed below.
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from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

The following options are available with melogit but are not shown in the dialog box:

startvalues(svmethod), startgrid
[
(gridspec)

]
, noestimate, and dnumerical; see [ME]

meglm.

collinear, coeflegend; see [R] Estimation options.

Remarks and examples

For a general introduction to me commands, see [ME] me.

melogit is a convenience command for meglm with a logit link and a bernoulli or binomial
family; see [ME] meglm.

Remarks are presented under the following headings:

Introduction
Two-level models
Other covariance structures
Three-level models
Crossed-effects models

Introduction

Mixed-effects logistic regression is logistic regression containing both fixed effects and random
effects. In longitudinal data and panel data, random effects are useful for modeling intracluster
correlation; that is, observations in the same cluster are correlated because they share common
cluster-level random effects.

melogit allows for many levels of random effects. However, for simplicity, for now we consider
the two-level model, where for a series of M independent clusters, and conditional on a set of random
effects uj ,

Pr(yij = 1|xij ,uj) = H(xijβ+ zijuj) (1)

for j = 1, . . . ,M clusters, with cluster j consisting of i = 1, . . . , nj observations. The responses are
the binary-valued yij , and we follow the standard Stata convention of treating yij = 1 if depvarij 6= 0
and treating yij = 0 otherwise. The 1 × p row vector xij are the covariates for the fixed effects,
analogous to the covariates you would find in a standard logistic regression model, with regression
coefficients (fixed effects) β. For notational convenience here and throughout this manual entry, we
suppress the dependence of yij on xij .

The 1 × q vector zij are the covariates corresponding to the random effects and can be used to
represent both random intercepts and random coefficients. For example, in a random-intercept model,
zij is simply the scalar 1. The random effects uj are M realizations from a multivariate normal
distribution with mean 0 and q× q variance matrix Σ. The random effects are not directly estimated
as model parameters but are instead summarized according to the unique elements of Σ, known
as variance components. One special case of (1) places zij = xij so that all covariate effects are
essentially random and distributed as multivariate normal with mean β and variance Σ.

Finally, because this is logistic regression,H(·) is the logistic cumulative distribution function, which
maps the linear predictor to the probability of a success (yij = 1), with H(v) = exp(v)/{1+ exp(v)}.
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Model (1) may also be stated in terms of a latent linear response, where only yij = I(y∗ij > 0)
is observed for the latent

y∗ij = xijβ+ zijuj + εij

The errors εij are distributed as logistic with mean 0 and variance π2/3 and are independent of uj .

A two-level logistic model can also be fit using xtlogit with the re option; see [XT] xtlogit. In
the absence of random effects, mixed-effects logistic regression reduces to standard logistic regression;
see [R] logit.

Two-level models

Example 1: Two-level random-intercept model

Ng et al. (2006) analyze a subsample of data from the 1989 Bangladesh fertility survey (Huq and
Cleland 1990), which polled 1,934 Bangladeshi women on their use of contraception.

. use https://www.stata-press.com/data/r18/bangladesh
(Bangladesh Fertility Survey, 1989)

. describe

Contains data from https://www.stata-press.com/data/r18/bangladesh.dta
Observations: 1,934 Bangladesh Fertility Survey,

1989
Variables: 8 28 May 2022 20:27

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

district byte %9.0g District
c_use byte %9.0g yesno Use contraception
urban byte %9.0g urban Urban or rural
age float %6.2f Age, mean centered
child1 byte %9.0g 1 child
child2 byte %9.0g 2 children
child3 byte %9.0g 3 or more children
children byte %18.0g childlbl Number of children

Sorted by: district

The women sampled were from 60 districts, identified by the variable district. Each district
contained either urban or rural areas (variable urban) or both. The variable c use is the binary
response, with a value of 1 indicating contraceptive use. Other covariates include mean-centered age
and a factor variable for the number of children.

Consider a standard logistic regression model, amended to have random effects for each district.
Defining πij = Pr(c useij = 1), we have

logit(πij) = β0 + β11.urbanij + β2ageij + β31.childrenij + β42.childrenij +

β53.childrenij + uj
(2)

for j = 1, . . . , 60 districts, with i = 1, . . . , nj women in district j.
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. melogit c_use i.urban age i.children, nofvlabel|| district:

Fitting fixed-effects model:

Iteration 0: Log likelihood = -1229.5485
Iteration 1: Log likelihood = -1228.5268
Iteration 2: Log likelihood = -1228.5263
Iteration 3: Log likelihood = -1228.5263

Refining starting values:

Grid node 0: Log likelihood = -1219.2681

Fitting full model:

Iteration 0: Log likelihood = -1219.2681 (not concave)
Iteration 1: Log likelihood = -1207.5978
Iteration 2: Log likelihood = -1206.8428
Iteration 3: Log likelihood = -1206.8322
Iteration 4: Log likelihood = -1206.8322

Mixed-effects logistic regression Number of obs = 1,934
Group variable: district Number of groups = 60

Obs per group:
min = 2
avg = 32.2
max = 118

Integration method: mvaghermite Integration pts. = 7

Wald chi2(5) = 109.60
Log likelihood = -1206.8322 Prob > chi2 = 0.0000

c_use Coefficient Std. err. z P>|z| [95% conf. interval]

1.urban .7322765 .1194857 6.13 0.000 .4980888 .9664641
age -.0264981 .0078916 -3.36 0.001 -.0419654 -.0110309

children
1 1.116001 .1580921 7.06 0.000 .8061465 1.425856
2 1.365895 .1746691 7.82 0.000 1.02355 1.70824
3 1.344031 .1796549 7.48 0.000 .9919139 1.696148

_cons -1.68929 .1477591 -11.43 0.000 -1.978892 -1.399687

district
var(_cons) .215618 .0733222 .1107208 .4198954

LR test vs. logistic model: chibar2(01) = 43.39 Prob >= chibar2 = 0.0000

The estimation table reports the fixed effects and the estimated variance components. The fixed
effects can be interpreted just as you would the output from logit. You can also specify the or option
at estimation or on replay to display the fixed effects as odds ratios instead. If you did display results
as odds ratios, you would find urban women to have roughly double the odds of using contraception
as that of their rural counterparts. Having any number of children will increase the odds from three-
to fourfold when compared with the base category of no children. Contraceptive use also decreases
with age. The nofvlabel option requested the values of factor variables urban and children be
displayed instead of the value labels.

Underneath the fixed effect, the table shows the estimated variance components. The random-effects
equation is labeled district, meaning that these are random effects at the district level. Because
we have only one random effect at this level, the table shows only one variance component. The
estimate of σ2

u is 0.22 with standard error 0.07.

A likelihood-ratio test comparing the model with ordinary logistic regression is provided and is
highly significant for these data.
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We now store our estimates for later use.

. estimates store r_int

In what follows, we will be extending (2), focusing on the variable urban. Before we begin, to
keep things short we restate (2) as

logit(πij) = β0 + β11.urbanij + Fij + uj

where Fij is merely shorthand for the portion of the fixed-effects specification having to do with age
and children.

Example 2: Two-level random-slope model

Extending (2) to allow for a random slope on the indicator variable 1.urban yields the model

logit(πij) = β0 + β11.urbanij + Fij + uj + vj1.urbanij (3)

which we can fit by typing

. melogit c_use i.urban age i.children, nofvlabel || district: i.urban

(output omitted )
. estimates store r_urban

Extending the model was as simple as adding i.urban to the random-effects specification so that
the model now includes a random intercept and a random coefficient on 1.urban. We dispense with
the output because, although this is an improvement over the random-intercept model (2),

. lrtest r_int r_urban

Likelihood-ratio test
Assumption: r_int nested within r_urban

LR chi2(1) = 3.66
Prob > chi2 = 0.0558

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

we find the default covariance structure for (uj , vj), covariance(independent),

Σ = Var
[
uj
vj

]
=

[
σ2
u 0
0 σ2

v

]
to be inadequate. We state that the random-coefficient model is an “improvement” over the random-
intercept model because the null hypothesis of the likelihood-ratio comparison test (H0 : σ2

v = 0) is
on the boundary of the parameter test. This makes the reported p-value, 5.6%, an upper bound on
the actual p-value, which is actually half of that; see Distribution theory for likelihood-ratio test in
[ME] me.

We see below that we can reject this model in favor of one that allows correlation between uj
and vj .
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. melogit c_use i.urban age i.children, nofvlabel
> || district: i.urban, covariance(unstructured)

Fitting fixed-effects model:

Iteration 0: Log likelihood = -1229.5485
Iteration 1: Log likelihood = -1228.5268
Iteration 2: Log likelihood = -1228.5263
Iteration 3: Log likelihood = -1228.5263

Refining starting values:

Grid node 0: Log likelihood = -1215.8592

Fitting full model:

Iteration 0: Log likelihood = -1215.8592 (not concave)
Iteration 1: Log likelihood = -1201.0652
Iteration 2: Log likelihood = -1199.6394
Iteration 3: Log likelihood = -1199.3157
Iteration 4: Log likelihood = -1199.315
Iteration 5: Log likelihood = -1199.315

Mixed-effects logistic regression Number of obs = 1,934
Group variable: district Number of groups = 60

Obs per group:
min = 2
avg = 32.2
max = 118

Integration method: mvaghermite Integration pts. = 7

Wald chi2(5) = 97.50
Log likelihood = -1199.315 Prob > chi2 = 0.0000

c_use Coefficient Std. err. z P>|z| [95% conf. interval]

1.urban .8157875 .1715519 4.76 0.000 .4795519 1.152023
age -.026415 .008023 -3.29 0.001 -.0421398 -.0106902

children
1 1.13252 .1603285 7.06 0.000 .818282 1.446758
2 1.357739 .1770522 7.67 0.000 1.010723 1.704755
3 1.353827 .1828801 7.40 0.000 .9953882 1.712265

_cons -1.71165 .1605618 -10.66 0.000 -2.026345 -1.396954

district
var(1.urban) .6663237 .3224689 .258074 1.720387

var(_cons) .3897448 .1292463 .203473 .7465413

district
cov(1.urban,

_cons) -.4058861 .1755414 -2.31 0.021 -.7499408 -.0618313

LR test vs. logistic model: chi2(3) = 58.42 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. estimates store r_urban_corr

. lrtest r_urban r_urban_corr

Likelihood-ratio test
Assumption: r_urban nested within r_urban_corr

LR chi2(1) = 11.38
Prob > chi2 = 0.0007
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By specifying covariance(unstructured) above, we told melogit to allow correlation between
random effects at the district level; that is,

Σ = Var
[
uj
vj

]
=

[
σ2
u σuv

σuv σ2
v

]

Example 3: Alternative parameterization of random slopes

The purpose of introducing a random coefficient on the binary variable urban in (3) was to allow
for separate random effects, within each district, for the urban and rural areas of that district. Hence,
if we turn off base levels for factor variable i.urban via ibn.urban, then we can reformulate (3)
as

logit(πij) = β00.urbanij + (β0 +β1)1.urbanij +Fij +uj0.urbanij + (uj + vj)1.urbanij (3a)

where we have translated both the fixed portion and the random portion to be in terms of 0.urban
rather than a random intercept. Translating the fixed portion is not necessary to make the point we
make below, but we do so anyway for uniformity.

Translating the estimated random-effects parameters from the previous output to ones appropriate
for (3a), we get Var(uj) = σ̂2

u = 0.39,

Var(uj + vj) = σ̂2
u + σ̂2

v + 2σ̂uv

= 0.39 + 0.67− 2(0.41) = 0.24

and Cov(uj , uj + vj) = σ̂2
u + σ̂uv = 0.39− 0.41 = −0.02.

An alternative that does not require remembering how to calculate variances and covariances
involving sums—and one that also gives you standard errors—is to let Stata do the work for you:
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. melogit c_use ibn.urban age i.children, noconstant nofvlabel
> || district: ibn.urban, noconstant cov(unstructured)

Fitting fixed-effects model:

Iteration 0: Log likelihood = -1229.5485
Iteration 1: Log likelihood = -1228.5268
Iteration 2: Log likelihood = -1228.5263
Iteration 3: Log likelihood = -1228.5263

Refining starting values:

Grid node 0: Log likelihood = -1208.3922

Fitting full model:

Iteration 0: Log likelihood = -1208.3922 (not concave)
Iteration 1: Log likelihood = -1203.556 (not concave)
Iteration 2: Log likelihood = -1200.5896
Iteration 3: Log likelihood = -1199.7288
Iteration 4: Log likelihood = -1199.3373
Iteration 5: Log likelihood = -1199.3151
Iteration 6: Log likelihood = -1199.315

Mixed-effects logistic regression Number of obs = 1,934
Group variable: district Number of groups = 60

Obs per group:
min = 2
avg = 32.2
max = 118

Integration method: mvaghermite Integration pts. = 7

Wald chi2(6) = 120.24
Log likelihood = -1199.315 Prob > chi2 = 0.0000
( 1) [c_use]_cons = 0

c_use Coefficient Std. err. z P>|z| [95% conf. interval]

urban
0 -1.711652 .1605617 -10.66 0.000 -2.026347 -1.396956
1 -.8958623 .1704954 -5.25 0.000 -1.230027 -.5616974

age -.026415 .008023 -3.29 0.001 -.0421398 -.0106903

children
1 1.13252 .1603285 7.06 0.000 .8182819 1.446758
2 1.357739 .1770522 7.67 0.000 1.010724 1.704755
3 1.353827 .18288 7.40 0.000 .9953883 1.712265

_cons 0 (omitted)

district
var(0.urban) .3897485 .1292403 .2034823 .7465212
var(1.urban) .2442899 .1450625 .0762871 .7822759

district
cov(0.urban,

1.urban) -.0161411 .1057462 -0.15 0.879 -.2233999 .1911177

LR test vs. logistic model: chi2(3) = 58.42 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

The above output demonstrates an equivalent fit to that we displayed for model (3), with the added
benefit of a more direct comparison of the parameters for rural and urban areas.
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Technical note

Our model fits for (3) and (3a) are equivalent only because we allowed for correlation in the
random effects for both. Had we used the default independent covariance structure, we would be
fitting different models; in (3) we would be making the restriction that Cov(uj , vj) = 0, whereas in
(3a) we would be assuming that Cov(uj , uj + vj) = 0.

The moral here is that although melogit will do this by default, one should be cautious when
imposing an independent covariance structure, because the correlation between random effects is not
invariant to model translations that would otherwise yield equivalent results in standard regression
models. In our example, we remapped an intercept and binary coefficient to two complementary
binary coefficients, something we could do in standard logistic regression without consequence but
that here required more consideration.

Rabe-Hesketh and Skrondal (2022, sec. 11.4) provide a nice discussion of this phenomenon in the
related case of recentering a continuous covariate.

Other covariance structures
In the above examples, we demonstrated the independent and unstructured covariance struc-

tures. Also available are identity (seen previously in output but not directly specified), which
restricts random effects to be uncorrelated and share a common variance, and exchangeable, which
assumes a common variance and a common pairwise covariance.

You can also specify multiple random-effects equations at the same level, in which case the above
four covariance types can be combined to form more complex blocked-diagonal covariance structures.
This could be used, for example, to impose an equality constraint on a subset of variance components
or to otherwise group together a set of related random effects.

Continuing the previous example, typing

. melogit c_use i.urban age i.children,
> || district: i.children, cov(exchangeable)
> || district:

would fit a model with the same fixed effects as (3) but with random-effects structure

logit(πij) = β0 + · · ·+ u1j1.childrenij + u2j2.childrenij + u3j3.childrenij + vj

That is, we have random coefficients on the children factor levels (the first district: specification)
and an overall district random intercept (the second district: specification). The above syntax fits
a model with overall covariance structure

Σ = Var


u1j
u2j
u3j
vj

 =


σ2
u σc σc 0
σc σ2

u σc 0
σc σc σ2

u 0
0 0 0 σ2

v


reflecting the relationship among the random coefficients for children. We did not have to specify
noconstant on the first district: specification. melogit automatically avoids collinearity by
including an intercept on only the final specification among repeated-level equations.
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Of course, if we fit the above model, we would heed our own advice from the previous technical
note and make sure that not only our data but also our specification characterization of the random
effects permitted the above structure. That is, we would check the above against a model that had
an unstructured covariance for all four random effects and then perhaps against a model that
assumed an unstructured covariance among the three random coefficients on children, coupled
with independence with the random intercept. All comparisons can be made by storing estimates
(command estimates store) and then using lrtest, as demonstrated previously.

Three-level models

Example 4: Three-level random-intercept model

Rabe-Hesketh, Toulopoulou, and Murray (2001) analyzed data from a study measuring the cognitive
ability of patients with schizophrenia compared with their relatives and control subjects. Cognitive
ability was measured as the successful completion of the “Tower of London”, a computerized task,
measured at three levels of difficulty. For all but one of the 226 subjects, there were three measurements
(one for each difficulty level). Because patients’ relatives were also tested, a family identifier, family,
was also recorded.

. use https://www.stata-press.com/data/r18/towerlondon, clear
(Tower of London data)

. describe

Contains data from https://www.stata-press.com/data/r18/towerlondon.dta
Observations: 677 Tower of London data

Variables: 5 31 May 2022 10:41
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

family int %8.0g Family ID
subject int %9.0g Subject ID
dtlm byte %9.0g 1 = task completed
difficulty byte %9.0g Level of difficulty: -1, 0, or 1
group byte %8.0g 1: controls; 2: relatives; 3:

schizophrenics

Sorted by: family subject

We fit a logistic model with response dtlm, the indicator of cognitive function, and with covariates
difficulty and a set of indicator variables for group, with the controls (group==1) being the base
category. We allow for random effects due to families and due to subjects within families, and we
request to see odds ratios.
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. melogit dtlm difficulty i.group || family: || subject: , or

Fitting fixed-effects model:

Iteration 0: Log likelihood = -317.35042
Iteration 1: Log likelihood = -313.90007
Iteration 2: Log likelihood = -313.89079
Iteration 3: Log likelihood = -313.89079

Refining starting values:

Grid node 0: Log likelihood = -310.28429

Fitting full model:

Iteration 0: Log likelihood = -310.28429
Iteration 1: Log likelihood = -307.36653
Iteration 2: Log likelihood = -305.19357
Iteration 3: Log likelihood = -305.12073
Iteration 4: Log likelihood = -305.12041
Iteration 5: Log likelihood = -305.12041

Mixed-effects logistic regression Number of obs = 677

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

family 118 2 5.7 27
subject 226 2 3.0 3

Integration method: mvaghermite Integration pts. = 7

Wald chi2(3) = 74.90
Log likelihood = -305.12041 Prob > chi2 = 0.0000

dtlm Odds ratio Std. err. z P>|z| [95% conf. interval]

difficulty .1923372 .037161 -8.53 0.000 .1317057 .2808806

group
2 .7798263 .2763763 -0.70 0.483 .3893369 1.561961
3 .3491318 .13965 -2.63 0.009 .15941 .764651

_cons .226307 .0644625 -5.22 0.000 .1294902 .3955112

family
var(_cons) .5692105 .5215654 .0944757 3.429459

family>
subject

var(_cons) 1.137917 .6854853 .3494165 3.705762

Note: Estimates are transformed only in the first equation to odds ratios.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 17.54 Prob > chi2 = 0.0002

Note: LR test is conservative and provided only for reference.

This is a three-level model with two random-effects equations, separated by ||. The first is a
random intercept (constant only) at the family level, and the second is a random intercept at the
subject level. The order in which these are specified (from left to right) is significant—melogit
assumes that subject is nested within family.

The information on groups is now displayed as a table, with one row for each upper level. Among
other things, we see that we have 226 subjects from 118 families.
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After adjusting for the random-effects structure, the odds of successful completion of the Tower of
London decrease dramatically as the level of difficulty increases. Also, schizophrenics (group==3)
tended not to perform as well as the control subjects. Of course, we would make similar conclusions
from a standard logistic model fit to the same data, but the odds ratios would differ somewhat.

Technical note
In the previous example, the subjects are coded with unique values between 1 and 251 (with

some gaps), but such coding is not necessary to produce nesting within families. Once we specified
the nesting structure to melogit, all that was important was the relative coding of subject within
each unique value of family. We could have coded subjects as the numbers 1, 2, 3, and so on,
restarting at 1 with each new family, and melogit would have produced the same results.

Group identifiers may also be coded using string variables.

The above extends to models with more than two levels of nesting by adding more random-effects
equations, each separated by ||. The order of nesting goes from left to right as the groups go from
biggest (highest level) to smallest (lowest level).

Crossed-effects models

Example 5: Crossed-effects model

Rabe-Hesketh and Skrondal (2022, 493–512) perform an analysis on school data from Fife,
Scotland. The data, originally from Paterson (1991), are from a study measuring students’ attainment
as an integer score from 1 to 10, based on the Scottish school exit examination taken at age 16. The
study comprises 3,435 students who first attended any one of 148 primary schools and then any one
of 19 secondary schools.

. use https://www.stata-press.com/data/r18/fifeschool
(School data from Fife, Scotland)

. describe

Contains data from https://www.stata-press.com/data/r18/fifeschool.dta
Observations: 3,435 School data from Fife, Scotland

Variables: 5 28 May 2022 10:08
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

pid int %9.0g Primary school ID
sid byte %9.0g Secondary school ID
attain byte %9.0g Attainment score at age 16
vrq int %9.0g Verbal-reasoning score from final

year of primary school
sex byte %9.0g 1: female; 0: male

Sorted by:

. generate byte attain_gt_6 = attain > 6

To make the analysis relevant to our present discussion, we focus not on the attainment score itself
but instead on whether the score is greater than 6. We wish to model this indicator as a function of
the fixed effect sex and of random effects due to primary and secondary schools.
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For this analysis, it would make sense to assume that the random effects are not nested, but instead
crossed, meaning that the effect due to primary school is the same regardless of the secondary school
attended. Our model is thus

logit{Pr(attainijk > 6)} = β0 + β1sexijk + uj + vk (4)

for student i, i = 1, . . . , njk, who attended primary school j, j = 1, . . . , 148, and then secondary
school k, k = 1, . . . , 19.

Because there is no evident nesting, one solution would be to consider the data as a whole and
fit a two-level, one-cluster model with random-effects structure

u =



u1
...

u148
v1
...
v19


∼ N(0,Σ); Σ =

[
σ2
uI148 0
0 σ2

vI19

]

We can fit such a model by using the group designation all:, which tells melogit to treat the
whole dataset as one cluster, and the R.varname notation, which mimics the creation of indicator
variables identifying schools:

. melogit attain_gt_6 sex || _all:R.pid || _all:R.sid, or

But we do not recommend fitting the model this way because of high total dimension (148+19 = 167)
of the random effects. This would require working with matrices of column dimension 167, which is
probably not a problem for most current hardware, but would be a problem if this number got much
larger.

An equivalent way to fit (4) that has a smaller dimension is to treat the clusters identified by
primary schools as nested within all the data, that is, as nested within the all group.
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. melogit attain_gt_6 sex || _all:R.sid || pid:, or
note: crossed random-effects model specified; option intmethod(laplace)

implied.

Fitting fixed-effects model:

Iteration 0: Log likelihood = -2320.2374
Iteration 1: Log likelihood = -2317.9062
Iteration 2: Log likelihood = -2317.9059
Iteration 3: Log likelihood = -2317.9059

Refining starting values:

Grid node 0: Log likelihood = -2234.6403

Fitting full model:

Iteration 0: Log likelihood = -2234.6403 (not concave)
Iteration 1: Log likelihood = -2227.9507 (not concave)
Iteration 2: Log likelihood = -2227.9287 (not concave)
Iteration 3: Log likelihood = -2227.9265 (not concave)
Iteration 4: Log likelihood = -2227.9263
Iteration 5: Log likelihood = -2221.6884 (not concave)
Iteration 6: Log likelihood = -2221.1707 (not concave)
Iteration 7: Log likelihood = -2221.1232
Iteration 8: Log likelihood = -2220.1709 (not concave)
Iteration 9: Log likelihood = -2220.1556
Iteration 10: Log likelihood = -2220.0176
Iteration 11: Log likelihood = -2220.0038
Iteration 12: Log likelihood = -2220.0035
Iteration 13: Log likelihood = -2220.0035

Mixed-effects logistic regression Number of obs = 3,435

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

_all 1 3,435 3,435.0 3,435
pid 148 1 23.2 72

Integration method: laplace

Wald chi2(1) = 14.43
Log likelihood = -2220.0035 Prob > chi2 = 0.0001

attain_gt_6 Odds ratio Std. err. z P>|z| [95% conf. interval]

sex 1.325123 .0981968 3.80 0.000 1.145984 1.532264
_cons .531146 .0617951 -5.44 0.000 .4228463 .6671835

_all>sid
var(_cons) .1239764 .0693708 .0414048 .3712168

pid
var(_cons) .4520522 .0953939 .2989266 .6836167

Note: Estimates are transformed only in the first equation to odds ratios.
Note: _cons estimates baseline odds (conditional on zero random effects).
LR test vs. logistic model: chi2(2) = 195.80 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Choosing the primary schools as those to nest was no accident; because there are far fewer secondary
schools than primary schools, the above required only 19 random coefficients for the secondary
schools and one random intercept at the primary school level, for a total dimension of 20. Our data
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also include a measurement of verbal reasoning, the variable vrq. Adding a fixed effect due to vrq in
(4) would negate the effect due to secondary school, a fact we leave to you to verify as an exercise.

See [ME] mixed for a similar discussion of crossed effects in the context of linear mixed models.
Also see Rabe-Hesketh and Skrondal (2022) for more examples of crossed-effects models, including
models with random interactions, and for more techniques on how to avoid high-dimensional estimation.

Technical note

The estimation in the previous example was performed using a Laplacian approximation, even
though we did not specify this. Whenever the R. notation is used in random-effects specifications,
estimation reverts to the Laplacian method because of the high dimension induced by having the R.
variables.

In the above example, through some creative nesting, we reduced the dimension of the random
effects to 20, but this is still too large to permit estimation via adaptive Gaussian quadrature; see
Computation time and the Laplacian approximation in [ME] me. Even with two quadrature points,
our rough formula for computation time would contain within it a factor of 220 = 1,048,576.

The intmethod(laplace) option is therefore assumed when you use R. notation. If the number
of distinct levels of your R. variables is small enough (say, five or fewer) to permit estimation via
quadrature, you can override the imposition of laplace by specifying a different integration method
in the intmethod() option.

Stored results
melogit stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k dv) number of dependent variables
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k f) number of fixed-effects parameters
e(k r) number of random-effects parameters
e(k rs) number of variances
e(k rc) number of covariances
e(df m) model degrees of freedom
e(ll) log likelihood
e(N clust) number of clusters
e(chi2) χ2

e(p) p-value for model test
e(ll c) log likelihood, comparison model
e(chi2 c) χ2, comparison test
e(df c) degrees of freedom, comparison test
e(p c) p-value for comparison test
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) meglm
e(cmd2) melogit
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e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression (first-level weights)
e(fweightk) fweight variable for kth highest level, if specified
e(iweightk) iweight variable for kth highest level, if specified
e(pweightk) pweight variable for kth highest level, if specified
e(covariates) list of covariates
e(ivars) grouping variables
e(model) logistic
e(title) title in estimation output
e(link) logit
e(family) bernoulli or binomial
e(clustvar) name of cluster variable
e(offset) offset
e(binomial) binomial number of trials
e(intmethod) integration method
e(n quad) number of integration points
e(chi2type) Wald; type of model χ2

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(N g) group counts
e(g min) group-size minimums
e(g avg) group-size averages
e(g max) group-size maximums
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.
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Methods and formulas
melogit is a convenience command for meglm with a logit link and a bernoulli or binomial

family; see [ME] meglm.

Model (1) assumes Bernoulli data, a special case of the binomial. Because binomial data are also
supported by melogit (option binomial()), the methods presented below are in terms of the more
general binomial mixed-effects model.

For a two-level binomial model, consider the response yij as the number of successes from a
series of rij Bernoulli trials (replications). For cluster j, j = 1, . . . ,M , the conditional distribution
of yj = (yj1, . . . , yjnj )

′, given a set of cluster-level random effects uj , is

f(yj |uj) =

nj∏
i=1

[(
rij
yij

){
H(ηij)

}yij {
1−H(ηij)

}rij−yij]

= exp

(
nj∑
i=1

[
yijηij − rij log

{
1 + exp(ηij)

}
+ log

(
rij
yij

)])

for ηij = xijβ+ zijuj + offsetij and H(v) = exp(v)/{1 + exp(v)}.
Defining rj = (rj1, . . . , rjnj )

′ and

c (yj , rj) =

nj∑
i=1

log
(
rij
yij

)
where c(yj , rj) does not depend on the model parameters, we can express the above compactly in
matrix notation,

f(yj |uj) = exp
[
y′jηj − r′j log

{
1 + exp(ηj)

}
+ c (yj , rj)

]
where ηj is formed by stacking the row vectors ηij . We extend the definitions of the functions log(·)
and exp(·) to be vector functions where necessary.

Because the prior distribution of uj is multivariate normal with mean 0 and q× q variance matrix
Σ, the likelihood contribution for the jth cluster is obtained by integrating uj out of the joint density
f(yj ,uj),

Lj(β,Σ) = (2π)−q/2 |Σ|−1/2
∫
f(yj |uj) exp

(
−u′jΣ

−1uj/2
)
duj

= exp {c (yj , rj)} (2π)−q/2 |Σ|−1/2
∫

exp {h (β,Σ,uj)} duj
(2)

where
h (β,Σ,uj) = y′jηj − r′j log

{
1 + exp(ηj)

}
− u′jΣ

−1uj/2

and for convenience, in the arguments of h(·) we suppress the dependence on the observable data
(yj , rj ,Xj ,Zj).

The integration in (2) has no closed form and thus must be approximated; see Methods and
formulas in [ME] meglm for details.

melogit supports multilevel weights and survey data; see Methods and formulas in [ME] meglm
for details.
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Also see
[ME] melogit postestimation — Postestimation tools for melogit

[ME] mecloglog — Multilevel mixed-effects complementary log–log regression

[ME] meprobit — Multilevel mixed-effects probit regression

[ME] me — Introduction to multilevel mixed-effects models

[BAYES] bayes: melogit — Bayesian multilevel logistic regression

[SEM] Intro 5 — Tour of models (Multilevel mixed-effects models)

[SVY] svy estimation — Estimation commands for survey data

[XT] xtlogit — Fixed-effects, random-effects, and population-averaged logit models

[U] 20 Estimation and postestimation commands
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melogit postestimation — Postestimation tools for melogit

Postestimation commands predict margins
Remarks and examples Methods and formulas References
Also see

Postestimation commands
The following postestimation commands are of special interest after melogit:

Command Description

estat group summarize the composition of the nested groups
estat icc estimate intraclass correlations
estat sd display variance components as standard deviations and correlations

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian

information criteria (AIC, CAIC, AICc, and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
etable table of estimation results
∗hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
∗lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combi-

nations of coefficients
predict means, probabilities, densities, REs, residuals, etc.
predictnl point estimates, standard errors, testing, and inference for generalized pre-

dictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

∗hausman and lrtest are not appropriate with svy estimation results.

180
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predict

Description for predict

predict creates a new variable containing predictions such as mean responses; linear predictions;
density and distribution functions; standard errors; and Pearson, deviance, and Anscombe residuals.

Menu for predict

Statistics > Postestimation

Syntax for predict

Syntax for obtaining predictions of the outcome and other statistics

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
] [

, statistic options
]

Syntax for obtaining estimated random effects and their standard errors

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, reffects

[
re options

]
Syntax for obtaining ML scores

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, scores

statistic Description

Main

mu mean response; the default
eta fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp standard error of the fixed-portion linear prediction
density predicted density function
distribution predicted distribution function
pearson Pearson residuals
deviance deviance residuals
anscombe Anscombe residuals

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample.
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options Description

Main

conditional(ctype) compute statistic conditional on estimated random effects; default is
conditional(ebmeans)

marginal compute statistic marginally with respect to the random effects
nooffset make calculation ignoring offset or exposure

Integration

int options integration options

pearson, deviance, anscombe may not be combined with marginal.

ctype Description

ebmeans empirical Bayes means of random effects; the default
ebmodes empirical Bayes modes of random effects
fixedonly prediction for the fixed portion of the model only

re options Description

Main

ebmeans use empirical Bayes means of random effects; the default
ebmodes use empirical Bayes modes of random effects
reses(stub* | newvarlist) calculate standard errors of empirical Bayes estimates

Integration

int options integration options

int options Description

intpoints(#) use # quadrature points to compute marginal predictions and empirical
Bayes means

iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators

tolerance(#) set convergence tolerance for computing statistics involving empirical
Bayes estimators

Options for predict

� � �
Main �

mu, the default, calculates the predicted mean, that is, the probability of a positive outcome.

eta, xb, stdp, density, distribution, pearson, deviance, anscombe, scores, condi-
tional(), marginal, and nooffset; see [ME] meglm postestimation.

reffects, ebmeans, ebmodes, and reses(); see [ME] meglm postestimation.

� � �
Integration �

intpoints(), iterate(), and tolerance(); see [ME] meglm postestimation.
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margins

Description for margins

margins estimates margins of response for mean responses and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . . )

[
predict(statistic . . . ) . . .

] [
options

]
statistic Description

mu mean response; the default
eta fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp not allowed with margins

density not allowed with margins

distribution not allowed with margins

pearson not allowed with margins

deviance not allowed with margins

anscombe not allowed with margins

reffects not allowed with margins

scores not allowed with margins

Options conditional(ebmeans) and conditional(ebmodes) are not allowed with margins.
Option marginal is assumed where applicable if conditional(fixedonly) is not specified.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples
Various predictions, statistics, and diagnostic measures are available after fitting a logistic mixed-

effects model with melogit. For the most part, calculation centers around obtaining estimates of
the subject/group-specific random effects. Random effects are not provided as estimates when the
model is fit but instead need to be predicted after estimation. Calculation of intraclass correlations,
estimating the dependence between latent linear responses for different levels of nesting, may also
be of interest.

Example 1: Estimating the intraclass correlation

Following Rabe-Hesketh and Skrondal (2022, chap. 10), we consider a two-level mixed-effects model
for onycholysis (separation of toenail plate from nail bed) among those who contract toenail fungus. The
data are obtained from De Backer et al. (1998) and were also studied by Lesaffre and Spiessens (2001).
The onycholysis outcome is dichotomously coded as 1 (moderate or severe onycholysis) or 0 (none
or mild onycholysis). Fixed-effects covariates include treatment (0: itraconazole; 1: terbinafine), the
month of measurement, and their interaction.

We fit the two-level model with melogit:

. use https://www.stata-press.com/data/r18/toenail
(Onycholysis severity)

. melogit outcome treatment month trt_month || patient:, intpoints(30)

(iteration log omitted )
Mixed-effects logistic regression Number of obs = 1,908
Group variable: patient Number of groups = 294

Obs per group:
min = 1
avg = 6.5
max = 7

Integration method: mvaghermite Integration pts. = 30

Wald chi2(3) = 150.61
Log likelihood = -625.38557 Prob > chi2 = 0.0000

outcome Coefficient Std. err. z P>|z| [95% conf. interval]

treatment -.1608934 .5802058 -0.28 0.782 -1.298076 .9762891
month -.3911056 .0443906 -8.81 0.000 -.4781097 -.3041016

trt_month -.1368286 .0680213 -2.01 0.044 -.2701479 -.0035093
_cons -1.620355 .4322382 -3.75 0.000 -2.467526 -.7731834

patient
var(_cons) 16.0841 3.062625 11.07431 23.36021

LR test vs. logistic model: chibar2(01) = 565.24 Prob >= chibar2 = 0.0000

It is of interest to determine the dependence among responses for the same subject (between-subject
heterogeneity). Under the latent-linear-response formulation, this dependence can be obtained with
the intraclass correlation. Formally, in a two-level random-effects model, the intraclass correlation
corresponds to the correlation of latent responses within the same individual and also to the proportion
of variance explained by the individual random effect.
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We use estat icc to estimate the residual intraclass correlation:

. estat icc

Residual intraclass correlation

Level ICC Std. err. [95% conf. interval]

patient .8301913 .0268433 .7709672 .8765531

In the presence of fixed-effects covariates, estat icc reports the residual intraclass correlation,
which is the correlation between latent linear responses conditional on the fixed-effects covariates.

Conditional on treatment and month of treatment, we estimate that latent responses within the
same patient have a large correlation of approximately 0.83. Further, 83% of the variance of a latent
response is explained by the between-patient variability.

Example 2: Predicting random effects

In example 3 of [ME] melogit, we represented the probability of contraceptive use among Bangladeshi
women by using the model (stated with slightly different notation here)

logit(πij) = β00.urbanij+β11.urbanij + β2ageij+

β31.childrenij + β42.childrenij + β53.childrenij+

aj0.urbanij + bj1.urbanij

where πij is the probability of contraceptive use, j = 1, . . . , 60 districts, i = 1, . . . , nj women within
each district, and aj and bj are normally distributed with mean 0 and variance–covariance matrix

Σ = Var
[
aj
bj

]
=

[
σ2
a σab

σab σ2
b

]
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. use https://www.stata-press.com/data/r18/bangladesh
(Bangladesh Fertility Survey, 1989)

. melogit c_use ibn.urban age i.children, noconstant nofvlabel
> || district: ibn.urban, noconstant cov(unstructured)

Fitting fixed-effects model:

(iteration log omitted )
Mixed-effects logistic regression Number of obs = 1,934
Group variable: district Number of groups = 60

Obs per group:
min = 2
avg = 32.2
max = 118

Integration method: mvaghermite Integration pts. = 7

Wald chi2(6) = 120.24
Log likelihood = -1199.315 Prob > chi2 = 0.0000
( 1) [c_use]_cons = 0

c_use Coefficient Std. err. z P>|z| [95% conf. interval]

urban
0 -1.711652 .1605617 -10.66 0.000 -2.026347 -1.396956
1 -.8958623 .1704954 -5.25 0.000 -1.230027 -.5616974

age -.026415 .008023 -3.29 0.001 -.0421398 -.0106903

children
1 1.13252 .1603285 7.06 0.000 .8182819 1.446758
2 1.357739 .1770522 7.67 0.000 1.010724 1.704755
3 1.353827 .18288 7.40 0.000 .9953883 1.712265

_cons 0 (omitted)

district
var(0.urban) .3897485 .1292403 .2034823 .7465212
var(1.urban) .2442899 .1450625 .0762871 .7822759

district
cov(0.urban,

1.urban) -.0161411 .1057462 -0.15 0.879 -.2233999 .1911177

LR test vs. logistic model: chi2(3) = 58.42 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

The purpose of using this particular model was to allow for district random effects that were
specific to the rural and urban areas of that district and that could be interpreted as such. We can
obtain predictions of these random effects and their corresponding standard errors,

. predict re_rural re_urban, reffects reses(se_rural se_urban)
(calculating posterior means of random effects)
(using 7 quadrature points)

The order in which we specified the variables to be generated corresponds to the order in which the
variance components are listed in melogit output. If in doubt, a simple describe will show how
these newly generated variables are labeled just to be sure.

Having generated estimated random effects and standard errors, we can now list them for the first
10 districts:
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. by district, sort: generate tolist = (_n==1)

. list district re_rural se_rural re_urban se_urban if district <= 10 & tolist,
> sep(0)

district re_rural se_rural re_urban se_urban

1. 1 -.9432691 .3156852 -.558359 .2332665
118. 2 -.0427011 .3822029 .0017684 .493834
138. 3 -.0149571 .6242161 .2263715 .4698407
140. 4 -.2864846 .3990107 .5869046 .3988538
170. 5 .0688648 .3102899 .0046016 .4685461
209. 6 -.3979315 .2762392 .2761181 .4204175
274. 7 -.1910399 .4046772 .0079117 .4938647
292. 8 .034071 .3180097 .2266263 .4689558
329. 9 -.3737992 .3923573 .0764026 .4569863
352. 10 -.5640147 .4769353 .0233582 .4939753

Technical note
When these data were first introduced in [ME] melogit, we noted that not all districts contained

both urban and rural areas. This fact is somewhat demonstrated by the random effects that are nearly
0 in the above. A closer examination of the data would reveal that district 3 has no rural areas, and
districts 2, 7, and 10 have no urban areas.

The estimated random effects are not exactly 0 in these cases because of the correlation between
urban and rural effects. For instance, if a district has no urban areas, it can still yield a nonzero
(albeit small) random-effects estimate for a nonexistent urban area because of the correlation with its
rural counterpart.

Had we imposed an independent covariance structure in our model, the estimated random effects
in the cases in question would be exactly 0.

Technical note
The estimated standard errors produced above with the reses() option are conditional on the

values of the estimated model parameters: β and the components of Σ. Their interpretation is therefore
not one of standard sample-to-sample variability but instead one that does not incorporate uncertainty
in the estimated model parameters; see Methods and formulas.

That stated, conditional standard errors can still be used as a measure of relative precision, provided
that you keep this caveat in mind.

Example 3: Obtaining predicted probabilities

Continuing with example 2, we can obtain predicted probabilities, the default prediction:

. predict p
(option mu assumed)
(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)
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These predictions are based on a linear predictor that includes both the fixed effects and the random
effects due to district. Specifying the conditional(fixedonly) option gives predictions that set
the random effects to their prior mean of 0. Below we compare both over the first 20 observations:

. predict p_fixed, conditional(fixedonly)
(option mu assumed)

. list c_use p p_fixed age children in 1/20

c_use p p_fixed age children

1. No .3572114 .4927182 18.44 3 or more children
2. No .21293 .3210403 -5.56 No children
3. No .4664207 .6044016 1.44 2 children
4. No .4198625 .5584863 8.44 3 or more children
5. No .2504834 .3687281 -13.56 No children

6. No .2406963 .3565185 -11.56 No children
7. No .3572114 .4927182 18.44 3 or more children
8. No .4984106 .6345998 -3.56 3 or more children
9. No .4564025 .594723 -5.56 1 child

10. No .465447 .6034657 1.44 3 or more children

11. Yes .2406963 .3565185 -11.56 No children
12. No .1999512 .3040173 -2.56 No children
13. No .4498569 .5883406 -4.56 1 child
14. No .439278 .5779263 5.44 3 or more children
15. No .4786124 .6160359 -0.56 3 or more children

16. Yes .4457945 .584356 4.44 3 or more children
17. No .21293 .3210403 -5.56 No children
18. Yes .4786124 .6160359 -0.56 3 or more children
19. Yes .4629632 .6010735 -6.56 1 child
20. No .4993888 .6355067 -3.56 2 children

Example 4: Intraclass correlations for higher-level models

Continuing with example 2, we can also compute intraclass correlations for the model using estat
icc; see [ME] estat icc.

In the presence of random-effects covariates, the intraclass correlation is no longer constant and
depends on the values of the random-effects covariates. In this case, estat icc reports conditional
intraclass correlations assuming 0 values for all random-effects covariates. For example, in a two-
level model, this conditional correlation represents the correlation of the latent responses for two
measurements on the same subject, both of which have random-effects covariates equal to 0. Similarly
to the interpretation of intercept variances in random-coefficients models (Rabe-Hesketh and Skrondal
2022, chap. 16), interpretation of this conditional intraclass correlation relies on the usefulness of
the 0 baseline values of random-effects covariates. For example, mean centering of the covariates is
often used to make a 0 value a useful reference.

Estimation of the conditional intraclass correlation in the Bangladeshi contraceptive study setting
of example 2 is of interest. In example 2, the random-effects covariates 0.urban and 1.urban for the
random level district are mutually exclusive indicator variables and can never be simultaneously
0. Thus we could not use estat icc to estimate the conditional intraclass correlation for this model,
because estat icc requires that the random intercept is included in all random-effects specifications.
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Instead, we consider an alternative model for the Bangladeshi contraceptive study. In example 2
of [ME] melogit, we represented the probability of contraceptive use among Bangladeshi women with
fixed-effects for urban residence (urban), age (age), and the number of children (children). The
random effects for urban and rural residence are represented as a random slope for urban residence
and a random intercept at the district level.

We fit the model with melogit:

. use https://www.stata-press.com/data/r18/bangladesh, clear
(Bangladesh Fertility Survey, 1989)

. melogit c_use i.urban age i.children, nofvlabel
> || district: i.urban, covariance(unstructured)

(iteration log omitted )
Mixed-effects logistic regression Number of obs = 1,934
Group variable: district Number of groups = 60

Obs per group:
min = 2
avg = 32.2
max = 118

Integration method: mvaghermite Integration pts. = 7

Wald chi2(5) = 97.50
Log likelihood = -1199.315 Prob > chi2 = 0.0000

c_use Coefficient Std. err. z P>|z| [95% conf. interval]

1.urban .8157875 .1715519 4.76 0.000 .4795519 1.152023
age -.026415 .008023 -3.29 0.001 -.0421398 -.0106902

children
1 1.13252 .1603285 7.06 0.000 .818282 1.446758
2 1.357739 .1770522 7.67 0.000 1.010723 1.704755
3 1.353827 .1828801 7.40 0.000 .9953882 1.712265

_cons -1.71165 .1605618 -10.66 0.000 -2.026345 -1.396954

district
var(1.urban) .6663237 .3224689 .258074 1.720387

var(_cons) .3897448 .1292463 .203473 .7465413

district
cov(1.urban,

_cons) -.4058861 .1755414 -2.31 0.021 -.7499408 -.0618313

LR test vs. logistic model: chi2(3) = 58.42 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

We use estat icc to estimate the intraclass correlation conditional on urban being equal to 0:

. estat icc

Conditional intraclass correlation

Level ICC Std. err. [95% conf. interval]

district .1059201 .0314045 .058246 .1849518

Note: ICC is conditional on zero values of random-effects covariates.

This estimate suggests that the latent responses are not strongly correlated for rural residents
(0.urban) within the same district, conditional on the fixed-effects covariates.
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Example 5: Estimating the residual intraclass correlation

In example 4 of [ME] melogit, we fit a three-level model for the cognitive ability of schizophrenia
patients as compared with their relatives and a control. Fixed-effects covariates include the difficulty
of the test, difficulty, and an individual’s category, group (control, family member of patient, or
patient). Family units (family) represent the third nesting level, and individual subjects (subject)
represent the second nesting level. Three measurements were taken on all but one subject, one for
each difficulty measure.

We fit the model with melogit:
. use https://www.stata-press.com/data/r18/towerlondon
(Tower of London data)

. melogit dtlm difficulty i.group || family: || subject:

(iteration log omitted )
Mixed-effects logistic regression Number of obs = 677

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

family 118 2 5.7 27
subject 226 2 3.0 3

Integration method: mvaghermite Integration pts. = 7

Wald chi2(3) = 74.90
Log likelihood = -305.12041 Prob > chi2 = 0.0000

dtlm Coefficient Std. err. z P>|z| [95% conf. interval]

difficulty -1.648505 .1932075 -8.53 0.000 -2.027185 -1.269826

group
2 -.2486841 .3544076 -0.70 0.483 -.9433102 .445942
3 -1.052306 .3999921 -2.63 0.009 -1.836276 -.2683357

_cons -1.485863 .2848455 -5.22 0.000 -2.04415 -.9275762

family
var(_cons) .5692105 .5215654 .0944757 3.429459

family>
subject

var(_cons) 1.137917 .6854853 .3494165 3.705762

LR test vs. logistic model: chi2(2) = 17.54 Prob > chi2 = 0.0002

Note: LR test is conservative and provided only for reference.

We can use estat icc to estimate the residual intraclass correlation (conditional on the difficulty
level and the individual’s category) between the latent responses of subjects within the same family
or between the latent responses of the same subject and family:

. estat icc

Residual intraclass correlation

Level ICC Std. err. [95% conf. interval]

family .1139105 .0997727 .0181851 .4715289
subject|family .3416307 .0889471 .192923 .5297291
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estat icc reports two intraclass correlations for this three-level nested model. The first is the
level-3 intraclass correlation at the family level, the correlation between latent measurements of the
cognitive ability in the same family. The second is the level-2 intraclass correlation at the subject-
within-family level, the correlation between the latent measurements of cognitive ability in the same
subject and family.

There is not a strong correlation between individual realizations of the latent response, even within
the same subject.

Methods and formulas
Methods and formulas for predicting random effects and other statistics are given in Methods and

formulas of [ME] meglm postestimation.
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Description

menbreg fits mixed-effects negative binomial models to count data. The conditional distribution
of the response given random effects is assumed to follow a Poisson-like process, except that the
variation is greater than that of a true Poisson process.

Quick start
Mixed-effects negative binomial regression of y on x with random intercepts by v1

menbreg y x || v1:

Add evar measuring exposure
menbreg y x, exposure(evar) || v1:

Same as above, but report incidence-rate ratios instead of coefficients
menbreg y x, exposure(evar) || v1:, irr

Add random coefficients for x
menbreg y x, exposure(evar) || v1: x, irr

Three-level random-intercept model of y on x with v1 nested within v2

menbreg y x || v2: || v1:

Menu
Statistics > Multilevel mixed-effects models > Negative binomial regression

192
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Syntax
menbreg depvar fe equation

[
|| re equation

] [
|| re equation . . .

] [
, options

]
where the syntax of fe equation is[

indepvars
] [

if
] [

in
] [

weight
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all
representing one group comprising all observations.

fe options Description

Model

noconstant suppress the constant term from the fixed-effects equation
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
fweight(varname) frequency weights at higher levels
iweight(varname) importance weights at higher levels
pweight(varname) sampling weights at higher levels
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options Description

Model

dispersion(dispersion) parameterization of the conditional overdispersion;
dispersion may be mean (default) or constant

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)

irr report fixed-effects coefficients as incidence-rate ratios
nocnsreport do not display constraints
notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intmethod(intmethod) integration method
intpoints(#) set the number of integration (quadrature) points for all levels;

default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values
startgrid

[
(gridspec)

]
perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead
dnumerical use numerical derivative techniques
collinear keep collinear variables
coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated
fixed(matname) user-selected variances and covariances constrained to specified

values; the remaining variances and covariances unrestricted
pattern(matname) user-selected variances and covariances constrained to be equal;

the remaining variances and covariances unrestricted
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intmethod Description

mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature
ghermite nonadaptive Gauss–Hermite quadrature
laplace Laplacian approximation; the default for crossed random-effects

models

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: men-

breg.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified.

Weights are not supported under the Laplacian approximation or for crossed models.
startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog

box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any of or all the random-effects equations.

exposure(varnamee) specifies a variable that reflects the amount of exposure over which the depvar
events were observed for each observation; ln(varnamee) is included in the fixed-effects portion
of the model with the coefficient constrained to be 1.

offset(varnameo) specifies that varnameo be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent) unless a crossed random-effects model is fit, in which case the
default is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2
unique parameters.

covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures
provide a convenient way to impose constraints on variances and covariances of random effects.
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Each specification requires a matname that defines the restrictions placed on variances and
covariances. Only elements in the lower triangle of matname are used, and row and column names
of matname are ignored. A missing value in matname means that a given element is unrestricted.
In a fixed(matname) covariance structure, (co)variance (i, j) is constrained to equal the
value specified in the i, jth entry of matname. In a pattern(matname) covariance structure,
(co)variances (i, j) and (k, l) are constrained to be equal if matname[i, j] = matname[k, l].

fweight(varname) specifies frequency weights at higher levels in a multilevel model, whereas
frequency weights at the first level (the observation level) are specified in the usual manner, for
example, [fw=fwtvar1]. varname can be any valid Stata variable name, and you can specify
fweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wt1] || school: . . . , fweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2
would hold the second-level (the school-level) frequency weights.

iweight(varname) specifies importance weights at higher levels in a multilevel model, whereas
importance weights at the first level (the observation level) are specified in the usual manner,
for example, [iw=iwtvar1]. varname can be any valid Stata variable name, and you can specify
iweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: . . . , iweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) importance weights, and wt2
would hold the second-level (the school-level) importance weights.

pweight(varname) specifies sampling weights at higher levels in a multilevel model, whereas
sampling weights at the first level (the observation level) are specified in the usual manner, for
example, [pw=pwtvar1]. varname can be any valid Stata variable name, and you can specify
pweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wt1] || school: . . . , pweight(wt2) . . .

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would
hold the second-level (the school-level) sampling weights.

dispersion(mean | constant) specifies the parameterization of the conditional overdispersion given
random effects. dispersion(mean), the default, yields a model where the conditional overdis-
persion is a function of the conditional mean given random effects. For example, in a two-level
model, the conditional overdispersion is equal to 1+αE(yij |uj). dispersion(constant) yields
a model where the conditional overdispersion is constant and is equal to 1 + δ. α and δ are the
respective conditional overdispersion parameters.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is
specified, robust variances are clustered at the highest level in the multilevel model.
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� � �
Reporting �

level(#); see [R] Estimation options.

irr reports estimated fixed-effects coefficients transformed to incidence-rate ratios, that is, exp(β)
rather than β. Standard errors and confidence intervals are similarly transformed. This option
affects how results are displayed, not how they are estimated or stored. irr may be specified
either at estimation or upon replay.

nocnsreport; see [R] Estimation options.

notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model.
mvaghermite performs mean–variance adaptive Gauss–Hermite quadrature; mcaghermite per-
forms mode-curvature adaptive Gauss–Hermite quadrature; ghermite performs nonadaptive Gauss–
Hermite quadrature; and laplace performs the Laplacian approximation, equivalent to mode-
curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in
which case the default integration method is laplace. The Laplacian approximation has been
known to produce biased parameter estimates; however, the bias tends to be more prominent in
the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be
prohibitively intensive even for a small number of levels. For this reason, the integration method
defaults to the Laplacian approximation. You may override this behavior by specifying a different
integration method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option
is not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases as a function of the number of quadrature points raised to a power
equaling the dimension of the random-effects specification. In crossed random-effects models and
in models with many levels or many random coefficients, this increase can be substantial.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. Those that require
special mention for menbreg are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.
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The following options are available with menbreg but are not shown in the dialog box:

startvalues(svmethod), startgrid
[
(gridspec)

]
, noestimate, and dnumerical; see [ME]

meglm.

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
Mixed-effects negative binomial regression is negative binomial regression containing both fixed

effects and random effects. In longitudinal data and panel data, random effects are useful for modeling
intracluster correlation; that is, observations in the same cluster are correlated because they share
common cluster-level random effects.

menbreg allows for many levels of random effects. However, for simplicity, consider a two-level
model, where for a series of M independent clusters, and conditional on the latent variable ζij and
a set of random effects uj ,

yij |ζij ∼ Poisson(ζij)

and
ζij |uj ∼ Gamma(rij , pij)

and
uj ∼ N(0,Σ)

where yij is the count response of the ith observation, i = 1, . . . , nj , from the jth cluster,
j = 1, . . . ,M , and rij and pij have two different parameterizations, (2) and (3) below. The random
effects uj are M realizations from a multivariate normal distribution with mean 0 and q × q
variance matrix Σ. The random effects are not directly estimated as model parameters but are instead
summarized according to the unique elements of Σ, known as variance components.

The probability that a random response yij takes the value y is then given by

Pr(yij = y|uj) =
Γ(y + rij)

Γ(y + 1)Γ(rij)
p
rij
ij (1− pij)y (1)

where for convenience we suppress the dependence of the observable data yij on rij and pij .

Model (1) is an extension of the standard negative binomial model (see [R] nbreg) to incorporate
normally distributed random effects at different hierarchical levels. (The negative binomial model
itself can be viewed as a random-effects model, a Poisson model with a gamma-distributed random
effect.) The standard negative binomial model is used to model overdispersed count data for which the
variance is greater than that of a Poisson model. In a Poisson model, the variance is equal to the mean,
and thus overdispersion is defined as the extra variability compared with the mean. According to this
definition, the negative binomial model presents two different parameterizations of the overdispersion:
the mean parameterization, where the overdispersion is a function of the mean, 1 +αE(Y |x), α > 0;
and the constant parameterization, where the overdispersion is a constant function, 1 + δ, δ ≥ 0. We
refer to α and δ as conditional overdispersion parameters.

Let µij = E(yij |x,uj) = exp(xijβ+zijuj), where xij is the 1×p row vector of the fixed-effects
covariates, analogous to the covariates you would find in a standard negative binomial regression
model, with regression coefficients (fixed effects) β; zij is the 1 × q vector of the random-effects
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covariates and can be used to represent both random intercepts and random coefficients. For example,
in a random-intercept model, zij is simply the scalar 1. One special case places zij = xij , so that
all covariate effects are essentially random and distributed as multivariate normal with mean β and
variance Σ.

Similarly to the standard negative binomial model, we can consider two parameterizations of
what we call the conditional overdispersion, the overdispersion conditional on random effects, in a
random-effects negative binomial model. For the mean-overdispersion (or, more technically, mean-
conditional-overdispersion) parameterization,

rij = 1/α and pij =
1

1 + αµij
(2)

and the conditional overdispersion is equal to 1 + αµij . For the constant-overdispersion (or, more
technically, constant-conditional-overdispersion) parameterization,

rij = µij/δ and pij =
1

1 + δ
(3)

and the conditional overdispersion is equal to 1 + δ. In what follows, for brevity, we will use the
term overdispersion parameter to mean conditional overdispersion parameter, unless stated otherwise.

In the context of random-effects negative binomial models, it is important to decide which model
is used as a reference model for the definition of the overdispersion. For example, if we consider
a corresponding random-effects Poisson model as a comparison model, the parameters α and δ can
still be viewed as unconditional overdispersion parameters, as we show below, although the notion
of a constant overdispersion is no longer applicable.

If we retain the definition of the overdispersion as the excess variation with respect to a Poisson
process for which the variance is equal to the mean, we need to carefully distinguish between the
marginal (unconditional) mean with random effects integrated out and the conditional mean given
random effects.

In what follows, for simplicity, we omit the dependence of the formulas on x. Contingent on random
effects, the (conditional) dispersion Var(yij |uj) = (1 +αµij)µij for the mean parameterization and
Var(yij |uj) = (1+δ)µij for the constant parameterization; the usual interpretation of the parameters
holds (conditionally).

If we consider the marginal mean or, specifically, the marginal dispersion for, for example, a
two-level random-intercept model, then

Var(yij) =
[
1 + { exp(σ2)(1 + α)− 1}E(yij)

]
E(yij)

for the mean parameterization and

Var(yij) =
[
1 + δ + { exp(σ2)− 1}E(yij)

]
E(yij)

for the constant parameterization, where σ2 is the variance component corresponding to the random
intercept.

A few things of interest compared with the standard negative binomial model. First, the random-
effects negative binomial model is not strictly an overdispersed model. The combination of values
of α and σ2 can lead to an underdispersed model, a model with smaller variability than the Poisson
variability. Underdispersed models are not as common in practice, so we will concentrate on the
overdispersion in this entry. Second, α (or δ) no longer solely determine the overdispersion and thus
cannot be viewed as unconditional overdispersion parameters. Overdispersion is now a function of
both α (or δ) and σ2. Third, the notion of a constant overdispersion is not applicable.
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Two special cases are worth mentioning. When σ2 = 0, the dispersion reduces to that of a standard
negative binomial model. When α = 0 (or δ = 0), the dispersion reduces to that of a two-level
random-intercept Poisson model, which itself is, in general, an overdispersed model; see Rabe-Hesketh
and Skrondal (2022, sec. 13.7) for more details. As such, α and δ retain the typical interpretation as
dispersion parameters relative to a random-intercept Poisson model.

Below we present two short examples of mixed-effects negative binomial regression; refer to
[ME] me and [ME] meglm for more examples including crossed-effects models.

Example 1: Two-level random-intercept model

Rabe-Hesketh and Skrondal (2022, sec. 13.7) analyze the data from Winkelmann (2004) on the
impact of the 1997 health reform in Germany on the number of doctor visits. The intent of policymakers
was to reduce government expenditures on healthcare. We use a subsample of the data restricted to
1,158 women who were employed full time the year before or after the reform.

. use https://www.stata-press.com/data/r18/drvisits
(Doctor visits)

. describe

Contains data from https://www.stata-press.com/data/r18/drvisits.dta
Observations: 2,227 Doctor visits

Variables: 8 23 Jan 2022 18:39

Variable Storage Display Value
name type format label Variable label

id int %9.0g Person ID
numvisit byte %9.0g Number of doctor visits in the

last 3 months before interview
age byte %9.0g Age in years
educ float %9.0g Education in years
married byte %9.0g 1 if married; 0 otherwise
badh byte %9.0g Self-reported health status; 1 if

bad
loginc float %9.0g Log of household income
reform byte %9.0g 0 if interview before reform; 1

if interview after reform

Sorted by:

The dependent variable, numvisit, is a count of doctor visits. The covariate of interest is a dummy
variable, reform, which indicates whether a doctor visit took place before or after the reform. Other
covariates include a self-reported health status, age, education, marital status, and a log of household
income.
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We first fit a two-level random-intercept Poisson model. We specify the random intercept at the
id level, that is, an individual-person level.

. mepoisson numvisit reform age educ married badh loginc || id:, irr

Fitting fixed-effects model:

Iteration 0: Log likelihood = -9326.8542
Iteration 1: Log likelihood = -5989.7308
Iteration 2: Log likelihood = -5942.7581
Iteration 3: Log likelihood = -5942.7243
Iteration 4: Log likelihood = -5942.7243

Refining starting values:

Grid node 0: Log likelihood = -4761.1257

Fitting full model:

Iteration 0: Log likelihood = -4761.1257
Iteration 1: Log likelihood = -4683.2239
Iteration 2: Log likelihood = -4646.9329
Iteration 3: Log likelihood = -4645.736
Iteration 4: Log likelihood = -4645.7371
Iteration 5: Log likelihood = -4645.7371

Mixed-effects Poisson regression Number of obs = 2,227
Group variable: id Number of groups = 1,518

Obs per group:
min = 1
avg = 1.5
max = 2

Integration method: mvaghermite Integration pts. = 7

Wald chi2(6) = 249.37
Log likelihood = -4645.7371 Prob > chi2 = 0.0000

numvisit IRR Std. err. z P>|z| [95% conf. interval]

reform .9517026 .0309352 -1.52 0.128 .8929617 1.014308
age 1.005821 .002817 2.07 0.038 1.000315 1.011357

educ 1.008788 .0127394 0.69 0.488 .9841258 1.034068
married 1.082078 .0596331 1.43 0.152 .9712905 1.205503

badh 2.471857 .151841 14.73 0.000 2.191471 2.788116
loginc 1.094144 .0743018 1.32 0.185 .9577909 1.249909
_cons .5216748 .2668604 -1.27 0.203 .191413 1.421766

id
var(_cons) .8177932 .0503902 .724761 .9227673

Note: Estimates are transformed only in the first equation to incidence-rate
ratios.

Note: _cons estimates baseline incidence rate (conditional on zero random
effects).

LR test vs. Poisson model: chibar2(01) = 2593.97 Prob >= chibar2 = 0.0000

. estimates store mepoisson

Because we specified the irr option, the parameters are reported as incidence-rate ratios. The
healthcare reform seems to reduce the expected number of visits by 5% but without statistical
significance.

Because we have only one random effect at the id level, the table shows only one variance
component. The estimate of σ2

u is 0.82 with standard error 0.05. The reported likelihood-ratio test
shows that there is enough variability between women to favor a mixed-effects Poisson regression
over a standard Poisson regression; see Distribution theory for likelihood-ratio test in [ME] me for a
discussion of likelihood-ratio testing of variance components.
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It is possible that after conditioning on the person-level random effect, the counts of doctor visits
are overdispersed. For example, medical problems occurring during the time period leading to the
survey can result in extra doctor visits. We thus reexamine the data with menbreg.

. menbreg numvisit reform age educ married badh loginc || id:, irr

Fitting fixed-effects model:

Iteration 0: Log likelihood = -4610.7165
Iteration 1: Log likelihood = -4563.4682
Iteration 2: Log likelihood = -4562.3241
Iteration 3: Log likelihood = -4562.3238

Refining starting values:

Grid node 0: Log likelihood = -4643.5216

Fitting full model:

Iteration 0: Log likelihood = -4643.5216 (not concave)
Iteration 1: Log likelihood = -4555.961
Iteration 2: Log likelihood = -4518.7353
Iteration 3: Log likelihood = -4513.1951
Iteration 4: Log likelihood = -4513.1853
Iteration 5: Log likelihood = -4513.1853

Mixed-effects nbinomial regression Number of obs = 2,227
Overdispersion: mean
Group variable: id Number of groups = 1,518

Obs per group:
min = 1
avg = 1.5
max = 2

Integration method: mvaghermite Integration pts. = 7

Wald chi2(6) = 237.35
Log likelihood = -4513.1853 Prob > chi2 = 0.0000

numvisit IRR Std. err. z P>|z| [95% conf. interval]

reform .9008536 .042022 -2.24 0.025 .8221449 .9870975
age 1.003593 .0028206 1.28 0.202 .9980799 1.009137

educ 1.007026 .012827 0.55 0.583 .9821969 1.032483
married 1.089597 .064213 1.46 0.145 .970738 1.223008

badh 3.043562 .2366182 14.32 0.000 2.613404 3.544523
loginc 1.136342 .0867148 1.67 0.094 .9784833 1.319668
_cons .5017199 .285146 -1.21 0.225 .1646994 1.528377

/lnalpha -.7962692 .1190614 -1.029625 -.5629132

id
var(_cons) .4740088 .0582404 .3725642 .6030754

Note: Estimates are transformed only in the first equation to incidence-rate
ratios.

Note: _cons estimates baseline incidence rate (conditional on zero random
effects).

LR test vs. nbinomial model: chibar2(01) = 98.28 Prob >= chibar2 = 0.0000

The estimated effect of the healthcare reform now corresponds to the reduction in the number of
doctor visits by 10%—twice as much compared with the Poisson model—and this effect is significant
at the 5% level.

The estimate of the variance component σ2
u drops down to 0.47 compared with mepoisson, which

is not surprising given that now we have an additional parameter that controls the variability of the
data.
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Because the conditional overdispersion α is assumed to be greater than 0, it is parameterized
on the log scale, and its log estimate is reported as /lnalpha in the output. In our model, α̂ =
exp(−0.80) = 0.45. We can also compute the unconditional overdispersion in this model by using
exp(0.47)× (1 + 0.45)− 1 = 1.32.

The reported likelihood-ratio test shows that there is enough variability between women to favor a
mixed-effects negative binomial regression over negative binomial regression without random effects.

We can also perform a likelihood-ratio test comparing the mixed-effects negative binomial model to
the mixed-effects Poisson model. Because we are comparing two different estimators, we need to use
the force option with lrtest. In general, there is no guarantee as to the validity or interpretability of
the resulting likelihood-ratio test, but in our case we know the test is valid because the mixed-effects
Poisson model is nested within the mixed-effects negative binomial model.

. lrtest mepoisson ., force

Likelihood-ratio test
Assumption: mepoisson nested within .

LR chi2(1) = 265.10
Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

The reported likelihood-ratio test favors the mixed-effects negative binomial model. The reported
test is conservative because the test of H0 : α = 0 occurs on the boundary of the parameter space;
see Distribution theory for likelihood-ratio test in [ME] me for details.

The above extends to models with more than two levels of nesting by adding more random-effects
equations, each separated by ||. The order of nesting goes from left to right as the groups go
from biggest (highest level) to smallest (lowest level). To demonstrate a three-level model, we revisit
example 3 from [ME] mepoisson.

Example 2: Three-level random-intercept model

Rabe-Hesketh and Skrondal (2022, exercise 13.7) describe data from the Atlas of Cancer Mortality
in the European Economic Community (EEC) (Smans, Mair, and Boyle 1993). The data were analyzed
in Langford, Bentham, and McDonald (1998) and record the number of deaths among males due to
malignant melanoma during 1971–1980.
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. use https://www.stata-press.com/data/r18/melanoma
(Skin cancer (melanoma) data)

. describe

Contains data from https://www.stata-press.com/data/r18/melanoma.dta
Observations: 354 Skin cancer (melanoma) data

Variables: 6 30 May 2022 17:10
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

nation byte %11.0g n Nation ID
region byte %9.0g Region ID: EEC level-I areas
county int %9.0g County ID: EEC level-II/level-III

areas
deaths int %9.0g No. deaths during 1971-1980
expected float %9.0g No. expected deaths
uv float %9.0g UV dose, mean-centered

Sorted by:

Nine European nations (variable nation) are represented, and data were collected over geographical
regions defined by EEC statistical services as level I areas (variable region), with deaths being recorded
for each of 354 counties, which are level II or level III EEC-defined areas (variable county, which
identifies the observations). Counties are nested within regions, and regions are nested within nations.

The variable deaths records the number of deaths for each county, and expected records the
expected number of deaths (the exposure) on the basis of crude rates for the combined countries. The
variable uv is a measure of exposure to ultraviolet (UV) radiation.

In example 3 of [ME] mepoisson, we noted that because counties also identified the observations,
we could model overdispersion by using a four-level Poisson model with a random intercept at the
county level. Here we fit a three-level negative binomial model with the default mean-dispersion
parameterization.

. menbreg deaths uv, exposure(expected) || nation: || region:

Fitting fixed-effects model:

Iteration 0: Log likelihood = -1361.855
Iteration 1: Log likelihood = -1230.0211
Iteration 2: Log likelihood = -1211.049
Iteration 3: Log likelihood = -1202.5641
Iteration 4: Log likelihood = -1202.5329
Iteration 5: Log likelihood = -1202.5329

Refining starting values:

Grid node 0: Log likelihood = -1209.6951

Fitting full model:

(output omitted )
Mixed-effects nbinomial regression Number of obs = 354
Overdispersion: mean

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

nation 9 3 39.3 95
region 78 1 4.5 13
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Integration method: mvaghermite Integration pts. = 7

Wald chi2(1) = 8.73
Log likelihood = -1086.3902 Prob > chi2 = 0.0031

deaths Coefficient Std. err. z P>|z| [95% conf. interval]

uv -.0335933 .0113725 -2.95 0.003 -.055883 -.0113035
_cons -.0790606 .1295931 -0.61 0.542 -.3330583 .1749372

ln(expected) 1 (exposure)

/lnalpha -4.182603 .3415036 -4.851937 -3.513268

nation
var(_cons) .1283614 .0678971 .0455187 .3619758

nation>
region

var(_cons) .0401818 .0104855 .0240938 .067012

LR test vs. nbinomial model: chi2(2) = 232.29 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

The estimates are very close to those of mepoisson. The conditional overdispersion in our model
is α̂ = exp(−4.18) = 0.0153. It is in agreement with the estimate of the random intercept at the
county level, 0.0147, in a four-level random-effects Poisson model reported by mepoisson. Because
the negative binomial is a three-level model, we gained some computational efficiency over the
four-level Poisson model.

Stored results
menbreg stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k dv) number of dependent variables
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k f) number of fixed-effects parameters
e(k r) number of random-effects parameters
e(k rs) number of variances
e(k rc) number of covariances
e(df m) model degrees of freedom
e(ll) log likelihood
e(N clust) number of clusters
e(chi2) χ2

e(p) p-value for model test
e(ll c) log likelihood, comparison model
e(chi2 c) χ2, comparison test
e(df c) degrees of freedom, comparison test
e(p c) p-value for comparison test
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) meglm
e(cmd2) menbreg
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e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression (first-level weights)
e(fweightk) fweight variable for kth highest level, if specified
e(iweightk) iweight variable for kth highest level, if specified
e(pweightk) pweight variable for kth highest level, if specified
e(covariates) list of covariates
e(ivars) grouping variables
e(model) nbreg
e(title) title in estimation output
e(link) log
e(family) nbinomial
e(clustvar) name of cluster variable
e(dispersion) mean or constant
e(offset) offset
e(intmethod) integration method
e(n quad) number of integration points
e(chi2type) Wald; type of model χ2

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(N g) group counts
e(g min) group-size minimums
e(g avg) group-size averages
e(g max) group-size maximums
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.
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Methods and formulas
menbreg is a convenience command for meglm with a log link and an nbinomial family; see

[ME] meglm.

Without a loss of generality, consider a two-level negative binomial model. For cluster j, j =
1, . . . ,M , the conditional distribution of yj = (yj1, . . . , yjnj )

′, given a set of cluster-level random
effects uj and the conditional overdispersion parameter α in a mean-overdispersion parameterization,
is

f(yj |uj , α) =

nj∏
i=1

{
Γ(yij + r)

Γ(yij + 1)Γ(r)
prij(1− pij)yij

}

= exp

[
nj∑
i=1

{ logΓ(yij + r)− logΓ(yij + 1)− logΓ(r) + c(yij , α)}

]
where c(yij , α) is defined as

− 1

α
log{1 + exp(ηij + logα)} − yij log{1 + exp(−ηij − logα)}

and r = 1/α, pij = 1/(1 + αµij), and ηij = xijβ+ zijuj .

For the constant-overdispersion parameterization with the conditional overdispersion parameter δ,
the conditional distribution of yj is

f(yj |uj , δ) =

nj∏
i=1

{
Γ(yij + rij)

Γ(yij + 1)Γ(rij)
prij (1− p)yij

}

= exp

[
nj∑
i=1

{ logΓ(yij + rij)− logΓ(yij + 1)− logΓ(rij) + c(yij , δ)}

]

where c(yij , δ) is defined as

−
(µij
δ

+ yij

)
log(1 + δ) + yij logδ

and rij = µij/δ and p = 1/(1 + δ).

For conciseness, let γ denote either conditional overdispersion parameter. Because the prior
distribution of uj is multivariate normal with mean 0 and q × q variance matrix Σ, the likelihood
contribution for the jth cluster is obtained by integrating uj out of the joint density f(yj ,uj , γ),

Lj(β,Σ, γ) = (2π)−q/2 |Σ|−1/2
∫
f(yj |uj , γ) exp

(
−u′jΣ

−1uj/2
)
duj

= (2π)−q/2 |Σ|−1/2
∫

exp {h (β,Σ,uj , γ)} duj
(4)

where
h (β,Σ,uj , γ) = f(yj |uj , γ)− u′jΣ

−1uj/2

and for convenience, in the arguments of h(·) we suppress the dependence on the observable data
(yj ,Xj ,Zj).
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The integration in (4) has no closed form and thus must be approximated; see Methods and
formulas in [ME] meglm for details.

menbreg supports multilevel weights and survey data; see Methods and formulas in [ME] meglm
for details.
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menbreg postestimation — Postestimation tools for menbreg

Postestimation commands predict margins
Remarks and examples Methods and formulas Also see

Postestimation commands
The following postestimation command is of special interest after menbreg:

Command Description

estat group summarize the composition of the nested groups
estat sd display variance components as standard deviations and correlations

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian

information criteria (AIC, CAIC, AICc, and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
etable table of estimation results
∗hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
∗lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combi-

nations of coefficients
predict means, probabilities, densities, REs, residuals, etc.
predictnl point estimates, standard errors, testing, and inference for generalized pre-

dictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

∗hausman and lrtest are not appropriate with svy estimation results.
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predict

Description for predict

predict creates a new variable containing predictions such as mean responses; linear predictions;
density and distribution functions; standard errors; and Pearson, deviance, and Anscombe residuals.

Menu for predict

Statistics > Postestimation

Syntax for predict

Syntax for obtaining predictions of the outcome and other statistics

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
] [

, statistic options
]

Syntax for obtaining estimated random effects and their standard errors

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, reffects

[
re options

]
Syntax for obtaining ML scores

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, scores

statistic Description

Main

mu mean response; the default
eta fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp standard error of the fixed-portion linear prediction
density predicted density function
distribution predicted distribution function
pearson Pearson residuals
deviance deviance residuals
anscombe Anscombe residuals

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample.



menbreg postestimation — Postestimation tools for menbreg 211

options Description

Main

conditional(ctype) compute statistic conditional on estimated random effects; default is
conditional(ebmeans)

marginal compute statistic marginally with respect to the random effects
nooffset make calculation ignoring offset or exposure

Integration

int options integration options

pearson, deviance, anscombe may not be combined with marginal.

ctype Description

ebmeans empirical Bayes means of random effects; the default
ebmodes empirical Bayes modes of random effects
fixedonly prediction for the fixed portion of the model only

re options Description

Main

ebmeans use empirical Bayes means of random effects; the default
ebmodes use empirical Bayes modes of random effects
reses(stub* | newvarlist) calculate standard errors of empirical Bayes estimates

Integration

int options integration options

int options Description

intpoints(#) use # quadrature points to compute marginal predictions and empirical
Bayes means

iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators

tolerance(#) set convergence tolerance for computing statistics involving empirical
Bayes estimators

Options for predict

� � �
Main �

mu, the default, calculates the predicted mean, that is, the predicted number of events.

eta, xb, stdp, density, distribution, pearson, deviance, anscombe, scores, condi-
tional(), marginal, and nooffset; see [ME] meglm postestimation.

reffects, ebmeans, ebmodes, and reses(); see [ME] meglm postestimation.

� � �
Integration �

intpoints(), iterate(), and tolerance(); see [ME] meglm postestimation.
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margins

Description for margins

margins estimates margins of response for mean responses and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . . )

[
predict(statistic . . . ) . . .

] [
options

]
statistic Description

mu mean response; the default
eta fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp not allowed with margins

density not allowed with margins

distribution not allowed with margins

pearson not allowed with margins

deviance not allowed with margins

anscombe not allowed with margins

reffects not allowed with margins

scores not allowed with margins

Options conditional(ebmeans) and conditional(ebmodes) are not allowed with margins.
Option marginal is assumed where applicable if conditional(fixedonly) is not specified.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples
Various predictions, statistics, and diagnostic measures are available after fitting a mixed-effects

negative binomial model with menbreg. For the most part, calculation centers around obtaining
estimates of the subject/group-specific random effects. Random effects are not estimated when the
model is fit but instead need to be predicted after estimation.

Here we show a short example of predicted counts and predicted random effects; refer to [ME] meglm
postestimation for additional examples applicable to mixed-effects generalized linear models.
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Example 1: Predicting counts and random effects

In example 2 of [ME] menbreg, we modeled the number of deaths among males in nine European
nations as a function of exposure to ultraviolet radiation (uv). We used a three-level negative binomial
model with random effects at the nation and region levels.

. use https://www.stata-press.com/data/r18/melanoma
(Skin cancer (melanoma) data)

. menbreg deaths uv, exposure(expected) || nation: || region:

(output omitted )

We can use predict to obtain the predicted counts as well as the estimates of the random effects
at the nation and region levels.

. predict mu
(option mu assumed)
(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)

. predict re_nat re_reg, reffects
(calculating posterior means of random effects)
(using 7 quadrature points)

Stata displays a note that the predicted values of mu are based on the posterior means of random
effects. You can use option modes to obtain predictions based on the posterior modes of random
effects.

Here we list the data for the first nation in the dataset, which happens to be Belgium:

. list nation region deaths mu re_nat re_reg if nation==1, sepby(region)

nation region deaths mu re_nat re_reg

1. Belgium 1 79 64.4892 -.0819939 .2937711

2. Belgium 2 80 77.64736 -.0819939 .024005
3. Belgium 2 51 44.56528 -.0819939 .024005
4. Belgium 2 43 53.10434 -.0819939 .024005
5. Belgium 2 89 65.35963 -.0819939 .024005
6. Belgium 2 19 35.18457 -.0819939 .024005

7. Belgium 3 19 8.770186 -.0819939 -.3434432
8. Belgium 3 15 43.95521 -.0819939 -.3434432
9. Belgium 3 33 34.17878 -.0819939 -.3434432

10. Belgium 3 9 7.332448 -.0819939 -.3434432
11. Belgium 3 12 12.93873 -.0819939 -.3434432

We can see that the predicted random effects at the nation level, re nat, are the same for all the
observations. Similarly, the predicted random effects at the region level, re reg, are the same within
each region.

Methods and formulas
Methods and formulas for predicting random effects and other statistics are given in Methods and

formulas of [ME] meglm postestimation.
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Also see
[ME] menbreg — Multilevel mixed-effects negative binomial regression

[ME] meglm postestimation — Postestimation tools for meglm

[U] 20 Estimation and postestimation commands
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menl — Nonlinear mixed-effects regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

menl fits nonlinear mixed-effects models in which some or all fixed and random effects enter
nonlinearly. These models are also known as multilevel nonlinear models or hierarchical nonlinear
models. The overall error distribution of the nonlinear mixed-effects model is assumed to be Gaussian.
Different covariance structures are provided to model random effects and to model heteroskedasticity
and correlations within lowest-level groups.

Quick start
Nonlinear mixed-effects regression of y on x1 and x2 with random intercepts B0 by id

menl y = {a}*(1-exp(-({b0}+{b1}*x1+{b2}*x2+{B0[id]})))

Same as above, but using the more efficient specification of the linear combination
menl y = {a}*(1-exp(-{xb: x1 x2 B0[id]}))

Same as above, but using define() to specify the linear combination
menl y = {a}*(1-exp(-{xb:})), define(xb: x1 x2 B0[id])

Same as above, but perform restricted maximum-likelihood estimation instead of the default maximum-
likelihood estimation

menl y = {a}*(1-exp(-{xb:})), define(xb: x1 x2 B0[id]) reml

Specify your own initial values for fixed effects, but use the default expectation-maximization (EM)
method to obtain initial values for random-effects parameters

menl y = {a}*(1-exp(-{xb:})), define(xb: x1 x2 B0[id]) ///
initial({a} 1 {xb:x1} 1 {xb:x2} 0.5 {xb: cons} 2, fixed)

Include random intercepts A0 by id to allow parameter a to vary between levels of id, and specify
the xb suboption to indicate that a: contains a linear combination rather than a scalar parameter

menl y = {a:}*(1-exp(-{xb:})), define(xb: x1 x2 B0[id]) ///
define(a: A0[id], xb)

Include a random slope on continuous variable x2 in the linear combination, and allow correlation
between random slopes B1 and intercepts B0

menl y = {a}*(1-exp(-{xb:})), define(xb: x1 x2 B0[id] c.x2#B1[id]) ///
covariance(B0 B1, unstructured)

Specify a heteroskedastic within-subject error variance that varies as a power of x2
menl y = {a}*(1-exp(-{xb:})), define(xb: x1 x2 B0[id] c.x2#B1[id]) ///

covariance(B0 B1, unstructured) resvariance(power x2)
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Display random-effects and within-group error parameters as standard deviations and correlations
menl, stddeviations

Fit a nonlinear marginal regression of y on variables x1, x2, and x3 with an exchangeable covariance
structure for the within-id errors

menl y = {phi1}*(1-exp(-0.5*(x1-{phi2: x2 i.x3}))), ///
rescovariance(exchangeable, group(id))

Three-level nonlinear regression of y on variable time and factor variable f with random intercepts
S0 by lev3 and W0 by lev2 nested within lev3, using an AR(1) correlation structure for the
residuals

menl y = {phi1:}+{phi2:}*exp(-{phi3}*time), ///
define(phi1: i.f S0[lev3]) define(phi2: i.f W0[lev3>lev2]) ///
rescorrelation(ar 1, t(time))

Three-level nonlinear regression of y on x1 with random intercepts W0 and slopes W1 on continuous
x1 by lev3 and with random intercepts S0 and slopes S1 on x1 by lev2 nested within lev3,
using unstructured covariance for W0 and W1 and exchangeable covariance for S0 and S1

menl y = {phi1:}+{b1}*cos({b2}*x1), ///
define(phi1:x1 W0[lev3] S0[lev3>lev2] ///

c.x1#(W1[lev3] S1[lev3>lev2])) ///
covariance(W0 W1, unstructured) ///
covariance(S0 S1, exchangeable)

Same as above, but assume that residuals are independent but have different variances for males and
females

menl y = {phi1:}+{b1}*cos({b2}*x1), ///
define(phi1:x1 W0[lev3] S0[lev3>lev2] ///

c.x1#(W1[lev3] S1[lev3>lev2])) ///
covariance(W0 W1, unstructured) ///
covariance(S0 S1, exchangeable) ///
rescovariance(identity, by(female))

Menu
Statistics > Multilevel mixed-effects models > Nonlinear regression
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Syntax
menl depvar = <menlexpr>

[
if
] [

in
] [

, options
]

<menlexpr> defines a nonlinear regression function as a substitutable expression that contains
model parameters and random effects specified in braces {}, as in exp({b}+{U[id]}); see
Random-effects substitutable expressions for details.

options Description

Model

mle fit model via maximum likelihood; the default
reml fit model via restricted maximum likelihood
define(name:<resubexpr>) define a function of model parameters; this option may be repeated
covariance(covspec) variance–covariance structure of the random effects; this

option may be repeated
initial(initial values) initial values for parameters

Residuals

rescovariance(rescovspec) covariance structure for within-group errors
resvariance(resvarspec) heteroskedastic variance structure for within-group errors
rescorrelation(rescorrspec) correlation structure for within-group errors

Time series

tsorder(varname) specify time variable to determine the ordering for time-series
operators

tsinit({name:}=<resubexpr>)specify initial conditions for lag operators used with named
expressions; this option may be repeated

tsmissing keep observations with missing values in depvar in computation

Reporting

level(#) set confidence level; default is level(95)

variance show random-effects and within-group error parameter
estimates as variances and covariances; the default

stddeviations show random-effects and within-group error parameter
estimates as standard deviations and correlations

noretable suppress random-effects table
nofetable suppress fixed-effects table
estmetric show parameter estimates as stored in e(b)

nolegend suppress table expression legend
noheader suppress output header
nogroup suppress table summarizing groups
nostderr do not estimate standard errors of random-effects parameters
lrtest perform a likelihood-ratio test to compare the nonlinear

mixed-effects model with ordinary nonlinear regression
notsshow do not show ts setting information
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling
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EM options

emiterate(#) number of EM iterations; default is emiterate(25)

emtolerance(#) EM convergence tolerance; default is emtolerance(1e-10)

emlog show EM iteration log

Maximization

menlmaxopts control the maximization process

coeflegend display legend instead of statistics

collect is allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

The syntax of covspec is

rename1 rename2
[
. . .
]
, vartype

vartype Description

independent one unique variance parameter per random effect; all covariances
are 0; the default

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects; all covariances are 0
unstructured all variances and covariances to be distinctly estimated

The syntax of rescovspec is

rescov
[
, rescovopts

]
rescov Description

identity uncorrelated within-group errors with one common variance;
the default

independent uncorrelated within-group errors with distinct variances
exchangeable within-group errors with equal variances and one common

covariance
ar
[

#
]

within-group errors with autoregressive (AR) structure of order #,
AR(#); ar 1 is implied by ar

ma
[

#
]

within-group errors with moving-average (MA) structure of order #,
MA(#); ma 1 is implied by ma

ctar1 within-group errors with continuous-time AR(1) structure
toeplitz

[
#
]

within-group errors have Toeplitz structure of order #;
toeplitz implies that all matrix off-diagonals be estimated

banded
[

#
]

within-group errors with distinct variances and covariances within
first # off-diagonals; banded implies all matrix bands
(unstructured)

unstructured within-group errors with distinct variances and covariances
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The syntax of resvarspec is

resvarfunc
[
, resvaropts

]
resvarfunc Description

identity equal within-group error variances; the default
linear varname within-group error variance varies linearly with varname
power varname | yhat variance function is a power of varname or of predicted mean
exponential varname | yhat variance function is exponential of varname or of predicted mean
distinct distinct within-group error variances

The syntax of rescorrspec is

rescorr
[
, rescorropts

]
rescorr Description

identity uncorrelated within-group errors; the default
exchangeable within-group errors with one common correlation
ar
[

#
]

within-group errors with AR(#) structure; ar 1 is implied by ar

ma
[

#
]

within-group errors with MA(#) structure; ma 1 is implied by ma

ctar1 within-group errors with continuous-time AR(1) structure
toeplitz

[
#
]

within-group errors have Toeplitz correlation structure of order #;
toeplitz implies that all matrix off-diagonals be estimated

banded
[

#
]

within-group errors with distinct correlations within first #
off-diagonals; banded implies all matrix bands (unstructured)

unstructured within-group errors with distinct correlations

Options

� � �
Model �

mle and reml specify the statistical method for fitting the model.

mle, the default, specifies that the model be fit using maximum likelihood (ML).

reml specifies that the model be fit using restricted maximum likelihood (REML), also known as
residual maximum likelihood.

define(name:<resubexpr>) defines a function of model parameters, <resubexpr>, and labels it as
name. This option can be repeated to define multiple functions. The define() option is useful for
expressions that appear multiple times in the main nonlinear specification menlexpr: you define the
expression once and then simply refer to it by using {name:} in the nonlinear specification. This
option can also be used for notational convenience. See Random-effects substitutable expressions
for how to specify <resubexpr>. <resubexpr> within define() may not contain the lagged
predicted mean function.

covariance(rename1 rename2
[
. . .
]
, vartype) specifies the structure of the covariance matrix

for the random effects. rename1, rename2, and so on, are the names of the random effects
to be correlated (see Random effects), and vartype is one of the following: independent,
exchangeable, identity, or unstructured. Instead of renames, you can specify restub* to
refer to random effects that share the same restub in their names.
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independent allows for a distinct variance for each random effect and assumes that all covariances
are 0; the default.

exchangeable specifies one common variance for all random effects and one common pairwise
covariance.

identity is short for “multiple of the identity”; that is, all variances are equal, and all covariances
are 0.

unstructured allows for all variances and covariances to be distinct. If p random effects are
specified, the unstructured covariance matrix will have p(p+ 1)/2 unique parameters.

initial(initial values) specifies the initial values for model parameters. You can specify a 1× k
matrix, where k is the total number of parameters in the model, or you can specify a parameter
name, its initial value, another parameter name, its initial value, and so on. For example, to
initialize {alpha} to 1.23 and {delta} to 4.57, you would type

. menl . . . , initial(alpha 1.23 delta 4.57) . . .

To initialize multiple parameters that have the same group name, for example, {y:x1} and {y:x2},
with the same initial value, you can simply type

. menl . . . , initial({y:} 1) . . .

For the full specification, see Specifying initial values.

� � �
Residuals �

menl provides two ways to model the within-group error covariance structure, sometimes also referred
to as residual covariance structure in the literature. You can model the covariance directly by using
the rescovariance() option or indirectly by using the resvariance() and rescorrelation()
options.

rescovariance(rescov
[
, rescovopts

]
) specifies the within-group errors covariance structure or

covariance structure of the residuals within the lowest-level group of the nonlinear mixed-effects
model. For example, if you are modeling random effects for classes nested within schools, then
rescovariance() refers to the residual variance–covariance structure of the observations within
classes, the lowest-level groups.

rescov is one of the following: identity, independent, exchangeable, ar
[

#
]
, ma

[
#
]
,

ctar1, toeplitz
[

#
]
, banded

[
#
]
, or unstructured. Below, we describe each rescov with

its specific options rescovopts:

identity
[
, by(byvar)

]
, the default, specifies that all within-group errors be independent

and identically distributed (i.i.d.) with one common error variance σ2
ε . When combined with

by(byvar), independence is still assumed, but you estimate a distinct variance for each
category of byvar.

independent, index(varname)
[
group(grpvar)

]
specifies that within-group errors are

independent with distinct variances for each value (index) of varname. index(varname) is
required. group(grpvar) is required if there are no random effects in the model.

exchangeable
[
, by(byvar) group(grpvar)

]
assumes that within-group errors have equal

variances and a common covariance.

ar
[

#
]
, t(timevar)

[
by(byvar) group(grpvar)

]
assumes that within-group errors have an

AR(#) structure. If # is omitted, ar 1 is assumed. t(timevar) is required. For this structure,
# + 1 parameters are estimated: # AR coefficients and one overall error variance, σ2

ε .
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ma
[

#
]
, t(timevar)

[
by(byvar) group(grpvar)

]
assumes that within-group errors have an

MA(#) structure. If # is omitted, ma 1 is assumed. t(timevar) is required. For this structure,
# + 1 parameters are estimated: # MA coefficients and one overall error variance, σ2

ε .

ctar1, t(timevar)
[
by(byvar) group(grpvar)

]
assumes that within-group errors have a

continuous-time AR(1) structure. This is a generalization of the AR covariance structure that
allows for unequally spaced and noninteger time values. t(timevar) is required. For this
structure, two parameters are estimated: the correlation parameter, ρ, and one overall error
variance, σ2

ε . The correlation between two error terms is the parameter ρ raised to a power
equal to the absolute value of the difference between the t() values for those errors.

toeplitz
[

#
]
, t(timevar)

[
by(byvar) group(grpvar)

]
assumes that within-group errors

have a Toeplitz structure of order #, for which correlations are constant with respect to time
lags less than or equal to # and are 0 for lags greater than #. # is an integer between 1 and
the maximum observed lag (the default). t(timevar) is required. For this structure, # + 1
parameters are estimated: # correlations and one overall error variance, σ2

ε .

banded
[

#
]
, index(varname)

[
group(grpvar)

]
is a special case of unstructured that

restricts estimation to the covariances within the first # off-diagonals and sets the covariances
outside this band to 0. index(varname) is required. # is an integer between 0 and L− 1,
where L is the number of levels of index(). By default, # is L− 1; that is, all elements
of the covariance matrix are estimated. When # is 0, only the diagonal elements of the
covariance matrix are estimated. group(grpvar) is required if there are no random effects
in the model.

unstructured, index(varname)
[
group(grpvar)

]
assumes that within-group errors have

distinct variances and covariances. This is the most general covariance structure in that no
structure is imposed on the covariance parameters. index(varname) is required. When you
have L levels of index(), then L(L + 1)/2 parameters are estimated. group(grpvar) is
required if there are no random effects in the model.

rescovopts are index(varname), t(timevar), by(byvar), and group(grpvar).

index(varname) is used within the rescovariance() option with rescov independent,
banded, or unstructured. varname is a nonnegative-integer–valued variable that identifies
the observations within the lowest-level groups (for example, obsid). The groups may be
unbalanced in that different groups may have different index() values, but you may not
have repeated index() values within any particular group.

t(timevar) is used within the rescovariance() option to specify a time variable for the ar,
ma, ctar1, and toeplitz structures.

With rescov ar, ma, and toeplitz, timevar is an integer-valued time variable used to order
the observations within the lowest-level groups and to determine the lags between successive
observations. Any nonconsecutive time values will be treated as gaps.

With rescov ctar1, timevar is a real-valued time variable.

by(byvar) is for use within the rescovariance() option and specifies that a set of distinct
within-group error covariance parameters be estimated for each category of byvar. In other
words, you can use by() to model heteroskedasticity. byvar must be nonnegative-integer
valued and constant within the lowest-level groups.

group(grpvar) is used to identify the lowest-level groups (panels) when modeling within-
group error covariance structures. grpvar is a nonnegative-integer–valued group membership
variable. This option lets you model within-group error covariance structures at the lowest
level of your model hierarchy without having to include random effects at that level in your
model. This is useful, for instance, when fitting nonlinear marginal or population-averaged
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models that model the dependence between error terms directly, without introducing random
effects; see example 19. In the presence of random effects at other levels of hierarchy in
your model, grpvar is assumed to be nested within those levels.

resvariance(resvarfunc
[
, resvaropts

]
) specifies a heteroskedastic variance structure of the

within-group errors. It can be used with the rescorrelation() option to specify flexible
within-group error covariance structures. The heteroskedastic variance structure is modeled as
Var (εij) = σ2g2 (δ, υij), where σ is an unknown scale parameter, g(·) is a function that models
heteroskedasticity (also known as variance function in the literature), δ is a vector of unknown
parameters of the variance function, and υij’s are the values of a fixed covariate xij or of the
predicted mean µ̂ij .

resvarfunc, omitting the arguments, is one of the following: identity, linear, power, expo-
nential, or distinct, and resvaropts are options specific to each variance function.

identity, the default, specifies a homoskedastic variance structure for the within-group errors;
g (δ, υij) = 1, so that Var (εij) = σ2 = σ2

ε .

linear varname specifies that the within-group error variance vary linearly with varname; that
is, g (δ, υij) =

√varnameij , so that Var (εij) = σ2varnameij . varname must be positive.

power varname| yhat
[
, strata(stratavar) noconstant

]
specifies that the within-group

error variance, or more precisely the variance function, be expressed in terms of a power of
either varname or the predicted mean yhat, plus a constant term; g (δ, υij) = |vij |δ1 + δ2.
If noconstant is specified, the constant term δ2 is suppressed. In general, three param-
eters are estimated: a scale parameter σ, the power δ1, and the constant term δ2. When
strata(stratavar) is specified, the power and constant parameters (but not the scale) are
distinctly estimated for each stratum. A total number of 2L + 1 parameters are estimated
(L power parameters, L constant parameters, and scale σ), where L is the number of strata
defined by variable stratavar.

exponential varname| yhat
[
, strata(stratavar)

]
specifies that the within-group error

variance vary exponentially with varname or with the predicted mean yhat; g (γ, υij) =
exp(γvij). Two parameters are estimated: a scale parameter σ and an exponential parameter
γ. When strata(stratavar) is specified, the exponential parameter γ (but not scale σ) is
distinctly estimated for each stratum. A total number of L+ 1 parameters are estimated (L
exponential parameters and scale σ), where L is the number of strata defined by variable
stratavar.

distinct, index(varname)
[
group(grpvar)

]
specifies that the within-group errors have

distinct variances, σ2
l , for each value (index), l, of varname, vij ; g (δ, vij) = δvij with

δvij = σvij/σ1 (δ1 = 1 for identifiability purposes) such that Var (εij) = σ2
vij = σ2

1δ
2
vij for

l = 1, 2, . . . , L and vij ∈ {1, 2, . . . , L}. index(varname) is required. group(grpvar) is
required if there are no random effects in the model. resvariance(distinct) in combina-
tion with rescorrelation(identity) is equivalent to rescovariance(independent).

resvaropts are strata(stratavar), noconstant, index(), and group(grpvar).

strata(stratavar) is used within the resvariance() option with resvarfunc power and
exponential. strata() specifies that the parameters of the variance function g(·) be
distinctly estimated for each stratum. The scale parameter σ remains constant across strata. In
contrast, rescovariance()’s by(byvar) suboption specifies that all covariance parameters,
including σ (whenever applicable), be estimated distinctly for each category of byvar.
stratavar must be nonnegative-integer valued and constant within the lowest-level groups.
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noconstant is used within the resvariance() option with resvarfunc power. noconstant
specifies that the constant parameter be suppressed in the expression of the variance function
g(·).

index(varname) is used within the resvariance() option with resvarfunc distinct.
varname is a nonnegative-integer–valued variable that identifies the observations within the
lowest-level groups (for example, obsid). The groups may be unbalanced in that different
groups may have different index() values, but you may not have repeated index() values
within any particular group.

group(grpvar) is used within the resvariance() option with resvarfunc distinct. It
identifies the lowest-level groups (panels) when no random effects are included in the model
specification such as with nonlinear marginal models. grpvar is a nonnegative-integer–valued
group membership variable.

rescorrelation(rescorr
[
, rescorropts

]
) specifies a correlation structure of the within-group

errors. It can be used with the resvariance() option to specify flexible within-group error
covariance structures.

rescorr is one of the following: identity, exchangeable, ar
[

#
]
, ma

[
#
]
, ctar1, toeplitz[

#
]
, banded

[
#
]
, or unstructured.

identity, the default, specifies that all within-group error correlations be zeros.

exchangeable
[
, by(byvar) group(grpvar)

]
assumes that within-group errors have a

common correlation.

ar
[

#
]
, t(timevar)

[
by(byvar) group(grpvar)

]
assumes that within-group errors have

an AR(#) correlation structure. If # is omitted, ar 1 is assumed. The t(timevar) option is
required. For this structure, # AR coefficients are estimated.

ma
[

#
]
, t(timevar)

[
by(byvar) group(grpvar)

]
assumes that within-group errors have an

MA(#) correlation structure. If # is omitted, ma 1 is assumed. The t(timevar) option is
required. For this structure, # MA coefficients are estimated.

ctar1, t(timevar)
[
by(byvar) group(grpvar)

]
assumes that within-group errors have a

continuous-time AR(1) correlation structure. The t(timevar) option is required. The corre-
lation between two errors is the parameter ρ raised to a power equal to the absolute value
of the difference between the t() values for those errors.

toeplitz
[

#
]
, t(timevar)

[
by(byvar) group(grpvar)

]
assumes that within-group errors

have a Toeplitz correlation structure of order #, for which correlations are constant with
respect to time lags less than or equal to # and are 0 for lags greater than #. # is an integer
between 1 and the maximum observed lag (the default). t(timevar) is required. For this
structure, # correlation parameters are estimated.

banded
[

#
]
, index(varname)

[
group(grpvar)

]
is a special case of unstructured that

restricts estimation to the correlations within the first # off-diagonals and sets the correlations
outside this band to 0. index(varname) is required. # is an integer between 0 and L− 1,
where L is the number of levels of index(). By default, # is L− 1; that is, all elements
of the correlation matrix are estimated. When # is 0, the correlation matrix is assumed to
be identity. group(grpvar) is required if there are no random effects in the model.

unstructured, index(varname)
[
group(grpvar)

]
assumes that within-group errors have

distinct correlations. This is the most general correlation structure in that no structure is
imposed on the correlation parameters. index(varname) is required. group(grpvar) is
required if there are no random effects in the model.



224 menl — Nonlinear mixed-effects regression

rescorropts are index(varname), t(timevar), by(byvar), and group(grpvar).

index(varname) is used within the rescorrelation() option with rescorr banded or
unstructured. varname is a nonnegative-integer–valued variable that identifies the obser-
vations within the lowest-level groups (for example, obsid). The groups may be unbalanced
in that different groups may have different index() values, but you may not have repeated
index() values within any particular group.

t(timevar) is used within the rescorrelation() option to specify a time variable for the
ar, ma, ctar1, and toeplitz structures.

With rescorr ar, ma, and toeplitz, timevar is an integer-valued time variable used to order
the observations within the lowest-level groups and to determine the lags between successive
observations. Any nonconsecutive time values will be treated as gaps.

With rescorr ctar1, timevar is a real-valued time variable.

by(byvar) is used within the rescorrelation() option and specifies that a set of distinct
within-group error correlation parameters be estimated for each category of byvar. byvar
must be nonnegative-integer valued and constant within the lowest-level groups.

group(grpvar) is used to identify the lowest-level groups (panels) when modeling within-
group error correlation structures. grpvar is a nonnegative-integer–valued group membership
variable. This option lets you model within-group error correlation structures at the lowest
level of your model hierarchy without having to include random effects at that level in your
model. This is useful, for instance, when fitting nonlinear marginal or population-averaged
models that model the dependence between error terms directly, without introducing random
effects; see example 19. In the presence of random effects at other levels of hierarchy in
your model, grpvar is assumed to be nested within those levels.

� � �
Time series �

tsorder(varname) specifies the time variable that determines the time order for time-series operators
used in expressions; see Time-series operators . When you use time-series operators with menl,
you must either tsset your data prior to executing menl or specify option tsorder(). When you
specify tsorder(), menl uses the time variable varname to create a new temporary variable that
contains consecutive integers, which determine the sort order of observations within the lowest-level
group. menl also creates and uses the appropriate panel variable based on the hierarchy of your
model specification and the estimation sample; see example 17 and example 18.

tsinit({name:}=<resubexpr>) specifies an initial condition for the named expression name used
with the one-period lag operator, L.{name:} or L1.{name:}, in the model specification. name
can be the depvar or the name of a function of model parameters previously defined in, for instance,
option define(). If you include the lagged predicted mean function L.{depvar:} or, equivalently,
L. yhat in your model, you must specify its initial condition in tsinit({depvar:}=. . .). The
initial condition can be expressed as a random-effects substitutable expression, <resubexpr>.
Option tsinit() may be repeated. Also see Time-series operators , example 17, and example 18.

tsmissing specifies that observations containing system missing values (.) in depvar be retained
in the computation when a lagged named expression is used in the model specification. Extended
missing values in depvar are excluded. Both missing and nonmissing observations are used to
evaluate the predicted nonlinear mean function but only nonmissing observations are used to evaluate
the likelihood. Observations containing missing values in variables used in the model other than
the dependent variable are excluded. This option is often used when subjects have intermittent
depvar measurements and the lagged predicted mean function, L.{depvar:} or L. yhat, is used
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in the model specification. Such models are common in pharmacokinetics; see example 17 and
example 18.

� � �
Reporting �

level(#); see [R] Estimation options.

variance, the default, displays the random-effects and within-group error parameter estimates as
variances and covariances.

stddeviations displays the random-effects and within-group error parameter estimates as standard
deviations and correlations.

noretable suppresses the random-effects table from the output.

nofetable suppresses the fixed-effects table from the output.

estmetric displays all parameter estimates in one table using the metric in which they are stored
in e(b). Random-effects parameter estimates are stored as log standard-deviations and hyperbolic
arctangents of correlations. Within-group error parameter estimates are stored as log standard-
deviations and, when applicable, as hyperbolic arctangents of correlations. Note that fixed-effects
estimates are always stored and displayed in the same metric.

nolegend suppresses the expression legend that appears before the fixed-effects estimation table when
functions of parameters or named substitutable expressions are specified in the main equation or
in the define() options.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

nostderr prevents menl from calculating standard errors for the estimated random-effects parameters,
although standard errors are still provided for the fixed-effects parameters. Specifying this option
will speed up computation times.

lrtest specifies to fit a reference nonlinear regression model and to use this model in calculating
a likelihood-ratio test, comparing the nonlinear mixed-effects model with ordinary nonlinear
regression.

notsshow prevents menl from showing the key ts variables; see [TS] tsset.
display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,

allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
EM options �

These options control the EM iterations that occur before estimation switches to the Lindstrom–Bates
method. EM is used to obtain starting values.

emiterate(#) specifies the number of EM iterations to perform. The default is emiterate(25).

emtolerance(#) specifies the convergence tolerance for the EM algorithm. The default is
emtolerance(1e-10). EM iterations will be halted once the log (restricted) likelihood changes
by a relative amount less than #. At that point, optimization switches to the Lindstrom–Bates
method.

emlog specifies that the EM iteration log be shown. The EM iteration log is not displayed by default.
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� � �
Maximization �

menlmaxopts: iterate(#), tolerance(#), ltolerance(#), nrtolerance(#), nonrtolerance,
pnlsopts(), lmeopts(),

[
no
]
log. The convergence is declared when either tolerance() or

ltolerance() is satisfied; see Stopping rules for details.

menlmaxopts control the maximization process of the Lindstrom–Bates, the generalized nonlinear
least-squares (GNLS), and the nonlinear least-squares (NLS) algorithms. The Lindstrom–Bates
algorithm is the main optimization algorithm used for nonlinear models containing random effects.
The GNLS algorithm is used for the models without random effects but with non-i.i.d. errors. The
NLS algorithm is used for the models without random effects and with i.i.d. errors. The Lindstrom–
Bates and GNLS algorithms are alternating algorithms—they alternate between two optimization
steps and thus support options to control the overall optimization as well as the optimization of
each step. The Lindstrom–Bates algorithm alternates between the penalized least-squares (PNLS)
and the linear mixed-effects (LME) optimization steps. The GNLS algorithm alternates between the
GNLS and ML or, if option reml is used, REML steps. Option pnlsopts() controls the PNLS and
GNLS steps, and option lmeopts() controls the LME and ML/REML steps. The other menlmaxopts
control the overall optimization of the alternating algorithms as well as the NLS optimization.

iterate(#) specifies the maximum number of iterations for the alternating algorithms and the
NLS algorithm. One alternating iteration of the Lindstrom–Bates algorithm involves #pnls PNLS
iterations as specified in pnlsopts()’s iterate() suboption and #lme LME iterations as
specified in lmeopts()’s iterate() suboption. Similarly, one alternating iteration of the
GNLS algorithm involves #gnls GNLS iterations and #ml ML/REML iterations. The default is
the number set using set maxiter, which is 300 by default.

tolerance(#) specifies the tolerance for the parameter vector in the alternating algorithms and the
NLS algorithm. When the relative change in the parameter vector from one (alternating) iteration
to the next is less than or equal to tolerance(), the parameter convergence is satisfied. The
default is tolerance(1e-6).

ltolerance(#) specifies the tolerance for the linearization log likelihood of the Lindstrom–Bates
algorithm and for the log likelihood of the GNLS and NLS algorithms. The linearization log
likelihood is the log likelihood from the LME optimization step in the last iteration. When
the relative change in the log likelihood from one (alternating) iteration to the next is less
than or equal to ltolerance(), the log-likelihood convergence is satisfied. The default is
ltolerance(1e-7).

nrtolerance(#) and nonrtolerance control the tolerance for the scaled gradient.

nrtolerance(#) specifies the tolerance for the scaled gradient. Convergence is declared when
g(−H−1)g′ is less than nrtolerance(#), where g is the gradient row vector and H is the
approximated Hessian matrix from the current iteration. The default is nrtolerance(1e-5).

nonrtolerance specifies that the default nrtolerance() criterion be turned off.

nrtolerance(#) and nonrtolerance are allowed only with the NLS algorithm.

pnlsopts(pnlsopts) controls the PNLS optimization step of the Lindstrom–Bates alternating
algorithm and the GNLS optimization step of the GNLS alternating algorithm. pnlsopts include
any of the following: iterate(#), ltolerance(#), tolerance(#), nrtolerance(#), and
maximize options. The convergence of this step within each alternating iteration is declared
when nrtolerance() and one of tolerance() or ltolerance() are satisfied. This option
is not allowed with the NLS algorithm.

iterate(#) specifies the maximum number of iterations for the PNLS and GNLS optimization
steps of the alternating algorithms. The default is iterate(5).



menl — Nonlinear mixed-effects regression 227

ltolerance(#) specifies the tolerance for the objective function in the PNLS and GNLS
optimization steps. When the relative change in the objective function from one PNLS or
GNLS iteration to the next is less than or equal to ltolerance(), the objective-function
convergence is satisfied. The default is ltolerance(1e-7).

tolerance(#) specifies the tolerance for the vector of fixed-effects parameters. When the
relative change in the coefficient vector from one PNLS or GNLS iteration to the next is less
than or equal to tolerance(), the parameter convergence criterion is satisfied. The default
is tolerance(1e-6).

nrtolerance(#) specifies the tolerance for the scaled gradient in the PNLS and GNLS opti-
mization steps. Convergence is declared when g(−H−1)g′ is less than nrtolerance(#),
where g is the gradient row vector and H is the approximated Hessian matrix from the
current iteration. The default is nrtolerance(1e-5).

maximize options are
[
no
]
log, trace, showtolerance, nonrtolerance; see [R] Maximize.

lmeopts(lmeopts) controls the LME optimization step of the Lindstrom–Bates alternating algo-
rithm and the ML/REML optimization step of the GNLS alternating algorithm. lmeopts include
any of the following: iterate(#), ltolerance(#), tolerance(#), nrtolerance(#), and
maximize options. The convergence of this step within each alternating iteration is declared
when nrtolerance() and one of tolerance() or ltolerance() are satisfied. This option
is not allowed with the NLS algorithm.

iterate(#) specifies the maximum number of iterations for the LME and ML/REML optimization
steps of the alternating algorithms. The default is iterate(5).

ltolerance(#) specifies the tolerance for the log likelihood in the LME and ML/REML
optimization steps. When the relative change in the log likelihood from one LME or ML/REML
iteration to the next is less than or equal to ltolerance(), the log-likelihood convergence
is satisfied. The default is ltolerance(1e-7).

tolerance(#) specifies the tolerance for the random-effects and within-group error covariance
parameters. When the relative change in the vector of parameters from one LME or ML/REML
iteration to the next is less than or equal to tolerance(), the convergence criterion for
covariance parameters is satisfied. The default is tolerance(1e-6).

nrtolerance(#) specifies the tolerance for the scaled gradient in the LME and ML/REML
optimization steps. Convergence is declared when g(−H−1)g′ is less than nrtolerance(#),
where g is the gradient row vector and H is the approximated Hessian matrix from the
current iteration. The default is nrtolerance(1e-5).

maximize options are
[
no
]
log, trace, gradient, showstep, hessian, showtolerance,

nonrtolerance; see [R] Maximize.[
no
]
log; see [R] Maximize.

The following option is available with menl but is not shown in the dialog box:

coeflegend; see [R] Estimation options.
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Remarks and examples
Remarks are presented under the following headings:

Introduction
Random-effects substitutable expressions

Substitutable expressions
Linear combinations
Linear forms versus linear combinations
Random effects
Multilevel specifications
Time-series operators
Summary

Specifying initial values
Two-level models
Testing variance components
Random-effects covariance structures
Heteroskedastic within-group errors
Restricted maximum likelihood
Pharmacokinetic modeling

Single-dose pharmacokinetic modeling
Multiple-dose pharmacokinetic modeling

Nonlinear marginal models
Three-level models
Obtaining initial values

Linearization approach to finding initial values
Graphical approach to finding initial values
Smart regressions approach to finding initial values
Examples of specifying initial values

Introduction

Nonlinear mixed-effects (NLME) models are models containing both fixed effects and random effects
where some of, or all, the fixed and random effects enter the model nonlinearly. They can be viewed
as a generalization of linear mixed-effects (LME) models (see [ME] mixed), in which the conditional
mean of the outcome given the random effects is a nonlinear function of the coefficients and random
effects. Alternatively, they can be considered as an extension of nonlinear regression models for
independent data (see [R] nl), in which coefficients may incorporate random effects, allowing them
to vary across different levels of hierarchy and thus inducing correlation within observations at the
same level.

Why use NLME models? Can’t we use higher-order polynomial LME models or generalized linear
mixed-effects (GLME) models instead?

In principle, any smooth nonlinear function can be approximated by a higher-order polynomial.
One may argue that we can use an LME (see [ME] mixed) polynomial model and increase the order
of the polynomial until we get an accurate approximation of the desired nonlinear model. There are
three problems with this approach. First, parameters in NLME models often have natural physical
interpretations such as half-life and limiting growth. This is not the case in LME polynomial models.
For example, what is the physical interpretation of the coefficient of time4? Second, NLME models
typically use fewer parameters than the corresponding LME polynomial model, which provides a
more parsimonious summarization of the data. Third, NLME models usually provide better predictions
outside the range of the observed data than predictions based on LME higher-order polynomial models.

GLME models (see [ME] meglm) are also nonlinear, but in the restricted sense that the conditional
mean response given random effects is a nonlinear function of the linear predictor that contains
both fixed and random effects, and only indirectly nonlinear in fixed and random effects themselves.
That is, the nonlinear function must be an invertible function of the linear predictor. However, many
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estimation methods for GLME and NLME models are similar because random effects enter both models
nonlinearly.

Population pharmacokinetics, bioassays, and studies of biological and agricultural growth processes
are just a few areas that use NLME models to analyze multilevel data such as longitudinal or repeated-
measures data. Comprehensive treatments of both methodology and history of NLME models may
be found in Davidian and Giltinan (1995), Vonesh and Chinchilli (1997), Demidenko (2013), and
Pinheiro and Bates (2000). Davidian and Giltinan (2003) provide an excellent summary.

Consider a sample of M subjects from a population of interest, where nj measurements,
y1j , . . . , ynjj , are observed on subject j at times t1j , . . . , tnjj . By “subject”, we mean any dis-
tinct experimental unit, individual, panel, or cluster with two or more correlated observations. The
basic nonlinear two-level model can be written as follows (in our terminology, a one-level NLME is
just a nonlinear regression model for independent data),

yij = µ
(
x′ij , β, uj

)
+ εij i = 1, . . . , nj ; j = 1, . . . ,M (1)

where µ(·) is a real-valued function that depends on a p × 1 vector of fixed effects β, a q × 1
vector of random effects uj , which are distributed as multivariate normal with mean 0 and variance–
covariance matrix Σ, and a covariate vector xij that contains both within-subject covariates xwij and

between-subject covariates xbj . The nj × 1 vector of errors εj =
(
ε1j , . . . , εnjj

)′
is assumed to be

multivariate normal with mean 0 and variance–covariance matrix σ2Λj , where depending on Λj , σ2

is either a within-group error variance σ2
ε or a squared scale parameter σ2.

Parameters of NLME models often have scientifically meaningful interpretations, and research
questions are formed based on them. To allow parameters to reflect phenomena of interest, (1) can
be equivalently formulated as a two-stage hierarchical model as follows:

Stage 1: Individual-level model yij = m
(
xwij , φj

)
+ εij i = 1, . . . , nj

Stage 2: Group-level model φj = d
(
xbj , β, uj

)
j = 1, . . . ,M

(2)

In stage 1, we model the response by using a function m(·), which describes within-subject
behavior. This function depends on subject-specific parameters φj’s, which have a natural physical
interpretation, and a vector of within-subject covariates xwij . In stage 2, we use a known vector-valued
function d(·) to model between-subject behavior, that is, to model φj’s and to explain how they
vary across subjects. The d(·) function incorporates random effects and, optionally, a vector of
between-subject covariates xbj . The general idea is to specify a common functional form for each
subject in stage 1 and then allow some parameters to vary randomly across subjects in stage 2.

To further illustrate (1) and (2), we consider the soybean plants data (Davidian and Giltinan 1995),
in which we model the average leaf weight per soybean plant, yij , in plot j at tij days after planting.
Let’s first use (1):

yij = µ
(
x′ij , β, uj

)
+ εij

=
β1 + u1j

1 + exp [−{tij − (β2 + u2j)} / (β3 + u3j)]
+ εij

Here β = (β1, β2, β3)
′, uj = (u1j , u2j , u3j)

′, and xij is simply tij .
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Equivalently, we can use (2) to define our model,

Stage 1: yij = m
(
xwij , φj

)
+ εij

=
φ1j

1 + exp {− (tij − φ2j) /φ3j}
+ εij

Stage 2: φ1j = β1 + u1j

φ2j = β2 + u2j

φ3j = β3 + u3j

where xwij = tij , φj = (φ1j , φ2j , φ3j)
′

= d
(
xbj , β, uj

)
= β + uj . A key advantage of (2) is the

interpretability. φj’s are parameters that characterize features of the trajectory. For example, φ1j can
be interpreted as the asymptotic average leaf weight per soybean plant in plot j when tij →∞ and
φ2j as the time at which half of φ1j is reached; that is, if we set tij = φ2j , then E(yij) = φ1j/2.
menl provides both representations.

The random effects uj are not directly estimated (although they may be predicted) but instead
are characterized by the elements of Σ, known as variance components, which are estimated together
with the parameters of the within-group error variance–covariance matrix σ2Λj . Correlation among
repeated measures is induced either indirectly through the subject-specific random effects uj or directly
through specification of the within-subject covariance matrix σ2Λj . Several covariance structures are
available for Σ, similar to those allowed in mixed. In contrast to mixed, menl provides more flexible
modeling of the within-subject variance and correlation structures.

menl uses the following decomposition of the Λj matrix,

Λj = SjCjSj (3)

where Sj is diagonal with positive elements such that Var (εij) = σ2[Sj ]
2
ii and Cj is a correlation

matrix such that corr (εij , εkj) = [Cj ]ik; [A]ij denotes the ijth element of matrix A. Decomposition
(3) of Λj allows us to separately model the variance structure (heteroskedasticity) and the correlation
structure by using disjoint sets of parameters for Cj and Sj . This is different from how mixed handles
within-subject correlation, where heteroskedasticity and correlation are determined by the type of the
chosen residual covariance structure. For convenience, menl accommodates the behavior of the mixed
command for specifying residual covariance structures via the rescovariance() option. The more
flexible modeling of the residual structures according to (3) is available via the resvariance() and
rescorrelation() options.

For LME models, because the random effects uj’s are unobserved, inference about β and the
covariance parameters are based on the marginal likelihood obtained after integrating out the random
effects. Unlike LME models, no closed-form solution is available because the random effects enter the
model nonlinearly, making the integration analytically intractable in all but the simplest situations.
There are two principal methods proposed in the literature for fitting NLME models. One is to
use an adaptive Gauss–Hermite (AGH) quadrature to approximate the integral that appears in the
expression of the marginal likelihood. The other one is to use the linearization method of Lindstrom
and Bates (1990), also known as a conditional first-order linearization method, which is based on
a first-order Taylor-series approximation of the mean function and essentially linearizes the mean
function with respect to fixed and random effects. With the AGH method, the level of accuracy increases
as the number of quadrature points increases but at the expense of increasing computational burden.
The linearization method is computationally efficient because it avoids the intractable integration, but
the approximation cannot be made arbitrarily accurate. Despite its potential limiting accuracy, the
linearization method has proven the most popular in practice (Fitzmaurice et al. 2009, sec. 5.4.8). The
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linearization method of Lindstrom and Bates (1990), with extensions from Pinheiro and Bates (1995),
is the method of estimation in menl.

The linearization method uses a first-order Taylor-series expansion of the specified nonlinear mean
function to approximate it with a linear function of fixed and random effects. Thus an NLME model
is approximated by an LME model, in which the fixed-effects and random-effects design matrices
involve derivatives of the nonlinear mean function with respect to fixed effects (coefficients) and
random effects, respectively. As such, inference after the linearization method uses the computational
machinery of the LME models. For example, estimates of random effects are computed as best linear
unbiased predictors (BLUPs) of random effects from the approximating LME model. The accuracy of
the inferential results will depend on the accuracy of the linearization method in approximating the
original NLME model. In general, asymptotic inference for the NLME models based on the linearization
method is only “approximately asymptotic”, making it less accurate than the corresponding asymptotic
inference for true LME models. In practice, however, the linearization method was found to perform
well in many situations (for example, Pinheiro and Bates [1995]; Wolfinger and Lin [1997]; Plan
et al. [2012]; and Harring and Liu [2016]).

Both ML and REML estimation are supported by menl. The ML estimates are based on the usual
application of likelihood theory, given the distributional assumptions of the model. In small samples,
ML estimation generally leads to small-sample bias in the estimated variance components. The REML
method (Thompson 1962) reduces this bias by forming a set of linear contrasts of the response that
do not depend on the fixed effects β but instead depend only on the variance components to be
estimated. The likelihood is then formed based on the distribution of the linear contrasts, and standard
ML methods are applied.

The next section describes how to specify nonlinear expressions containing random effects in menl.

Random-effects substitutable expressions

You define the nonlinear model to be fit by menl by using a random-effects substitutable ex-
pression, a substitutable expression that contains random effects. For example, exp({b}+{U[id]}),
{b1}/({b2}+{b3}*x+{U[id]}), and ({b1}+{U1[id]})/(1+{b2}*x+{c.x#U2[id]}) are a few
examples of such expressions. We describe them in more detail below.

Substitutable expressions

Let’s first consider substitutable expressions without random effects. Substitutable expressions are
just like any other mathematical expressions involving scalars and variables, such as those you would
use with Stata’s generate command, except that the parameters to be estimated are bound in braces.
See [U] 13.2 Operators and [U] 13.3 Functions for more information on expressions.

For teaching purposes, we will start with simpler substitutable expressions that do not contain
random effects. Suppose that we wish to fit the model

yij = α
(

1− e−(β0+β1x1ij+β2x2ij)
)

+ εij

where α, β0, β1, and β2 are the parameters to be estimated and εij is an error term. We could simply
type

. menl y = {a}*(1 - exp(-({b0}+{b1}*x1+{b2}*x2)))

Because a, b0, b1, and b2 are enclosed in braces, menl knows that they are parameters in the model.
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You can group several parameters together by assigning a group name (or equation name) to them.
Parameters with the same group name, lc in the example below, will be grouped together in the
output table:

. menl y = {a}*(1 - exp(-({lc:b0}+{lc:b1}*x1+{lc:b2}*x2)))

That is, parameters b0, b1, and b2 will appear together in the output table in the equation labeled
lc. Parameters without equation names will appear at the bottom of the output table.

Sometimes, it may be convenient to define subexpressions within the main expression. This can
be done inside the expression itself or by using the define() option. For example,

. menl y = {a}*(1 - exp(-{xb:})), define(xb: {lc:b0}+{lc:b1}*x1+{lc:b2}*x2)

defines the linear predictor of the exponent in the define() option with label xb and then refers
to it inside the exponent as {xb:}. You can define as many subexpressions as you like by using
the define() option repeatedly. Defining subexpressions is also useful for later predictions; see, for
instance, example 13.

The above is equivalent to

. menl y = {a}*(1 - exp(-{xb: {lc:b0}+{lc:b1}*x1+{lc:b2}*x2}))

Parameters {a}, {lc:b0}, {lc:b1}, and {lc:b2} are what we call “free parameters”, meaning
that they are not defined by a linear form, which we describe in the next section. Free parameters
are displayed with a forward slash in front of their names or their group names.

The general syntax for a free parameter is

{
[

eqname:
]

name}

Linear combinations

Nonlinear functions will often contain linear combinations of variables. Recall our nonlinear
function from Substitutable expressions:

yij = α
(

1− e−(β0+β1x1ij+β2x2ij)
)

+ εij

Instead of explicitly specifying the linear combination that appears in the exponent, as we did in
the previous section, we can use menl’s shorthand notation

. menl y = {a}*(1 - exp(-({lc: x1 x2})))

By specifying {lc:x1 x2}, you are telling menl that you are declaring a linear combination named lc
that is a function of two variables, x1 and x2. menl will create three parameters, named {lc: cons},
{lc:x1}, and {lc:x2}.

Although both specifications produce the same results, the shorthand specification is more convenient.

The general syntax for defining a linear combination is

{ eqname: varspec
[
, xb noconstant

]
}

where varspec includes a list of variables (varlist), a list of random-effects terms, or both.
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The xb option is used to distinguish between the linear combination that contains one variable
and a free parameter that has the same name as the variable and the same group name as the linear
combination. For example, {lc: x1, xb} is equivalent to {lc: cons} + {lc:x1}*x1, whereas
{lc:x1} refers to either a free parameter x1 with a group name lc or the coefficient of the x1 variable,
if {lc:} has been previously defined in the expression as a linear combination that involves variable
x1; see examples below. Thus the xb option indicates that the specification is a linear combination
rather than a single parameter to be estimated.

When you define a linear combination, a constant term is included by default (a mathematician
would argue that “affine combination” is the correct terminology!). The noconstant option suppresses
the constant.

Having defined a linear combination such as {lc:x1 x2}, you can refer to its individual coefficients
by using {lc:x1} and {lc:x2} or, more generally, {eqname:varname}. For example, suppose that
we want to fit the following model, where the coefficient of x1, β1, appears in two places in the
expression:

yij =
1

(1 + β1x1ij + β2x2ij + β3x3ij)
exp {− (α0 + α1zij) / (1 + β1x4ij)}+ εij

We use {lc1: x1 x2 x3, noconstant} to specify the first linear combination, which appears in
the denominator outside the exponentiated expression, and then use {lc1:x1} to refer to β1 in the
denominator inside the exponentiated expression. We also use the xb option, when we specify the
second linear combination that contains only one covariate z. Below is the full specification:

. menl y = 1/(1+{lc1: x1 x2 x3, noconstant})*exp(-{lc2: z, xb}/(1+{lc1:x1}*x4))

You may also refer to a “subset” of a previously defined linear combination. For example, let’s
modify our previous expression by substituting β1x4ij in the denominator in the exponent with the
subset β1x1ij + β3x3ij of the first linear combination:

yij =
1

(1 + β1x1ij + β2x2ij + β3x3ij)
exp {− (α0 + α1zij) / (1 + β1x1ij + β3x3ij)}+ εij

The coefficients for variables x1 and x3 are the same in the denominators inside and outside the
exponent. We fit this model by typing

. menl y = 1/(1+{lc1: x1 x2 x3, nocons})* ///
exp(-{lc2: z, xb}/(1+{lc1: x1 x3, nocons}))

We used the same equation name, lc1, to constrain the coefficients to be the same between the two
linear-combination specifications. If we used a different equation name, say, lc3, in the last linear
combination, we would have specified β4x1ij + β5x3ij instead of β1x1ij + β3x3ij and estimated
two extra parameters, β4 named {lc3:x1} and β5 named {lc3:x3}.

To refer to the entire linear combination that was already defined, you can simply refer to its name.
For example, if both denominators included the same linear combination, β1x1ij + β2x2ij + β3x3ij ,
the corresponding menl specification would be

. menl y = 1/(1+{lc1: x1 x2 x3, nocons})*exp(-{lc2: z, xb}/(1+{lc1:}))

Just like subexpressions, linear combinations can be defined in the define() option. For example,
the above is equivalent to

. menl y = 1/(1+{lc1:})*exp(-{lc2:}/(1+{lc1:})), define(lc1: x1 x2 x3, nocons) ///
define(lc2: z, xb)
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Linear forms versus linear combinations

As we mentioned in Linear combinations, the linear-combination specification is syntactically
convenient. It can also be more computationally efficient when a linear combination is a linear form.

A linear combination is what we call a linear form as long as you do not refer to its coefficients
or any subset of the linear combination anywhere in the expression. Linear forms are beneficial for
some nonlinear commands such as nl because they make derivative computation faster and more
accurate. Although menl does not fully utilize the linear-form specification in its computations, it is
still important to learn to distinguish between linear forms and linear combinations.

For example, in Linear combinations, the first linear combination {lc:}, the linear combination
{lc2:}, and the linear combination {lc1:} in the last example are all linear forms. The linear
combination {lc1:} in the examples where we referred to {lc1:x1} and {lc1:x1 x3} is not a
linear form.

In contrast to free parameters, parameters of a linear form are displayed without forward slashes
in the output. Rather, they are displayed as parameters within an equation whose name is the linear
combination name. Parameters of linear combinations that are not linear forms are considered free
parameters.

Random effects

So far, we have restricted our discussion to substitutable expressions that do not contain random
effects. Examples of random effects specified within the menl syntax are {U1[id]}, {U2[id1>id2]},
{c.x1#U3[id]}, and {2.f1#U4[id]}. These represent a random intercept at the id level, a random
intercept at the id2-within-id1 level, a random slope for the continuous variable x1, and a random
slope associated with the second level of the factor variable f1, respectively.

The general syntax for specifying random effects, respec, is provided below.

respec Description

{rename[levelspec]} Random intercepts rename at hierarchy levelspec
{c.varname#rename[levelspec]} Random coefficients rename for continuous variable varname
{#.fvvarname#rename[levelspec]} Random coefficients rename for the #th level of

factor variable fvvarname

rename is a random-effects name. It is a Stata name that starts with a capital letter. levelspec defines
the level of hierarchy and is described below.

levelspec Description

levelvar variable identifying the group structure for the random effect at that level
lv2 > lv1 two-level nesting: levels of variable lv1 are nested within lv2
lv3 > lv2 > lv1 three-level nesting: levels of variable lv1 are nested within lv2,

which is nested within lv3
. . . > lv3 > lv2 > lv1 higher-level nesting

You can equivalently specify levels in the opposite order, from the lowest level to the highest; for example, lv1 < lv2
< lv3, but they will be displayed in the canonical order, from the highest level to the lowest.

Random effects can be specified within a linear-combination specification such as {lc u: x1 x2
U1[id1] U2[id2>id1]}. In this case, the curly braces around each random effect are not needed.
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Let us illustrate several random-effects specifications with menl. In this section, we concentrate
on two-level nonlinear models; see Multilevel specifications for higher-level models.

Suppose that we want to fit the following model:

yij =
αzij + u0j

1 + exp {− (β0 + β1x1ij)}
+ εij

Compared with models we considered in previous sections, this model includes random effects or,
specifically, random intercepts u0j . Suppose that these random intercepts correspond to the levels of
the id variable. Then, we can include them in our model by using {U0[id]}, where U0 will be their
name.

. menl y = ({a}*z+{U0[id]})/(1+exp(-({b0}+{b1}*x1)))

A more efficient specification is to use the linear-combination notation:

. menl y = {lc1: z U0[id], nocons}/(1+exp(-{lc2: x1, xb}))

The curly braces around U0[id] are removed when it is specified within a linear-combination
specification.

If you need to refer to the random-effects term again in the expression, you can simply use its name.
For example, suppose that our model includes the same random intercepts in both the numerator and
the denominator.

yij =
αzij + u0j

1 + exp {− (β0 + β1x1ij + u0j)}
+ εij

We include random intercepts u0j’s in the second linear combination by simply referring to their
name, U0:

. menl y = {lc1: z U0[id], nocons}/(1+exp(-{lc2: x1 U0}))

If instead of u0j’s, we had a different set of random intercepts, v0j’s, in the denominator, we
would need to specify a new set of random intercepts, say, V0[id], with menl:

. menl y = {lc1: z U0[id], nocons}/(1+exp(-{lc2: x1 V0[id]}))

The shorthand notation for referring to random effects only by name, that is, without the brackets
and the levelspec, is also useful when specifying the covariance() option, especially for multilevel
random effects with long-level specifications; see Multilevel specifications.

Let’s now see how to include random slopes. Consider the following extension of the first, simpler
model in this subsection:

yij =
αzij + u0j + u1jzij

1 + exp {− (β0 + β1x1ij)}
+ εij

Here u1j is a random slope for a continuous variable z and is specified as {c.z#U1[id]} directly
or without curly braces within a linear-combination specification.

. menl y = {lc1: z U0[id] c.z#U1[id], nocons}/(1+exp(-{lc2: x1, xb}))
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We can also include random slopes for factor variables. To demonstrate this, let’s consider a
different nonlinear model for variety. Consider the model below, where binary variables x1ij and x2ij
correspond to the factor levels 1 and 2 of a factor variable x that takes on values 0, 1, and 2, with 0
being the base level.

yij = α0 + α1z1ij −
√
w2
ij + exp (β0 + β1x1ij + β2x2ij + u0j + u1jx1ij + u2jx2ij) + εij

There are three random-effects terms in this model: random intercepts u0j , random slopes u1j for
x1ij (level 1 of x), and random slopes u2j for x2ij (level 2 of x). In Stata, for a factor variable
x, we can use the factor-variable notation ([U] 11.4.3 Factor variables) to refer to its levels, 1.x
for level 1 and 2.x for level 2. So, to include the three random-effects terms in menl, we will use
U0[id], 1.x#U1[id], and 2.x#U2[id], respectively.

. menl y = {lc1: z1, xb} - sqrt(c.w#c.w + ///
exp({lc2: i.x U0[id] 1.x#U1[id] 2.x#U2[id]}))

In the above specification, we used the factor-variable notations i.x to include fixed effects for all
levels of x, except the base level, and c.w#c.w to include a square of w; see [U] 11.4.3 Factor
variables for details. The factor-variable specification i. or any other specification that refers to
multiple levels of a factor variable is not allowed when specifying random coefficients, because
each level will typically require a different set of random effects. For example, if we had specified
i.x#U[id] in the above example, we would have received an error.

Multilevel specifications

In Random effects, we focused on specifying substitutable expressions containing random effects
for two-level nonlinear mixed-effects models. Here we will consider higher-level models.

Suppose that we want to fit the following three-level nonlinear mixed-effects model,

yijk = β0 + u
(3)
0k + u

(2)
0jk + cos

{(
β1 + u

(3)
1k

)
x1ijk

}
+ εijk

where first-level observations, indexed by i, are nested within second-level groups, indexed by j,
which are nested within third-level groups, indexed by k.

There are three random-effects terms in this model: random intercepts, u(3)0k , and random slopes

for x1, u(3)1k , at the third level (idk) and random intercepts u(2)0jk at the second level (idj-nested-
within-idk). We specify random intercepts and random slopes for x1 at the highest hierarchical level
just like we did in Random effects for two-level models. Specifically, we can use U0[idk] and
c.x1#U1[idk], respectively. To specify random intercepts u(2)0jk at the idj-nested-within-idk level,
we need to use one of the levelspec specifications for two nested levels. For example, we can use
UU0[idk>idj]. Below is the full specification:

. menl y = {lc1: U0[idk] UU0[idk>idj]} + cos({lc2: x1 c.x1#U1[idk], noconstant})

We can also include a random slope of the x1 variable at the idj-within-idk level in the cosine
function by specifying c.x1#UU1[idk>idj] inside the cos() function.

. menl y = {lc1: U0[idk] UU0[idk>idj]} + ///
cos({lc2: x1 c.x1#U1[idk] c.x1#UU1[idk>idj], noconstant})

We can shorten the above specification by writing c.x1#U1[idk] c.x1#UU1[idk>idj] more
compactly as c.x1#(U1[idk] UU1[idk>idj]),

. menl y = {lc1: U0[idk] UU0[idk>idj]} + ///
cos({lc2: x1 c.x1#(U1[idk] UU1[idk>idj]), noconstant})
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Similarly, if we had a four-level model with, say, a random intercept at the idj-within-idk-within-
idl level, we could specify it as W[idl>idk>idj]; see levelspec for other specifications.

Time-series operators

You can use time-series operators in the specification of your nonlinear model (see [U] 11.4.4 Time-
series varlists) but with some exceptions described next. You can use time-series operators in the
main nonlinear specification<menlexpr> or any random-effects substitutable expression<resubexpr>.
The supported time-series operators include L. and L#., F. and F#., and D. and D#.. You cannot
combine time-series operators or use them with a list of variables. Also, you cannot combine time-series
operators with factor variables.

You can also include the lagged predicted mean function and lagged functions of model parameters
in your expressions. For brevity, we will refer to both types of lagged functions as lagged named
expressions. Lagged named expressions are useful, for instance, for fitting certain pharmacokinetic
models; see example 17 and example 18.

To include the lagged predicted mean function, you can use the specification L.{depvar:} or,
equivalently, L. yhat. (Do not confuse this with the lagged dependent variable specification L.depvar.)
You can specify the lagged predicted mean function only in the main nonlinear specification menlexpr.
To include a lagged function of model parameters, you can use the specification L.{name:}, where
name is the name of the previously defined function of model parameters. Such functions are typically
defined in the define() options. Only the one-period lag operator, L. or L1., is supported with
named expressions.

To use time-series operators, you must either tsset your data prior to executing menl or specify
the tsorder() option with menl. You must specify time and panel variables with tsset. When you
use the tsorder(varname) option, menl uses the time variable varname to determine the ordering
for time-series operators. menl creates a new temporary time variable that takes on values 1, 2, . . .
in each panel for the estimation sample. menl also creates the appropriate panel variable and uses the
newly generated variables with tsset. For two-level models, menl uses the specified level variable
as the panel variable. With more than two levels, menl creates the panel variable as a variable that
takes on values 1, 2, . . . for the groups formed by all level variables in the estimation sample. The
generated panel and time variables are labeled as <panel> and <time> in the output of tsset as
displayed by menl.

When you use time-series operators with variables in the dataset, some of the observations are used
to initialize the series for those variables. For example, if you include a lagged variable varnamet−1
(L.varname) in your model, the value of varname in the first observation in each panel is used to
initialize the series; see [TS] tsset. But what happens when you include a lagged named expression for
which there is no existing variable in the dataset? If your named expression is a function of existing
variables, the values of those variables in the first observation (in each panel) will be used to compute
an initial value for the lagged named expression. For some models, a named expression can depend
on its own lag; see example 17 and example 18. In this case, you must specify the initial condition
for it in the tsinit() option. Note that you will always need to specify the tsinit() option for the
lagged predicted mean function. The tsinit() option may be repeated and may contain functions
of variables and model parameters. When you specify the tsinit() option, menl uses its value (or
values in the first observation of each panel) to initialize the corresponding lagged named expression.
Just like with regular time-series variables, the first observation in each panel will be excluded from
the estimation sample whenever you use lagged named expressions in the model.
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Summary

To summarize, here are a few rules to keep in mind when defining substitutable expressions.

1. Model parameters and random effects are bound in braces if specified directly in the
expression: {b0}, {U0[id]}, etc.

2. Model parameters can be assigned group names: {slopes:x1}, {slopes:x2}, etc.

3. Random-effects names must start with a capital letter as in {U0[id]}, {c.x#U1[id]},
{V0[id2>id1]}, {1.z#V1[id2>id1]}, etc.

4. The factor-variable specification i., as in {i.z#V1[id2>id1]}, or any other specification
that refers to multiple levels of a factor variable, as in {i(1/4).z#V1[id2>id1]}, is not
allowed when specifying random coefficients.

5. Linear combinations of variables can be included using the specification

{eqname:varlist
[
, xb noconstant

]
}

For example, {price: mpg weight i.rep78} and {lc: x1 x2, noconstant}.

6. Random effects can be specified within a linear combination, in which case they should be
included without curly braces, for example, {lc u: x1 x2 U[id]}.

7. To specify a linear combination that contains only one variable, use the xb option, for
example, {lc: x1, xb}.

8. To refer to the previously defined linear combination again in the expression, simply use its
name {eqname:}, for example, {lc:} and {lc u:}.

9. You can refer to individual parameters of the linear combination by using {eqname: cons}
and {eqname:varname}, for example, {price: cons} and {price:weight}.

10. You can refer to a “subset” of the previously defined linear combination by using
{eqname:subset}, where subset is a subset of the variables from varlist used to define
eqname, as in {price: mpg weight}. To refer to the subset containing only one variable,
use the xb option, as in {price: weight, xb}. If a linear combination contains only one
random-effects term, the xb option is implied.

11. To refer to the previously defined random effects again in the expression or in the covari-
ance() option, simply use their names, such as {U0} and {U1}.

12. You can define subexpressions, including linear combinations, inside the main expression or
in the define() option, which can be repeated. For example,

. menl y = {numer:}/{denom:}, define(numer: z U0[id]) ///
define(denom:1+exp(-{lc: x1, xb}))

13. Specify linear forms whenever possible for faster and more accurate computation of derivatives;
see Linear forms versus linear combinations.

14. Model parameters that are not defined by linear forms are considered free parameters. They
are included in the output with a forward slash in front of their names or group names and
displayed after linear forms in the estimation table.

Specifying initial values

By default, menl uses the EM algorithm to obtain initial values, but you may often need to specify
your own. You specify your own initial values in the initial() option. For example, specifying the
initial(a 1.1 b -2) option with menl initializes parameter {a} to 1.1 and parameter {b} to −2.
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When you specify your own initial values, they are used for initialization, and the EM algorithm is
not performed. When you specify initial values for only a subset of model parameters, the remaining
parameters are initialized with some predetermined values such as zeros for fixed-effects parameters
and correlations and ones for variances. You can specify the iterate(0) option to see the initial
values that will be used by menl in the optimization.

Often, you may have good initial values for fixed-effects parameters but not for random-effects
parameters. In this case, you can specify initial()’s fixed suboption to supply your own fixed-
effects parameters, but use the EM algorithm to obtain initial values for the random-effects parameters.

There are three ways in which you can use the initial(initial values) option: you can specify
a vector of values, a list of values, or values for individual parameters and groups of parameters.

Specifically, initial values is one of the following:

vectorname
[
, skip copy fixed

]
#
[

#
] [

. . .
]
, copy

paramlist
[
=
]
#
[

paramlist
[
=
]
#
[
. . .
] ] [

, fixed
]

skip specifies that any parameters found in the specified initialization vector, vectorname, that are
not also found in the model be ignored. The default action is to issue an error message.

copy specifies that the initial values be copied into the initialization vector without checking for valid
column names. copy must be specified when initial values are supplied as a list of numbers.

fixed specifies that initial estimates are being supplied for the fixed effects only and that menl should
still perform the EM algorithm to refine initial values for variance components. The specified initial
values are used for fixed-effects parameters during the EM algorithm. If you omit fixed, menl
presumes that you are specifying starting values for all parameters in e(b), and the EM algorithm
will not be performed.

Examples of paramlist are param, {param}, {param1} {param2}, {param1 param2},
{grp:param1} {grp:param2} {grp:param3}, {grp:param1 param2}, and {grp:}.

Let’s describe each specification in more detail. You can specify the name of a vector containing
the initial values, say, initial(b0). Vector b0 should be properly labeled with labels found in
column names of e(b), unless you specify the copy option. A properly labeled vector can have
fewer elements than e(b) or, if skip is specified, even more elements. A vector without labels must
be of the same dimension as e(b).

Alternatively, you can supply a list of numbers to initial(), in which case copy must be
specified. The list of numbers should be of length equal to the dimension of e(b). For example, if
e(b) has four parameters and you type initial(1.1 0 3 -2, copy), then the four coefficients in
e(b) will be initialized to 1.1, 0, 3, and −2, respectively. If instead you specify, for example, only
three initial values in your list, an error will be issued.

Finally, you can initialize parameters by referring to their names. You can specify a parameter name,
its initial value, another parameter name, its initial value, and so on, for example, initial(a 1.1 b
-2). You can also assign the same initial value to a group of parameters. For example, initial({a
b c} 1) will initialize parameters {a}, {b}, and {c} to 1 and initial({lc:x1 x2 cons} 0)
will initialize {lc:x1}, {lc:x2}, and {lc: cons} to 0. You can assign the same initial value to
all parameters with the same group name. For example, we can shorten the previous specification to
initial({lc:} 0).

Depending on the situation, it may also be beneficial to specify initial values for the NLS algorithm
used by menl to obtain starting values for the EM algorithm. These initial values can be specified in the
parameter definition such as {a=0.5}, in which case the NLS algorithm used during the initialization
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will use 0.5 as the starting value for parameter a instead of the default 0. Such initialization is
particularly useful for parameters used in the denominators for which zero values may lead to an
undefined value of the mean function.

See Examples of specifying initial values and Obtaining initial values for examples.

Two-level models
The sole purpose of this section and its examples is to highlight the syntax of menl and make

you familiar with how to specify substitutable expressions in menl and with its output. Also see an
introductory example in Nonlinear models in [ME] me.

We will use the data from the Longitudinal Study of Unicorn Health in Zootopia, which contain the
brain weight (weight) of 30 newborn male unicorns and 30 newborn female unicorns. Measurements
were collected at 13 occasions every 2 months over the first 2 years after birth (time). Based on
previous studies, a model for unicorn brain shrinkage is believed to be

weightij = β1 + (β2 − β1) exp (−β3timeij) + εij i = 1, 2, . . . , 13; j = 1, 2, . . . , 60

Parameter β1 represents the average brain weight of unicorns as timeij increases to infinity.
Parameter β2 is the average brain weight at birth (at timeij = 0), and β3 is a scale parameter that
determines the rate at which the average brain weight of unicorns approaches the asymptotic weight
β1 (decay rate). This model can be fit with the nl command; see [R] nl.

We will start with a simple two-level model in which we allow the asymptote parameter β1 to
vary between unicorns by replacing β1 in the above equation with β1 + u0j ,

weightij = β1 + u0j + (β2 − β1 − u0j) exp (−β3timeij) + εij (4)

where β1, β2, and β3 are fixed-effects parameters to be estimated and u0j is a random intercept at
the unicorn, id, level that follows a normal distribution with mean 0 and variance σ2

u.

Equivalently, the model defined by (4) can be written as a two-stage model,

weightij = φ1j + (φ2j − φ1j) exp (−φ3jtimeij) + εij (5)

with the following stage 2 specification:

φ1j = β1 + u0j

φ2j = β2

φ3j = β3

(6)

Parameters φ1j , φ2j , and φ3j now describe the behavior of the jth unicorn. For example, φ1j
represents the brain weight of the jth unicorn as timeij increases to infinity.
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Example 1: Simple two-level model

Let’s use menl to first fit a single-equation model defined by (4), described above.
. use https://www.stata-press.com/data/r18/unicorn
(Brain shrinkage of unicorns in the land of Zootopia)

. menl weight = {b1}+{U0[id]}+({b2}-{b1}-{U0[id]})*exp(-{b3}*time)

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -56.97576

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 780
Group variable: id Number of groups = 60

Obs per group:
min = 13
avg = 13.0
max = 13

Linearization log likelihood = -56.97576

weight Coefficient Std. err. z P>|z| [95% conf. interval]

/b1 4.707954 .1414511 33.28 0.000 4.430715 4.985193
/b2 8.089432 .0260845 310.12 0.000 8.038307 8.140556
/b3 4.13201 .0697547 59.24 0.000 3.995293 4.268726

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Identity
var(U0) 1.189809 .2180073 .8308307 1.703891

var(Residual) .0439199 .0023148 .0396095 .0486995

Notes:

1. The response variable weight is specified on the left-hand side of the equality sign, and parameters
to be estimated are enclosed in curly braces {b1}, {b2}, and {b3} on the right-hand side.

2. By typing {U0[id]}, we specified a random intercept at the level identified by the group variable
id, that is, the unicorn level (level two).

3. The estimation log consists of three parts:

a. A set of EM iterations used to refine starting values. By default, the iterations themselves are
not displayed, but you can display them by using the emlog option. NLME models may often
have multiple solutions and converge to a local maximum. It is thus important to try different
initial values to investigate the existence of multiple solutions and the convergence to a global
maximum; see Obtaining initial values.

b. A set of iterations displaying the value of the linearization log likelihood from the Lindstrom–
Bates algorithm or alternating algorithm. The term “linearization” reflects the fact that the
reported log likelihood corresponds to the linear mixed-effects model obtained after linearization
of the specified nonlinear mean function with respect to fixed and random effects. See Inference
based on linearization and Stopping rules for details about the algorithm.

c. The message “Computing standard errors”. This is just to inform you that menl has finished
its iterative maximization and is now reparameterizing the variance components (see Methods
and formulas) to their natural metric and computing their standard errors. If you are interested
only in the fixed-effects estimates, you can use the nostderr option to bypass this step.
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4. The output title, “Mixed-effects ML nonlinear regression”, informs us that our model was fit using
ML, the default. For REML estimates, use the reml option.

5. The header information is similar to that of the mixed command, but unlike mixed, menl in
general does not report a model χ2 statistic in the header because a test of the joint significance of
all fixed-effects parameters (except the constant term) may not be relevant in a nonlinear model.

6. The first estimation table reports the fixed effects. We estimate β1 = 4.71, β2 = 8.09, and
β3 = 4.13. Although z tests against zeros are reported automatically for all fixed-effects parameters,
as part of standard estimation output, they may not always be of interest or even appropriate for
parameters of nonlinear models. You can use the test command ([R] test) to test hypotheses of
interest or reparameterize your model so that the tests of parameters against zeros are meaningful.

7. The second estimation table shows the estimated variance components. The first section of the
table is labeled id: Identity. In general, this means that our model includes random effects
at the id (unicorn) level and that their variance–covariance matrix, Σ, is the identity matrix (all
random effects have the same variance). In our example, because we have only one random effect,
u0j , the random-effect covariance structure is irrelevant, and the variance of the random intercept,
σ2
u, labeled as var(U0) in the output, is estimated as 1.19 with standard error 0.22.

8. The row labeled var(Residual) displays the estimated overall error variance or variance of the
error term; that is, V̂ar (εij) = σ̂2

ε = 0.044.

Example 2: Two-level model as a two-stage model, using the define() option

The model from example 1 can also be specified as a two-stage model, as defined by (5) and
(6), by using the define() option. The define() option is particularly useful when you have a
complicated nonlinear expression, and you would like to break it down into smaller pieces. Parameters
of interest that are functions of other parameters can be defined using the define() option. This
will make it easier to predict them for each subject after estimation; see [ME] menl postestimation.

Below we specify the asymptote parameter, φ1j , by using define(). The colon (:) in {phi1:}
instructs menl that phi1 will be specified as a substitutable expression within the define() option.
Parameters {phi2} and {phi3} are simple free parameters and thus do not need to be specified in
define().
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. menl weight = {phi1:}+({phi2}-{phi1:})*exp(-{phi3}*time),
> define(phi1: {b1}+{U0[id]})

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -56.97576

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 780
Group variable: id Number of groups = 60

Obs per group:
min = 13
avg = 13.0
max = 13

Linearization log likelihood = -56.97576

phi1: {b1}+{U0[id]}

weight Coefficient Std. err. z P>|z| [95% conf. interval]

/b1 4.707954 .1414511 33.28 0.000 4.430715 4.985193
/phi2 8.089432 .0260845 310.12 0.000 8.038307 8.140556
/phi3 4.13201 .0697547 59.24 0.000 3.995293 4.268726

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Identity
var(U0) 1.189809 .2180059 .8308326 1.703888

var(Residual) .0439199 .0023148 .0396095 .0486995

The results are identical to those obtained in example 1, but the estimation table now has a legend
that lists the expression phi1 defined in the model. We can suppress this legend by specifying the
nolegend option.

We could have defined phi1 directly in the main expression instead of in the define() option,
. menl weight = {phi1:{b1}+{U0[id]}}+({phi2}-{phi1:})*exp(-{phi3}*time)

(output omitted )

but by using the define() option, we simplified the main expression.

Example 3: Two-level model containing covariates
Reducing brain weight loss has been an active research area in Zootopia for the past two decades,

and scientists believe that consuming rainbow cupcakes right after birth may help slow down brain
shrinkage. Recall that the scale parameter φ3j determines the rate at which the brain weight of the
jth unicorn decreases to its asymptotic value φ1j . Hence, covariate cupcake, which represents the
number of rainbow cupcakes consumed right after birth, is added to the equation of φ3j . Also, we
would like to investigate whether the asymptote, φ1j , is gender specific, so we include the factor
variable female in the equation for φ1j . femalej is 1 if the jth unicorn is a female and 0 otherwise.

The stage 2 specification of the model defined by (5) becomes

φ1j = β10 + β11femalej + u0j

φ2j = β2

φ3j = β30 + β31cupcakej

(7)
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The define() option can be repeated, so we specify a separate define() option for φ1j , φ2j ,
and φ3j . We could have left φ2j as a free parameter {phi2} in our specification, but we wanted to
closely match the stage 2 specification (7).

. menl weight = {phi1:}+({phi2:}-{phi1:})*exp(-{phi3:}*time),
> define(phi1: {b10}+{b11}*1.female+{U0[id]})
> define(phi2: {b2})
> define(phi3: {b30}+{b31}*cupcake)

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -29.014988

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 780
Group variable: id Number of groups = 60

Obs per group:
min = 13
avg = 13.0
max = 13

Linearization log likelihood = -29.014988

phi1: {b10}+{b11}*1.female+{U0[id]}
phi2: {b2}
phi3: {b30}+{b31}*cupcake

weight Coefficient Std. err. z P>|z| [95% conf. interval]

/b10 4.072752 .1627414 25.03 0.000 3.753785 4.39172
/b11 1.264407 .2299723 5.50 0.000 .8136694 1.715144
/b2 8.088102 .0255465 316.60 0.000 8.038032 8.138172

/b30 4.706926 .1325714 35.50 0.000 4.44709 4.966761
/b31 -.2007309 .0356814 -5.63 0.000 -.2706651 -.1307966

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Identity
var(U0) .7840578 .1438924 .5471838 1.123474

var(Residual) .0420763 .0022176 .0379468 .0466551

In the table legend, /b10 and /b11 correspond, respectively, to the constant term and coefficient of
1.female in the equation for φ1j . /b2 is φ2j , and /b30 and /b31 correspond, respectively, to the
constant term and coefficient for cupcake in the equation for φ3j .

Based on our results, consuming rainbow cupcakes after birth indeed slows down brain shrinkage:
/b31 is roughly −0.2 with a 95% CI of [−0.271,−0.131].

Example 4: Specifying linear combinations

A more convenient way to specify the model in example 3 is to use linear-combination specifications;
see Random-effects substitutable expressions .

For example, define(phi1: {b10}+{b11}*1.female+{U0[id]}) can be replaced with de-
fine(phi1: i.female U0[id]). menl knows that we are defining φ1j as a linear combination of
i.female and U0[id] and thus will create a constant term and a coefficient for each level of factor
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variable female and will use a coefficient of 1 for any random effect. Because female has only
two levels, menl will create two coefficients for 0b.female and 1.female, respectively, but will
constrain the coefficient of the base level, level 0, to be 0.

We now fit our model by using linear-combination specifications within the define() options.
We explain the use of the second and third define() specifications following estimation.

. menl weight = {phi1:}+({phi2:}-{phi1:})*exp(-{phi3:}*time),
> define(phi1: i.female U0[id])
> define(phi2: _cons, xb)
> define(phi3: cupcake, xb)

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -29.014988

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 780
Group variable: id Number of groups = 60

Obs per group:
min = 13
avg = 13.0
max = 13

Wald chi2(2) = 61.78
Linearization log likelihood = -29.014988 Prob > chi2 = 0.0000

phi1: i.female U0[id]
phi3: cupcake, xb

weight Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
female

female 1.264407 .2299723 5.50 0.000 .8136694 1.715144
_cons 4.072752 .1627414 25.03 0.000 3.753785 4.39172

phi2
_cons 8.088102 .0255465 316.60 0.000 8.038032 8.138172

phi3
cupcake -.2007309 .0356814 -5.63 0.000 -.2706651 -.1307966

_cons 4.706926 .1325714 35.50 0.000 4.44709 4.966761

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Identity
var(U0) .7840578 .1438935 .5471824 1.123477

var(Residual) .0420763 .0022176 .0379468 .0466551

By using linear-combination specifications within the define() options, we improved the readability
of the coefficient table. For example, it is now clear that cons in the equation labeled phi3
corresponds to the constant term in the equation for φ3j . This term was labeled /b30 previously.

Notes:

1. The define() option interprets its specification as a random-effects substitutable expression, so
you do not need to specify the curly braces ({}) around the specification.

2. All rules for random-effects substitutable expressions apply to the specifications within define().
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3. Following one of the rules for random-effects substitutable expressions, we used the xb option
within define()s for phi2 and phi3, because their linear combinations contained only one term:
cons for phi2 and cupcake for phi3.

4. Specification define(phi2: cons, xb) is the same as define(phi2:, xb). In other words,
cons is implied with any linear combination, unless the noconstant option is specified. We

chose to include cons directly for clarity.

5. We could have used a free parameter {phi2} instead of the linear combination {phi2: cons, xb},
but we wanted to preserve the order in which phi1, phi2, and phi3 appear in the estimation
table. See example 5, where we specify φ2j as a free parameter {phi2}.

6. In the presence of linear combinations, menl reports a joint test of significance of all coefficients
(except the constant term) across all linear combinations.

7. Linear combinations containing only a constant such as {phi2:} are not listed in the table
expression legend for brevity.

Example 5: Including random coefficients

In previous examples, we only illustrated how to specify random intercepts such as {U0[id]},
and it is bad karma to end a unicorn story without showing how to specify random coefficients or
random slopes.

Continuing with our model as defined by (5) and (7), let’s suppose that the equation for the
brain-weight scale parameter, φ3j , is as follows:

φ3j = β30 + (β31 + u1j)cupcakej

We incorporated a unicorn-specific random slope for variable cupcake. The random slope, u1j ,
for a continuous variable cupcake can be specified in menl as c.cupcake#U1[id], and by default,
menl assumes that it is independent of the random intercept, u0j . (See example 9 for specifying other
random-effects covariance structures.)
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. menl weight = {phi1:}+({phi2}-{phi1:})*exp(-{phi3:}*time),
> define(phi1: i.female U0[id])
> define(phi3: cupcake c.cupcake#U1[id])

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = 165.41751
Iteration 2: Linearization log likelihood = 165.42008
Iteration 3: Linearization log likelihood = 165.42011
Iteration 4: Linearization log likelihood = 165.4201

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 780
Group variable: id Number of groups = 60

Obs per group:
min = 13
avg = 13.0
max = 13

Wald chi2(2) = 46.70
Linearization log likelihood = 165.4201 Prob > chi2 = 0.0000

phi1: i.female U0[id]
phi3: cupcake c.cupcake#U1[id]

weight Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
female

female 1.320623 .2215707 5.96 0.000 .8863522 1.754894
_cons 4.006823 .1568268 25.55 0.000 3.699448 4.314198

phi3
cupcake -.219661 .0659984 -3.33 0.001 -.3490155 -.0903066

_cons 4.771466 .1128421 42.28 0.000 4.5503 4.992633

/phi2 8.087655 .0179406 450.80 0.000 8.052492 8.122818

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Independent
var(U0) .727464 .1337157 .5074012 1.042969
var(U1) .1258914 .0309569 .0777471 .2038487

var(Residual) .0208202 .0011403 .018701 .0231795

In addition to the overall error variance and the random-intercept variance, we now have a random-
slope variance, which is labeled var(U1) in the output. In this example, we also specified parameter
φ2j as a free parameter {phi2} instead of a linear combination as in example 4. As we mentioned
in Summary, free parameters are displayed after linear combinations, so phi2 is listed last in the
estimation table.

Previous studies of unicorns considered a model that also incorporated gender-specific variation
between unicorns in asymptotic weight φ1j ,

φ1j = β10 + u0j + (β11 + u2j)femalej

but found no statistical evidence of such variation.
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If we wanted to verify this for our data, we could have fit the following model:

. menl weight = {phi1:}+({phi2}-{phi1:})*exp(-{phi3:}*time), ///
define(phi1: i.female U0[id] 1.female#U2[id]) ///
define(phi3: cupcake c.cupcake#U1[id])

Compared with our previous specification, we included a new term in the define() option for
phi1—a random slope for level 1 of the factor variable female, 1.female#U2[id]. To include
random slopes for a factor variable, we must specify random effects for each level, except the base
level, of the factor variable. The specification i.fvvarname for referring to all levels of a factor
variable is not allowed in the context of random effects, because a different set of random effects
must be defined for each level. For example, if we specified i.female#U2[id] in our example, we
would have received an error.

To summarize:

1. Use {name} to define free parameters such as {b1}.

2. Use, for example, {U0[id]} to define random intercepts at the id level, {c.varname#U1[id]} to
define random slopes for continuous variable varname at the id level, and {#.fvvarname#U1[id]}
for each level #, except the base level, of variable fvvarname to include random slopes for factor
variable fvvarname. The specification {i.fvvarname#U1[id]} is not allowed.

3. Use linear-combination specifications whenever possible. Do not use {} around random effects
when they are specified within a linear combination.

4. Use multiple define() options to specify parameters of interest that are functions of other
parameters, and use linear-combination specifications within define() whenever possible.

5. Use the xb option within a linear combination or within define() whenever you specify one variable
such as define(phi1: cupcake, xb), one random effect such as {phi2: U0[id], xb}, or a
constant-only linear combination such as {phi2: cons, xb} or {phi2: , xb}. When you specify
the xb option, the above specifications are interpreted by menl, respectively, as a linear combination
{phi1: cons}+{phi1:cupcake}*cupcake, a linear combination {phi: cons}+{U0[id]}, and
a constant term {phi2: cons}.

6. Unicorns do exist in our world, they are just gray, fat, and called rhinos.

Testing variance components

Consider data on the intensity of 23 large earthquakes in western North America between 1940 and
1980 analyzed originally by Joyner and Boore (1981) and then also by Davidian and Giltinan (1995,
sec. 11.4). The objective of the study was to model the maximum horizontal acceleration (in g units),
accel, taken at the ith measuring station for the jth earthquake, as a function of the magnitude of
the quake on the Richter scale, richter, and the distance (in km) of the measuring station from
the quake epicenter, distance. We are also interested in the possible effect of the soil type soil,
soil versus rock, at a given measuring station on acceleration. The results of this study are useful to
understand the nature of the damage caused by a particular earthquake and to determine the location
for sensitive installations such as nuclear facilities.

Let’s consider one of the models studied by Davidian and Giltinan (1995) for these data,

log10(accelij) = φ1j − log10
√
distance2ij + exp (φ2j)− φ3ij

√
distance2ij + exp (φ2j) + εij

(8)
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where
φ1j = β0 + β1richterj + u1j

φ2j = β2

φ3i = β3 + u3j

(9)

and

uj =

[
u1j
u3j

]
∼ N(0,Σ), diagonal Σ =

[
σ2
u1

0
0 σ2

u3

]
, and εij ∼ N(0, σ2

ε ) (10)

Example 6: Fitting an NLME model for the earthquake data

Let’s fit the model defined by (8), (9), and (10) by using menl.

. use https://www.stata-press.com/data/r18/earthquake
(Earthquake intensity (Joyner and Boore, 1981))

. menl laccel = {phi1:}-log10(sqrt(c.distance#c.distance+exp({phi2})))
> -{phi3:}*sqrt(c.distance#c.distance+exp({phi2})),
> define(phi1: richter U1[quake]) define(phi3: U3[quake], xb)

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = 2.4115811
Iteration 2: Linearization log likelihood = 2.4075141
Iteration 3: Linearization log likelihood = 2.407347
Iteration 4: Linearization log likelihood = 2.4073424
Iteration 5: Linearization log likelihood = 2.4073412
Iteration 6: Linearization log likelihood = 2.4073411

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 182
Group variable: quake Number of groups = 23

Obs per group:
min = 1
avg = 7.9
max = 38

Wald chi2(1) = 26.26
Linearization log likelihood = 2.4073411 Prob > chi2 = 0.0000

phi1: richter U1[quake]
phi3: U3[quake], xb

laccel Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
richter .2310021 .0450804 5.12 0.000 .1426461 .319358

_cons -.8836537 .2826255 -3.13 0.002 -1.437589 -.329718

phi3
_cons .004575 .0014192 3.22 0.001 .0017935 .0073566

/phi2 4.063075 .4023386 10.10 0.000 3.274506 4.851644
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Random-effects parameters Estimate Std. err. [95% conf. interval]

quake: Independent
var(U1) .0056676 .0073404 .0004477 .071752
var(U3) .000013 8.42e-06 3.66e-06 .0000463

var(Residual) .0461647 .0054421 .0366409 .0581639

We also store our estimates for later use:

. estimates store E1

By default, menl assumes that the random effects u1j and u3j are independent, so there is no need to
specify the covariance() option in this case. In other words, omitting the covariance() option
is equivalent to specifying covariance(U1 U3, independent).

Example 7: Likelihood-ratio test for variance components

Davidian and Giltinan (1995) did not include any random effects in the model for the φ2j parameters.
Let’s check whether the random effects are needed in the equations for φ1j and φ3j parameters in
(9).

One simple way to assess whether a random effect associated with a certain φj can be omitted,
is to examine its coefficient of variation (CV), the ratio of the standard deviation to the mean. Let’s
compute the CV for φ3j . For convenience, let’s redisplay the results from example 6 as standard
deviations for variance components.
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. menl, stddeviations

Mixed-effects ML nonlinear regression Number of obs = 182
Group variable: quake Number of groups = 23

Obs per group:
min = 1
avg = 7.9
max = 38

Wald chi2(1) = 26.26
Linearization log likelihood = 2.4073411 Prob > chi2 = 0.0000

phi1: richter U1[quake]
phi3: U3[quake], xb

laccel Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
richter .2310021 .0450804 5.12 0.000 .1426461 .319358

_cons -.8836537 .2826255 -3.13 0.002 -1.437589 -.329718

phi3
_cons .004575 .0014192 3.22 0.001 .0017935 .0073566

/phi2 4.063075 .4023386 10.10 0.000 3.274506 4.851644

Random-effects parameters Estimate Std. err. [95% conf. interval]

quake: Independent
sd(U1) .0752832 .0487517 .0211582 .2678656
sd(U3) .0036085 .0011673 .0019142 .0068026

sd(Residual) .2148596 .0126644 .1914181 .241172

The stddeviations option specifies that menl display random-effects and error standard deviations
instead of variances. It will also display correlations instead of covariances whenever they are in the
model. Because random-effects variances for these data are very small, we will use this option in all
subsequent examples to display results in the standard deviation metric.

The interquake random variation in theφ3j values about their mean is CV = sd(U3)/{phi3: cons}
= 0.0036/0.0046 ≈ 78%, and it appears reasonable to keep it in the model. You can perform a
formal likelihood-ratio (LR) test of H0: σ2

u3
= 0 to verify this, as we show below for the test of

H0: σ
2
u1

= 0.

Let’s check whether we need random intercept u1j to model φ1j . Computing CV in this case to
get an initial assessment is not simple because the mean of φ1j depends on the jth quake through
variable richter. Given the same main equation (8), we will use the LR test to compare the restricted
model, with u1j excluded, which is defined by (11) and (12) below, with the full model defined by
(9) and (10).

The stage 2 specification of the restricted model is

φ1j = β0 + β1richterj

φ2j = β2

φ3ij = β3 + u3j

(11)

where
u3j ∼ N(0, σ2

u3
) and εij ∼ N(0, σ2

ε ) (12)
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We now fit the restricted model:

. menl laccel = {phi1:}-log10(sqrt(c.distance#c.distance+exp({phi2})))
> -{phi3:}*sqrt(c.distance#c.distance+exp({phi2})),
> define(phi1: richter, xb) define(phi3: U3[quake], xb)
> stddeviations

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = 2.1262862
Iteration 2: Linearization log likelihood = 2.126043
Iteration 3: Linearization log likelihood = 2.1260328
Iteration 4: Linearization log likelihood = 2.12603
Iteration 5: Linearization log likelihood = 2.1260297

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 182
Group variable: quake Number of groups = 23

Obs per group:
min = 1
avg = 7.9
max = 38

Wald chi2(1) = 32.22
Linearization log likelihood = 2.1260297 Prob > chi2 = 0.0000

phi1: richter, xb
phi3: U3[quake], xb

laccel Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
richter .2208878 .0389144 5.68 0.000 .1446169 .2971586

_cons -.7863293 .2503442 -3.14 0.002 -1.276995 -.2956637

phi3
_cons .0054348 .0015661 3.47 0.001 .0023653 .0085044

/phi2 4.228431 .3702251 11.42 0.000 3.502803 4.954059

Random-effects parameters Estimate Std. err. [95% conf. interval]

quake: Identity
sd(U3) .0042144 .0011309 .0024907 .0071309

sd(Residual) .2170084 .0122821 .1942231 .2424668

. estimates store E2

Next, we use lrtest to perform an LR test of the hypothesis:

H0: σ
2
u1

= 0 versus H1: σ
2
u1
6= 0
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. lrtest E1 E2, stats

Likelihood-ratio test
Assumption: E2 nested within E1

LR chi2(1) = 0.56
Prob > chi2 = 0.4532

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

Akaike’s information criterion and Bayesian information criterion

Model N ll(null) ll(model) df AIC BIC

E2 182 . 2.12603 6 7.747941 26.97198
E1 182 . 2.407341 7 9.185318 31.61336

Note: BIC uses N = number of observations. See [R] IC note.

Because testing of H0: σ
2
u1

= 0 is on the boundary of the parameter space, lrtest reports a note
that the provided LR test is conservative; that is, the actual p-value is smaller than the one reported.
For a test of H0 : σ2

u1
= 0 in a two-level model, the true asymptotic distribution is not χ2(1)

but a mixture of χ2(0) and χ2(1) with equal weights, 0.5χ2(0) + 0.5χ2(1); thus the p-value is
actually 0.4532/2 = 0.2266 (see Rabe-Hesketh and Skrondal 2022, sec 8.8). We do not have sufficient
evidence to reject the null hypothesis, so we can omit random effect u1j from the full model. AIC
and BIC also favor a simpler, reduced model.

Example 8: Including within-subject covariates

One of the questions of interest in the earthquake study was the potential effect of the soil type on
acceleration. Variable soil is a within-subject covariate because the values soilij may vary within
a subject (earthquake). We include variable soil in the equation for φ3ij in (11),

φ1j = β0 + β1richterj

φ2j = β2

φ3ij = β3 + β4soilij + u3j
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and fit the corresponding model:
. menl laccel = {phi1:}-log10(sqrt(c.distance#c.distance+exp({phi2})))
> -{phi3:}*sqrt(c.distance#c.distance+exp({phi2})),
> define(phi1: richter, xb) define(phi3: i.soil U3[quake]) stddeviations

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = 3.5634779
Iteration 2: Linearization log likelihood = 3.5632472
Iteration 3: Linearization log likelihood = 3.5632339
Iteration 4: Linearization log likelihood = 3.5632304
Iteration 5: Linearization log likelihood = 3.5632298

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 182
Group variable: quake Number of groups = 23

Obs per group:
min = 1
avg = 7.9
max = 38

Wald chi2(2) = 34.20
Linearization log likelihood = 3.5632298 Prob > chi2 = 0.0000

phi1: richter, xb
phi3: i.soil U3[quake]

laccel Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
richter .2275944 .0395549 5.75 0.000 .1500683 .3051206

_cons -.8079826 .2548833 -3.17 0.002 -1.307545 -.3084205

phi3
soil

soil -.0011041 .0006441 -1.71 0.087 -.0023665 .0001583
_cons .0067347 .0017416 3.87 0.000 .0033213 .0101481

/phi2 4.3212 .3653809 11.83 0.000 3.605067 5.037334

Random-effects parameters Estimate Std. err. [95% conf. interval]

quake: Identity
sd(U3) .0043088 .0011285 .0025788 .0071992

sd(Residual) .2147101 .0121424 .1921829 .2398779

The estimated coefficient for the soil type is −0.0011 with a 95% CI of [−0.0024, 0.0002]. The
knowledge of the soil type at a particular site does not appear to add explanatory power to our model.

Random-effects covariance structures
menl supports various covariance structures to model the random-effects covariance matrix. They

are specified using the covariance() option. The covariance() option may be repeated. This
is necessary to accommodate multilevel NLME models, where you may need to specify different
covariance matrices for the random effects at different levels. Repeating this option may also be
useful if you want to specify a block-diagonal covariance structure. See example 23 for details.
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Example 9: Two-level model with correlated random effects

Davidian and Giltinan (1995, sec. 1.1.3 and 11.2) discuss a study of soybean plants that started
in 1988 and spanned over three growing seasons, year. The central objective of the study was to
compare the growth patterns of two genotypes of soybean plants, variety: a commercial variety of
soybean, denoted by F, and an experimental variety, denoted by P. In each season, eight plots were
planted using F variety and eight using P variety. To assess growth, researchers sampled each plot
8 to 10 times (8 ≤ nj ≤ 10 ) at approximately weekly intervals, time. At each sampling time, six
plants were taken from each plot at random. Leaves from the plants were weighed, and the resulting
total weight was divided by six to yield a measure of the average leaf weight per plant (in g) for the
plot for that week, weight. Plots are identified by the plot variable.

Let’s plot the data first.

. use https://www.stata-press.com/data/r18/soybean
(Growth of soybean plants (Davidian and Giltinan, 1995))

. twoway connected weight time if year==2, connect(L) by(variety)
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The graph shows the average leaf weights per plant over time for the eight plots with plants of each
genotype in the 1989 growing season. Longitudinal growth measures for each plot are connected with
solid lines. Apart from some intraplot variation, the growth profile of each plot follows roughly an
S shape, according to which growth begins slowly, then shows a linear trend during the middle of
the growing season, and then “levels off” at the end. Such pattern is typical for many growth studies.

The main goal of the study was to compare growth patterns over the growing season for the two
soybean genotypes. Because the three growing seasons differed markedly in terms of precipitation—
1988 was unusually dry, 1989 was wet, and 1990 was normal—contrasting these growth patterns
across years was also of interest. The results of this study are useful, for example, for harvesting
purposes.

A popular model for individual profiles that resemble an S shape is the logistic growth model:

weightij =
φ1j

1 + exp {− (timeij − φ2j) /φ3j}
+ εij (13)

φ1j is the asymptotic average leaf weight per soybean plant in plot j as timeij → ∞. φ2j is the
time at which half of φ1j is reached; that is, if timeij = φ2j , then E(weightij) = 0.5φ1j . φ1j
and φ2j will henceforth be referred to as “the limiting growth” and “half-life”, respectively. φ3j is a
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scale parameter, and it represents the number of days it takes for average leaf weight to grow from
50% (half-life) to about 73% of its limiting growth. That is, if we set timeij = t0.73 = φ2j + φ3j ,
the right-hand side of (13), ignoring the error term, reduces to φ1j/{1 + exp(−1)} = 0.73φ1j , and
then φ3j = t0.73 − φ2j .

We will start with a simple stage 2 specification that does not contain any covariates. Also, because
the number of soybean plots, 48, is large compared with the number of random effects, 3, we consider
a general positive-definite, unstructured, random-effects covariance matrix:

φj =

φ1jφ2j
φ3j

 =

β1β2
β3

+

u1ju2j
u3j

 (14)

uj =

u1ju2j
u3j

 ∼ N (0,Σ) , Σ =

σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

 , εij ∼ N(0, σ2
ε )

To specify this covariance structure in menl, we specify unstructured in the covariance()
option. The covariance() option also requires that we list the names of random effects to be
correlated.

. menl weight = {phi1:}/(1+exp(-(time-{phi2:})/{phi3:})),
> define(phi1: U1[plot], xb) define(phi2: U2[plot], xb) define(phi3: U3[plot], xb)
> covariance(U1 U2 U3, unstructured)

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -739.90142
Iteration 2: Linearization log likelihood = -739.84929

(iteration log omitted )
Iteration 39: Linearization log likelihood = -739.83452
Iteration 40: Linearization log likelihood = -739.83445

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 412
Group variable: plot Number of groups = 48

Obs per group:
min = 8
avg = 8.6
max = 10

Linearization log likelihood = -739.83445

phi1: U1[plot], xb
phi2: U2[plot], xb
phi3: U3[plot], xb

weight Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
_cons 19.25314 .8031811 23.97 0.000 17.67893 20.82734

phi2
_cons 55.01999 .7272491 75.65 0.000 53.59461 56.44537

phi3
_cons 8.403468 .3152551 26.66 0.000 7.78558 9.021357
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Random-effects parameters Estimate Std. err. [95% conf. interval]

plot: Unstructured
var(U1) 27.05081 6.776526 16.5556 44.19932
var(U2) 17.61605 5.317903 9.748762 31.83229
var(U3) 1.972036 .9849788 .7409048 5.248885

cov(U1,U2) 15.73304 5.413377 5.123017 26.34307
cov(U1,U3) 5.193819 2.165588 .9493435 9.438294
cov(U2,U3) 5.649306 2.049457 1.632445 9.666168

var(Residual) 1.262237 .1111685 1.062119 1.500059

The expected limiting growth or expected maximum average weight, β1 = E (φ1j), of soybean
leaves is estimated to be around 19.25 grams. The expected half-life or the time at which the leaves
reach half of their expected maximum average weight, β2 = E (φ2j), is estimated to be around 55
days after planting. The expected time needed for the average leaf weight per plant to grow from
50% to 73% of the limiting growth, β3 = E (φ3j), is about 8.4 days.

The estimates of the six random-effects variance–covariance parameters σ11, σ22, σ33, σ12, σ13,
and σ23 are displayed in the upper part of the random-effects parameters table. There is a plot-to-plot
variation in the estimates of all three parameters of interest: β1, β2, and β3. Also, the plot-specific
effects associated with the parameters of interest are positively correlated. For example, based on the
estimate of 5.19 of cov(U1,U3), plants with larger maximum weights tend to grow faster.

We store our estimates for later use:

. estimates store S1

Example 10: Residuals-vs-fitted plot to check for heteroskedasticity

A popular tool for investigating within-cluster heteroskedasticity is the plot of residuals against
the predicted values and other candidate variance covariates. For growth models, variance is often a
function of the mean (predicted values). Below we construct the plot of residuals versus predicted
values to evaluate the assumption of homoskedastic errors in example 9.
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. predict fitweight, yhat

. predict res, residuals

. scatter res fitweight
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The plot reveals increasing variability with the predicted average leaf weights, which indicates that
our within-cluster variance model is misspecified. In Heteroskedastic within-group errors, we will
show how to account for within-cluster heteroskedasticity by using the resvariance() option.

Heteroskedastic within-group errors

Until now, we assumed that the within-group errors—the ε’s in the considered models—are i.i.d.
Gaussian with common variance σ2

ε , labeled as var(Residual) by menl in the output.

To relax the assumptions of homoskedasticity and the independence of errors, menl provides two
alternatives. You can model the within-group error variance–covariance matrix, σ2Λj , directly by using
the rescovariance() option. If you used the mixed command and its residuals() option before,
you should be familiar with this approach. Alternatively, you can model the error variance–covariance
matrix indirectly by modeling the heteroskedasticity structure with the resvariance() option and
the correlation structure with the rescorrelation() option; see Variance-components parameters.
The latter approach offers more flexibility, particularly in modeling the heteroskedasticity structure.
For example, many NLME models exhibit within-subject heterogeneity that is a power function of the
mean. The rescovariance() option cannot model this, but resvariance(power yhat) can.

If your error structure is simple and is similar to those encountered in mixed, you can use the
rescovariance() option. Otherwise, use resvariance(), rescorrelation(), or both to model
more flexible within-group error covariance structures.

Example 11: Heteroskedastic power structure

Continuing with example 9, for these types of growth data, we find it is common for the intraplot
variance to increase systematically with the average leaf weight, as we saw in example 10 from the
residuals-versus-fitted plot. Davidian and Giltinan (1995) proposed a variance structure that models
the within-group error variance as a power function of the mean to account for the intraplot variability.
To reduce the number of parameters to be estimated, the authors assume that the random effects are
independent.
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Stage 2 specification of the model defined by (13) becomes

φj =

φ1jφ2j
φ3j

 =

β1β2
β3

+

u1ju2j
u3j

 (15)

where

uj =

u1ju2j
u3j

 ∼ N (0,Σ) , diagonal Σ =

σ2
u1

0 0
0 σ2

u2
0

0 0 σ2
u3


and

Var (εij) = σ2( ̂weightij)2δ
Parameter σ2 in the above is no longer an overall error variance σ2

ε but a common multiplier or
a (squared) scale parameter.

In menl, this type of heteroskedasticity is modeled by specifying resvariance(power yhat,
noconstant). yhat designates that the variance should be modeled as a function of predicted
values, ̂weightij . By default, variance function power includes a constant, which we suppress by
specifying the noconstant option.

. menl weight = {phi1:}/(1+exp(-(time-{phi2:})/{phi3:})),
> define(phi1: U1[plot], xb) define(phi2: U2[plot], xb) define(phi3: U3[plot], xb)
> resvariance(power _yhat, noconstant)

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -364.02249
Iteration 2: Linearization log likelihood = -364.22838
Iteration 3: Linearization log likelihood = -364.43168
Iteration 4: Linearization log likelihood = -364.38319
Iteration 5: Linearization log likelihood = -364.38964
Iteration 6: Linearization log likelihood = -364.38915
Iteration 7: Linearization log likelihood = -364.3892

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 412
Group variable: plot Number of groups = 48

Obs per group:
min = 8
avg = 8.6
max = 10
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Linearization log likelihood = -364.3892

phi1: U1[plot], xb
phi2: U2[plot], xb
phi3: U3[plot], xb

weight Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
_cons 16.82289 .6030531 27.90 0.000 15.64093 18.00485

phi2
_cons 51.74669 .4579632 112.99 0.000 50.8491 52.64429

phi3
_cons 7.545371 .0856321 88.11 0.000 7.377535 7.713206

Random-effects parameters Estimate Std. err. [95% conf. interval]

plot: Independent
var(U1) 11.32134 2.83114 6.934848 18.48242
var(U2) 2.68911 .9344038 1.36093 5.31351
var(U3) 4.88e-11 2.67e-07 0 .

Residual variance:
Power _yhat

sigma2 .0509223 .004422 .0429527 .0603706
delta .9339856 .0244477 .886069 .9819023

The near-zero estimate of the variance component of u3j , var(U3), suggests that the random-effects
model is overparameterized. The within-group heteroskedasticity structure appears to explain enough
variability in our data, and we no longer need random effects specific to φ3j . This is quite common in
mixed-effects models: the random-effects covariance structure and the within-group error covariance
structure compete with each other, in the sense that fewer random effects are needed when the
within-group error covariance structure is present, and vice versa.

Let’s omit u3j from (15) but now assume an unstructured covariance matrix for u1j and u2j .
The EM algorithm used by menl to obtain initial values produces the starting values for variance
components that are, in general, close to the final estimates upon convergence. Thus it can be used as a
tool to help us detect potential convergence problems because of an overparameterized random-effects
structure at an earlier stage. For example, we can check whether an unstructured covariance matrix
is a reasonable choice for the random effects u1j and u2j for these data by displaying estimates after
a few iterations. This can be done by specifying the iterate(#) option, where # is a small number
of iterations, say, between 1 and 4. Below we specify iterate(3) to perform only three iterations
and the stddeviations option to obtain standard deviations and correlations instead of variances
and covariances for easier interpretability:
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. menl weight = {phi1:}/(1+exp(-(time-{phi2:})/{phi3})),
> define(phi1: U1[plot], xb) define(phi2: U2[plot], xb)
> covariance(U*, unstructured) resvariance(power _yhat, noconstant)
> iterate(3) stddeviations

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -379.66343
Iteration 2: Linearization log likelihood = -362.90921
Iteration 3: Linearization log likelihood = -361.92335

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 412
Group variable: plot Number of groups = 48

Obs per group:
min = 8
avg = 8.6
max = 10

Linearization log likelihood = -361.94037

phi1: U1[plot], xb
phi2: U2[plot], xb

weight Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
_cons 16.92772 .5677148 29.82 0.000 15.81502 18.04042

phi2
_cons 51.81715 .4484351 115.55 0.000 50.93823 52.69606

/phi3 7.54089 .0869059 86.77 0.000 7.370557 7.711223

Random-effects parameters Estimate Std. err. [95% conf. interval]

plot: Unstructured
sd(U1) 2.904856 .4070788 2.207188 3.823047
sd(U2) 1.282287 .255515 .8677018 1.89496

corr(U1,U2) -.99999 .0034198 -1 1

Residual variance:
Power _yhat

sigma .2255029 .0095093 .2076144 .2449327
delta .9553162 .0230654 .9101088 1.000524

Warning: Convergence not achieved.

The U* in covariance(U*, unstructured) is a shorthand notation to reference all random effects
starting with U, that is, U1 and U2 in this example. The correlation between u1j and u2j is near−1 with
a 95% CI of [−1, 1], which indicates that the random-effects model may still be overparameterized.
If you try to fit this model without the iteration(3) option, it would keep iterating without
convergence.

Therefore, we further simplify the random-effects covariance structure by assuming independence
between u1j and u2j . Stage 2 specification of the model defined by (13) is now

φj =

φ1jφ2j
φ3j

 =

β1 + u1j
β2 + u2j

β3

 (16)
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where

uj =

[
u1j
u2j

]
∼ N (0,Σ) , diagonal Σ =

[
σ2
u1

0
0 σ2

u2

]
and

Var (εij) = σ2( ̂weightij)2δ
We fit this model and store its results as S2:

. menl weight = {phi1:}/(1+exp(-(time-{phi2:})/{phi3})),
> define(phi1: U1[plot], xb) define(phi2: U2[plot], xb)
> resvariance(power _yhat, noconstant)

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -402.76182
Iteration 2: Linearization log likelihood = -372.91627
Iteration 3: Linearization log likelihood = -363.87814
Iteration 4: Linearization log likelihood = -364.41042
Iteration 5: Linearization log likelihood = -364.38112
Iteration 6: Linearization log likelihood = -364.39023
Iteration 7: Linearization log likelihood = -364.38915
Iteration 8: Linearization log likelihood = -364.38921

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 412
Group variable: plot Number of groups = 48

Obs per group:
min = 8
avg = 8.6
max = 10

Linearization log likelihood = -364.38921

phi1: U1[plot], xb
phi2: U2[plot], xb

weight Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
_cons 16.82289 .6030524 27.90 0.000 15.64093 18.00485

phi2
_cons 51.74669 .4579626 112.99 0.000 50.8491 52.64428

/phi3 7.545369 .085632 88.11 0.000 7.377533 7.713205

Random-effects parameters Estimate Std. err. [95% conf. interval]

plot: Independent
var(U1) 11.32134 2.831139 6.934846 18.48241
var(U2) 2.689111 .934404 1.36093 5.313511

Residual variance:
Power _yhat

sigma2 .0509223 .004422 .0429527 .0603706
delta .9339856 .0244477 .886069 .9819023

. estimates store S2
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Because (16) is not nested in (14), we assess the adequacy of the heteroskedastic model by using
information criteria. We use estimates stats to display the AIC and BIC values for the three models.

. estimates stats S1 S2

Akaike’s information criterion and Bayesian information criterion

Model N ll(null) ll(model) df AIC BIC

S1 412 . -739.8344 10 1499.669 1539.879
S2 412 . -364.3892 7 742.7784 770.9256

Note: BIC uses N = number of observations. See [R] IC note.

The heteroskedastic model defined by (16) has smaller AIC and BIC values and thus provides a much
better representation of the data than (14).

Example 12: Heteroskedastic model with interactions

The main goal of the soybean study was to compare growth patterns of the two genotypes of
soybean over the three growing seasons, represented by calendar years 1988 through 1990. More
specifically, we would like to compare the limiting growth, the half-life, and the growth rate of
soybeans across growing seasons and genotypes.

Let Pj = I
(
varietyj = P

)
be the indicator for genotype variety P, S89,j = I

(
yearj = 1989

)
be the indicator for growing season 1989, and S90,j = I

(
yearj = 1990

)
be the indicator for growing

season 1990. Genotype variety F and growing season 1988 are baselines.

Consider an extension of the model defined by (13) and (16), where, in addition to random effects,
φ1j includes main and interaction effects of growing seasons and genotype variety, φ2j includes main
effects of growing seasons and genotype variety, and φ3j contains main effects of growing seasons
only.

φj =

φ1jφ2j
φ3j

 =

β11 + β12S89,j + β13S90,j + β14Pj + β15S89,j × Pj + β16S90,j × Pj + u1j
β21 + β22S89,j + β23S90,j + β24Pj + u2j

β31 + β32S89,j + β33S90,j


(17)

To fit the model defined by (13) and (17) by using menl, we extend menl’s specification from
example 11 by including the full-factorial interaction i.year##i.variety in the expression {phi1:},
main effects i.year and i.variety in the expression {phi2:}, and main effects i.year in the
expression {phi3:}.

. menl weight = {phi1:}/(1+exp(-(time-{phi2:})/{phi3:})),
> define(phi1: i.year##i.variety U1[plot])
> define(phi2: i.year i.variety U2[plot])
> define(phi3: i.year, xb)
> resvariance(power _yhat, noconstant)

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -292.62615
Iteration 2: Linearization log likelihood = -290.24389

(iteration log omitted )
Iteration 10: Linearization log likelihood = -290.90729
Iteration 11: Linearization log likelihood = -290.9073
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Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 412
Group variable: plot Number of groups = 48

Obs per group:
min = 8
avg = 8.6
max = 10

Wald chi2(10) = 413.88
Linearization log likelihood = -290.9073 Prob > chi2 = 0.0000

phi1: i.year i.variety i.year#i.variety U1[plot]
phi2: i.year i.variety U2[plot]
phi3: i.year

weight Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
year

1989 -8.837933 1.056113 -8.37 0.000 -10.90788 -6.76799
1990 -3.666206 1.165969 -3.14 0.002 -5.951463 -1.38095

variety
P 1.648139 1.033433 1.59 0.111 -.3773532 3.673631

year#variety
1989#P 5.563008 1.167782 4.76 0.000 3.274196 7.851819
1990#P .0974815 1.178054 0.08 0.934 -2.211462 2.406425

_cons 19.42734 .9445749 20.57 0.000 17.57601 21.27867

phi2
year

1989 -2.253227 .9746495 -2.31 0.021 -4.163505 -.3429494
1990 -4.970736 .9778317 -5.08 0.000 -6.887251 -3.054221

variety
P -1.294058 .4255317 -3.04 0.002 -2.128085 -.4600314

_cons 54.81257 .7587239 72.24 0.000 53.3255 56.29964

phi3
year

1989 -.9023768 .1992358 -4.53 0.000 -1.292872 -.5118818
1990 -.6805314 .2100799 -3.24 0.001 -1.09228 -.2687823

_cons 8.060677 .1459662 55.22 0.000 7.774588 8.346765

Random-effects parameters Estimate Std. err. [95% conf. interval]

plot: Independent
var(U1) .8643052 .5271147 .2615435 2.856211
var(U2) .1341755 .2306869 .0046154 3.900652

Residual variance:
Power _yhat

sigma2 .0467091 .0039176 .0396286 .0550546
delta .9451193 .0227608 .9005089 .9897297

. estimates store S3
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By including more fixed effects in the model, which explain some of the variability in the average leaf
weight, we substantially reduced the estimates of variance components. Compared with example 11,
var(U1) decreased from 11.32 to 0.86, and var(U2) decreased from 2.69 to 0.13. It often happens
that specifying a better-fitting model for the fixed effects reduces the need for random effects in the
model.

We can compare model S3 or the model defined by (17) with model S2 or the one defined by
(16) by using, for example, information criteria.

. estimates stats S2 S3

Akaike’s information criterion and Bayesian information criterion

Model N ll(null) ll(model) df AIC BIC

S2 412 . -364.3892 7 742.7784 770.9256
S3 412 . -290.9073 17 615.8146 684.172

Note: BIC uses N = number of observations. See [R] IC note.

Even though S3 has many more parameters, it fits the soybean data better than S2.

By inspecting the fixed-effects estimates from the output of model S3, we see that both the type of
year and genotype variety affect all three parameters: the expected maximum leaf weight, half-life,
and scale. For example, all three parameters achieve their highest values in the dry year, baseline
year 1988, because coefficient estimates for the other years are negative. Also, the genotype variety F
reaches its half-life roughly a day later (β24 = −1.29) than genotype variety P.

Example 13: Obtaining predictions

After estimation, we may want to obtain predicted values for the outcome or for the parameters
of interest. Continuing with example 12, we want to predict the asymptotic average leaf weight per
soybean plant in each plot, φ̂1j . The φ1j parameter is not constant but varies for each plot, growing
season, and genotype variety. We can use predict after menl to obtain predicted values for φ1j ;
see [ME] menl postestimation.

First, we create a new grouping variable for growing seasons, genotype variety, and plot types.
We also create the tolist variable to mark the first observation in each group.

. egen group = group(year variety plot)

. by group, sort: generate byte tolist=(_n==1)

Next, we use predict to compute predicted values for the expression {phi1:} and store them
in the new variable phi1. We store only unique values in phi1, one for each group; the remaining
observations are replaced with missing values.

. predict double (phi1 = {phi1:})

. quietly replace phi1 = . if tolist!=1
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We now list the five smallest and the five largest values of the asymptotic average leaf weight.

. sort phi1

. list plot year variety phi1 if (_n<=5 | _n>43) & phi1<., sep(5)

plot year variety phi1

1. 1989F6 1989 F 8.8421451
2. 1989F4 1989 F 10.449521
3. 1989F5 1989 F 10.473849
4. 1989F1 1989 F 10.721364
5. 1989F7 1989 F 10.810197

44. 1988P8 1988 P 20.86739
45. 1988P2 1988 P 21.237692
46. 1988P4 1988 P 21.310511
47. 1988P3 1988 P 21.506007
48. 1988P6 1988 P 21.581873

Soybean plants with genotype variety P have substantially larger asymptotic average leaf weight in
the dry year, 1988, than soybean plants with genotype variety F in the wet year, 1989.

Example 14: Within-group error correlation structure

Pinheiro and Bates (2000, chap. 8) analyzed data from a study of the estrus cycles of mares.
Originally analyzed in Pierson and Ginther (1987), the data contain daily records of the number of
ovarian follicles larger than 10 mm over a period ranging from 3 days before ovulation to 3 days after
the subsequent ovulation. The measurement times for each mare are scaled so that the ovulations for
each mare occur at times 0 and 1 and are recorded in stime.

The considered model is

folliclesij = φ1j + φ2j sin (2πφ3jstimeij) + φ4j cos (2πφ3jstimeij) + εij

where φ1j is an intercept, φ3j is the frequency of the sine wave for the jth mare, and φ2j and φ4j
are terms determining the amplitude and phase of the sine wave for the jth mare. If aj and pj are
the amplitude and phase for mare j, then φ2j = aj cos(pj) and φ4j = aj sin(pj).

This model was fit in example 8 of [ME] mixed in the context of a linear mixed-effects model,
where the number of ovarian follicles was a periodic function of time with known frequency φ3j
equal to 1. If we want to estimate frequency, we cannot use the mixed command, because φ3j enters
the model nonlinearly.

Pinheiro and Bates (2000) suggested an AR(1) correlation structure for modeling the within-
group error correlation. This structure can be specified by using the rescorrelation() option as
rescorrelation(ar 1, t(time)), where time is an integer-valued time variable used to order the
observations within mares and to determine the lags between successive observations.

We also considered several random-effects structures and found that we need only one random
intercept to model φ1j .
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The full specification for the stage 2 model is

φj =


φ1j
φ2j
φ3j
φ4j

 =


β1 + u1j

β2
β3
β4


where

uj = u1j ∼ N
(
0, σ2

u

)
, εj ∼ N(0, σ2

εΛj)

and

σ2
εΛj = σ2

ε


1 ρ ρ2 . . . ρnj−1

ρ 1 ρ . . . ρnj−2

ρ2 ρ 1 . . . ρnj−3

...
...

...
. . .

...
ρnj−1 ρnj−2 ρnj−3 . . . 1


We fit this model by using menl as follows:

. use https://www.stata-press.com/data/r18/ovary, clear
(Ovarian follicles in mares)

. menl follicles = {phi1: U1[mare], xb} + {phi2}*sin(2*_pi*stime*{phi3}) +
> {phi4}*cos(2*_pi*stime*{phi3}), rescorrelation(ar 1, t(time))

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -789.43415
Iteration 2: Linearization log likelihood = -789.43439
Iteration 3: Linearization log likelihood = -789.43439

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 308
Group variable: mare Number of groups = 11

Obs per group:
min = 25
avg = 28.0
max = 31

Linearization log likelihood = -789.43439

phi1: U1[mare], xb

follicles Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
_cons 11.98929 .9055946 13.24 0.000 10.21436 13.76422

/phi2 .2226033 .3290159 0.68 0.499 -.4222559 .8674626
/phi3 4.18747 .2746499 15.25 0.000 3.649166 4.725774
/phi4 .279653 .3223277 0.87 0.386 -.3520977 .9114036
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Random-effects parameters Estimate Std. err. [95% conf. interval]

mare: Identity
var(U1) 4.935352 3.967849 1.020897 23.85911

Residual: AR(1),
time time

var(e) 20.14587 3.49294 14.34176 28.29889
corr .7332304 .0463231 .6287332 .8117158

By using estimates of φ2j and φ4j , we can compute the amplitude and phase for the sine wave for
mare j. The amplitude and the phase are the same for all the mares because φ2j and φ4j are constant
and not mare specific.

For example, the amplitude aj can be computed as
√
φ22j + φ24j by using the relationship

φ22j +φ24j = a2j
{

sin2(pj) + cos2(pj)
}

= a2j . The phase pj can be computed as pj = atan(φ4j/φ2j)
by using the relationship φ4j/φ2j = {aj sin(pj)} / {aj cos(pj)} = tan(pj).

We can use nlcom to compute the amplitude and the phase.

. nlcom (amplitude: sqrt(_b[/phi2]^2 + _b[/phi4]^2))
> (phase: atan(_b[/phi4]/_b[/phi2]))

amplitude: sqrt(_b[/phi2]^2 + _b[/phi4]^2)
phase: atan(_b[/phi4]/_b[/phi2])

follicles Coefficient Std. err. z P>|z| [95% conf. interval]

amplitude .3574325 .2451183 1.46 0.145 -.1229904 .8378555
phase .8985001 1.090985 0.82 0.410 -1.23979 3.03679

As we mentioned in example 1, it is important to try different initial values when fitting NLME
models to investigate potential convergence to a local maximum, especially for models containing
periodic functions, as in our example. We explore different initial values for this model in Linearization
approach to finding initial values by considering the functional form of the mean function and arrive
at a different solution with a larger log likelihood.

Restricted maximum likelihood
Like mixed, menl provides estimation by using ML or REML. The difference between the two

approaches is described in detail in Likelihood versus restricted likelihood in [ME] mixed. Briefly,
REML is preferable when you have a small number of groups because it produces unbiased, at least for
balanced data, estimates of variance components. In large samples, there is little difference between
ML and REML. One disadvantage of REML, however, is that LR tests based on REML are inappropriate
for comparing models with different fixed-effects specifications. See example 15 for an example of
REML estimation.
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Pharmacokinetic modeling

Pharmacokinetics (PKs) is the study of drug absorption, distribution, metabolism, and excretion.
It is often referred to as the study of “what the body does with a drug”. The goal of PK modeling
is to summarize the concentration-time measurements using a model that relates drug input to drug
response, to relate the parameters of this model to patient characteristics, and to provide individual
dose–response predictions to optimize individual doses. In other words, by understanding between-
subject variation in drug disposition, we can individualize the dosage regimen for a particular patient
based on relevant physiological information identified by our PK model.

Single-dose pharmacokinetic modeling

Example 15: Single-oral-dose model

Consider a PK study of the antiasthmatic agent theophylline that was reported by Boeckmann,
Sheiner, and Beal (2011) and analyzed by Davidian and Giltinan (1995). The drug was administered
orally to 12 subjects, where dosage dose (mg/kg) was given on a per weight basis. Serum concentrations
(in mg/L) were obtained at 11 time points per subject over 25 hours following administration. The
graph below shows the resulting concentration-time profiles for four subjects.

. use https://www.stata-press.com/data/r18/theoph
(Theophylline kinetics (Boeckmann et al., [1994] 2011))

. twoway connected conc time if subject<=4, connect(L) by(subject)
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In PKs, the pattern of rapid rise to a peak concentration followed by an apparent exponential
decay may be described by a so-called one-compartment open model with first-order absorption and
elimination. The model corresponds roughly to viewing the body as one “blood compartment” and
is particularly useful for the PK analysis of drugs that distribute relatively rapidly throughout the
body, which makes it a reasonable model for the kinetics of theophylline after oral administration.
Further details about compartmental modeling may be found in Gibaldi and Perrier (1982). The
one-compartment open model for theophylline kinetics may be expressed as

concij =
dosejkejkaj

Clj
(
kaj − kej

) { exp
(
−kejtimeij

)
− exp

(
−kajtimeij

)}
+ εij (18)
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for i = 1, . . . , 11 and j = 1, . . . , 12. Model parameters are the elimination rate constant kej , the
absorption rate constant kaj , and the clearance Clj for each subject j.

Because each of the model parameters must be positive to be meaningful, we write

Clj = exp (β0 + u0j)

kaj = exp (β1 + u1j)

kej = exp (β2)

where u0j and u1j are assumed independent and normally distributed with means zero and variance
σ2
u0

and σ2
u1

, respectively.

The model defined by (18) implies that the predicted value for the concentration at time timeij = 0
is ĉoncij = 0. Therefore, a power variance function, a natural candidate for this type of heteroskedastic
pattern, cannot be used in this example because error variance will be 0 at timeij = 0. So the
constant plus power variance function, which adds a constant to the power term, is used instead to
model the within-group error variance:

Var (εij) = σ2{(ĉoncij)δ + c}2
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In menl, we use the resvariance(power yhat) option to specify the constant plus power
variance function and the following model specification:

. menl conc = (dose*{ke:}*{ka:}/({cl:}*({ka:}-{ke:})))*
> (exp(-{ke:}*time)-exp(-{ka:}*time)), define(cl: exp({b0}+{U0[subject]}))
> define(ka: exp({b1}+{U1[subject]})) define(ke: exp({b2}))
> resvariance(power _yhat)

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -167.51953
Iteration 2: Linearization log likelihood = -167.65729

(iteration log omitted )
Iteration 26: Linearization log likelihood = -167.67966
Iteration 27: Linearization log likelihood = -167.67964

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 132
Group variable: subject Number of groups = 12

Obs per group:
min = 11
avg = 11.0
max = 11

Linearization log likelihood = -167.67964

cl: exp({b0}+{U0[subject]})
ka: exp({b1}+{U1[subject]})
ke: exp({b2})

conc Coefficient Std. err. z P>|z| [95% conf. interval]

/b0 -3.227479 .0598389 -53.94 0.000 -3.344761 -3.110197
/b1 .432931 .1980835 2.19 0.029 .0446945 .8211674
/b2 -2.453742 .0514567 -47.69 0.000 -2.554595 -2.352889

Random-effects parameters Estimate Std. err. [95% conf. interval]

subject: Independent
var(U0) .0288787 .0127763 .0121337 .0687323
var(U1) .4075667 .1948715 .1596652 1.040368

Residual variance:
Power _yhat

sigma2 .0976905 .0833035 .0183658 .5196322
delta .3187133 .2469532 -.1653061 .8027327
_cons .7288982 .3822983 .2607486 2.037567
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The number of groups, 12, is fairly small in these data, so we now refit the model by using REML
estimation.

. menl conc = (dose*{ke:}*{ka:}/({cl:}*({ka:}-{ke:})))*
> (exp(-{ke:}*time)-exp(-{ka:}*time)), define(cl: exp({b0}+{U0[subject]}))
> define(ka: exp({b1}+{U1[subject]})) define(ke: exp({b2}))
> resvariance(power _yhat) reml

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log restricted-likelihood = -172.31734
Iteration 2: Linearization log restricted-likelihood = -172.42325

(iteration log omitted )
Iteration 23: Linearization log restricted-likelihood = -172.44383
Iteration 24: Linearization log restricted-likelihood = -172.44384

Computing standard errors:

Mixed-effects REML nonlinear regression Number of obs = 132
Group variable: subject Number of groups = 12

Obs per group:
min = 11
avg = 11.0
max = 11

Linear. log restricted-likelihood = -172.44384

cl: exp({b0}+{U0[subject]})
ka: exp({b1}+{U1[subject]})
ke: exp({b2})

conc Coefficient Std. err. z P>|z| [95% conf. interval]

/b0 -3.227295 .0619113 -52.13 0.000 -3.348639 -3.105951
/b1 .4354519 .2072387 2.10 0.036 .0292716 .8416322
/b2 -2.453743 .0517991 -47.37 0.000 -2.555267 -2.352218

Random-effects parameters Estimate Std. err. [95% conf. interval]

subject: Independent
var(U0) .0316416 .014531 .0128634 .0778326
var(U1) .4500585 .2228208 .1705474 1.187662

Residual variance:
Power _yhat

sigma2 .1015759 .086537 .0191255 .53947
delta .3106636 .2466593 -.1727797 .794107
_cons .7150935 .3745351 .256177 1.996114

As expected, the estimates of the random-effects variances are slightly larger than the corresponding
ML estimates, but we arrive at similar inferential conclusions based on our REML estimates.

Example 16: Nonlinear functions of parameters

A distinctive feature of example 15 is that parameters of interest are nonlinear functions of the
estimated parameters and random effects. To interpret parameters that depend on random effects, we
can either integrate random effects out of the parameter expression or condition on them. The former
parameter estimates are often referred to as population-based estimates. The latter parameter estimates
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are referred to as conditional estimates and, when conditioning on zero random effects, uj = 0, as
estimates for an “average” or typical subject. For linear functions, the population-based estimates
coincide with the conditional estimates. This is no longer true for nonlinear functions.

In PK modeling, the parameters of interest are clearance, elimination rate, and absorption rate.
These are nonlinear functions of the estimated parameters β0, β1, β2, and subject-specific random
effects. Depending on the context, we may be interested in their population-based estimates or in
their conditional estimates.

In general, obtaining population-based estimates would require numerical integration to integrate the
subject-specific random effects out of the expression. In our example, we can compute population-based
estimates directly by using the fact that exp(u0j)’s and exp(u1j)’s are lognormally distributed.

Thus the population-based clearance ClP can be computed as E (Clj) = E { exp (β0 + u0j)} =
exp
(
β0 + σ2

u0
/2
)

and the population-based absorption rate kPa as E { exp (β1 + u1j)} =

exp
(
β1 + σ2

u1
/2
)
. The elimination rate ke does not depend on subject-specific effects and can

thus be computed simply as kPe = ke = exp (β2).

Alternatively, if we want parameters to represent a typical subject, we can simply set u0j = 0
and u1j = 0 in their expressions. Thus we can compute clearance and absorption rate for a typical
subject simply as Cl = exp (β0) and ka = exp (β1). These formulas can also be viewed as
a result of exponentiating population-based log-clearance and log-absorption rate; that is, Cl =
exp [E { log(Clj)}] = exp (β0) and ka = exp

[
E
{

log(kaj )
}]

= exp (β1).

If we compare the formulas for, say, ClP and Cl, the former considers variation in clearances
across subjects, whereas the latter ignores such variation and instead reflects what the clearance would
be for a typical subject with u0j = 0.

Both approaches have merit, and here we will compute, for example, ClP = exp(β̂0 + σ̂2
u0
/2) =

exp(−3.23+0.032/2) = 0.04. That is, 0.04 liters of serum concentration are cleared of the theophylline
drug per hour per kg body weight in the considered population. In other words, for the population
of subjects that weigh 75 kg, an average of 75× 0.04 ≈ 3 liters of serum concentration are cleared
of theophylline every hour.

We can also use nlcom to compute the estimates of ClP and Cl. To use nlcom, we need to know
how parameters are labeled by menl for postestimation. We can use menl’s option coeflegend to
display parameter names. We also specify noheader to suppress the table header.

. menl, coeflegend noheader

conc Coefficient Legend

/b0 -3.227295 _b[/b0]
/b1 .4354519 _b[/b1]
/b2 -2.453743 _b[/b2]

/subject
lnsd(U0) -1.726641 _b[/subject:lnsd(U0)]
lnsd(U1) -.3991888 _b[/subject:lnsd(U1)]

/Residual
lnsigma -1.143475 _b[/Residual:lnsigma]

delta .3106636 _b[/Residual:delta]
ln_cons -.335342 _b[/Residual:ln_cons]

If we examine the output carefully, we will notice that menl, coeflegend displayed results in the
estimation metric—as log standard-deviations instead of variances. Although by default menl displays
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parameters in their original metric, it stores them in the estimation metric, the metric that was used
during optimization; see Examples of specifying initial values and Methods and formulas for more
details about the estimation metric.

The parameters we need to compute ClP and Cl are coefficient b[/b0] and the variance of U0,
which can be obtained as exp(2* b[/subject:lnsd(U0)]) based on the stored estimate of the
log standard-deviation of U0. We now use nlcom to compute our nonlinear estimates.

. nlcom (Cl_P: exp(_b[/b0]+0.5*exp(2*_b[/subject:lnsd(U0)]))) (Cl: exp(_b[/b0]))

Cl_P: exp(_b[/b0]+0.5*exp(2*_b[/subject:lnsd(U0)]))
Cl: exp(_b[/b0])

conc Coefficient Std. err. z P>|z| [95% conf. interval]

Cl_P .0402972 .002512 16.04 0.000 .0353738 .0452205
Cl .0396646 .0024557 16.15 0.000 .0348516 .0444777

Working with parameters in the estimation metric can be tedious, especially when nonlinear
expressions contain multiple variance components. In that case, you may consider using estat sd
after menl to obtain results in the standard deviation metric or, if you also specify the variance
option, in the variance metric; see [ME] menl postestimation. If you specify the post option with
estat sd, the results will also be stored in the standard deviation or variance metrics, which you
can use for further postestimation analysis.

. estat sd, post variance coeflegend

conc Coefficient Legend

/b0 -3.227295 _b[/b0]
/b1 .4354519 _b[/b1]
/b2 -2.453743 _b[/b2]

Random-effects parameters Estimate Legend

subject: Independent
var(U0) .0316416 _b[/subject:var(U0)]
var(U1) .4500585 _b[/subject:var(U1)]

Residual variance:
Power _yhat

sigma2 .1015759 _b[/Residual:sigma2]
delta .3106636 _b[/Residual:delta]
_cons .7150935 _b[/Residual:_cons]

In addition to results being displayed in the variance metric, because of the post option, they are
stored in that metric. We also specified the coeflegend option with estat sd to see how parameters
are labeled so that we could refer to them in other postestimation commands such as nlcom.

Now, we can simply refer to the variance of U0 as b[/subject:var(U0)] in our nlcom
command.
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. nlcom (Cl_P: exp(_b[/b0]+0.5*_b[/subject:var(U0)]))

Cl_P: exp(_b[/b0]+0.5*_b[/subject:var(U0)])

Coefficient Std. err. z P>|z| [95% conf. interval]

Cl_P .0402972 .002512 16.04 0.000 .0353738 .0452205

estat sd’s post option should be used with caution because it clears all estimation results except
the parameter estimates in e(b) and their VCE in e(V). Thus the only postestimation features that
will work after estat sd, post are those that need only e(b) and e(V), such as lincom and
nlcom. Other postestimation features will not be available, and you will need to refit your model to
run them. To avoid refitting your model, you may consider storing your estimation results in memory
(see [R] estimates store) or saving them on disk (see [R] estimates save) before using estat sd,
post. We no longer needed the estimation results from menl, so we did not mind clearing them.

Multiple-dose pharmacokinetic modeling

In example 15, a single dose of the analgesic theophylline was administered to each subject followed
by multiple serum concentration measurements per subject. For long-duration illnesses, multiple doses
are often given to each subject, with multiple serum concentration measurements interspersed. After a
single-dose drug administration, the plasma drug level rises above and then falls below the minimum
effective concentration, resulting in a decline in therapeutic effect. To treat chronic diseases, multiple-
dosage or intravenous infusion regimens are used to maintain the plasma drug levels within the narrow
limits of the therapeutic window to achieve optimal clinical effectiveness.

Example 17: Multiple-intravenous-doses model

Grasela and Donn (1985) report a study of the neonatal PKs of phenobarbital. Data were collected
on 59 preterm infants given phenobarbital for prevention of seizures during the first 16 days after
birth. Each infant received one or more intravenous doses, dose (mg/kg). One to six blood serum
phenobarbital concentration measurements, conc (mg/L), were obtained from each infant, subject,
for a total of 155 measurements. The birthweight, in kilograms, and a five-minute Apgar score, a
measure of the physical condition, were also obtained on each infant. The Apgar score is obtained
by adding points (2, 1, or 0) for heart rate, respiratory effort, muscle tone, response to stimulation,
and skin coloration; a score of 10 represents the best possible condition. time is measured in hours.
Davidian and Giltinan (1995) and Pinheiro and Bates (2000) also analyze this dataset.

A one-compartment open model with intravenous administration and first-order elimination was
used to model the PKs of this phenobarbital study

concij =
∑
t≤i

doseik

Vj
exp
{
−Clj
Vj

(timeij − timetj)

}
+ εij (19)

for i = 1, . . . , nj and j = 1, . . . , 59. Model parameters are the clearance Clj (L/h) and volume of
distribution Vj (L) for each subject j. Clearance is the volume of blood or plasma that is totally cleared
of its content of drug per unit time. It is the proportionality factor between the rate of elimination
and concentration, dC/dt = −keC = − (Cl/V )C, where C is the plasma concentration and ke is
the elimination rate (h−1). The volume of distribution, V , is defined as the apparent space or volume
into which a drug distributes.
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To fit this model using menl, we consider an alternative recursive formulation of model (19)

concij = µ
(
x′ij , β, uj

)
=

doseij

Vj
+ µ

(
x′i−1,j , β, uj

)
exp
{
−Clj
Vj

(timeij − timei−1,j)

}
+ εij

Here, x′ij =
(
timeij , doseij , fapgarj , weightj

)
is the vector of covariates corresponding to subject

j at timeij . Notice that concentration concij = µ
(
x′ij , β, uj

)
depends on its previous expected

value, µ
(
x′i−1,j , β, uj

)
, and on the time difference, timeij − timei−1,j . In Stata, we can use the

lag operator, L., to refer to previous values and the difference operator, D., to refer to the difference
between the two successive values. menl supports time-series operators in the model specification;
see Time-series operators . We can use D.time to include the time difference in the model. However,
we cannot simply use L.conc, because this would include the previous observed value of conc in
the model, and we need the previous (predicted) value of the mean function. menl provides a special
syntax L. yhat to include lagged predicted values or, equivalently, a special syntax L.{conc:} to
include the lagged predicted mean function. {conc:} refers to the nonlinear expression for the mean
function of the conc variable. Thus, our menl main specification of the recursive model would be

. menl conc = dose/{V:} + L.{conc:}*exp(-{Cl:}/{V:}*D.time), . . .

where expressions for {V:} and {Cl:} will be defined later.

Because we are using time-series operators in the expression, we need to declare our data to be
time-series data. There are two ways to do this: you can specify tsset prior to calling menl or you
can specify the time variable in menl’s option tsorder(); see Time-series operators for details. In
this example, we will use the tsorder() option; see the technical note below for an example using
tsset.

. menl conc = dose/{V:} + L.{conc:}*exp(-{Cl:}/{V:}*D.time), . . . tsorder(time)

Let’s take a quick look at our data by listing the observations for the first subject.
. use https://www.stata-press.com/data/r18/phenobarb
(Pharmacokinetics study of phenobarbital in neonatal infants)

. list if subject==1, sepby(subject)

subject weight apgar time dose conc fapgar

1. 1 1.4 7 0 25 . >= 5
2. 1 1.4 7 2 0 17.3 >= 5
3. 1 1.4 7 12.5 3.5 . >= 5
4. 1 1.4 7 24.5 3.5 . >= 5
5. 1 1.4 7 37 3.5 . >= 5
6. 1 1.4 7 48 3.5 . >= 5
7. 1 1.4 7 60.5 3.5 . >= 5
8. 1 1.4 7 72.5 3.5 . >= 5
9. 1 1.4 7 85.3 3.5 . >= 5

10. 1 1.4 7 96.5 3.5 . >= 5
11. 1 1.4 7 108.5 3.5 . >= 5
12. 1 1.4 7 112.5 0 31 >= 5

The most noticeable feature of our PK data is the presence of many missing values for the concentration.
In fact, this is a common structure of PK data in the presence of multiple doses. Notice that the conc
variable contains missing values for each nonzero dose. It is typical to measure concentration only
after a dose or multiple doses are administered, which gives rise to missing concentration at some
time points. By default, Stata commands omit all observations containing missing values in variables
used with the command. In this example, we need to retain missing conc observations. We can use
menl’s option tsmissing to do so.
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. menl conc = dose/{V:} + L.{conc:}*exp(-{Cl:}/{V:}*D.time), . . . tsmissing tsorder(time)

When you specify the tsmissing option, menl uses predicted values in place of system missing
conc values in the computation. (Observations with extended missing values .a, .b, and so on in
conc, if there were any, would have been omitted from the computation.) These predicted values are
used to compute predicted values for the observed concentrations but are not used to compute the
log likelihood. Only observed concentrations contribute to the log-likelihood calculation.

Another aspect of our data is that they are time-series data. Thus, the first observation in each
panel provides starting values for the time-series operators. For example, from the data, the initial
time value used by D.time for the first subject is timei−1,j = time0,1 = 0. But how do we initialize
L.{conc:} given that {conc:} does not exist as a variable in our dataset? We use menl’s option
tsinit().

. menl conc = dose/{V:} + L.{conc:}*exp(-{Cl:}/{V:}*D.time), . . .
> tsinit({conc:}=dose/{V:}) tsmissing tsorder(time)

The tsinit() option allows us to specify initial conditions for the lagged predicted mean functions
as expressions. In our example, the initial condition for the mean concentration for each subject j at
time 0 is dose0,j/Vj , which we specified in tsinit().

Let’s now return to our nonlinear model specification and provide expressions for {V:} and {Cl:}.
One of the model parameterizations that Davidian and Giltinan (1995) consider for these data use
weight as a covariate for clearance and volume. They also include a dichotomized Apgar score,
factor variable fapgar in our dataset, to model volume. They express clearance and volume as

Clj = β1weightj × exp (u1j)

Vj = β2weightj(1 + β3fapgarj) exp (u2j)

where u1j’s and u2j’s are two independent sets of random effects that follow N
(
0, σ2

u1

)
and

N
(
0, σ2

u2

)
, respectively.
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We specify the above expressions for subject-specific volume and clearance in menl using the
define() options and fit the model:

. menl conc = dose/{V:} + L.{conc:}*exp(-{Cl:}/{V:}*D.time),
> define(Cl: {cl:weight}*weight*exp({U1[subject]}))
> define(V: {v:weight}*weight*(1+{v:apgar}*1.fapgar)*exp({U2[subject]}))
> tsinit({conc:} = dose/{V:})
> tsmissing tsorder(time)

Panel variable: subject (unbalanced)
Time variable: <time>, 1 to 20

Delta: 1 unit

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -432.58887
Iteration 2: Linearization log likelihood = -436.35525
Iteration 3: Linearization log likelihood = -436.36735
Iteration 4: Linearization log likelihood = -436.36894
Iteration 5: Linearization log likelihood = -436.369
Iteration 6: Linearization log likelihood = -436.36896

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 685
Nonmissing = 155

Missing = 530

Grouping information

No. of Observations per group
Path groups Minimum Average Maximum

subject 59 1 11.6 19
conc 59 1 2.6 6

Linearization log likelihood = -436.36896

Cl: {cl:weight}*weight*exp({U1[subject]})
V: {v:weight}*weight*(1+{v:apgar}*1.fapgar)*exp({U2[subject]})

conc Coefficient Std. err. z P>|z| [95% conf. interval]

/cl
weight .004705 .0002219 21.20 0.000 .0042701 .00514

/v
weight .9657032 .0294438 32.80 0.000 .9079945 1.023412
apgar .1749755 .0845767 2.07 0.039 .0092082 .3407429

Random-effects parameters Estimate Std. err. [95% conf. interval]

subject: Independent
var(U1) .0404098 .0187133 .0163044 .1001537
var(U2) .030259 .0078857 .0181562 .0504295

var(Residual) 7.469354 1.280411 5.337875 10.45196

Note: Lagged predicted mean function L.{conc:} is used in the model.

From the coefficient table, we see that heavier babies have a higher clearance and volume of distribution.
There is a positive association between the volume of distribution and the Apgar score: healthier
babies have a better ability to eliminate the drug.
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Because we specified the tsmissing option, the header reported the number of missing and
nonmissing concentration values used in the computation. Also, the table containing the information
about the number of groups has an additional entry for conc providing the group information for
nonmissing observations of conc.

When we specified the time variable in the tsorder() option, menl generated the corresponding
consecutive integer-valued time variable and used it with tsset. From the output of tsset, as
displayed by menl, we see that menl also identified the panel variable, subject, from our model
specification and used it with tsset. The generated time variable used with tsset is labeled as
<time> in the output.

Technical note
In example 17, we used the tsorder() option to specify the ordering for time-series operators.

We could have used tsset instead, but we would need to create the appropriate time variable first.
Here, we demonstrate how to do this.

We must specify the panel and time variables with tsset. Intuitively, we would want to type

. tsset subject time

but that would not produce the intended results. First, tsset requires an integer time variable, which
the time variable is not. Second, even if time contained integers, it is not equally spaced, which
would lead to gaps in the time series and thus missing values for time-series operators.

In our example, we are concerned only with the ordering of observations within a subject with
respect to the time variable for the purpose of time-series operators. So, we create a new variable,
tsorder, to contain consecutive integers based on time and use it with tsset.

. sort subject time

. by subject (time): generate long tsorder = _n

. tsset subject tsorder

Panel variable: subject (unbalanced)
Time variable: tsorder, 1 to 20

Delta: 1 unit

You can verify that the following specification of menl will produce the same results as in
example 17.

. menl conc = dose/{V:} + L.{conc:}*exp(-{Cl:}/{V:}*D.time),
> define(Cl: {cl:weight}*weight*exp({U1[subject]}))
> define(V: {v:weight}*weight*(1+{v:apgar}*1.fapgar)*exp({U2[subject]}))
> tsinit({conc:} = dose/{V:})
> tsmissing

(output omitted )

Note that we still use the time variable with the difference operator, D., in the model specification.

Example 18: Multiple-oral-doses model

Verme et al. (1992) evaluated the PK behavior of quinidine, a pharmaceutical agent used to prevent
cardiac arrhythmias, in a study of 136 subjects receiving oral quinidine therapy. A total of 361 serum
quinidine concentrations (variable conc, mg/L) were measured over time (variable time, hours),
ranging from 1 to 11 observations per subject. Multiple doses (variable dose, mg) of quinidine,
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in two different forms, were administrated to each subject. The doses were adjusted for differences
in salt content by conversion into milligrams of quinidine base. These data are also presented as
examples in Davidian and Giltinan (1995) and Pinheiro and Bates (2000).

A one-compartment open model with first-order absorption and elimination is assumed for serum
quinidine concentrations. This model, expressed in a compact recursive form, is

concij = µ1

(
x′ij , β, uj

)
= µ1

(
x′i−1,j , β, uj

)
Qeij+Cai−1,j

kaj
kaj − kej

(
Qeij−Qaij

)
+εij (20)

where

Caij =µ2

(
z′ij , β, uj

)
= µ2

(
z′i−1,j , β, uj

)
Qaij +

doseij

Vj

Qeij = exp
{
−kej (timeij − timei−1,j)

}
Qaij = exp

{
−kaj (timeij − timei−1,j)

}
for subject j = 1, . . . , 136 and subject observation i = 1, . . . , nj , nj ∈ [1, 11]. The quantitiesQaij and
Qeij are defined for notational convenience to simplify the model expression. z′ij = (timeij , doseij)

and x′ij =
(
z′ij , glycoij , creatininej , weightj

)
are vectors of covariates, which we describe later,

corresponding to subject j at timeij . Because the drug administration is extravascular, the quinidine
concentration in the body over time is a function of both the absorption rate, kaj , and the elimination
rate, kej , for subject j. The function Caij is the apparent concentration of quinidine in the absorption
depot over time (indexed by i) for subject j.

From example 17, we know that kej = Clj/Vj , where Clj is the clearance, defined as the volume
of plasma or blood that is totally cleared from its content of drug per unit time, and Vj is the apparent
volume of distribution, defined as theoretical volume that would be necessary to contain the total
amount of an administered drug at the same concentration that is observed in the blood plasma.

The menl specification corresponding to model (20) is

. menl conc = L.{conc:}*{Qe:}+L.{Ca:}*({ka:}/({ka:}-{ke:}))*({Qe:}-{Qa:}),
> define(Ca: L.{Ca:}*{Qa:}+dose/{V:})
> define(Qe: exp(-{ke:}*D.time))
> define(Qa: exp(-{ka:}*D.time))
> define(ke: {Cl:}/{V:})
> define(ka: exp({lka}))
> . . .

where expressions for {Cl:} and {V:} will be defined later. Similarly to example 17, we use D.time
to specify differences between two successive time values and L.{conc:} to specify the lagged
predicted mean function; also see Time-series operators . New in this specification is the inclusion
of the lagged function of model parameters or lagged named expression L.{Ca:}. Expression Ca is
defined in the define() option and is a function of its own lag, L.{Ca:}. Finally, parameter {ka}
is reparameterized as exp({lka}) to ensure that it is positive.

When a patient receives the same dosage at regular time intervals (variable interval), model
(20) simplifies to the steady-state model

concssij =
doseijkaj

Vj
(
kaj − kej

) (Qsseij −Qssaij) (21)
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and

Cassij =
doseij

Vj
Qssaij

where

Qsseij =
1

1− exp
(
−kejintervalij

)
Qssaij =

1

1− exp
(
−kajintervalij

)
The quantities Qsseij and Qssaij are also defined for notational convenience.

The menl specification corresponding to model (21) is

. menl conc = dose*{ka:}/({V:}*({ka:}-{ke:}))*({Qe_ss:} - {Qa_ss:}),
> define(Qe_ss: 1/(1-exp(-{ke:}*interval))
> define(Qa_ss: 1/(1-exp(-{ka:}*interval))
> define(ke: {Cl:}/{V:})
> define(ka: exp({lka}))
> . . .

For the quinidine model, the steady-state model (21) is assumed whenever intervalij is
nonzero and the nonsteady-state model (20) is assumed otherwise. Thus, we need to switch back
and forth between these two models in our menl specification. We can use the Stata function
cond(condition,expr if condition true,expr if condition false).

For example, the menl specification becomes

. menl conc = cond(interval==0,
> L.{conc:}*{Qe:}+L.{Ca:}*({ka:}/({ka:}-{ke:}))*({Qe:}-{Qa:}),
> dose*{ka:}/({V:}*({ka:}-{ke:}))*({Qe_ss:} - {Qa_ss:})),
> define(Ca: cond(interval==0, L.{Ca:}*{Qa:}+dose/{V:}, dose/{V:}*{Qa_ss:})
> . . .

where other expressions such as {Qe:} and {Qa ss:} are as defined earlier. We used cond() for
the main menl specification and for the definition of the {Ca:} function.

Recall from example 17 that when we specify the lagged predicted mean function, we need to specify
an initial condition for it in the tsinit() option. Just like the main nonlinear specification, the initial
condition for L.{conc:} will depend on the value of interval. The mean concentration at time 0
will be 0 for observations with zero interval values and will be equal to the expression for the steady-
state model otherwise: tsinit({conc:}=cond(interval==0,0,dose*{ka:}/({V:}*({ka:}-
{ke:}))*({Qe ss:}-{Qa ss:}))). Similarly, we need to provide an initial condition for the
lagged function of model parameters L.{Ca:}. It also depends on interval: tsinit({Ca:} =
cond(interval==0,dose/{V:},dose/{V:}*{Qa ss:})). Because we are using the same ex-
pressions in the function definitions and the initial conditions, we can define additional functions to
minimize typing:

. menl conc = cond(interval==0,
> L.{conc:}*{Qe:}+L.{Ca:}*({ka:}/({ka:}-{ke:}))*({Qe:}-{Qa:}),
> {Css:}),
> define(Ca: cond(interval==0,L.{Ca:}*{Qa:}+dose/{V:}, {Ca_ss:})
> define(Css: cond(interval==0,0,dose*{ka:}/({V:}*({ka:}-{ke:}))*({Qe_ss:}-{Qa_ss:})))
> define(Ca_ss: dose/{V:}*{Qa_ss:})
> . . .
> tsinit({conc:} = cond(interval==0, 0, {Css:})
> tsinit({Ca:} = cond(interval==0, dose/{V:}, {Ca_ss:})
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{Css:} contains the expression for the steady-state model (or 0 for observations in a nonsteady state),
and {Ca ss:} contains the expression for the Ca function in the steady state.

Let’s now finalize our menl specification by defining expressions for {Cl:} and {V:}. The goal of
the study from Verme et al. (1992) was to examine the relationship between quinidine PKs and several
potential covariates: body weight (kg); age (years); height (in); glyco, α1-acid glycoprotein
concentration (mg/dL); creatinine, creatinine clearance (≥ 50 or < 50 ml/min ); race (Caucasian,
Latin, black); smoke, smoking status (yes, no); ethanol, alcohol abuse (former, none, current);
and heart, congestive heart failure (no or mild, moderate, severe). We provide more details about
covariates creatinine and glyco below.

Creatinine is a waste product from the normal breakdown of muscle tissue. As creatinine is produced,
it is filtered through the kidneys and excreted in urine. Doctors use creatinine and creatinine clearance
tests to check renal function (kidney function). Testing the rate of creatinine clearance shows the
kidneys’ ability to filter the blood. As renal function declines, creatinine clearance also goes down.
Creatinine clearance in a healthy young person is about 95 ml/min for women and 120 ml/min for
men.

α1-acid glycoprotein (also known as AAG) is an important plasma protein involved in the binding
and transport of many drugs, including quinidine. A healthy range is 50–120 mg/dl. Changes in AAG
concentration could potentially alter the free fraction of drugs in plasma or at their target sites and
eventually affect their PK disposition and pharmacological action. Because AGG levels are increased
in response to stress, serum levels of total quinidine may be greatly increased in settings such as
acute myocardial infarction. Protein binding is also increased in chronic renal failure. There tends to
be a small increase in AAG with age.

For the purpose of illustration, we fit a modified version of model 2 from pages 248–249 of
Davidian and Giltinan (1995). The clearance, Clj , is modeled on the log scale as a linear combination
{lCl:} of glyco, ib1.creatinine, weight, and a random intercept, U1, at the subject level.
The apparent volume, Vj , is modeled on the log scale using a fixed-effect intercept and weight. The
absorption rate, ka, is modeled on the log scale as a free parameter {lka}, and is assumed fixed for
all subjects. The full second-stage specification is as follows:

Clij = exp
(
β1 + β2glycoij + β3creatininej + β4weightj + u1j

)
Vj = exp

(
β5 + β6weightj

)
kaj = exp (β7)

keij =
Clij
Vj

where u1j’s are random effects that follow N
(
0, σ2

u1

)
.
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Similarly to the phenobarbital data from example 17, the quinidine data also contain missing
concentration values, so we specify the tsmissing option to retain them in the computation. Again,
we will specify the time variable in the tsorder() option and let menl tsset the data for us.

. use https://www.stata-press.com/data/r18/quinidine

. menl conc = cond(interval==0,
> L.{conc:}*{Qe:}+L.{Ca:}*({ka:}/({ka:}-{ke:}))*({Qe:}-{Qa:}),
> {Css:}),
> define(Ca: cond(interval==0, L.{Ca:}*{Qa:}+dose/{V:}, {Ca_ss:}))
> define(Qe: exp(-{ke:}*D.time))
> define(Qa: exp(-{ka:}*D.time))
> define(Css: cond(interval==0,0,{ka:}*dose/({V:}*({ka:}-{ke:}))*({Qe_ss:}-{Qa_ss:})))
> define(Ca_ss: cond(interval==0,0,dose/{V:}*{Qa_ss:}))
> define(Qe_ss: 1/(1-exp(-{ke:}*interval)))
> define(Qa_ss: 1/(1-exp(-{ka:}*interval)))
> define(ke: {Cl:}/{V:})
> define(ka: exp({lka}))
> define(Cl: exp({lCl:glyco ib1.creatinine weight U1[subject], xb}))
> define(V: exp({lV: weight, xb}))
> tsinit({conc:} = cond(interval==0, 0, {Css:}))
> tsinit({Ca:} = cond(interval==0, dose/{V:}, {Ca_ss:}))
> tsorder(time) tsmissing

Panel variable: subject (unbalanced)
Time variable: <time>, 1 to 47

Delta: 1 unit

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -423.26688
Iteration 2: Linearization log likelihood = -425.82312
Iteration 3: Linearization log likelihood = -425.81124
Iteration 4: Linearization log likelihood = -425.8119
Iteration 5: Linearization log likelihood = -425.81241
Iteration 6: Linearization log likelihood = -425.81223
Iteration 7: Linearization log likelihood = -425.81233
Iteration 8: Linearization log likelihood = -425.81228
Iteration 9: Linearization log likelihood = -425.81231

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 1,335
Nonmissing = 361

Missing = 974

Grouping information

No. of Observations per group
Path groups Minimum Average Maximum

subject 136 1 9.8 46
conc 136 1 2.7 11
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Wald chi2(4) = 169.94
Linearization log likelihood = -425.81231 Prob > chi2 = 0.0000

Ca: cond(interval==0,L.{Ca:}*{Qa:}+dose/{V:},{Ca_ss:})
Ca_ss: cond(interval==0,0,dose/{V:}*{Qa_ss:})

Cl: exp({lCl:})
Css: cond(interval==0,0,{ka:}*dose/({V:}*({ka:}-{ke:}))*({Qe_ss:}-{

Qa_ss:}))
Qa: exp(-{ka:}*D.time)

Qa_ss: 1/(1-exp(-{ka:}*interval))
Qe: exp(-{ke:}*D.time)

Qe_ss: 1/(1-exp(-{ke:}*interval))
V: exp({lV:})

ka: exp({lka})
ke: {Cl:}/{V:}

lCl: glyco ib1.creatinine weight U1[subject], xb
lV: weight, xb

conc Coefficient Std. err. z P>|z| [95% conf. interval]

lCl
glyco -.4689097 .0416876 -11.25 0.000 -.5506159 -.3872035

creatinine
>= 50 .1851334 .0464825 3.98 0.000 .0940294 .2762373
weight .0036181 .0018213 1.99 0.047 .0000485 .0071877
_cons 2.668191 .1524726 17.50 0.000 2.36935 2.967031

lV
weight .0087346 .0058603 1.49 0.136 -.0027514 .0202206
_cons 4.572762 .47765 9.57 0.000 3.636585 5.508939

/lka -.8956278 .301 -2.98 0.003 -1.485577 -.3056787

Random-effects parameters Estimate Std. err. [95% conf. interval]

subject: Identity
var(U1) .0589024 .0108271 .0410838 .0844492

var(Residual) .4122599 .0364831 .346612 .4903413

Note: Lagged predicted mean function L.{conc:} is used in the model.
Note: Lagged named expression L.{Ca:} is used in the model.

From the coefficient table, we see that the clearance decreases with increase of AAG (glyco) as
would be expected with the greater protein binding. The clearance is greater for creatinine clearance
≥ 50 as would be expected with better renal function. Both clearance and volume increase with
weight; although, the effect of weight on volume is not statistically significant at the 5% level. The
subject variability for clearance contributes to the model as seen by the confidence interval for the
random-effects variance var(U1).
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Nonlinear marginal models

The variance–covariance matrix of the response vector yj =
(
y1j , . . . , ynjj

)
involves two compo-

nents to model heteroskedasticity and correlation: A random-effects component Σ and a within-group
error component Λj . In some applications, one may wish to directly model the covariance structure
of the response by choosing the appropriate within-group error component Λj without introducing
random effects. This results in the so-called nonlinear marginal model (for example, Pinheiro and
Bates [2000, sec. 7.5.1]):

Stage 1: Individual-level model yj = m
(
xwj , φj

)
+ εj εj ∼ N

(
0, σ2Λj

)
Stage 2: Group-level model φj = d

(
xbj , β

)
j = 1, . . . ,M

The above is essentially a vector representation of (2) after excluding the random effects uj .
Random effects are used in NLME models to explain the between-subject or between-group variation,
but they are not used in the specification of nonlinear marginal models. This key difference implies
that mixed-effects models allow for subject-specific inference, whereas marginal models do not. For
this reason, mixed-effects models are often called subject-specific models, while marginal models are
called population-averaged models.

menl provides the group() suboption within the rescovariance() and rescorrelation()
options to model the dependence between within-group observations without introducing random
effects. Below, we show an example of fitting a nonlinear marginal model, without random effects,
using the group() suboption. See example 22 for the usage of the group() suboption in the presence
of random effects.

Example 19: Nonlinear marginal model

Vonesh and Carter (1992) analyzed data on 20 high-flux hemodialyzers to assess their in-vitro
ultrafiltration performance. Dialyzers are used in hemodialysis, a treatment that replaces the work of
kidneys, to filter harmful wastes out of blood for patients with kidney failure. High-flux dialyzers
do this more efficiently than conventional dialyzers—they are composed of membranes with larger
pores, which allows them to remove larger molecules and water during blood filtration. A dialyzer’s
ultrafiltration performance, or ability to filter blood, is controlled by so-called transmembrane pressure
and also depends on the blood flow rate used during hemodialysis. In these data, the response variable,
rate, is the dialyzer’s ultrafiltration rate in mL/hr measured at 7 different transmembrane pressures,
pressure, in dmHg. Ten dialyzers were evaluated using bovine blood at a blood flow rate, qb, of
200 mL/min, whereas the other 10 dialyzers were evaluated at 300 mL/min.

The ultrafiltration rate, rateij , at the ith transmembrane pressure, pressureij , for the jth subject
is represented by the nonlinear model

rateij = φ1j
[
1− exp

{
− exp(φ2j)

(
pressureij − φ3

)}]
+ εij

The parameters φ1, φ2, and φ3 have physiological interpretation: φ1 is the maximum attainable
ultrafiltration rate, φ2 is the logarithm of the hydraulic permeability transport rate of the membrane
(rate at which water and molecules pass through the dialyzer membrane), and φ3 is the transmembrane
pressure required to offset the oncotic pressure (the transmembrane pressure at which the ultrafiltration
rate is 0).

One of the models proposed in Vonesh and Carter (1992) included no random effects and used an
exchangeable (also known as compound symmetry) covariance structure to model the within-dialyzer
error covariance structure. The full description of the second stage of the model is
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φ1j = β10 + β11qbj

φ2j = β20 + β21qbj

φ3j = β3

and

εj ∼ N(0, σ2
εΛj), Λj =


1 ρ . . . ρ

1 . . . ρ
. . .

...
1


Below, we use rescovariance(exchangeable, group(dialyzer)) to request an exchangeable

within-group error covariance structure where groups are identified by the dialyzer variable.

. use https://www.stata-press.com/data/r18/dialyzer
(High-flux hemodialyzers (Vonesh and Carter, 1992))

. menl rate = {phi1:}*(1-exp(-exp({phi2:})*(pressure - {phi3}))),
> define(phi1: i.qb, xb) define(phi2: i.qb, xb)
> rescovariance(exchangeable, group(dialyzer)) stddev

Obtaining starting values:

Alternating GNLS/ML algorithm:

Iteration 1: Log likelihood = -365.34244
Iteration 2: Log likelihood = -365.32697
Iteration 3: Log likelihood = -365.32697
Iteration 4: Log likelihood = -365.32697
Iteration 5: Log likelihood = -365.32697
Iteration 6: Log likelihood = -365.32697

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 140
Group variable: dialyzer Number of groups = 20

Obs per group:
min = 7
avg = 7.0
max = 7

Wald chi2(2) = 194.77
Log likelihood = -365.32697 Prob > chi2 = 0.0000

phi1: i.qb
phi2: i.qb

rate Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
qb

300 17.23062 1.24589 13.83 0.000 14.78872 19.67252
_cons 44.95795 .8841506 50.85 0.000 43.22505 46.69086

phi2
qb

300 -.5034708 .0763513 -6.59 0.000 -.6531166 -.353825
_cons .7626986 .0630914 12.09 0.000 .6390417 .8863555

/phi3 .2249104 .0102113 22.03 0.000 .2048965 .2449243
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Random-effects parameters Estimate Std. err. [95% conf. interval]

Residual: Exchangeable
sd 3.722521 .3064517 3.167839 4.374326

corr .3867847 .0993617 .1771207 .5628661

The estimated values of ρ and σε are ρ̂ = 0.39 and σ̂e = 3.72, respectively. The 95% confidence
interval [0.18, 0.56] for ρ suggests a positive correlation within dialyzer measurements. The maximum
ultrafiltration rate, φ1, and the logarithm of the hydraulic permeability transport rate, φ2, appear to
be affected by the blood flow rate.

Three-level models
Representation of (1) can be extended to, for example, two-nested levels of clustering, to form the

following three-level model, with observations composing the first level,

yjk = µ
(
Xjk,β,u

(3)
k ,u

(2)
jk

)
+ εjk

where the first-level observations i = 1, . . . , njk are nested within the second-level groups j =
1, . . . ,Mk, which are nested within the third-level groups k = 1, . . . ,M . Group j nested within
group k consists of njk observations, so yjk, Xjk, and εjk each have row dimension njk.

Also, assume that

u
(3)
k ∼ N(0,Σ3) u

(2)
jk ∼ N(0,Σ2) εjk ∼ N(0, σ2Λjk)

and that u
(3)
k , u

(2)
jk , and εjk are independent.

Example 20: Three-level model
Hand and Crowder (1996, 118–120) analyzed a study where the blood glucose levels glucose of

7 volunteers, subject, who took alcohol at time 0 were measured 14 times, time, over a period of
5 hours after alcohol consumption. The same experiment was repeated at a later date with the same
subjects but with a dietary additive, guar, used for all subjects. Variable guar is a binary variable
that identifies whether a subject received a dietary additive. It also identifies each experiment, with
0 corresponding to the experiment without guar and 1 corresponding to the experiment with guar.
Thus we will use the guar variable both as the level indicator and, later, as a fixed-effects variable.
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Here is a plot of the whole dataset.

. use https://www.stata-press.com/data/r18/glucose
(Glucose levels following alcohol ingestion (Hand and Crowder, 1996))

. twoway connected glucose time if guar==0 ||
> connected glucose time if guar==1 ||, by(subject, rows(2))
> legend(order(1 "Without guar" 2 "With guar"))
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Our preliminary assessment based on the above graph is that, except for subject 6, the effect of
the dietary additive guar on the temporal trajectory of the blood glucose levels does not seem to be
important. The effect of guar will be formally tested in example 21.

Hand and Crowder (1996) proposed the following empirical model relating the expected glucose
level to time,

glucoseijk = φ1jk + φ2jktime
3 exp (−φ3jktime) + εijk (22)

where k = 1, . . . , 7, j = 1, 2, and i = 1, . . . , 14. The blood glucose level is φ1 at time = 0 and as
time→∞. This is intentional, so that φ1 can be interpreted as both the blood glucose level before
ingesting alcohol and the blood glucose level after the effect of alcohol ingestion has washed out.

Pinheiro and Bates (2000, exercise 3, 412) analyzed this dataset in the context of a three-level
NLME model. They initially proposed the following stage 2 specification,

φ1jk = β1 + u
(3)
1k + u

(2)
1j,k

φ2jk = β2 + u
(3)
2k + u

(2)
2j,k

φ3jk = β3

(23)

u
(3)
k =

[
u
(3)
1k

u
(3)
2k

]
∼ N (0,Σ3) u

(2)
j,k =

[
u
(2)
1j,k

u
(2)
2j,k

]
∼ N (0,Σ2) εijk ∼ N

(
0, σ2

ε

)
where Σ2 and Σ3 are general symmetric covariance matrices. u(2)1j,k and u(2)2j,k are random intercepts
at the guar-within-subject level and can be specified in menl as UU1[subject>guar] and
UU2[subject>guar].
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The full model defined by (22) and (23) contains many parameters. We will follow our own advice
from example 11 and specify the iterate() option to check how reasonable our model is for the
data we have.

. menl glucose = {phi1:} + {phi2:}*c.time#c.time#c.time*exp(-{phi3}*time),
> define(phi1: U1[subject] UU1[subject>guar])
> define(phi2: U2[subject] UU2[subject>guar])
> covariance(U1 U2, unstructured) covariance(UU*, unstructured)
> stddeviations iterate(3)

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -189.44711
Iteration 2: Linearization log likelihood = -189.44116
Iteration 3: Linearization log likelihood = -189.44113

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 196

Grouping information

No. of Observations per group
Path groups Minimum Average Maximum

subject 7 28 28.0 28
subject>guar 14 14 14.0 14

Linearization log likelihood = -189.44113

phi1: U1[subject] UU1[subject>guar]
phi2: U2[subject] UU2[subject>guar]

glucose Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
_cons 3.661565 .1160346 31.56 0.000 3.434142 3.888989

phi2
_cons .4283296 .0530026 8.08 0.000 .3244465 .5322127

/phi3 .5896813 .013861 42.54 0.000 .5625143 .6168482

Random-effects parameters Estimate Std. err. [95% conf. interval]

subject: Unstructured
sd(U1) .2624564 .0926845 .1313596 .5243879
sd(U2) .059842 .0724603 .005576 .6422312

corr(U1,U2) -.1489817 .9201217 -.9636327 .9346854

subject>guar: Unstructured
sd(UU1) .0919522 .0764226 .0180351 .46882
sd(UU2) .1227068 .041288 .063454 .2372893

corr(UU1,UU2) .99999 .0044367 -1 1

sd(Residual) .5712263 .0305339 .5144091 .6343189

Warning: Convergence not achieved.

The estimated correlation corr(UU1,UU2) is near one with the confidence interval spanning the entire
range for the correlation parameter, which indicates that the random-effects structure is overparame-
terized. The confidence interval for corr(U1,U2) contains zero, which suggests that this term does



290 menl — Nonlinear mixed-effects regression

not contribute much to explaining between-subject variability. If we try to fit this model without the
iterate() option, it will continue iterating without convergence.

We simplify our model by assuming independence between random effects; that is, we assume
that random-effects covariance matrices Σ2 and Σ3 are diagonal.

Recall that covariance(, independent) is assumed by default, so we do not need to explicitly
specify the covariance() option:

. menl glucose = {phi1:} + {phi2:}*c.time#c.time#c.time*exp(-{phi3}*time),
> define(phi1: U1[subject] UU1[subject>guar])
> define(phi2: U2[subject] UU2[subject>guar]) stddeviations

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -190.35529
Iteration 2: Linearization log likelihood = -190.36034
Iteration 3: Linearization log likelihood = -190.3633
Iteration 4: Linearization log likelihood = -190.36418
Iteration 5: Linearization log likelihood = -190.36375
Iteration 6: Linearization log likelihood = -190.36397
Iteration 7: Linearization log likelihood = -190.36386
Iteration 8: Linearization log likelihood = -190.36391
Iteration 9: Linearization log likelihood = -190.36389

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 196

Grouping information

No. of Observations per group
Path groups Minimum Average Maximum

subject 7 28 28.0 28
subject>guar 14 14 14.0 14

Linearization log likelihood = -190.36389

phi1: U1[subject] UU1[subject>guar]
phi2: U2[subject] UU2[subject>guar]

glucose Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
_cons 3.658712 .1168642 31.31 0.000 3.429662 3.887762

phi2
_cons .4239173 .0526333 8.05 0.000 .320758 .5270766

/phi3 .5876636 .0137214 42.83 0.000 .5607701 .6145571

Random-effects parameters Estimate Std. err. [95% conf. interval]

subject: Independent
sd(U1) .2685609 .092104 .1371261 .5259756
sd(U2) .0422075 .1078497 .0002821 6.315441

subject>guar: Independent
sd(UU1) .0666034 .1527522 .0007435 5.966149
sd(UU2) .1362263 .0433547 .0730066 .2541909

sd(Residual) .5732488 .0309928 .5156118 .6373288
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The random-effects structure may still be overparameterized, given small estimates for sd(U2) and
sd(UU1). If we were to perform an LR test of the corresponding variance components being zero,
we would have no statistical evidence to reject this null hypothesis; see example 7 for an instance of
performing an LR test.

Example 21: Three-level model with continuous-time AR(1) error structure

The main objective of the study from example 20 was to determine whether the use of the dietary
additive guar significantly affected time profiles of the blood glucose levels of subjects.

We continue with the model without random effects U2[subject] and UU1[subject>guar] and
include covariate guar for all φjk’s. Hand and Crowder (1996) also suggested to use a continuous-
time AR(1) correlation structure for the guar-within-subject errors, which is specified in menl as
rescorrelation(ctar1, t(time)):

. menl glucose = {phi1:} + {phi2:}*c.time#c.time#c.time*exp(-{phi3:}*time),
> define(phi1: i.guar U1[subject]) define(phi2: i.guar UU2[subject>guar])
> define(phi3: i.guar, xb) rescorrelation(ctar1, t(time)) stddeviations

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -180.62304
(iteration log omitted )

Iteration 25: Linearization log likelihood = -181.18699

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 196

Grouping information

No. of Observations per group
Path groups Minimum Average Maximum

subject 7 28 28.0 28
subject>guar 14 14 14.0 14

Wald chi2(3) = 0.66
Linearization log likelihood = -181.18699 Prob > chi2 = 0.8814

phi1: i.guar U1[subject]
phi2: i.guar UU2[subject>guar]
phi3: i.guar

glucose Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
guar

with guar -.0814355 .1532735 -0.53 0.595 -.381846 .218975
_cons 3.685365 .1433368 25.71 0.000 3.40443 3.9663

phi2
guar

with guar .0109469 .0883807 0.12 0.901 -.162276 .1841698
_cons .344372 .0606914 5.67 0.000 .2254191 .4633248

phi3
guar

with guar .0103743 .0330196 0.31 0.753 -.054343 .0750916
_cons .5514012 .022009 25.05 0.000 .5082642 .5945381
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Random-effects parameters Estimate Std. err. [95% conf. interval]

subject: Identity
sd(U1) .2453634 .1013233 .1092206 .5512074

subject>guar: Identity
sd(UU2) .1011852 .0276419 .0592358 .1728421

Residual: CTAR1,
time time

sd(e) .6208598 .0412948 .544977 .7073086
corr .6547722 .0564848 .544064 .7654804

The dietary additive guar does not seem to affect the blood-glucose-level profiles over time. This
actually conforms with the plot of the data from example 20, where, except for subject 6, the profiles
with and without guar are similar.

Example 22: Using group() in the presence of random effects

The actual NLME model presented in Hand and Crowder (1996) for these glucose data included
random effects for φ1 and φ2 only at the subject level and used a continuous-time AR(1) correlation
structure on time for the guar-within-subject errors, with errors from different guar-within-subject
clusters assumed to be independent. This model can be specified in menl using rescorrelation()’s
group() suboption:

. menl glucose = {phi1:} + {phi2:}*c.time#c.time#c.time*exp(-{phi3:}*time),
> define(phi1: i.guar U1[subject])
> define(phi2: i.guar U2[subject])
> define(phi3: i.guar, xb)
> rescorrelation(ctar1, t(time) group(guar)) stddeviations
note: group variable guar nested in subject assumed.

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -183.7208
Iteration 2: Linearization log likelihood = -183.91698

(iteration log omitted )
Iteration 13: Linearization log likelihood = -183.90513
Iteration 14: Linearization log likelihood = -183.90511

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 196

Grouping information

No. of Observations per group
Path groups Minimum Average Maximum

subject 7 28 28.0 28
guar 14 14 14.0 14
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Wald chi2(3) = 1.01
Linearization log likelihood = -183.90511 Prob > chi2 = 0.7978

phi1: i.guar U1[subject]
phi2: i.guar U2[subject]
phi3: i.guar

glucose Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
guar

with guar -.0557508 .1714288 -0.33 0.745 -.391745 .2802434
_cons 3.682235 .1503694 24.49 0.000 3.387517 3.976954

phi2
guar

with guar .032163 .0721232 0.45 0.656 -.1091958 .1735219
_cons .3349061 .0577129 5.80 0.000 .2217908 .4480214

phi3
guar

with guar .0232717 .0346187 0.67 0.501 -.0445798 .0911232
_cons .5464887 .0243374 22.45 0.000 .4987883 .5941891

Random-effects parameters Estimate Std. err. [95% conf. interval]

subject: Independent
sd(U1) .2288441 .1103908 .0889065 .5890417
sd(U2) .0774363 .0306965 .0356058 .1684104

Residual: CTAR1,
time time

sd(e) .6663828 .0439279 .5856156 .7582893
corr .7018854 .0468263 .6101075 .7936633

The fixed-effects estimates are similar to those in example 21, and the same conclusion is reached
regarding the effect of the dietary additive guar on the blood-glucose-levels profiles over time. AIC
and BIC may be used to decide on which model is better.

Notice the note displayed by menl following the command specification about the group variable
guar being nested within variable subject. When you specify group(grpvar) within the rescor-
relation() (or rescovariance()) option in the presence of random effects, grpvar is assumed
to represent the lowest level of hierarchy and is thus assumed to be nested within other hierarchical
levels.

Example 23: Three-level model with block-diagonal covariance matrix

Pinheiro and Bates (2000) report the data from the experiment conducted by Microelectronics
Division of Lucent Technologies to study the variability in the manufacturing of analog MOS circuits.
The intensities of the current (in mA) were collected on n-channel devices at five ascending
voltages: 0.8, 1.2, 1.6, 2.0, and 2.4 V. Measurements were made on 8 sites of each of 10 wafers.
The main objective of the study was to build an empirical model to simulate the behavior of similar
circuits.
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The intensity of the current at the ith level of voltage in the jth site within the kth wafer is
expressed as

currentijk = φ1jk + φ2jk cos (φ3jkvoltagei + π/4) + εijk

where

φ1jk = β0 + u
(3)
0k + u
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Parameters β0, β1, and β2 characterize the quadratic component of the model, and amplitude β3
and frequency β4 characterize the periodic component represented by the cosine wave.

For illustration, consider the following random-effects covariance structures:
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If we were to fit this model by using menl, we would type

. use https://www.stata-press.com/data/r18/wafer
(Modeling of analog MOS circuits)

. menl current = {phi1:}+{phi2:}*cos({phi3:}*voltage + _pi/4),
> define(phi1: voltage c.voltage#c.voltage W0[wafer] S0[wafer>site]
> c.voltage#(W1[wafer] S1[wafer>site])
> c.voltage#c.voltage#(W2[wafer] S2[wafer>site]))
> define(phi2: W3[wafer] S3[wafer>site]) define(phi3: W4[wafer], xb)
> covariance(S0 S1, unstructured) covariance(S2 S3, unstructured)
> covariance(W*, independent) stddeviations

In the specification above, Σ3 is specified as covariance(W*, independent), although this
specification could have been omitted because independent is menl’s default random-effects covari-
ance structure. The block-diagonal matrix Σ2 is specified by using repeated covariance() options:
covariance(S0 S1, unstructured) and covariance(S2 S3, unstructured). If we tried to
run this model, we would find out that it is overparameterized.
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Because of the large number of random effects at each grouping level, to avoid numerically unstable
estimates, we will further simplify our model by assuming independence between u(2)2j,k and u(2)3j,k,

which implies that σ(2)
34 = 0:
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We now try to fit the above simpler model. Note that given the complexity of this model, it takes
some time to execute.

. use https://www.stata-press.com/data/r18/wafer
(Modeling of analog MOS circuits)

. menl current = {phi1:}+{phi2:}*cos({phi3:}*voltage + _pi/4),
> define(phi1: voltage c.voltage#c.voltage W0[wafer] S0[wafer>site]
> c.voltage#(W1[wafer] S1[wafer>site])
> c.voltage#c.voltage#(W2[wafer] S2[wafer>site]))
> define(phi2: W3[wafer] S3[wafer>site]) define(phi3: W4[wafer], xb)
> covariance(S0 S1, unstructured) covariance(S2 S3, independent)
> covariance(W*, independent) stddeviations

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = 733.68089
Iteration 2: Linearization log likelihood = 754.60617
Iteration 3: Linearization log likelihood = 826.10124
Iteration 4: Linearization log likelihood = 825.9171
Iteration 5: Linearization log likelihood = 825.9171

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 400

Grouping information

No. of Observations per group
Path groups Minimum Average Maximum

wafer 10 40 40.0 40
wafer>site 80 5 5.0 5
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Wald chi2(2) = 8763.94
Linearization log likelihood = 825.9171 Prob > chi2 = 0.0000

phi1: voltage c.voltage#c.voltage W0[wafer] S0[wafer>site]
c.voltage#W1[wafer] c.voltage#S1[wafer>site]
c.voltage#c.voltage#W2[wafer]
c.voltage#c.voltage#S2[wafer>site]

phi2: W3[wafer] S3[wafer>site]
phi3: W4[wafer], xb

current Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
voltage 6.046937 .1022632 59.13 0.000 5.846504 6.247369

c.voltage#
c.voltage 1.158782 .0159669 72.57 0.000 1.127487 1.190076

_cons -4.658034 .0361763 -128.76 0.000 -4.728938 -4.58713

phi2
_cons .1684428 .002054 82.01 0.000 .1644171 .1724686

phi3
_cons 6.449391 .0019631 3285.32 0.000 6.445543 6.453238

Random-effects parameters Estimate Std. err. [95% conf. interval]

wafer: Independent
sd(W0) .1107108 .0262518 .0695589 .1762087
sd(W1) .3041975 .0764653 .1858624 .4978743
sd(W2) .0449994 .0125441 .026057 .0777121
sd(W3) .0057862 .0016144 .0033489 .0099974
sd(W4) .0061349 .0013878 .0039377 .0095579

wafer>site: Unstructured
sd(S0) .0729495 .006297 .0615952 .0863969
sd(S1) .2930062 .0252424 .2474834 .3469025

corr(S0,S1) -.8113227 .0413362 -.8782242 -.7132776

wafer>site: Independent
sd(S2) .0627587 .0053067 .0531738 .0740712
sd(S3) .0080611 .0006861 .0068227 .0095244

sd(Residual) .0008407 .0000711 .0007122 .0009922
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In this example, our primary focus was to demonstrate how to use menl to fit a block-diagonal
random-effects covariance structure. But if we were to interpret our fixed-effects estimates, the
average frequency of the cosine wave, β4 = E (φ3jk), for example, is estimated to be 6.45V −1,
with a corresponding estimated period of 2π/β̂4 ≈ 0.97V . Also, some of the estimates of standard
deviations such as sd(W2), sd(W3), and sd(W4) are very small, which suggests that this model
may still be too rich for the observed data. If we proceeded to further analyze these data, we would
consider simpler models. For example, at the very least, we would have omitted the term W3[wafer]
from this model.

Obtaining initial values

Obtaining good starting or initial values is important for the estimation of many statistical models,
but it is often crucial for the estimation of NLME models. NLME models are known to be sensitive to
the initial values and to have difficulty converging. Highly nonlinear mean specification or complicated
variance–covariance structures for random effects and errors can often lead to multiple solutions,
which requires considering different sets of initial values.

By default, menl uses the EM algorithm to obtain initial values. This default routine works well
in many cases but cannot be guaranteed to provide good initial values in all situations. Sometimes,
you may need to specify your own initial values. Trying different initial values can also be useful to
investigate the existence of multiple solutions and to verify convergence to a global maximum.

So far we have been “lucky” that all the examples worked without us having to specify initial
estimates. You may not be that lucky with your data and model. So, in this section, we provide some
guidance on how to find good initial values when the default initial values do not work well.

We present three approaches that you may choose to explore to find good initial estimates for the
fixed effects. In some cases, you may also be able to obtain initial estimates for covariance parameters;
see Linearization approach to finding initial values.

Linearization approach to finding initial values

Sometimes, we can use an LME model to obtain initial values of the NLME model by holding
some of the parameters fixed at specific values. We can then fit the resulting LME model by using
the mixed command and use the corresponding estimates as initial values for the NLME model. We
refer to this initialization method as the linearization method.

We could have used this method in example 14 and example 23, if the default EM method did not
provide reasonable initial estimates. In any case, it is good practice to specify different initial values
to investigate potential convergence of the algorithm to a local maximum.

For instance, in example 14, we fit

folliclesij = φ1j + φ2j sin (2πφ3jstimeij) + φ4j cos (2πφ3jstimeij) + εij

where

φj =


φ1j
φ2j
φ3j
φ4j

 =


β1 + u1j

β2
β3
β4
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This model is nonlinear because of the parameter φ3j . To obtain initial values, we can hold φ3j
(or β3) fixed at a specific value, say, β3 = 1, thus making the above model linear,

folliclesij = φ1j + φ2j sin (2πφ3jstimeij) + φ4j cos (2πφ3jstimeij) + εij

where

φj =


φ1j
φ2j
φ3j
φ4j

 =


β1 + u1j

β2
1
β4


Or, more compactly,

folliclesij = β1 + u1j + β2 sin (2πstimeij) + β4 cos (2πstimeij) + εij

Now that the model is linear, we can use the mixed command to obtain initial values for β1,
β2, and β4 to be used in menl. In the code below, variables sin1 and cos1 are sin (2πstimeij)
and cos (2πstimeij), respectively, and || mare: specifies a random intercept at the mare level
(see [ME] mixed). Also, for consistency with example 13, we assume an AR(1) within-group error
correlation structure:

. mixed follicles sin1 cos1 || mare:, residuals(ar 1, t(time)) nolog

Mixed-effects ML regression Number of obs = 308
Group variable: mare Number of groups = 11

Obs per group:
min = 25
avg = 28.0
max = 31

Wald chi2(2) = 39.00
Log likelihood = -776.51731 Prob > chi2 = 0.0000

follicles Coefficient Std. err. z P>|z| [95% conf. interval]

sin1 -2.958619 .4935054 -6.00 0.000 -3.925872 -1.991366
cos1 -.8798847 .5031763 -1.75 0.080 -1.866092 .1063228

_cons 12.18963 .9017441 13.52 0.000 10.42224 13.95701

Random-effects parameters Estimate Std. err. [95% conf. interval]

mare: Identity
var(_cons) 7.095514 3.76488 2.508051 20.07388

Residual: AR(1)
rho .5974664 .0547217 .4795551 .6941854

var(e) 13.08097 1.765325 10.04078 17.0417

LR test vs. linear model: chi2(2) = 242.63 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

We will now use the estimates of the fixed effects shown in the output table as initial values for
menl by specifying the initial() option. We use 1 as the initial value for /phi3. There are three
ways to specify initial values in the initial() option; see Specifying initial values. Here we will
use the specification where we repeatedly list a parameter name followed by its initial value; also see
Examples of specifying initial values.

. local xb phi1:_cons 12.2 /phi2 -3.0 /phi3 1 /phi4 -.88
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. menl follicles = {phi1: U1[mare], xb} + {phi2}*sin(2*_pi*stime*{phi3}) +
> {phi4}*cos(2*_pi*stime*{phi3}), rescorrelation(ar 1, t(time)) init(‘xb’)

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -775.62937
Iteration 2: Linearization log likelihood = -775.62433
Iteration 3: Linearization log likelihood = -775.62433

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 308
Group variable: mare Number of groups = 11

Obs per group:
min = 25
avg = 28.0
max = 31

Linearization log likelihood = -775.62433

phi1: U1[mare], xb

follicles Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
_cons 12.18125 .9055128 13.45 0.000 10.40647 13.95602

/phi2 -2.874413 .5389583 -5.33 0.000 -3.930751 -1.818074
/phi3 .919114 .0512333 17.94 0.000 .8186986 1.019529
/phi4 -1.675314 .6766091 -2.48 0.013 -3.001444 -.3491848

Random-effects parameters Estimate Std. err. [95% conf. interval]

mare: Identity
var(U1) 7.207072 3.755606 2.595361 20.01336

Residual: AR(1),
time time

var(e) 12.63377 1.646897 9.785276 16.31146
corr .5823733 .0544508 .4656903 .679153

In the above, we initialized only fixed-effects parameters and used naı̈ve initial estimates of 1 for
random-intercept and error variances and 0 for the correlation. We could have specified initial()’s
fixed suboption to use the EM algorithm to compute initial estimates for the random-effects parameters;
see Examples of specifying initial values for details.

With the linearization approach, we can also use estimates of the random-effects parameters from
the mixed command to initialize the corresponding parameters of menl. This is an advantage of
the linearization approach over the other two approaches we discuss in subsequent sections. One
complication with the initialization of random-effects parameters is that the initial values must be
supplied in the estimation metric, the metric used during estimation, instead of the parameter original
metric. For example, instead of variances, we must supply estimates of log standard-deviations, and
instead of covariances or correlations, we must supply inverse hyperbolic tangents of correlation
parameters. Luckily for us, mixed stores results using the same metric as menl and provides the
estmetric option to display parameters in that metric.

In our example, the random-effects parameters are the random-intercept variance, the within-group
error variance, and the correlation between error terms. We refit the earlier mixed command but now
with the estmetric option to obtain the estimates of the random-effects parameters as they are stored
in e(b).
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. mixed follicles sin1 cos1 || mare:, residuals(ar 1, t(time)) nolog estmetric

Mixed-effects ML regression Number of obs = 308
Group variable: mare Number of groups = 11

Obs per group:
min = 25
avg = 28.0
max = 31

Wald chi2(2) = 39.00
Log likelihood = -776.51731 Prob > chi2 = 0.0000

follicles Coefficient Std. err. z P>|z| [95% conf. interval]

follicles
sin1 -2.958619 .4935054 -6.00 0.000 -3.925872 -1.991366
cos1 -.8798847 .5031763 -1.75 0.080 -1.866092 .1063228

_cons 12.18963 .9017441 13.52 0.000 10.42224 13.95701

lns1_1_1
_cons .9797314 .2653 .5762507 1.665722

lnsig_e
_cons 1.285579 .0674768 19.05 0.000 1.153327 1.417832

r_atr1
_cons .6891978 .0850992 8.10 0.000 .5224064 .8559891

menl uses the same ordering of the parameters as mixed does, so we can simply list all the
estimates directly in the initial() option. When we list the values without parameter names, we
must specify initial()’s copy suboption and specify the values for all parameters. In our example,
we specify four fixed-effects coefficients and three random-effects parameters.

. menl follicles = {phi1: U1[mare], xb} + {phi2}*sin(2*_pi*stime*{phi3}) +
> {phi4}*cos(2*_pi*stime*{phi3}), rescorrelation(ar 1, t(time))
> initial(12.2 -3.0 1 -.88 .98 1.29 .69, copy)

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -775.62433
Iteration 2: Linearization log likelihood = -775.62433

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 308
Group variable: mare Number of groups = 11

Obs per group:
min = 25
avg = 28.0
max = 31

Linearization log likelihood = -775.62433

phi1: U1[mare], xb

follicles Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
_cons 12.18125 .9055135 13.45 0.000 10.40647 13.95602

/phi2 -2.874434 .5389241 -5.33 0.000 -3.930706 -1.818162
/phi3 .919119 .0512356 17.94 0.000 .818699 1.019539
/phi4 -1.675261 .6766409 -2.48 0.013 -3.001452 -.3490689
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Random-effects parameters Estimate Std. err. [95% conf. interval]

mare: Identity
var(U1) 7.207072 3.755606 2.59536 20.01337

Residual: AR(1),
time time

var(e) 12.63377 1.646898 9.785276 16.31146
corr .5823733 .0544508 .4656902 .679153

The results are different from those in example 14. The value of the linearization log likelihood in
this example, −775.62, is larger than that from example 14, −789.43. So it appears that we have
converged to a local maximum of the linearization log likelihood in example 14.

Our initial values based on mixed turned out to be better than those computed by default by menl.
This is not surprising. In general, menl’s EM algorithm should produce reasonable initial values for
many nonlinear models, but the initial values may not necessarily be optimal for all of those models.
In this example, our initial values were tailored to the ovary data and the model.

In general, sensitivity to initial values is one of the key issues in NLME models, especially for
models that involve periodic functions. Therefore, it is important to try different sets of initial values
to verify global convergence before reporting your final results. Sometimes, you may even have to
rely on your knowledge of the science behind the problem to decide which set of results is more
reasonable.

Graphical approach to finding initial values

If your model has parameters that have natural physical interpretations, you may be able to obtain
starting values from a graph of the data.

Draper and Smith (1998) presented a dataset in which the trunk circumference circumf (in mm)
of five different orange trees was measured over seven different time points, stored in age. Pinheiro
and Bates (2000) suggested the following model for these data:

circumfij =
φ1j

1 + exp
{
−
(
ageij − φ2j

)
/φ3j

} + εij (24)

In this model, φ1j is the asymptotic trunk circumference for the jth tree as ageij →∞, φ2j is
the age at which the jth tree attains half of its asymptotic trunk circumference φ1j , and φ3j is a
scale parameter; see the graph below.

The stage 2 specification of this model is

φj =

φ1jφ2j
φ3j

 =

β1 + u1j
β2
β3


where

u1j ∼ N
(
0, σ2

u1

)
, εij ∼ N

(
0, σ2

ε

)
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Because the model parameters have graphical interpretations, we can plot our data and obtain
initial values from the graph.

. use https://www.stata-press.com/data/r18/orange
(Growth of orange trees (Draper and Smith, 1998))

. twoway connected circumf age, connect(L) yline(175) xline(1582)
> yline(87.5, lpattern(dash)) xline(700, lpattern(dash))
> yline(131.25, lpattern("-...")) xline(1000, lpattern("-..."))
> xlabel(0 118 484 700 1000 1372 1582) ylabel(#5 87.5 131.25 175)
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From the above graph, the mean asymptotic trunk circumference can be estimated as 175 mm, which
is roughly the mean of the circumference values at age 1,582 (in days). The trees attain half of their
asymptotic trunk circumference, 175/2 = 87.5, at about age 700 (in days). Therefore, we use the
initial estimates β1 = 175 for the asymptotic trunk circumference and β2 = 700 for the location
of the inflection point. To obtain an initial estimate for β3, we note that when age = β2 + β3 in
(24), E(circumfij) = β1/{1 + exp(−1)} = 0.73β1, which we will approximate as 0.75β1 for
the purpose of the graph. That is, the logistic curve reaches approximately 3/4 of its asymptotic
value, 0.75 × 175 = 131.25, at age = β2 + β3. The above graph suggests that the trees attain 3/4
of their final trunk circumference at about 1,000 days (= β2 + β3), giving an initial estimate of
β3 = 1000− 700 = 300. We can now supply these values to menl in the initial() option.

Unfortunately, the graph does not provide us with the estimates for variance components. In this
case, we can use initial()’s fixed suboption to specify that the EM algorithm still be used to
initialize variance components, while the supplied values be used to initialize fixed effects. If we do
not specify fixed, menl will use naı̈ve initial estimates for variance components such as ones for
variances and zeros for covariances.
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We now fit the model using our own initial estimates for fixed effects:

. menl circumf = {phi1: U1[tree], xb}/(1+exp(-(age-{phi2})/{phi3})),
> initial(phi1:_cons 175 /phi2 700 /phi3 300, fixed)

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -131.58494
Iteration 2: Linearization log likelihood = -131.58458
Iteration 3: Linearization log likelihood = -131.58458

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 35
Group variable: tree Number of groups = 5

Obs per group:
min = 7
avg = 7.0
max = 7

Linearization log likelihood = -131.58458

phi1: U1[tree], xb

circumf Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
_cons 191.049 16.15403 11.83 0.000 159.3877 222.7103

/phi2 722.556 35.15082 20.56 0.000 653.6616 791.4503
/phi3 344.1624 27.14739 12.68 0.000 290.9545 397.3703

Random-effects parameters Estimate Std. err. [95% conf. interval]

tree: Identity
var(U1) 991.1514 639.4637 279.8776 3510.038

var(Residual) 61.56371 15.89568 37.11466 102.1184
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For comparison, we fit the same model but now using the default initial values for fixed effects:
. menl circumf = {phi1: U1[tree], xb}/(1+exp(-(age-{phi2})/{phi3}))

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -131.58458

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 35
Group variable: tree Number of groups = 5

Obs per group:
min = 7
avg = 7.0
max = 7

Linearization log likelihood = -131.58458

phi1: U1[tree], xb

circumf Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
_cons 191.049 16.15403 11.83 0.000 159.3877 222.7103

/phi2 722.556 35.15082 20.56 0.000 653.6616 791.4503
/phi3 344.1624 27.14739 12.68 0.000 290.9545 397.3703

Random-effects parameters Estimate Std. err. [95% conf. interval]

tree: Identity
var(U1) 991.1514 639.4637 279.8776 3510.038

var(Residual) 61.56371 15.89568 37.11466 102.1184

The results are identical except for the iteration log.

Smart regressions approach to finding initial values

Consider the following NLME model,

yij = φ1j + (φ2j − φ1j) exp {− exp (φ3j) xij}+ εij

where

φj =

φ1jφ2j
φ3j

 =

 β1
β2 + u1j

β3


Here φ1j is the asymptote as xij → ∞ and φ2j is the value of yij at xij = 0. Thus initial

estimates, β(0)
1 and β(0)

2 , may be obtained by using the graphical approach as described in Graphical
approach to finding initial values. To obtain an initial estimate for β3, notice that, ignoring the error
term εij and setting u1j = 0,

log (|yij − β1|) = log (β2 − β1) + {− exp (β3)} xij

Therefore, we can regress log(|y − β(0)
1 |) on x and use the estimated slope, β̂x = − exp(β

(0)
3 ), to

obtain the initial value for β(0)
3 = log(−β̂x).
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Examples of specifying initial values

When you want to assign initial values for a subset of the model parameters, for example, fixed
effects or random-effects covariance parameters, you will often need to know their estimation names
or, in other words, how menl labels them in e(b). To learn the names, you can fit the model with
the iterate(0) and coeflegend options first.

. menl ... , ... iterate(0) coeflegend

The iterate(0) option specifies to bypass maximization and only report the initial values and
the likelihood evaluated at those values. The coeflegend option specifies that the legend of the
parameters and how to specify them in an expression be displayed rather than displaying the statistics
for the parameters.

Keep in mind, however, that menl does not perform estimation in the original parameter metric.
For computational stability, the estimation is performed, loosely speaking, in a metric that transforms
all parameters to be defined on a real line. For example, a log transformation is used for standard
deviations, and an inverse hyperbolic tangent transformation is used for correlations. When you specify
initial values, you must specify them for parameters in the estimation metric and not the original
metric.

coeflegend displays parameter names as they are stored in e(b), which, for menl, are the names
of estimation parameters. If you also want to see parameters in the original metric, you can specify
coeflegend on replay.

. menl ... , ... iterate(0)

. menl, coeflegend

For example, recall the NLME model for the soybean data from example 9. Suppose that we want
to supply our own initial values.
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We fit the model with iterate(0) and coeflegend:
. menl weight = {phi1:}/(1+exp(-(time-{phi2:})/{phi3:})),
> define(phi1: U1[plot], xb)
> define(phi2: U2[plot], xb)
> define(phi3: U3[plot], xb)
> covariance(U*, unstructured) iterate(0) coeflegend

Obtaining starting values by EM:

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 412
Group variable: plot Number of groups = 48

Obs per group:
min = 8
avg = 8.6
max = 10

Linearization log likelihood = -740.06177

phi1: U1[plot], xb
phi2: U2[plot], xb
phi3: U3[plot], xb

weight Coefficient Legend

phi1
_cons 19.26527 _b[phi1:_cons]

phi2
_cons 55.05299 _b[phi2:_cons]

phi3
_cons 8.385531 _b[phi3:_cons]

/plot
lnsd(U1) 1.650846 _b[/plot:lnsd(U1)]
lnsd(U2) 1.436634 _b[/plot:lnsd(U2)]
lnsd(U3) .4081525 _b[/plot:lnsd(U3)]

athcorr(U2,
U1) .9055785 _b[/plot:athcorr(U2,U1)]

athcorr(U3,
U1) .8482105 _b[/plot:athcorr(U3,U1)]

athcorr(U3,
U2) 1.537798 _b[/plot:athcorr(U3,U2)]

/Residual
lnsigma .1069986 _b[/Residual:lnsigma]

Warning: Convergence not achieved.

Parameter names are listed within the b[] specifier.

In what follows, we will outline only the syntax of the specifications. If you actually want to run
all the examples to see the initialization in action, we suggest that you specify iterate(0) for speed.

Let’s first specify initial values for fixed effects only. The fixed-effects parameters are phi1: cons,
phi2: cons, and phi3: cons. Suppose that we want to initialize them with 19, 55, and 8.

We can type
. menl ..., ... initial(phi1:_cons 19 phi2:_cons 55 phi3:_cons 8)

Or, more compactly, we can type
. local fe phi1:_cons 19 phi2:_cons 55 phi3:_cons 8
. menl ..., ... initial(‘fe’)
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When you specify the initial() option, menl does not perform the EM algorithm to initialize
the parameters but instead uses the values you supplied. If you specify values for only a subset of
parameters, the remaining parameters will be initialized with naı̈ve initial values such as zeros for
fixed effects and correlations and ones for variances. Often, you may have good initial values for
fixed effects but not for variance components. In this situation, menl provides initial()’s fixed
suboption. This option specifies that the supplied values be used for fixed effects but that the EM
algorithm still be used to obtain initial values for variance components. If you specify only a subset
of values for fixed effects, the remaining fixed effects will still be initialized with zeros even if fixed
is specified. We recommend that you specify fixed when you intend to supply initial values only
for the fixed effects.

. local fe phi1:_cons 19 phi2:_cons 55 phi3:_cons 8

. menl ..., ... initial(‘fe’, fixed)

Now suppose that we also want to assign initial values for random-effects parameters. As we
mentioned earlier, remember that we assign initial values for standard deviations in the log metric and
for correlation in the inverse hyperbolic tangent or atanh metric. For example, if you want to assign
an initial value of 2 to σε, then you should supply log(2) to the initial() option. Similarly, if
you want to assign a value of 0.7 to the correlation of two random effects, then you should provide
atanh(0.7) to the initial() option.

Continuing with example 9, suppose that we want to specify the following initial values for the
random-effects covariance parameters:

( U1[plot] U2[plot] U3[plot]

σ1 = 5
ρ21 = 0.72 σ2 = 4
ρ31 = 0.71 ρ32 = 0.94 σ3 = 1.4

)

The names of the parameters in the estimation metric that correspond to σ1, σ2, and σ3 are
/plot:lnsd(U1), /plot:lnsd(U2), and /plot:lnsd(U3) and that correspond to ρ21, ρ31, and
ρ32 are /plot:athcorr(U2,U1), /plot:athcorr(U3,U1), and /plot:athcorr(U3,U2).

When specifying initial values for free parameters such as random-effects covariance parameters,
you can omit the forward slash (/) at the beginning of their names. Keeping in mind that initial
values for covariance parameters are supplied in the log and atanh metrics, we can type

. local re_cov plot:lnsd(U1) log(5) // log(5)

. local re_cov ‘re_cov’ plot:lnsd(U2) 1.4 // log(4)

. local re_cov ‘re_cov’ plot:lnsd(U3) 0.34 // log(1.4)

. local re_cov ‘re_cov’ plot:athcorr(U2,U1) atanh(0.72) // atanh(0.72)

. local re_cov ‘re_cov’ plot:athcorr(U3,U1) 0.89 // atanh(0.71)

. local re_cov ‘re_cov’ plot:athcorr(U3,U2) 1.7 // atanh(0.94)

. menl ... , ... initial(‘fe’ ‘re_cov’ Residual:lnsigma 0.5)

In the above, we also specified an initial value of 0.5 for the log of the error standard deviation.
For parameters /plot:lnsd(U1) and /plot:athcorr(U2,U1), instead of specifying the values,
we specified the corresponding expression. This is allowed, as long as your expression is simple and
does not contain spaces.

Instead of using parameter names, we can specify a list of values directly in the initial() option,
in which case we must also specify initial()’s copy suboption.

. menl ... , ... initial(19 55 8 1.6 1.4 0.34 0.9 0.89 1.7 0.5, copy)
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Or we can provide these values as a matrix:

. matrix initvals = (19, 55, 8, 1.6, 1.4, 0.34, 0.9, 0.89, 1.7, 0.5)

. matrix list initvals

initvals[1,10]
c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

r1 19 55 8 1.6 1.4 .34 .9 .89 1.7 .5

. menl ... , ... initial(initvals, copy)

If we label the columns of the initvals matrix properly, we do not need to specify copy:

. local fullcolnames : colfullnames e(b)

. matrix colnames initvals = ‘fullcolnames’

. matrix list initvals

initvals[1,10]
phi1: phi2: phi3: /plot: /plot:

_cons _cons _cons lnsd(U1) lnsd(U2)
r1 19 55 8 1.6 1.4

/plot: /plot: /plot: /plot: /Residual:
athcorr(U2, athcorr(U3, athcorr(U3,

lnsd(U3) U1) U1) U2) lnsigma
r1 .34 .9 .89 1.7 .5

. menl ... , ... initial(initvals)

Using a properly labeled initial-value matrix, we can also specify initial values for a subset of
parameters. For example, we can specify initial values for fixed effects only as follows:

. matrix initvals = initvals[1,1..3]

. matrix list initvals

initvals[1,3]
phi1: phi2: phi3:

_cons _cons _cons
r1 19 55 8

. menl ... , ... initial(initvals)

Stored results
menl stores the following in e():

Scalars
e(N) number of observations
e(N nonmiss) number of nonmissing depvar observations, if tsmissing is specified
e(N miss) number of missing depvar observations, if tsmissing is specified
e(N ic) number of nonmissing depvar observations to be used for BIC computation when

tsmissing is specified
e(k) number of parameters
e(k f) number of fixed-effects parameters
e(k r) number of random-effects parameters
e(k rs) number of variances
e(k rc) number of covariances
e(k res) number of within-group error parameters
e(k eq) number of equations
e(k feq) number of fixed-effects equations
e(k req) number of random-effects equations
e(k reseq) number of within-group error equations
e(df m) model degrees of freedom
e(df c) degrees of freedom for comparison test
e(ll) linearization log (restricted) likelihood
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e(ll c) log likelihood, comparison model
e(chi2) χ2

e(chi2 c) χ2 for comparison test
e(p) p-value for model test
e(p c) p-value for comparison test
e(rank) rank of e(V)
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) menl
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivars) grouping variables
e(title) title in estimation output
e(varlist) variables used in the specified equation
e(key N ic) nonmissing obs, if tsmissing is specified
e(tsmissing) tsmissing, if specified
e(tsorder) tsorder() specification
e(eq depvar) user-specified equation
e(tsinit depvar) tsinit() specification for L.{depvar:}
e(expressions) names of defined expressions, expr 1, expr 2,..., expr k
e(expr expr i) defined expression expr i, i=1,...,k

e(tsinit expr) tsinit() specification for L.{expr:}
e(hierarchy) random-effects hierarchy structure, (path:covtype:REs) (...)
e(revars) names of random effects
e(rstructlab) within-group error covariance output label
e(timevar) within-group error covariance t() variable, if specified
e(indexvar) within-group error covariance index() variable, if specified
e(covbyvar) within-group error covariance by() variable, if specified
e(stratavar) within-group error variance strata() variable, if specified
e(corrbyvar) within-group error correlation by() variable, if specified
e(rescovopt) within-group error covariance option, if rescovariance() specified
e(resvaropt) within-group error variance option, if resvariance() specified
e(rescorropt) within-group error correlation option, if rescorrelation() specified
e(groupvar) lowest-level group() variable, if specified
e(chi2type) Wald; type of model χ2 test
e(vce) conventional
e(method) MLE or REML
e(opt) type of optimization, lbates
e(crittype) optimization criterion
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(marginsdefault) default predict() specification for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) factor-variable constraint matrix
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance
e(b sd) random-effects and within-group error estimates in the standard deviation metric
e(V sd) VCE for parameters in the standard deviation metric
e(b var) random-effects and within-group error estimates in the variance metric
e(V var) VCE for parameters in the variance metric
e(cov #) random-effects covariance structure at the hierarchical level k−#+1 in a k-level

model
e(hierstats) group-size statistics for each hierarchy

Functions
e(sample) marks estimation sample
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In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
Variance-components parameters
Inference based on linearization
Initial values

Introduction

Recall (1), a two-level NLME model, from the Introduction,

yij = µ
(
x′ij , β, uj

)
+ εij i = 1, . . . , nj ; j = 1, . . . ,M

where M is the number of clusters and, for each cluster j, nj is the number of observations in that
cluster; yj = (y1j , y2j , . . . , ynjj)

′ is the nj × 1 response vector; Xj = (x1j ,x2j , . . . ,xnjj)
′ is the

nj × l matrix of covariates, including within-subject and between-subjects covariates; β is the p× 1
vector of unknown parameters; uj is the q×1 vector of random effects; and εj = (ε1j , ε2j , . . . , εnjj)

′ is
the nj×1 vector of within-group or within-cluster errors. uj’s follow a multivariate normal distribution
with mean 0 and q×q variance–covariance matrix Σ, and εj’s follow a multivariate normal distribution
with mean 0 and nj × nj variance–covariance matrix σ2Λj ; uj’s are assumed to be independent of
εj’s. Depending on the form of Λj , σ2 is either a within-group error variance σ2

ε or a squared scale
parameter σ2. For example, when errors are i.i.d., that is, when Λj is the identity matrix, σ2 = σ2

ε

is the within-group error variance. When Λj corresponds to the heteroskedastic power structure, σ2

is a multiplier or a scale parameter.

Positive-definite matrices Σ/σ2 and Λj are expressed as functions of unconstrained parameter vectors
αu and αw, respectively, to recast a constrained optimization problem into an unconstrained one.
Thus αu contains unconstrained random-effects covariance parameters and αw contains unconstrained
within-group error covariance parameters. Λj may also depend on the random effects uj and the
fixed effects β. For more details about Σ and Λj and about functional forms of parameter vectors
αu and αw given different covariance structures, see Variance-components parameters.

Based on (1), the marginal, with respect to uj’s, log likelihood for
(
β,α, σ2

)
is

L(β,α, σ2) = log


M∏
j=1

∫
f
(
yj |Xj ,uj ;β,αw, σ

2
)
f (uj ;αu) duj

 (25)

where α = (α′u,α
′
w)′, f

(
yj |Xj ,uj ;β,αw, σ

2
)

is the conditional density of yj given Xj and uj ,
and f (uj ;αu) is the density of uj .
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In general, there are no closed-form expressions for (25) or the marginal moments of an NLME
model. This is because the random effects uj enter the model nonlinearly, making the q-dimensional
integral in (25) analytically intractable in all but simpler cases. Several estimation techniques have
been proposed for estimating parameters β, α, and σ2, including numerical integration of the integral
in (25) by using an adaptive Gaussian quadrature and a linearization of the mean function in (1) by
using a Taylor-series expansion.

menl implements the linearization method of Lindstrom and Bates (1990), with extensions from
Pinheiro and Bates (1995), which is described in Inference based on linearization.

Variance-components parameters

For numerical stability, maximization of (25) is performed with respect to the unique elements of
the matrix G = Σ/σ2 expressed as logarithms of standard deviations for the diagonal elements and
hyperbolic arctangents of the correlations for off-diagonal elements. Let αu be the vector containing
these elements. For example, if we assume that the elements of the random-effects vector uj are
independent, then Σ is diagonal and αu will contain q distinct parameters—q logarithms of standard
deviations. Table 1 lists the vectors of parameters αu for all random-effects covariance structures
supported by menl in the covariance(vartype) option.

Table 1. Variance-components parameters

vartype α′u

independent (g1, g2, . . . , gq)

exchangeable (g1, g12)

identity g1

unstructured (g1, g2, . . . , gq, g12, g13, . . . , gq−1q)

Notes: gu=log(
√

[G]uu), guv= atanh([G]uv).
unstructured has q(q+1)/2 parameters.

The within-group error covariance matrix is parameterized as follows,

Var (εj |uj) = σ2Λj (Xj ,β,uj ,αw) = σ2Sj (δ,υj) Cj(ρ)Sj (δ,υj)

where αw =
(
δ∗
′,ρ∗′

)′
and δ∗ and ρ∗ are unconstrained versions of δ and ρ defined in table 2 and

table 3, respectively. For example, for a positive δ1, δ∗1 = log (δ1). Sj = Sj (δ,υj) is an nj × nj
diagonal matrix with nonnegative diagonal elements g (δ, υ1j) , g (δ, υ2j) , . . . , g

(
δ, υnjj

)
such that

Var (εij) = σ2[Sj ]
2
ii = σ2g2 (δ, υij), where υij’s are the values of a variance covariate or the values

of a mean function µ
(
x′ij ,β,uj

)
, in which case Λj will depend on Xj , β, and uj . Cj = Cj(ρ)

is a correlation matrix such that corr (εij , εkj) = [Cj ]ik = h (|tij − tlj |,ρ), where tij is a value of
a time variable for time-dependent correlation structures such as AR, MA, and Toeplitz structures or
an index variable for banded and unstructured correlation structures. A list of the supported g(·)
and h(·) functions is given in table 2 and table 3, respectively.

Carroll and Ruppert (1988) introduced various variance functions g (δ, υij) to model heteroskedas-
ticity, which were further studied in the context of NLME models by Davidian and Giltinan (1995).
Table 2 lists variance functions supported by the resvariance(resvarfunc . . .) option.
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Table 2. Supported variance functions g(·)

resvarfunc g (δ, υij) δ′

identity 1 –
linear

√
υij –

power c+ |υij |δ (c, δ), c ≥ 0

power, noconstant |υij |δ δ

exponential exp (δυij) δ

distinct
∑L
l=1 δlI(vij = l) (δ1 = 1, δ2, . . . , δL)

In table 2, the variance function distinct models a distinct parameter δl for each level l (l =
1, 2, . . . , L) of the index variable vij ∈ {1, 2, . . . , L} such that for vij = l, Var (εij) = σ2

l = σ2δ2l ,
where δ1 = 1 for identifiability purposes and δl = σl/σ. menl estimates and stores results as δ’s but
displays results as variances σ2

l , l = 1, . . . , L.

The variance function g(·) and thus the within-group error covariance may depend on β and
uj through µ(·), when υij = µij = µ

(
x′ij ,uj ,β

)
in table 2. This is particularly appealing in

PK applications, where there is often considerable intraindividual heterogeneity that is modeled, for
example, as a power function of the mean.

The within-group error correlation structure is governed by the h(·) function. Table 3 lists correlation
structures that are supported by the rescorrelation(rescorr . . .) option and also have a closed-form
expression. In addition, the AR and MA correlation structures are defined below.

The ar p structure assumes that the errors have an AR structure of order p. That is,

εij = φ1εi−1,j + · · ·+ φpεi−p,j + zij

where zij are i.i.d. Gaussian with mean 0 and variance σ2
z . menl reports estimates of φ1, . . . , φp and

the overall error variance σ2
ε , which can be derived from the above expression. This structure has a

closed-form expression only for p = 1, in which case φ1 = ρ is the correlation between error terms.

The ma q structure assumes that the errors are an MA process of order q. That is,

εij = Zi + θ1Zi−1 + · · ·+ θqZi−q

where Zl are i.i.d. Gaussian with mean 0 and variance σ2
Z . menl reports estimates of θ1, . . . , θq and

the overall error variance σ2
ε , which can be derived from the above expression.
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Table 3. Within-group error correlation functions h(·)

rescorr h(|tij − tlj |,ρ) Expression ρ

identity h(k) I(k = 0) –
exchangeable h(k, ρ) ρ, k = 1, 2, . . . ρ, |ρ| < 1

ar 1 h(k, ρ) ρk, k = 0, 1, . . . ρ, |ρ| < 1

ar p, p > 1 h(k,φ) no closed form (φ1, φ2, . . . , φp)

ctar1 h(s, ρ) ρs, s ≥ 0 ρ, |ρ| < 1

ma q h(k, θ)


∑q−|k|

j=0
θjθj+|k|∑q

j=0
θ2
j

k ≤ q

0 k > q

(θ0 = 1, θ1, . . . , θq)

toeplitz h(k,ρ) ρkI(k ≤ q), k = 1, 2, . . . , q (ρ1, ρ2, . . . , ρq)

banded h(|i− l|,ρ) ρilI(|i− l| ≤ q), 1 ≤ i < l ≤ nj {ρil: 0 < l − i ≤ q}
unstructured h(|i− l|,ρ) ρil, 1 ≤ i < l ≤ nj

(
ρ12, . . . , ρ(nj−1)nj

)
You can build many flexible within-group error covariance structures by combining different

functions g(·) and h(·), that is, by combining the resvariance() and rescorrelation() options.
For example, you can combine an AR(1) correlation structure with a heteroskedastic structure that is
expressed as a power function of the mean by specifying rescorrelation(ar 1, t(timevar))
and resvariance(power yhat).

Inference based on linearization
Let’s write (1), equivalently, in matrix form as

yj = µ (Xj ,β,uj) + Λ
1
2
j (Xj ,β,uj ,αw) ej

Here µ (Xj ,β,uj) depends on β and uj through the function d(·) in (2), and ej’s ∼ N
(
0, σ2Inj

)
,

where Inj is the identity matrix of dimension nj . In what follows, for brevity, we suppress the
dependence of µ and Λj on Xj .

Following Lindstrom and Bates (1990), we will initially assume that Λj does not depend on Xj ,
β, and uj or, equivalently, on φj but rather on j only through its dimension; that is, Λj = Λj(αw).
Therefore, heteroskedastic structures that depend on the mean are not yet allowed in this context.
Toward the end of this section, we will present a modified version of the algorithm that accounts for
the dependence of Λj on φj .

Lindstrom and Bates discuss a natural extension of the methods for the LME models to NLME
models. For a known α (and thus known Σ and Λj) and σ2, the estimates of β and uj jointly
minimize

M∑
j=1

[
log|Σ (αu) |+ u′j {Σ (αu)}−1 uj + log

∣∣∣∣σ2Λj (αw)

∣∣∣∣
+ σ−2 {yj − µ (β,uj)}′ Λ−1j (αw) {yj − µ (β,uj)}

]
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which is twice the negative log likelihood for β when uj is fixed or twice the negative log of the
posterior density of uj when β is fixed. Consequently, one strategy for estimating β and (predicting)
uj is to minimize the above objective function with respect to β and uj given suitable estimates of
α and σ2. Estimation of α and σ2 can be accomplished by using MLE with respect to the marginal
density of yj , in which uj’s are integrated out. But because no closed-form expression for this
density is available, we approximate the conditional distribution of yj given uj by a multivariate
normal distribution with an expectation that is linear in uj and β. This is illustrated in step 2 of the
algorithm below.

Lindstrom and Bates (1990) propose the following two-step estimation method or alternating
algorithm.

Step 1 (PNLS step). Given current estimates α̂ (and thus α̂u and α̂w) of α and σ̂2 of σ2,
minimize with respect to β and uj

M∑
j=1

[
log|Σ (α̂u) |+ u′j {Σ (α̂u)}−1 uj + log

∣∣∣∣σ̂2Λj (α̂w)

∣∣∣∣
+ σ̂−2 {yj − µ (β,uj)}′ Λ−1j (α̂w) {yj − µ (β,uj)}

] (26)

Define ∆ such that σ2Σ−1 = ∆′∆. Note that ∆ = ∆(αu), but for notational convenience, this
dependency is suppressed throughout the rest of this section. Equation (26) is equivalent to minimizing
the penalized least-squares objective function

PNLS step:
M∑
j=1

[∣∣∣∣∣∣∣∣ {Λ′j(αw)
}−1/2 {yj − µ (β,uj)}

∣∣∣∣∣∣∣∣2 + ||∆uj ||2
]

with respect to β and uj while holding the current estimates of α (and, consequently, of ∆ and of Λj)
fixed. pnlsopts(iterate(#)) iterations are performed at this step, unless the convergence criterion
(CC) is met. The CC for PNLS optimization is controlled by pnlsopts(nrtolerance(#)) and one
of pnlsopts(ltolerance(#)) or pnlsopts(tolerance(#)); see menlmaxopts for details.

Denote the resulting estimates as ûj and β̂.

In the absence of random effects in the model (see example 19), the previous formulas no longer
include the random effects and related components. In particular, uj and ∆ are set to 0, and α = αw.
In this case, the PNLS step reduces to what we call a GNLS estimation step. Furthermore, if no within-
group error covariance structure is specified, that is, when all observations are assumed i.i.d., Λj (αw)
is set to the identity matrix I , and the PNLS step reduces to the classical NLS estimation.

Step 2 (LME step). Perform a first-order Taylor-series expansion of the model mean function
around the current estimates of β and of the conditional modes of the random effects uj , yielding

yj = µ
(
β̂, ûj

)
+ X̂j

(
β− β̂

)
+ Ẑj (uj − ûj) + Λ

1
2
j (αw) ej (27)
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where

X̂j =
∂µ (β,uj)

∂β′

∣∣∣∣
β=β̂,uj=ûj

Ẑj =
∂µ (β,uj)

∂u′j

∣∣∣∣
β=β̂,uj=ûj

Model (27) is essentially an LME model, and we use notations X̂j and Ẑj for the derivatives to
emphasize this. That is, X̂j and Ẑj represent the corresponding fixed-effects and random-effects
design matrices of an LME model.

Thus the approximate conditional distribution of yj is

yj |uj ∼ N
{
µ
(
β̂, ûj

)
+ X̂j

(
β− β̂

)
+ Ẑj(uj − ûj), σ

2Λj

}
Because the expectation is now linear in random effects uj , the approximate conditional distribution
of yj , along with distribution of uj , allows us to approximate the marginal distribution of yj as

yj ∼ N
{
µ
(
β̂, ûj

)
+ X̂j

(
β− β̂

)
− Ẑjûj , σ

2Vj(α)
}

(28)

where Vj(α) = Ẑj∆
−1 (∆−1)′ Ẑj ′ + Λj (αw).

Let ŵj = yj −µ
(
β̂, ûj

)
+ X̂jβ̂+ Ẑjûj . Estimation of α and σ2 can now be accomplished by

maximizing the log likelihood corresponding to the approximate marginal distribution in (28),

LME step:
lLB(α,β, σ2) = −n

2
log
(
2πσ2

)
− 1

2

M∑
j=1

{
log|Vj(α)|

+ σ−2
(
ŵj − X̂jβ

)′
Vj
−1(α)

(
ŵj − X̂jβ

)} (29)

where n =
∑M
j=1 nj .

Alternatively, when the reml option is specified, we take an REML approach and maximize

lLB,R(α, σ2) = lLB(α, β̂(α), σ2)− 1

2

M∑
j=1

log

∣∣∣∣σ−2X̂j
′Vj
−1(α)X̂j

∣∣∣∣ (30)

The LME step (step 2) of the alternating algorithm consists of optimizing an LME log likelihood, in
which the response vector is given by ŵj and the fixed- and random-effects design matrices are given
by X̂j and Ẑj , respectively. lmeopts(iterate(#)) iterations are performed at this step, unless the
CC is met. The CC for LME optimization is controlled by lmeopts(nrtolerance(#)) and one of
lmeopts(ltolerance(#)) or lmeopts(tolerance(#)); see menlmaxopts for details.

The LME step produces estimates α̂ and σ̂2. (The estimates β̂ can also be obtained at this step,
but it is generally more computationally efficient to compute them at the PNLS step.) These estimates
will now be used in step 1, the PNLS step.
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In the absence of random effects in the model (see example 19), uj , ûj , ∆, and Ẑj are all set
to 0, and α = αw. In this case, the LME step is referred to as the ML step or, if the reml option is
specified, the REML step in the menl output. Furthermore, if all observations are assumed i.i.d., then
step 2 of the alternating algorithm is not needed, and only step 1 (NLS) is performed.

Stopping rules. One PNLS step and one LME step correspond to one iteration of the alternating
algorithm. The log likelihood reported by menl at each iteration is the log likelihood (29) or, if the
reml option is specified, (30) from the last iteration of the LME step. menl refers to this log likelihood
as “linearization log likelihood” because it corresponds to the log likelihood of the LME model, which
was the result of the linearization of the NLME model. The algorithm stops when the linearization
likelihoods from successive iterations satisfy ltolerance(#), when the parameter estimates from
successive iterations satisfy tolerance(#), or if the model does not converge, when the maximum
number of iterations in iterate() is reached; see menlmaxopts for details about maximization
options. Because the alternating algorithm does not provide a joint Hessian matrix for all parameters,
there is no check for the tolerance of the scaled gradient; thus the convergence cannot be established
in its strict sense. The convergence is declared based on the stopping rules described above.

When Λj = Λj (β,uj ,αw) depends on uj and β, which is the case, for example, with resvari-
ance(power yhat) and resvariance(exponential yhat)), an intermediate step between the
PNLS and the LME step is performed to replace the fixed effects and random effects in Λj , or more
precisely in the variance function g(·), by their current estimates from the PNLS step. After that,

Λj

(
αw; β̂, ûj

)
= Λj(αw) depends only on αw because both uj and β are held fixed at their

current estimates throughout the LME step.

Efficient methods for computing (29) or (30) are given in chapters 2 and 5 of Pinheiro and
Bates (2000). Namely, to simplify the optimization problem, one can express the optimal values of
β and σ2 as functions of α (and thus of ∆ and αw) and work with the profiled log likelihood of α.

For the PNLS step, the objective function to be minimized is the penalized sum of squares

M∑
j=1

[
||(Λ′j)−1/2 {yj − µ (β,uj)} ||2 + ||∆uj ||2

]
By adding “pseudo”-observations to the data, the PNLS problem can be reexpressed as a standard

nonlinear least-squares problem. Thus step 1 of the alternating algorithm is sometimes called the
“pseudodata step”. Define pseudo-observations ỹj as follows:

ỹj =

[
(Λ′j)

−1/2yj
0

]
µ̃ (β,uj) =

[
(Λ′j)

−1/2µ (β,uj)
∆uj

]
Then, the PNLS step can be rewritten as

M∑
j=1

∣∣∣∣ỹj − µ̃ (β,uj)
∣∣∣∣2

Hence, for values of α and σ2 fixed at the current estimates, the estimation of β and uj in the PNLS
step can be regarded as a standard nonlinear least-squares problem. A popular iterative estimation
technique for standard nonlinear least-squares is the Gauss–Newton method (see Pinheiro and Bates
[2000, chap. 7] for more details).
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After the completion of the alternating algorithm, an extra LME iteration is performed, with fixed
effects profiled-out of the likelihood, to reparameterize [α, log(σ)] to their natural metric and to
compute their standard errors with the delta method. This step is labeled Computing standard
errors: in the output of menl. If you are interested only in standard errors for fixed effects, you can
skip this step by specifying the nostderr option, in which case standard errors for the random-effects
and within-group error covariance parameters will not be computed and will be shown as missing in
the output table. The standard errors for the fixed effects are obtained from the PNLS step, and the
standard errors for random-effects parameters are obtained from the LME step.

Inference on the parameters of the NLME model is based on the approximating LME model with
log likelihood and restricted log likelihood functions defined in (29) and (30). Therefore, all the
inferential machinery available within the context of LME models can be used. For example, under
the LME approximation, the distribution of the (restricted) MLE β̂ of the fixed effects is

β̂ ∼ N

β, σ2

 M∑
j=1

X̂j
′Vj
−1(α)X̂j

−1


and for random-effects and within-group error parameters is[
α̂

logσ̂

]
∼ N

{[
α

logσ

]
, I−1(α, σ)

}
where

I(α, σ) = −
[
∂2lLBp/∂α∂α

′ ∂2lLBp/∂ logσ∂α′

∂2lLBp/∂α∂ logσ ∂2lLBp/∂
2 logσ

]
and lLBp = lLBp(α, σ) is the approximated log likelihood from the LME step with fixed effects
profiled out. Because inference is based on the LME approximation of the original NLME model,
asymptotic results are technically “approximately asymptotic” and are thus less accurate than the
asymptotic inferential results for LME models as described in [ME] mixed.

Initial values

The PNLS step requires starting values for β and uj . These are obtained from the EM algorithm;
see, for example, Bates and Pinheiro (1998) for details. You can control optimization within the EM
algorithm by specifying the emtolerance() and emiterate() options. You can also supply your
own initial values; see Examples of specifying initial values. NLME models are often sensitive to
initial values, so it is good practice to try different sets of initial values to verify that your results are
robust to them.
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[ME] meglm — Multilevel mixed-effects generalized linear models

[ME] mixed — Multilevel mixed-effects linear regression

[ME] me — Introduction to multilevel mixed-effects models

[R] nl — Nonlinear least-squares estimation

[U] 20 Estimation and postestimation commands
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menl postestimation — Postestimation tools for menl

Postestimation commands predict margins
Remarks and examples Methods and formulas Reference
Also see

Postestimation commands
The following postestimation commands are of special interest after menl:

Command Description

estat group summarize the composition of the nested groups
estat recovariance display the estimated random-effects covariance matrices
estat sd display variance components as standard deviations and correlations
estat wcorrelation display within-cluster correlations and standard deviations

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian

information criteria (AIC, CAIC, AICc, and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estimates cataloging estimation results
etable table of estimation results
lincom point estimates, standard errors, testing, and inference for linear combina-

tions of coefficients
lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear com-

binations of coefficients
predict predictions and their SEs, residuals, etc.
predictnl point estimates, standard errors, testing, and inference for generalized

predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

320
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predict

Description for predict
predict creates a new variable containing predictions of mean values, residuals, or standardized

residuals. It can also create multiple new variables containing estimates of random effects and their
standard errors or containing predicted named substitutable expressions.

Menu for predict

Statistics > Postestimation

Syntax for predict

Syntax for obtaining predictions of the outcome and other statistics

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic fixedonly relevel(levelvar) options
]

Syntax for predicting named substitutable expressions (parameters)

Predict all parameters

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, parameters[

fixedonly relevel(levelvar) options
]

Predict specific parameters

predict
[

type
]
(newvar = {param:})

[
(newvar = {param:})

] [
. . .
] [

if
] [

in
][

, fixedonly relevel(levelvar) options
]

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, parameters(paramnames)[

fixedonly relevel(levelvar) options
]

Syntax for obtaining predictions of random effects and their standard errors

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, reffects

[
relevel(levelvar)

reses(stub* | newvarlist) options
]

paramnames is param
[

param
[
. . .
] ]

and param is a name of a substitutable expression as specified
in one of menl’s define() options.
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statistic Description

Main

yhat prediction for the expected response conditional on the random effects
mu synonym for yhat
residuals residuals, response minus predicted values
∗rstandard standardized residuals

Unstarred statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample. Starred statistics are calculated only for the estimation sample, even when
if e(sample) is not specified.

options Description

Options

iterate(#) maximum number of iterations when computing random effects;
default is iterate(10)

tolerance(#) convergence tolerance when computing random effects;
default is tolerance(1e-6)

nrtolerance(#) scaled gradient tolerance when computing random effects; default is
nrtolerance(1e-5)

nonrtolerance ignore the nrtolerance() option

Options for predict

� � �
Main �

yhat calculates the predicted values, which are the mean-response values conditional on the random
effects, µ(x′ij , β̂, ûj). By default, the predicted values account for random effects from all levels
in the model; however, if the relevel(levelvar) option is specified, then the predicted values are
fit beginning with the topmost level down to and including level levelvar. For example, if classes
are nested within schools, then typing

. predict yhat_school, yhat relevel(school)

would produce school-level predictions. That is, the predictions would incorporate school-specific
random effects but not those for each class nested within each school. If the fixedonly option is
specified, predicted values conditional on zero random effects, µ(x′ij , β̂,0), are calculated based
on the estimated fixed effects (coefficients) in the model when the random effects are fixed at their
theoretical mean value of 0.

mu is a synonym for yhat.

residuals calculates residuals, equal to the responses minus the predicted values yhat. By default,
the predicted values account for random effects from all levels in the model; however, if the
relevel(levelvar) option is specified, then the predicted values are fit beginning at the topmost
level down to and including level levelvar.

rstandard calculates standardized residuals, equal to the residuals multiplied by the inverse square
root of the estimated error covariance matrix.

parameters and parameters(paramnames) calculate predictions for all or a subset of the named
substitutable expressions in the model. By default, the predictions account for random effects
from all levels in the model; however, if the relevel(levelvar) option is specified, then the
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predictions would incorporate random effects from the topmost level down to and including level
levelvar. Option parameters(param) is useful with margins. parameters() does not appear
in the dialog box.

reffects calculates predictions of the random effects. For the Lindstrom–Bates estimation method of
menl, these are essentially the best linear unbiased predictions (BLUPs) of the random effects in the
LME approximated log likelihood; see Inference based on linearization in [ME] menl. By default,
estimates of all random effects in the model are calculated. However, if the relevel(levelvar)
option is specified, then estimates of random effects for only level levelvar in the model are
calculated. For example, if classes are nested within schools, then typing

. predict b*, reffects relevel(school)

would produce estimates at the school level. You must specify q new variables, where q is the
number of random-effects terms in the model (or level). However, it is much easier to just specify
stub* and let Stata name the variables stub1, stub2, . . . , stubq for you.

fixedonly specifies that all random effects be set to zero, equivalent to using only the fixed portion
of the model.

relevel(levelvar) specifies the level in the model at which predictions involving random effects are
to be obtained; see the options above for the specifics. levelvar is the name of the model level; it
is the name of the variable describing the grouping at that level.

reses(stub* | newvarlist) calculates the standard errors of the estimates of the random effects.
By default, standard errors for all random effects in the model are calculated. However, if the
relevel(levelvar) option is specified, then standard errors of the estimates of the random effects
for only level levelvar in the model are calculated; see the reffects option.

You must specify q new variables, where q is the number of random-effects terms in the model
(or level). However, it is much easier to just specify stub* and let Stata name the variables stub1,
stub2, . . . , stubq for you. The new variables will have the same storage type as the corresponding
random-effects variables.

The reffects and reses() options often generate multiple new variables at once. When this
occurs, the random effects (or standard errors) contained in the generated variables correspond
to the order in which the variance components are listed in the output of menl. Still, examining
the variable labels of the generated variables (with the describe command, for instance) can be
useful in deciphering which variables correspond to which terms in the model.

� � �
Options �

iterate(#) specifies the maximum number of iterations when computing estimates of the random
effects. The default is iterate(10). This option is relevant only to predictions that depend on
random effects. This option is not allowed if the fixedonly option is specified.

tolerance(#) specifies a convergence tolerance when computing estimates of the random effects.
The default is tolerance(1e-6). This option is relevant only to predictions that depend on
random effects. This option is not allowed if the fixedonly option is specified.

nrtolerance(#) and nonrtolerance control the tolerance for the scaled gradient when computing
estimates of the random effects.

nrtolerance(#) specifies the tolerance for the scaled gradient. Convergence is declared when
g(−H−1)g′ is less than nrtolerance(#), where g is the gradient row vector and H is the
approximated Hessian matrix from the current iteration. The default is nrtolerance(1e-5).

nonrtolerance specifies that the default nrtolerance() criterion be turned off.
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margins

Description for margins

margins estimates margins of response for predicted mean values or named substitutable expres-
sions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . . )

[
options

]
statistic Description

yhat predicted values conditional on zero random effects; the default
mu synonym for yhat
residuals not allowed with margins

rstandard not allowed with margins

parameters predicted parameters
parameters(param) predicted named substitutable expression param conditional

on zero random effects
reffects not allowed with margins

The fixedonly option is assumed for the predictions used with margins.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples
Various predictions, statistics, and diagnostic measures are available after fitting an NLME model

using menl. For the most part, calculation centers on obtaining estimates of the random effects.
Random effects are not estimated when the model is fit but instead need to be predicted after
estimation. The estimates of the random effects are in turn used to obtain predicted values and
residuals at different nesting levels. These are useful for checking model assumptions and may be
used in general as model-building tools.
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Example 1: Testing variance components

In example 9 and example 12 of [ME] menl, we modeled the average leaf weight of two genotypes
of soybean plants over three growing seasons as

weightij =
φ1j

1 + exp {− (timeij − φ2j) /φ3j}
+ εij

for j = 1, . . . , 48 and i = 1, . . . , nj , with 8 ≤ nj ≤ 10. Here we consider a simplified version of
the stage 2 model specification from example 12,

φj =

φ1jφ2j
φ3j

 =

 β11 + β12S89,j + β13S90,j + u1j
β21 + β22S89,j + β23S90,j + β24Pj

β31 + β32S89,j + β33S90,j


where Pj = I(varietyj = P), S89,j = I(yearj = 1989), and S90,j = I(yearj = 1990). The
random effects u1j’s are normally distributed with mean 0 and variance σ2

u1 and errors εij’s are
normally distributed with mean 0 and error variance

Var (εij) = σ2( ̂weightij)2δ
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Let’s fit this model using menl.

. use https://www.stata-press.com/data/r18/soybean
(Growth of soybean plants (Davidian and Giltinan, 1995))

. menl weight = {phi1:}/(1+exp(-(time-{phi2:})/{phi3:})),
> define(phi1: i.year U1[plot])
> define(phi2: i.year i.variety)
> define(phi3: i.year, xb) resvariance(power _yhat, noconstant)

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = -324.21579
Iteration 2: Linearization log likelihood = -313.89733
Iteration 3: Linearization log likelihood = -314.76287
Iteration 4: Linearization log likelihood = -314.4317
Iteration 5: Linearization log likelihood = -314.5131
Iteration 6: Linearization log likelihood = -314.49399
Iteration 7: Linearization log likelihood = -314.49922
Iteration 8: Linearization log likelihood = -314.49838
Iteration 9: Linearization log likelihood = -314.49853
Iteration 10: Linearization log likelihood = -314.49851

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 412
Group variable: plot Number of groups = 48

Obs per group:
min = 8
avg = 8.6
max = 10

Wald chi2(7) = 193.98
Linearization log likelihood = -314.49851 Prob > chi2 = 0.0000

phi1: i.year U1[plot]
phi2: i.year i.variety
phi3: i.year

weight Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
year

1989 -6.614797 1.195633 -5.53 0.000 -8.958195 -4.271399
1990 -3.749016 1.264716 -2.96 0.003 -6.227814 -1.270218

_cons 20.28009 .953959 21.26 0.000 18.41036 22.14981

phi2
year

1989 -2.623514 .9752055 -2.69 0.007 -4.534882 -.7121468
1990 -5.142726 .9879783 -5.21 0.000 -7.079128 -3.206324

variety
P -2.265482 .3274228 -6.92 0.000 -2.907219 -1.623745

_cons 55.25935 .7554917 73.14 0.000 53.77861 56.74008

phi3
year

1989 -.9538782 .1963606 -4.86 0.000 -1.338738 -.5690186
1990 -.7220007 .2081227 -3.47 0.001 -1.129914 -.3140877

_cons 8.042677 .1452638 55.37 0.000 7.757965 8.327389
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Random-effects parameters Estimate Std. err. [95% conf. interval]

plot: Identity
var(U1) 4.260962 1.114482 2.551939 7.114509

Residual variance:
Power _yhat

sigma2 .046573 .0038271 .0396449 .0547118
delta .9667451 .0229472 .9217694 1.011721

menl does not report tests against zeros for parameters in the random-effects table because they
are not appropriate for all types of parameters such as variances. For some parameters such as power
parameter δ in our example, labeled as delta in the output, the test of H0: δ = 0 is sensible. In
fact, it corresponds to the test of homoskedastic within-plot errors because under the null hypothesis
the error variance Var(εij) = σ2( ̂weightij)2δ reduces to σ2.

We can use the test command to perform this test.

. test _b[/Residual:delta] = 0

( 1) [/Residual]delta = 0

chi2( 1) = 1774.87
Prob > chi2 = 0.0000

The Wald test strongly rejects the null hypothesis of homoskedastic errors.

Example 2: Obtaining predictions

Continuing with example 1, we can also obtain the estimates of the plot-level random effects
u1j’s. Because menl used the Lindstrom–Bates linearization method, the estimated random effects
are essentially BLUPs; see Inference based on linearization in [ME] menl.

We need to specify the name of the variable to be created and then use predict, reffects. For
example, below we obtain the predictions of random effects for the first 10 plots.
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. predict u1, reffects

. by plot, sort: generate tolist = (_n==1)

. list plot u1 if plot <=10 & tolist

plot u1

1. 1988F4 -1.716238
11. 1988F2 -.1668753
20. 1988F1 -.2153712
30. 1988F7 -.3337681
39. 1988F5 1.331566

47. 1988F8 -.7153563
57. 1988F6 .0699629
67. 1988F3 1.353845
77. 1988P1 -.6681811
87. 1988P5 -.9152615

Next, we obtain the predicted mean values and plot them. By default, the mean response conditional
on the estimated random effects is computed. Predicted values based on the fixed-effects estimates
alone, that is, conditional on zero random effects, may be obtained by specifying the fixedonly
option.

. predict fitweight, yhat

. twoway connected weight fitweight time if plot<=9, sort by(plot)
> ytitle("Average leaf weight per plant (g)")
> legend(order(1 "observed" 2 "predicted"))
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The predicted values closely match the observed average leaf weights, confirming the adequacy of
the model.

Also see example 13 in [ME] menl for how to predict parameters defined as functions of other
parameters with substitutable expressions.
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Example 3: Checking model assumptions based on residuals

The raw residuals are useful to check for heterogeneity of the within-group error variance; see
example 10 in [ME] menl. They are less recommended, however, for checking normality assumptions
and for detecting outlying observations. This is because raw residuals are usually correlated and have
different variances. Instead, we can use standardized residuals to check for normality and outlying
observations. If the normality assumption is reasonable and the model fits data well, standardized
residuals should follow a standard normal distribution.

Let’s check whether the standardized residuals from our model are approximately normally
distributed with mean zero and variance one.

. predict rs, rstandard

. summarize rs

Variable Obs Mean Std. dev. Min Max

rs 412 .0150192 .9564895 -2.547287 3.661603

. qnorm rs
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The plot does not indicate serious departures from normality, and the estimated mean and standard
deviation are close to zero and one, respectively. It appears that the power of the mean function is a
reasonable choice for modeling heteroskedasticity of the within-group errors in this example.

Example 4: estat group and level-specific predictions

In example 23 of [ME] menl, we modeled the intensity of current at the ith level of voltage in
the jth site within the kth wafer as

currentijk = φ1jk + φ2jk cos (φ3jkvoltagei + π/4) + εijk

for k = 1, . . . , 10, j = 1, . . . , 8, and i = 1, . . . , 5. In that example, we considered fairly complicated
specifications for φj’s in stage 2 with many random effects at different levels, which lead to
slow execution of the command. To illustrate some of the commands available after menl, we will
substantially simplify the stage 2 specification to speed up the estimation of the model.
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φ1jk = β0 + u
(3)
0k + u

(2)
0j,k +

(
β1 + u

(3)
1k + u

(2)
1j,k

)
voltagei

φ2jk = β3

φ3jk = β4

u
(3)
k =

[
u
(3)
0k

u
(3)
1k

]
∼ N (0,Σ3) u

(2)
j,k =

[
u
(2)
0j,k

u
(2)
1j,k

]
∼ N (0,Σ2) εijk ∼ N

(
0, σ2

ε

)
where

Σ3 =

[
σ
(3)
11 0
0 σ

(3)
22

]
Σ2 =

[
σ
(2)
11 0
0 σ

(2)
22

]
We fit this model by using menl.

. use https://www.stata-press.com/data/r18/wafer, clear
(Modeling of analog MOS circuits)

. menl current = {phi1:}+{phi2}*cos({phi3}*voltage + _pi/4),
> define(phi1: voltage W0[wafer] S0[wafer>site]
> c.voltage#(W1[wafer] S1[wafer>site]))

Obtaining starting values by EM:

Alternating PNLS/LME algorithm:

Iteration 1: Linearization log likelihood = 503.60719
Iteration 2: Linearization log likelihood = 503.60719

Computing standard errors:

Mixed-effects ML nonlinear regression Number of obs = 400

Grouping information

No. of Observations per group
Path groups Minimum Average Maximum

wafer 10 40 40.0 40
wafer>site 80 5 5.0 5

Wald chi2(1) = 4860.30
Linearization log likelihood = 503.60719 Prob > chi2 = 0.0000

phi1: voltage W0[wafer] S0[wafer>site] c.voltage#W1[wafer]
c.voltage#S1[wafer>site]

current Coefficient Std. err. z P>|z| [95% conf. interval]

phi1
voltage -25.20026 .3614709 -69.72 0.000 -25.90873 -24.49179

_cons 64.41187 .4984303 129.23 0.000 63.43497 65.38878

/phi2 -93.6509 .6367583 -147.07 0.000 -94.89892 -92.40287
/phi3 .3828109 .001525 251.02 0.000 .379822 .3857999
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Random-effects parameters Estimate Std. err. [95% conf. interval]

wafer: Independent
var(W0) .0048115 .0027516 .0015686 .0147591
var(W1) .0396212 .0184213 .0159285 .0985556

wafer>site: Independent
var(S0) .0086449 .0017812 .0057726 .0129463
var(S1) .0118703 .0021114 .0083763 .0168217

var(Residual) .001069 .0000952 .0008978 .0012729

We can use estat group to see how the data are broken down by wafer and site:

. estat group

Grouping information

No. of Observations per group
Path groups Minimum Average Maximum

wafer 10 40 40.0 40
wafer>site 80 5 5.0 5

We are reminded that we have balanced data for each site (all sites were measured at 5 ascending
voltages).

Suppose that we want to predict random effects at the wafer level only; that is, we want to compute
û
(3)
k . This can be done by specifying the relevel(wafer) option:

. predict u_wafer*, reffects relevel(wafer)

Notice how predict labels the generated variables for you to avoid confusion.

. describe u_wafer*

Variable Storage Display Value
name type format label Variable label

u_wafer1 float %9.0g BLUP r.e. for W0[wafer]
u_wafer2 float %9.0g BLUP r.e. for W1[wafer]

We can use predict, yhat to get the predicted values µ(voltagei, β̂, û
(3)
k , û

(2)
j,k). If instead

we want to predict values at the wafer level, µ(voltagei, β̂, û
(3)
k ,0), we again need to specify the

relevel() option:
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. predict curr_wafer, yhat relevel(wafer)

. list wafer site current curr_wafer in 1/10

wafer site current curr_w~r

1. 1 1 .90088 .8898317
2. 1 1 3.8682 3.920231
3. 1 1 7.6406 7.65254
4. 1 1 11.736 11.76189
5. 1 1 15.934 15.91457

6. 1 2 1.032 .8898317
7. 1 2 4.1022 3.920231
8. 1 2 7.9316 7.65254
9. 1 2 12.064 11.76189

10. 1 2 16.294 15.91457

The predicted values curr wafer do not vary across sites, because µ(voltagei, β̂, û
(3)
k ,0) does

not depend on j.

Methods and formulas
Following the notation defined throughout [ME] menl, estimates of random effects uj are obtained

by using PNLS iterations with parameters β, α, and σ2 held fixed at their values obtained at convergence.
Starting with û

(0)
j = 0, at the kth iteration, we have

û
(k)
j = Σ̂Ẑ

′(k−1)
j

(
Ẑ

(k−1)
j Σ̂Ẑ

′(k−1)
j + σ̂2Λ̂j

)−1 (
ŵ

(k−1)
j − X̂

(k−1)
j β̂

)
where Σ̂ and Λ̂ are Σ and Λ with maximum likelihood (ML) or restricted maximum likelihood (REML)
estimates of the variance components plugged in and X̂

(k−1)
j = X̂j(û

(k−1)
j ), Ẑ

(k−1)
j = Ẑj(û

(k−1)
j ),

and ŵ
(k−1)
j = ŵj(û

(k−1)
j ) are defined in the LME step of Inference based on linearization in

Methods and formulas of [ME] menl. When the variance structure depends on uj , such as when the
resvariance(power yhat) option is specified during estimation, Λ̂j will also be updated at each
iteration; that is, Λ̂j = Λ̂j(û

(k−1)
j ). The iterative process stops when the relative difference between

û
(k−1)
j and û

(k)
j is less than tolerance(#) or, if the stopping rule is not met, when the maximum

number of iterations in iterate(#) is reached.

Standard errors for the estimates of the random effects are calculated based on Bates and Pin-
heiro (1998, sec. 3.3). If estimation is done by REML, these standard errors account for uncertainty
in the estimate of β, whereas for ML, the standard errors treat β as known. As such, standard errors
of REML-based estimates will usually be larger.

Predicted mean values are computed as µj(Xj , β̂, ûj), predicted parameters as φ̂j = d(xbj , β̂, ûj),

residuals as ε̂j = yj − µj(Xj , β̂, ûj), and standardized residuals as

ε̂∗j = σ̂−1Λ̂
−1/2
j ε̂j
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If the relevel(levelvar) option is specified, predicted values, residuals, and standardized residuals
consider only those random-effects terms up to and including level levelvar in the model. If the
fixedonly option is specified, all statistics and named substitutable expressions are computed
conditional on zero random effects; that is, their computation is based on the estimated fixed effects
only.

Reference
Bates, D. M., and J. C. Pinheiro. 1998. Computational methods for multilevel modelling. In Technical Memorandum

BL0112140-980226-01TM. Murray Hill, NJ: Bell Labs, Lucent Technologies.

Also see
[ME] menl — Nonlinear mixed-effects regression

[U] 20 Estimation and postestimation commands
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meologit — Multilevel mixed-effects ordered logistic regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

meologit fits mixed-effects logistic models for ordered responses. The actual values taken on by
the response are irrelevant except that larger values are assumed to correspond to “higher” outcomes.
The conditional distribution of the response given the random effects is assumed to be multinomial,
with success probability determined by the logistic cumulative distribution function.

Quick start
Two-level ordered logit regression of y on indicators for levels of a and random intercepts by lev2

meologit y i.a || lev2:

Two-level model including fixed and random coefficients for x
meologit y i.a x || lev2: x

Same as above, but report odds ratios instead of coefficients
meologit y i.a x || lev2: x, or

Three-level model of y on a, x, and their interaction using factor variable notation and random
intercepts by lev2 and lev3 with lev2 nested within lev3

meologit y a##c.x || lev3: || lev2:

Menu
Statistics > Multilevel mixed-effects models > Ordered logistic regression

334
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Syntax
meologit depvar fe equation

[
|| re equation

] [
|| re equation . . .

] [
, options

]
where the syntax of fe equation is[

indepvars
] [

if
] [

in
] [

weight
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all
representing one group comprising all observations.

fe options Description

Model

offset(varname) include varname in model with coefficient constrained to 1

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
fweight(varname) frequency weights at higher levels
iweight(varname) importance weights at higher levels
pweight(varname) sampling weights at higher levels
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options Description

Model

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)

or report fixed-effects coefficients as odds ratios
nocnsreport do not display constraints
notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intmethod(intmethod) integration method
intpoints(#) set the number of integration (quadrature) points for all levels;

default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values
startgrid

[
(gridspec)

]
perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead
dnumerical use numerical derivative techniques
collinear keep collinear variables
coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated
fixed(matname) user-selected variances and covariances constrained to specified

values; the remaining variances and covariances unrestricted
pattern(matname) user-selected variances and covariances constrained to be equal;

the remaining variances and covariances unrestricted
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intmethod Description

mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature
ghermite nonadaptive Gauss–Hermite quadrature
laplace Laplacian approximation; the default for crossed random-effects

models

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: me-

ologit.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified.

Weights are not supported under the Laplacian approximation or for crossed models.
startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog

box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

offset(varname) specifies that varname be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent) unless a crossed random-effects model is fit, in which case the
default is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2
unique parameters.

covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures
provide a convenient way to impose constraints on variances and covariances of random effects.
Each specification requires a matname that defines the restrictions placed on variances and
covariances. Only elements in the lower triangle of matname are used, and row and column names
of matname are ignored. A missing value in matname means that a given element is unrestricted.
In a fixed(matname) covariance structure, (co)variance (i, j) is constrained to equal the
value specified in the i, jth entry of matname. In a pattern(matname) covariance structure,
(co)variances (i, j) and (k, l) are constrained to be equal if matname[i, j] = matname[k, l].
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noconstant suppresses the constant (intercept) term; may be specified for any of or all the random-
effects equations.

fweight(varname) specifies frequency weights at higher levels in a multilevel model, whereas
frequency weights at the first level (the observation level) are specified in the usual manner, for
example, [fw=fwtvar1]. varname can be any valid Stata variable name, and you can specify
fweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wt1] || school: . . . , fweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2
would hold the second-level (the school-level) frequency weights.

iweight(varname) specifies importance weights at higher levels in a multilevel model, whereas
importance weights at the first level (the observation level) are specified in the usual manner,
for example, [iw=iwtvar1]. varname can be any valid Stata variable name, and you can specify
iweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: . . . , iweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) importance weights, and wt2
would hold the second-level (the school-level) importance weights.

pweight(varname) specifies sampling weights at higher levels in a multilevel model, whereas
sampling weights at the first level (the observation level) are specified in the usual manner, for
example, [pw=pwtvar1]. varname can be any valid Stata variable name, and you can specify
pweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wt1] || school: . . . , pweight(wt2) . . .

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would
hold the second-level (the school-level) sampling weights.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is
specified, robust variances are clustered at the highest level in the multilevel model.

� � �
Reporting �

level(#); see [R] Estimation options.

or reports estimated fixed-effects coefficients transformed to odds ratios, that is, exp(β) rather than β.
Standard errors and confidence intervals are similarly transformed. This option affects how results
are displayed, not how they are estimated. or may be specified either at estimation or upon replay.

nocnsreport; see [R] Estimation options.

notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.



meologit — Multilevel mixed-effects ordered logistic regression 339

� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model.
mvaghermite performs mean–variance adaptive Gauss–Hermite quadrature; mcaghermite per-
forms mode-curvature adaptive Gauss–Hermite quadrature; ghermite performs nonadaptive Gauss–
Hermite quadrature; and laplace performs the Laplacian approximation, equivalent to mode-
curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in
which case the default integration method is laplace. The Laplacian approximation has been
known to produce biased parameter estimates; however, the bias tends to be more prominent in
the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be
prohibitively intensive even for a small number of levels. For this reason, the integration method
defaults to the Laplacian approximation. You may override this behavior by specifying a different
integration method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option
is not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases as a function of the number of quadrature points raised to a power
equaling the dimension of the random-effects specification. In crossed random-effects models and
in models with many levels or many random coefficients, this increase can be substantial.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. Those that require
special mention for meologit are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

The following options are available with meologit but are not shown in the dialog box:

startvalues(svmethod), startgrid
[
(gridspec)

]
, noestimate, and dnumerical; see [ME]

meglm.

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
Mixed-effects ordered logistic regression is ordered logistic regression containing both fixed effects

and random effects. An ordered response is a variable that is categorical and ordered, for instance,
“poor”, “good”, and “excellent”, which might indicate a person’s current health status or the repair
record of a car.

meologit allows for many levels of random effects. However, for simplicity, for now we consider
the two-level model, where for a series of M independent clusters, and conditional on a set of fixed
effects xij , a set of cutpoints κ, and a set of random effects uj , the cumulative probability of the
response being in a category higher than k is

Pr(yij > k|xij ,κ,uj) = H(xijβ+ zijuj − κk) (1)
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for j = 1, . . . ,M clusters, with cluster j consisting of i = 1, . . . , nj observations. The cutpoints κ
are labeled κ1, κ2, . . . , κK−1, where K is the number of possible outcomes. H(·) is the logistic
cumulative distribution function that represents cumulative probability.

The 1 × p row vector xij are the covariates for the fixed effects, analogous to the covariates
you would find in a standard logistic regression model, with regression coefficients (fixed effects)
β. In our parameterization, xij does not contain a constant term because its effect is absorbed into
the cutpoints. For notational convenience here and throughout this manual entry, we suppress the
dependence of yij on xij .

The 1 × q vector zij are the covariates corresponding to the random effects and can be used to
represent both random intercepts and random coefficients. For example, in a random-intercept model,
zij is simply the scalar 1. The random effects uj are M realizations from a multivariate normal
distribution with mean 0 and q× q variance matrix Σ. The random effects are not directly estimated
as model parameters but are instead summarized according to the unique elements of Σ, known
as variance components. One special case of (1) places zij = xij , so that all covariate effects are
essentially random and distributed as multivariate normal with mean β and variance Σ.

From (1), we can derive the probability of observing outcome k as

Pr(yij = k|κ,uj) = Pr(κk−1 < xijβ+ zijuj + εij ≤ κk)

= Pr(κk−1 − xijβ− zijuj < εij ≤ κk − xijβ− zijuj)

= H(κk − xijβ− zijuj)−H(κk−1 − xijβ− zijuj)

where κ0 is taken as −∞ and κK is taken as +∞.

From the above, we may also write the model in terms of a latent linear response, where observed
ordinal responses yij are generated from the latent continuous responses, such that

y∗ij = xijβ+ zijuj + εij

and

yij =


1 if y∗ij ≤ κ1
2 if κ1 < y∗ij ≤ κ2
...
K if κK−1 < y∗ij

The errors εij are distributed as logistic with mean 0 and variance π2/3 and are independent of uj .

Below we present two short examples of mixed-effects ordered logistic regression; refer to [ME] me
and [ME] meglm for examples of other random-effects models. A two-level ordered logistic model
can also be fit using xtologit with the re option; see [XT] xtologit. In the absence of random
effects, mixed-effects ordered logistic regression reduces to standard ordered logistic regression; see
[R] ologit.

Example 1: Two-level random-intercept model

We use the data from the Television, School, and Family Smoking Prevention and Cessation Project
(Flay et al. 1988; Rabe-Hesketh and Skrondal 2022, chap. 11), where schools were randomly assigned
into one of four groups defined by two treatment variables. Students within each school are nested in
classes, and classes are nested in schools. In this example, we ignore the variability of classes within
schools and fit a two-level model; we incorporate classes in a three-level model in example 2. The
dependent variable is the tobacco and health knowledge (THK) scale score collapsed into four ordered
categories. We regress the outcome on the treatment variables and their interaction and control for
the pretreatment score.
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. use https://www.stata-press.com/data/r18/tvsfpors
(Television, School, and Family Project)

. meologit thk prethk cc##tv || school:

Fitting fixed-effects model:

Iteration 0: Log likelihood = -2212.775
Iteration 1: Log likelihood = -2125.509
Iteration 2: Log likelihood = -2125.1034
Iteration 3: Log likelihood = -2125.1032

Refining starting values:

Grid node 0: Log likelihood = -2136.2426

Fitting full model:

Iteration 0: Log likelihood = -2136.2426 (not concave)
Iteration 1: Log likelihood = -2120.2577
Iteration 2: Log likelihood = -2119.7574
Iteration 3: Log likelihood = -2119.7428
Iteration 4: Log likelihood = -2119.7428

Mixed-effects ologit regression Number of obs = 1,600
Group variable: school Number of groups = 28

Obs per group:
min = 18
avg = 57.1
max = 137

Integration method: mvaghermite Integration pts. = 7

Wald chi2(4) = 128.06
Log likelihood = -2119.7428 Prob > chi2 = 0.0000

thk Coefficient Std. err. z P>|z| [95% conf. interval]

prethk .4032892 .03886 10.38 0.000 .327125 .4794534
1.cc .9237904 .204074 4.53 0.000 .5238127 1.323768
1.tv .2749937 .1977424 1.39 0.164 -.1125744 .6625618

cc#tv
1 1 -.4659256 .2845963 -1.64 0.102 -1.023724 .0918728

/cut1 -.0884493 .1641062 -.4100916 .233193
/cut2 1.153364 .165616 .8287625 1.477965
/cut3 2.33195 .1734199 1.992053 2.671846

school
var(_cons) .0735112 .0383106 .0264695 .2041551

LR test vs. ologit model: chibar2(01) = 10.72 Prob >= chibar2 = 0.0005

The estimation table reports the fixed effects, the estimated cutpoints (κ1, κ2, κ3), and the estimated
variance components. The fixed effects can be interpreted just as you would the output from ologit.
We find that students with higher preintervention scores tend to have higher postintervention scores.
Because of their interaction, the impact of the treatment variables on the knowledge score is not
straightforward; we defer this discussion to example 1 of [ME] meologit postestimation.
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Underneath the fixed effects and the cutpoints, the table shows the estimated variance components.
The random-effects equation is labeled school, meaning that these are random effects at the school
level. Because we have only one random effect at this level, the table shows only one variance
component. The estimate of σ2

u is 0.07 with standard error 0.04. The reported likelihood-ratio test
shows that there is enough variability between schools to favor a mixed-effects ordered logistic
regression over a standard ordered logistic regression; see Distribution theory for likelihood-ratio test
in [ME] me for a discussion of likelihood-ratio testing of variance components.

We now store our estimates for later use.

. estimates store r_2

Two-level models extend naturally to models with three or more levels with nested random effects.
Below we continue with example 1.

Example 2: Three-level random-intercept model

In this example, we fit a three-level model incorporating classes nested within schools. The fixed-
effects part remains the same. Our model now has two random-effects equations, separated by ||.
The first is a random intercept (constant only) at the school level (level three), and the second is a
random intercept at the class level (level two). The order in which these are specified (from left to
right) is significant—meologit assumes that class is nested within school.
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. meologit thk prethk cc##tv || school: || class:

Fitting fixed-effects model:

Iteration 0: Log likelihood = -2212.775
Iteration 1: Log likelihood = -2125.509
Iteration 2: Log likelihood = -2125.1034
Iteration 3: Log likelihood = -2125.1032

Refining starting values:

Grid node 0: Log likelihood = -2152.1514

Fitting full model:

Iteration 0: Log likelihood = -2152.1514 (not concave)
Iteration 1: Log likelihood = -2125.9213 (not concave)
Iteration 2: Log likelihood = -2120.1861
Iteration 3: Log likelihood = -2115.6177
Iteration 4: Log likelihood = -2114.5896
Iteration 5: Log likelihood = -2114.5881
Iteration 6: Log likelihood = -2114.5881

Mixed-effects ologit regression Number of obs = 1,600

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

school 28 18 57.1 137
class 135 1 11.9 28

Integration method: mvaghermite Integration pts. = 7

Wald chi2(4) = 124.39
Log likelihood = -2114.5881 Prob > chi2 = 0.0000

thk Coefficient Std. err. z P>|z| [95% conf. interval]

prethk .4085273 .039616 10.31 0.000 .3308814 .4861731
1.cc .8844369 .2099124 4.21 0.000 .4730161 1.295858
1.tv .236448 .2049065 1.15 0.249 -.1651614 .6380575

cc#tv
1 1 -.3717699 .2958887 -1.26 0.209 -.951701 .2081612

/cut1 -.0959459 .1688988 -.4269815 .2350896
/cut2 1.177478 .1704946 .8433151 1.511642
/cut3 2.383672 .1786736 2.033478 2.733865

school
var(_cons) .0448735 .0425387 .0069997 .2876749

school>class
var(_cons) .1482157 .0637521 .063792 .3443674

LR test vs. ologit model: chi2(2) = 21.03 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

We see that we have 135 classes from 28 schools. The variance-component estimates are now
organized and labeled according to level. The variance component for class is labeled school>class
to emphasize that classes are nested within schools.
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Compared with the two-level model from example 1, the estimate of the variance of the random
intercept at the school level dropped from 0.07 to 0.04. This is not surprising because we now use two
random components versus one random component to account for unobserved heterogeneity among
students. We can use lrtest and our stored estimation result from example 1 to see which model
provides a better fit:

. lrtest r_2 .

Likelihood-ratio test
Assumption: r_2 nested within .

LR chi2(1) = 10.31
Prob > chi2 = 0.0013

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

The likelihood-ratio test favors the three-level model. For more information about the likelihood-ratio
test in the context of mixed-effects models, see Distribution theory for likelihood-ratio test in [ME] me.

The above extends to models with more than two levels of nesting by adding more random-effects
equations, each separated by ||.

Stored results
meologit stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k dv) number of dependent variables
e(k cat) number of categories
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k f) number of fixed-effects parameters
e(k r) number of random-effects parameters
e(k rs) number of variances
e(k rc) number of covariances
e(df m) model degrees of freedom
e(ll) log likelihood
e(N clust) number of clusters
e(chi2) χ2

e(p) p-value for model test
e(ll c) log likelihood, comparison model
e(chi2 c) χ2, comparison test
e(df c) degrees of freedom, comparison test
e(p c) p-value for comparison test
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) meglm
e(cmd2) meologit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression (first-level weights)
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e(fweightk) fweight variable for kth highest level, if specified
e(iweightk) iweight variable for kth highest level, if specified
e(pweightk) pweight variable for kth highest level, if specified
e(covariates) list of covariates
e(ivars) grouping variables
e(model) ologit
e(title) title in estimation output
e(link) logit
e(family) ordinal
e(clustvar) name of cluster variable
e(offset) offset
e(intmethod) integration method
e(n quad) number of integration points
e(chi2type) Wald; type of model χ2

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(marginsdefault) default predict() specification for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(N g) group counts
e(g min) group-size minimums
e(g avg) group-size averages
e(g max) group-size maximums
e(cat) category values
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.
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Methods and formulas
meologit is a convenience command for meglm with a logit link and an ordinal family; see

[ME] meglm.

Without a loss of generality, consider a two-level ordered logistic model. The probability of
observing outcome k for response yij is then

pij = Pr(yij = k|κ,uj) = Pr(κk−1 < ηij + εit ≤ κk)

=
1

1 + exp(−κk + ηij)
− 1

1 + exp(−κk−1 + ηij)

where ηij = xijβ+ zijuj + offsetij , κ0 is taken as −∞, and κK is taken as +∞. Here xij does
not contain a constant term because its effect is absorbed into the cutpoints.

For cluster j, j = 1, . . . ,M , the conditional distribution of yj = (yj1, . . . , yjnj )
′ given a set of

cluster-level random effects uj is

f(yj |κ,uj) =

nj∏
i=1

p
Ik(yij)
ij

= exp
nj∑
i=1

{
Ik(yij) log(pij)

}
where

Ik(yij) =
{

1 if yij = k
0 otherwise

Because the prior distribution of uj is multivariate normal with mean 0 and q× q variance matrix
Σ, the likelihood contribution for the jth cluster is obtained by integrating uj out of the joint density
f(yj ,uj),

Lj(β,κ,Σ) = (2π)−q/2 |Σ|−1/2
∫
f(yj |κ,uj) exp

(
−u′jΣ

−1uj/2
)
duj

= (2π)−q/2 |Σ|−1/2
∫

exp {h (β,κ,Σ,uj)} duj
(2)

where

h (β,κ,Σ,uj) =

nj∑
i=1

{
Ik(yij) log(pij)

}
− u′jΣ

−1uj/2

and for convenience, in the arguments of h(·) we suppress the dependence on the observable data
(yj , rj ,Xj ,Zj).

The integration in (2) has no closed form and thus must be approximated; see Methods and
formulas in [ME] meglm for details.

meologit supports multilevel weights and survey data; see Methods and formulas in [ME] meglm
for details.
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meologit postestimation — Postestimation tools for meologit

Postestimation commands predict margins
Remarks and examples Methods and formulas Also see

Postestimation commands
The following postestimation command is of special interest after meologit:

Command Description

estat group summarize the composition of the nested groups
estat icc estimate intraclass correlations
estat sd display variance components as standard deviations and correlations

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian

information criteria (AIC, CAIC, AICc, and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
etable table of estimation results
∗hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
∗lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combi-

nations of coefficients
predict

predictnl point estimates, standard errors, testing, and inference for generalized pre-
dictions

pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

∗hausman and lrtest are not appropriate with svy estimation results.

348
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predict

Description for predict

predict creates a new variable containing predictions such as probabilities, linear predictions,
density and distribution functions, and standard errors.

Menu for predict

Statistics > Postestimation

Syntax for predict

Syntax for obtaining predictions of the outcome and other statistics

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
] [

, statistic options
]

Syntax for obtaining estimated random effects and their standard errors

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, reffects

[
re options

]
Syntax for obtaining ML scores

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, scores

statistic Description

Main

pr predicted probabilities; the default
eta fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp standard error of the fixed-portion linear prediction
density predicted density function
distribution predicted distribution function

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample.
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options Description

Main

conditional(ctype) compute statistic conditional on estimated random effects; default is
conditional(ebmeans)

marginal compute statistic marginally with respect to the random effects
nooffset make calculation ignoring offset or exposure
outcome(outcome) outcome category for predicted probabilities

Integration

int options integration options

You specify one or k new variables in newvarlist with pr, where k is the number of outcomes. If you
do not specify outcome(), these options assume outcome(#1).

ctype Description

ebmeans empirical Bayes means of random effects; the default
ebmodes empirical Bayes modes of random effects
fixedonly prediction for the fixed portion of the model only

re options Description

Main

ebmeans use empirical Bayes means of random effects; the default
ebmodes use empirical Bayes modes of random effects
reses(stub* | newvarlist) calculate standard errors of empirical Bayes estimates

Integration

int options integration options

int options Description

intpoints(#) use # quadrature points to compute marginal predictions and empirical
Bayes means

iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators

tolerance(#) set convergence tolerance for computing statistics involving empirical
Bayes estimators

Options for predict

� � �
Main �

pr, the default, calculates the predicted probabilities.

You specify one or k new variables, where k is the number of categories of the dependent variable.
If you specify the outcome() option, the probabilities will be predicted for the requested outcome
only, in which case you specify only one new variable. If you specify one new variable and do
not specify outcome(), outcome(#1) is assumed.

eta, xb, stdp, density, distribution, scores, conditional(), marginal, and nooffset;
see [ME] meglm postestimation.
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outcome(outcome) specifies the outcome for which the predicted probabilities are to be calculated.
outcome() should contain either one value of the dependent variable or one of #1, #2, . . . , with
#1 meaning the first category of the dependent variable, #2 meaning the second category, etc.

reffects, ebmeans, ebmodes, and reses(), see [ME] meglm postestimation.

� � �
Integration �

intpoints(), iterate(), tolerance(); see [ME] meglm postestimation.

margins

Description for margins

margins estimates margins of response for probabilities and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . . )

[
predict(statistic . . . ) . . .

] [
options

]
statistic Description

default probabilities for each outcome
pr predicted probabilities for a specified outcome
eta fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp not allowed with margins

density not allowed with margins

distribution not allowed with margins

reffects not allowed with margins

scores not allowed with margins

pr defaults to the first outcome.
Options conditional(ebmeans) and conditional(ebmodes) are not allowed with margins.
Option marginal is assumed where applicable if conditional(fixedonly) is not specified.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples
Various predictions, statistics, and diagnostic measures are available after fitting an ordered logistic

mixed-effects model with meologit. Here we show a short example of predicted probabilities and
predicted random effects; refer to [ME] meglm postestimation for additional examples applicable to
mixed-effects generalized linear models.

Example 1: Obtaining predicted probabilities and random effects

In example 2 of [ME] meologit, we modeled the tobacco and health knowledge (thk) score—coded
1, 2, 3, 4—among students as a function of two treatments (cc and tv) by using a three-level ordered
logistic model with random effects at the school and class levels.

. use https://www.stata-press.com/data/r18/tvsfpors
(Television, School, and Family Project)

. meologit thk prethk cc##tv || school: || class:

(output omitted )

We obtain predicted probabilities for all four outcomes based on the contribution of both fixed
effects and random effects by typing

. predict pr*
(option pr assumed)
(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)

As the note says, the predicted values are based on the posterior means of random effects. You can
use the modes option to obtain predictions based on the posterior modes of random effects.

Because we specified a stub name, Stata saved the predicted random effects in variables pr1
through pr4. Here we list the predicted probabilities for the first two classes for school 515:
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. list class thk pr? if school==515 & (class==515101 | class==515102),
> sepby(class)

class thk pr1 pr2 pr3 pr4

1464. 515101 2 .1485538 .2354556 .2915916 .3243991
1465. 515101 2 .372757 .3070787 .1966117 .1235526
1466. 515101 1 .372757 .3070787 .1966117 .1235526
1467. 515101 4 .2831409 .3021398 .2397316 .1749877
1468. 515101 3 .2079277 .2760683 .2740791 .2419248
1469. 515101 3 .2831409 .3021398 .2397316 .1749877

1470. 515102 1 .3251654 .3074122 .2193101 .1481123
1471. 515102 2 .4202843 .3011963 .1749344 .103585
1472. 515102 2 .4202843 .3011963 .1749344 .103585
1473. 515102 2 .4202843 .3011963 .1749344 .103585
1474. 515102 2 .3251654 .3074122 .2193101 .1481123
1475. 515102 1 .4202843 .3011963 .1749344 .103585
1476. 515102 2 .3251654 .3074122 .2193101 .1481123

For each observation, our best guess for the predicted outcome is the one with the highest predicted
probability. For example, for the very first observation in the table above, we would choose outcome 4
as the most likely to occur.

We obtain predictions of the posterior means themselves at the school and class levels by typing

. predict re_s re_c, reffects
(calculating posterior means of random effects)
(using 7 quadrature points)

Here we list the predicted random effects for the first two classes for school 515:

. list class re_s re_c if school==515 & (class==515101 | class==515102),
> sepby(class)

class re_s re_c

1464. 515101 -.0473739 .0633081
1465. 515101 -.0473739 .0633081
1466. 515101 -.0473739 .0633081
1467. 515101 -.0473739 .0633081
1468. 515101 -.0473739 .0633081
1469. 515101 -.0473739 .0633081

1470. 515102 -.0473739 -.1354929
1471. 515102 -.0473739 -.1354929
1472. 515102 -.0473739 -.1354929
1473. 515102 -.0473739 -.1354929
1474. 515102 -.0473739 -.1354929
1475. 515102 -.0473739 -.1354929
1476. 515102 -.0473739 -.1354929

We can see that the predicted random effects at the school level (re s) are the same for all classes
and that the predicted random effects at the class level (re c) are constant within each class.
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Methods and formulas
Methods and formulas for predicting random effects and other statistics are given in Methods and

formulas of [ME] meglm postestimation.

Also see
[ME] meologit — Multilevel mixed-effects ordered logistic regression

[ME] meglm postestimation — Postestimation tools for meglm

[U] 20 Estimation and postestimation commands
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meoprobit — Multilevel mixed-effects ordered probit regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

meoprobit fits mixed-effects probit models for ordered responses. The actual values taken on by
the response are irrelevant except that larger values are assumed to correspond to “higher” outcomes.
The conditional distribution of the response given the random effects is assumed to be multinomial,
with success probability determined by the standard normal cumulative distribution function.

Quick start
Two-level ordered probit regression of y on x and random intercepts by lev2

meoprobit y x || lev2:

Add random coefficients for x
meoprobit y x || lev2: x

Nested three-level ordered probit model with random intercepts by lev2 and lev3 for lev2 nested
within lev3

meoprobit y x || lev3: || lev2:

Menu
Statistics > Multilevel mixed-effects models > Ordered probit regression

355



356 meoprobit — Multilevel mixed-effects ordered probit regression

Syntax
meoprobit depvar fe equation

[
|| re equation

] [
|| re equation . . .

] [
, options

]
where the syntax of fe equation is[

indepvars
] [

if
] [

in
] [

weight
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all
representing one group comprising all observations.

fe options Description

Model

offset(varname) include varname in model with coefficient constrained to 1

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
fweight(varname) frequency weights at higher levels
iweight(varname) importance weights at higher levels
pweight(varname) sampling weights at higher levels
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options Description

Model

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intmethod(intmethod) integration method
intpoints(#) set the number of integration (quadrature) points for all levels;

default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values
startgrid

[
(gridspec)

]
perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead
dnumerical use numerical derivative techniques
collinear keep collinear variables
coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated
fixed(matname) user-selected variances and covariances constrained to specified

values; the remaining variances and covariances unrestricted
pattern(matname) user-selected variances and covariances constrained to be equal;

the remaining variances and covariances unrestricted
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intmethod Description

mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature
ghermite nonadaptive Gauss–Hermite quadrature
laplace Laplacian approximation; the default for crossed random-effects

models

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see [BAYES] bayes: meo-

probit.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified.

Weights are not supported under the Laplacian approximation or for crossed models.
startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog

box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

offset(varname) specifies that varname be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent) unless a crossed random-effects model is fit, in which case the
default is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2
unique parameters.

covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures
provide a convenient way to impose constraints on variances and covariances of random effects.
Each specification requires a matname that defines the restrictions placed on variances and
covariances. Only elements in the lower triangle of matname are used, and row and column names
of matname are ignored. A missing value in matname means that a given element is unrestricted.
In a fixed(matname) covariance structure, (co)variance (i, j) is constrained to equal the
value specified in the i, jth entry of matname. In a pattern(matname) covariance structure,
(co)variances (i, j) and (k, l) are constrained to be equal if matname[i, j] = matname[k, l].
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noconstant suppresses the constant (intercept) term; may be specified for any of or all the random-
effects equations.

fweight(varname) specifies frequency weights at higher levels in a multilevel model, whereas
frequency weights at the first level (the observation level) are specified in the usual manner, for
example, [fw=fwtvar1]. varname can be any valid Stata variable name, and you can specify
fweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wt1] || school: . . . , fweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2
would hold the second-level (the school-level) frequency weights.

iweight(varname) specifies importance weights at higher levels in a multilevel model, whereas
importance weights at the first level (the observation level) are specified in the usual manner,
for example, [iw=iwtvar1]. varname can be any valid Stata variable name, and you can specify
iweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: . . . , iweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) importance weights, and wt2
would hold the second-level (the school-level) importance weights.

pweight(varname) specifies sampling weights at higher levels in a multilevel model, whereas
sampling weights at the first level (the observation level) are specified in the usual manner, for
example, [pw=pwtvar1]. varname can be any valid Stata variable name, and you can specify
pweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wt1] || school: . . . , pweight(wt2) . . .

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would
hold the second-level (the school-level) sampling weights.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is
specified, robust variances are clustered at the highest level in the multilevel model.

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.
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� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model.
mvaghermite performs mean–variance adaptive Gauss–Hermite quadrature; mcaghermite per-
forms mode-curvature adaptive Gauss–Hermite quadrature; ghermite performs nonadaptive Gauss–
Hermite quadrature; and laplace performs the Laplacian approximation, equivalent to mode-
curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in
which case the default integration method is laplace. The Laplacian approximation has been
known to produce biased parameter estimates; however, the bias tends to be more prominent in
the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be
prohibitively intensive even for a small number of levels. For this reason, the integration method
defaults to the Laplacian approximation. You may override this behavior by specifying a different
integration method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option
is not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases as a function of the number of quadrature points raised to a power
equaling the dimension of the random-effects specification. In crossed random-effects models and
in models with many levels or many random coefficients, this increase can be substantial.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. Those that require
special mention for meoprobit are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

The following options are available with meoprobit but are not shown in the dialog box:

startvalues(svmethod), startgrid
[
(gridspec)

]
, noestimate, and dnumerical; see [ME]

meglm.

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
Mixed-effects ordered probit regression is ordered probit regression containing both fixed effects

and random effects. An ordered response is a variable that is categorical and ordered, for instance,
“poor”, “good”, and “excellent”, which might indicate a person’s current health status or the repair
record of a car.

meoprobit allows for many levels of random effects. However, for simplicity, for now we consider
the two-level model, where for a series of M independent clusters, and conditional on a set of fixed
effects xij , a set of cutpoints κ, and a set of random effects uj , the cumulative probability of the
response being in a category higher than k is

Pr(yij > k|xij ,κ,uj) = Φ(xijβ+ zijuj − κk) (1)
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for j = 1, . . . ,M clusters, with cluster j consisting of i = 1, . . . , nj observations. The cutpoints
are labeled κ1, κ2, . . . , κK−1, where K is the number of possible outcomes. Φ(·) is the standard
normal cumulative distribution function that represents cumulative probability.

The 1× p row vector xij are the covariates for the fixed effects, analogous to the covariates you
would find in a standard probit regression model, with regression coefficients (fixed effects) β. In our
parameterization, xij does not contain a constant term because its effect is absorbed into the cutpoints.
For notational convenience here and throughout this manual entry, we suppress the dependence of
yij on xij .

The 1 × q vector zij are the covariates corresponding to the random effects and can be used to
represent both random intercepts and random coefficients. For example, in a random-intercept model,
zij is simply the scalar 1. The random effects uj are M realizations from a multivariate normal
distribution with mean 0 and q× q variance matrix Σ. The random effects are not directly estimated
as model parameters but are instead summarized according to the unique elements of Σ, known
as variance components. One special case of (1) places zij = xij so that all covariate effects are
essentially random and distributed as multivariate normal with mean β and variance Σ.

From (1), we can derive the probability of observing outcome k as

Pr(yij = k|κ,uj) = Pr(κk−1 < xijβ+ zijuj + εij ≤ κk)

= Pr(κk−1 − xijβ− zijuj < εij ≤ κk − xijβ− zijuj)

= Φ(κk − xijβ− zijuj)− Φ(κk−1 − xijβ− zijuj)

where κ0 is taken as −∞ and κK is taken as +∞.

From the above, we may also write the model in terms of a latent linear response, where observed
ordinal responses yij are generated from the latent continuous responses, such that

y∗ij = xijβ+ zijuj + εij

and

yij =


1 if y∗ij ≤ κ1
2 if κ1 < y∗ij ≤ κ2
...
K if κK−1 < y∗ij

The errors εij are distributed as standard normal with mean 0 and variance 1 and are independent of
uj .

Below we present two short examples of mixed-effects ordered probit regression; refer to [ME] me
and [ME] meglm for examples of other random-effects models. A two-level ordered probit model can
also be fit using xtoprobit with the re option; see [XT] xtoprobit. In the absence of random effects,
mixed-effects ordered probit regression reduces to standard ordered probit regression; see [R] oprobit.

Example 1: Two-level random-intercept model

We use the data from the Television, School, and Family Smoking Prevention and Cessation Project
(Flay et al. 1988; Rabe-Hesketh and Skrondal 2022, chap. 11), where schools were randomly assigned
into one of four groups defined by two treatment variables. Students within each school are nested in
classes, and classes are nested in schools. In this example, we ignore the variability of classes within
schools and fit a two-level model; we incorporate classes in a three-level model in example 2. The
dependent variable is the tobacco and health knowledge (THK) scale score collapsed into four ordered
categories. We regress the outcome on the treatment variables and their interaction and control for
the pretreatment score.
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. use https://www.stata-press.com/data/r18/tvsfpors
(Television, School, and Family Project)

. meoprobit thk prethk cc##tv || school:

Fitting fixed-effects model:

Iteration 0: Log likelihood = -2212.775
Iteration 1: Log likelihood = -2127.8111
Iteration 2: Log likelihood = -2127.7612
Iteration 3: Log likelihood = -2127.7612

Refining starting values:

Grid node 0: Log likelihood = -2149.7302

Fitting full model:

Iteration 0: Log likelihood = -2149.7302 (not concave)
Iteration 1: Log likelihood = -2129.6838 (not concave)
Iteration 2: Log likelihood = -2123.5143
Iteration 3: Log likelihood = -2122.2896
Iteration 4: Log likelihood = -2121.7949
Iteration 5: Log likelihood = -2121.7716
Iteration 6: Log likelihood = -2121.7715

Mixed-effects oprobit regression Number of obs = 1,600
Group variable: school Number of groups = 28

Obs per group:
min = 18
avg = 57.1
max = 137

Integration method: mvaghermite Integration pts. = 7

Wald chi2(4) = 128.05
Log likelihood = -2121.7715 Prob > chi2 = 0.0000

thk Coefficient Std. err. z P>|z| [95% conf. interval]

prethk .2369804 .0227739 10.41 0.000 .1923444 .2816164
1.cc .5490957 .1255108 4.37 0.000 .303099 .7950923
1.tv .1695405 .1215889 1.39 0.163 -.0687693 .4078504

cc#tv
1 1 -.2951837 .1751969 -1.68 0.092 -.6385634 .0481959

/cut1 -.0682011 .1003374 -.2648587 .1284565
/cut2 .67681 .1008836 .4790817 .8745382
/cut3 1.390649 .1037494 1.187304 1.593995

school
var(_cons) .0288527 .0146201 .0106874 .0778937

LR test vs. oprobit model: chibar2(01) = 11.98 Prob >= chibar2 = 0.0003

The estimation table reports the fixed effects, the estimated cutpoints (κ1, κ2, κ3), and the estimated
variance components. The fixed effects can be interpreted just as you would the output from oprobit.
We find that students with higher preintervention scores tend to have higher postintervention scores.
Because of their interaction, the impact of the treatment variables on the knowledge score is not
straightforward; we defer this discussion to example 1 of [ME] meoprobit postestimation.
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Underneath the fixed effects and the cutpoints, the table shows the estimated variance components.
The random-effects equation is labeled school, meaning that these are random effects at the school
level. Because we have only one random effect at this level, the table shows only one variance
component. The estimate of σ2

u is 0.03 with standard error 0.01. The reported likelihood-ratio test
shows that there is enough variability between schools to favor a mixed-effects ordered probit regression
over a standard ordered probit regression; see Distribution theory for likelihood-ratio test in [ME] me
for a discussion of likelihood-ratio testing of variance components.

We now store our estimates for later use.

. estimates store r_2

Two-level models extend naturally to models with three or more levels with nested random effects.
Below we continue with example 1.

Example 2: Three-level random-intercept model

In this example, we fit a three-level model incorporating classes nested within schools. The fixed-
effects part remains the same. Our model now has two random-effects equations, separated by ||.
The first is a random intercept (constant only) at the school level (level three), and the second is a
random intercept at the class level (level two). The order in which these are specified (from left to
right) is significant—meoprobit assumes that class is nested within school.
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. meoprobit thk prethk cc##tv || school: || class:

Fitting fixed-effects model:

Iteration 0: Log likelihood = -2212.775
Iteration 1: Log likelihood = -2127.8111
Iteration 2: Log likelihood = -2127.7612
Iteration 3: Log likelihood = -2127.7612

Refining starting values:

Grid node 0: Log likelihood = -2195.6424

Fitting full model:

Iteration 0: Log likelihood = -2195.6424 (not concave)
Iteration 1: Log likelihood = -2167.9576 (not concave)
Iteration 2: Log likelihood = -2140.2644 (not concave)
Iteration 3: Log likelihood = -2128.6948 (not concave)
Iteration 4: Log likelihood = -2119.9225
Iteration 5: Log likelihood = -2117.0947
Iteration 6: Log likelihood = -2116.7004
Iteration 7: Log likelihood = -2116.6981
Iteration 8: Log likelihood = -2116.6981

Mixed-effects oprobit regression Number of obs = 1,600

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

school 28 18 57.1 137
class 135 1 11.9 28

Integration method: mvaghermite Integration pts. = 7

Wald chi2(4) = 124.20
Log likelihood = -2116.6981 Prob > chi2 = 0.0000

thk Coefficient Std. err. z P>|z| [95% conf. interval]

prethk .238841 .0231446 10.32 0.000 .1934784 .2842036
1.cc .5254813 .1285816 4.09 0.000 .2734659 .7774967
1.tv .1455573 .1255827 1.16 0.246 -.1005803 .3916949

cc#tv
1 1 -.2426203 .1811999 -1.34 0.181 -.5977656 .1125251

/cut1 -.074617 .1029791 -.2764523 .1272184
/cut2 .6863046 .1034813 .4834849 .8891242
/cut3 1.413686 .1064889 1.204972 1.622401

school
var(_cons) .0186456 .0160226 .0034604 .1004695

school>class
var(_cons) .0519974 .0224014 .0223496 .1209745

LR test vs. oprobit model: chi2(2) = 22.13 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

We see that we have 135 classes from 28 schools. The variance-component estimates are now
organized and labeled according to level. The variance component for class is labeled school>class
to emphasize that classes are nested within schools.

Compared with the two-level model from example 1, the estimate of the random intercept at the
school level dropped from 0.03 to 0.02. This is not surprising because we now use two random



meoprobit — Multilevel mixed-effects ordered probit regression 365

components versus one random component to account for unobserved heterogeneity among students.
We can use lrtest and our stored estimation result from example 1 to see which model provides a
better fit:

. lrtest r_2 .

Likelihood-ratio test
Assumption: r_2 nested within .

LR chi2(1) = 10.15
Prob > chi2 = 0.0014

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

The likelihood-ratio test favors the three-level model. For more information about the likelihood-
ratio test in the context of mixed-effects models, see Distribution theory for likelihood-ratio test in
[ME] me.

The above extends to models with more than two levels of nesting by adding more random-effects
equations, each separated by ||.

Stored results
meoprobit stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k dv) number of dependent variables
e(k cat) number of categories
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k f) number of fixed-effects parameters
e(k r) number of random-effects parameters
e(k rs) number of variances
e(k rc) number of covariances
e(df m) model degrees of freedom
e(ll) log likelihood
e(N clust) number of clusters
e(chi2) χ2

e(p) p-value for model test
e(ll c) log likelihood, comparison model
e(chi2 c) χ2, comparison test
e(df c) degrees of freedom, comparison test
e(p c) p-value for comparison test
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) meglm
e(cmd2) meoprobit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression (first-level weights)
e(fweightk) fweight variable for kth highest level, if specified
e(iweightk) iweight variable for kth highest level, if specified
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e(pweightk) pweight variable for kth highest level, if specified
e(covariates) list of covariates
e(ivars) grouping variables
e(model) oprobit
e(title) title in estimation output
e(link) probit
e(family) ordinal
e(clustvar) name of cluster variable
e(offset) offset
e(intmethod) integration method
e(n quad) number of integration points
e(chi2type) Wald; type of model χ2

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(marginsdefault) default predict() specification for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(N g) group counts
e(g min) group-size minimums
e(g avg) group-size averages
e(g max) group-size maximums
e(cat) category values
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.
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Methods and formulas
meoprobit is a convenience command for meglm with a probit link and an ordinal family;

see [ME] meglm.

Without a loss of generality, consider a two-level ordered probit model. The probability of observing
outcome k for response yij is then

pij = Pr(yij = k|κ,uj) = Pr(κk−1 < ηij + εit ≤ κk)

= Φ(κk − ηij)− Φ(κk−1 − ηij)

where ηij = xijβ+ zijuj + offsetij , κ0 is taken as −∞, and κK is taken as +∞. Here xij does
not contain a constant term because its effect is absorbed into the cutpoints.

For cluster j, j = 1, . . . ,M , the conditional distribution of yj = (yj1, . . . , yjnj )
′ given a set of

cluster-level random effects uj is

f(yj |uj) =

nj∏
i=1

p
Ik(yij)
ij

= exp
nj∑
i=1

{
Ik(yij) log(pij)

}
where

Ik(yij) =
{

1 if yij = k
0 otherwise

Because the prior distribution of uj is multivariate normal with mean 0 and q× q variance matrix
Σ, the likelihood contribution for the jth cluster is obtained by integrating uj out of the joint density
f(yj ,uj),

Lj(β,κ,Σ) = (2π)−q/2 |Σ|−1/2
∫
f(yj |κ,uj) exp

(
−u′jΣ

−1uj/2
)
duj

= (2π)−q/2 |Σ|−1/2
∫

exp {h (β,κ,Σ,uj)} duj
(2)

where

h (β,κ,Σ,uj) =

nj∑
i=1

{
Ik(yij) log(pij)

}
− u′jΣ

−1uj/2

and for convenience, in the arguments of h(·) we suppress the dependence on the observable data
(yj , rj ,Xj ,Zj).

The integration in (2) has no closed form and thus must be approximated; see Methods and
formulas in [ME] meglm for details.

meoprobit supports multilevel weights and survey data; see Methods and formulas in [ME] meglm
for details.
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meoprobit postestimation — Postestimation tools for meoprobit

Postestimation commands predict margins
Remarks and examples Methods and formulas Also see

Postestimation commands
The following postestimation command is of special interest after meoprobit:

Command Description

estat group summarize the composition of the nested groups
estat icc estimate intraclass correlations
estat sd display variance components as standard deviations and correlations

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian

information criteria (AIC, CAIC, AICc, and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
etable table of estimation results
∗hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
∗lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combi-

nations of coefficients
predict means, probabilities, densities, REs, residuals, etc.
predictnl point estimates, standard errors, testing, and inference for generalized pre-

dictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

∗hausman and lrtest are not appropriate with svy estimation results.
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predict

Description for predict

predict creates a new variable containing predictions such as probabilities, linear predictions,
density and distribution functions, and standard errors.

Menu for predict

Statistics > Postestimation

Syntax for predict

Syntax for obtaining predictions of the outcome and other statistics

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
] [

, statistic options
]

Syntax for obtaining estimated random effects and their standard errors

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, reffects

[
re options

]
Syntax for obtaining ML scores

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, scores

statistic Description

Main

pr predicted probabilities; the default
eta fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp standard error of the fixed-portion linear prediction
density predicted density function
distribution predicted distribution function

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample.
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options Description

Main

conditional(ctype) compute statistic conditional on estimated random effects; default is
conditional(ebmeans)

marginal compute statistic marginally with respect to the random effects
nooffset make calculation ignoring offset or exposure
outcome(outcome) outcome category for predicted probabilities

Integration

int options integration options

You specify one or k new variables in newvarlist with pr, where k is the number of outcomes. If you
do not specify outcome(), these options assume outcome(#1).

ctype Description

ebmeans empirical Bayes means of random effects; the default
ebmodes empirical Bayes modes of random effects
fixedonly prediction for the fixed portion of the model only

re options Description

Main

ebmeans use empirical Bayes means of random effects; the default
ebmodes use empirical Bayes modes of random effects
reses(stub* | newvarlist) calculate standard errors of empirical Bayes estimates

Integration

int options integration options

int options Description

intpoints(#) use # quadrature points to compute marginal predictions and empirical
Bayes means

iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators

tolerance(#) set convergence tolerance for computing statistics involving empirical
Bayes estimators

Options for predict

� � �
Main �

pr, the default, calculates the predicted probabilities.

You specify one or k new variables, where k is the number of categories of the dependent variable.
If you specify the outcome() option, the probabilities will be predicted for the requested outcome
only, in which case you specify only one new variable. If you specify one new variable and do
not specify outcome(), outcome(#1) is assumed.

eta, xb, stdp, density, distribution, scores, conditional(), marginal, and nooffset;
see [ME] meglm postestimation.
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outcome(outcome) specifies the outcome for which the predicted probabilities are to be calculated.
outcome() should contain either one value of the dependent variable or one of #1, #2, . . . , with
#1 meaning the first category of the dependent variable, #2 meaning the second category, etc.

reffects, ebmeans, ebmodes, and reses(), see [ME] meglm postestimation.

� � �
Integration �

intpoints(), iterate(), tolerance(); see [ME] meglm postestimation.

margins

Description for margins

margins estimates margins of response for probabilities and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . . )

[
predict(statistic . . . ) . . .

] [
options

]
statistic Description

default probabilities for each outcome
pr predicted probabilities for a specified outcome
eta fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp not allowed with margins

density not allowed with margins

distribution not allowed with margins

reffects not allowed with margins

scores not allowed with margins

pr defaults to the first outcome.
Options conditional(ebmeans) and conditional(ebmodes) are not allowed with margins.
Option marginal is assumed where applicable if conditional(fixedonly) is not specified.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples
Various predictions, statistics, and diagnostic measures are available after fitting an ordered probit

mixed-effects model using meoprobit. Here we show a short example of predicted probabilities and
predicted random effects; refer to [ME] meglm postestimation for additional examples applicable to
mixed-effects generalized linear models.

Example 1: Obtaining predicted probabilities and random effects

In example 2 of [ME] meoprobit, we modeled the tobacco and health knowledge (thk) score—
coded 1, 2, 3, 4—among students as a function of two treatments (cc and tv) using a three-level
ordered probit model with random effects at the school and class levels.

. use https://www.stata-press.com/data/r18/tvsfpors
(Television, School, and Family Project)

. meoprobit thk prethk cc##tv || school: || class:

(output omitted )

We obtain predicted probabilities for all four outcomes based on the contribution of both fixed
effects and random effects by typing

. predict pr*
(option pr assumed)
(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)

As the note says, the predicted values are based on the posterior means of random effects. You can
use the modes option to obtain predictions based on the posterior modes of random effects.

Because we specified a stub name, Stata saved the predicted random effects in variables pr1
through pr4. Here we list the predicted probabilities for the first two classes for school 515:
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. list class thk pr? if school==515 & (class==515101 | class==515102),
> sepby(class)

class thk pr1 pr2 pr3 pr4

1464. 515101 2 .1503512 .2416885 .2828209 .3251394
1465. 515101 2 .3750887 .2958534 .2080368 .121021
1466. 515101 1 .3750887 .2958534 .2080368 .121021
1467. 515101 4 .2886795 .2920168 .2433916 .1759121
1468. 515101 3 .2129906 .2729831 .2696254 .2444009
1469. 515101 3 .2886795 .2920168 .2433916 .1759121

1470. 515102 1 .3318574 .2959802 .2261095 .1460529
1471. 515102 2 .4223251 .2916287 .187929 .0981172
1472. 515102 2 .4223251 .2916287 .187929 .0981172
1473. 515102 2 .4223251 .2916287 .187929 .0981172
1474. 515102 2 .3318574 .2959802 .2261095 .1460529
1475. 515102 1 .4223251 .2916287 .187929 .0981172
1476. 515102 2 .3318574 .2959802 .2261095 .1460529

For each observation, our best guess for the predicted outcome is the one with the highest predicted
probability. For example, for the very first observation in the table above, we would choose outcome 4
as the most likely to occur.

We obtain predictions of the posterior means themselves at the school and class levels by typing

. predict re_s re_c, reffects
(calculating posterior means of random effects)
(using 7 quadrature points)

Here we list the predicted random effects for the first two classes for school 515:

. list class re_s re_c if school==515 & (class==515101 | class==515102),
> sepby(class)

class re_s re_c

1464. 515101 -.0340769 .0390243
1465. 515101 -.0340769 .0390243
1466. 515101 -.0340769 .0390243
1467. 515101 -.0340769 .0390243
1468. 515101 -.0340769 .0390243
1469. 515101 -.0340769 .0390243

1470. 515102 -.0340769 -.0834322
1471. 515102 -.0340769 -.0834322
1472. 515102 -.0340769 -.0834322
1473. 515102 -.0340769 -.0834322
1474. 515102 -.0340769 -.0834322
1475. 515102 -.0340769 -.0834322
1476. 515102 -.0340769 -.0834322

We can see that the predicted random effects at the school level (re s) are the same for all classes
and that the predicted random effects at the class level (re c) are constant within each class.
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Methods and formulas
Methods and formulas for predicting random effects and other statistics are given in Methods and

formulas of [ME] meglm postestimation.

Also see
[ME] meoprobit — Multilevel mixed-effects ordered probit regression

[ME] meglm postestimation — Postestimation tools for meglm

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

mepoisson fits mixed-effects models for count responses. The conditional distribution of the
response given the random effects is assumed to be Poisson.

Quick start
Without weights

Two-level Poisson regression of y on x with random intercepts by lev2

mepoisson y x || lev2:

Add evar measuring exposure
mepoisson y x, exposure(evar) || lev2:

Same as above, but report incidence-rate ratios
mepoisson y x, exposure(evar) || lev2:, irr

Add indicators for levels of categorical variable a and random coefficients on x

mepoisson y x i.a || lev2: x, irr

Three-level random-intercept model of y on x with lev2 nested within lev3

mepoisson y x || lev3: || lev2:

With weights

Two-level Poisson regression of y on x with random intercepts by lev2 and observation-level frequency
weights wvar1

mepoisson y x [fweight=wvar1] || lev2:

Two-level random-intercept model from a two-stage sampling design with PSUs identified by psu
using PSU-level and observation-level sampling weights wvar2 and wvar1, respectively

mepoisson y x [pweight=wvar1] || psu:, pweight(wvar2)

Add secondary sampling stage with units identified by ssu having weights wvar2 and PSU-level
weights wvar3 for a three-level random-intercept model

mepoisson y x [pw=wvar1] || psu:, pw(wvar3) || ssu:, pw(wvar2)

Same as above, but svyset data first
svyset psu, weight(wvar3) || ssu, weight(wvar2) || _n, weight(wvar1)
svy: mepoisson y x || psu: || ssu:

376
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Menu
Statistics > Multilevel mixed-effects models > Poisson regression

Syntax
mepoisson depvar fe equation

[
|| re equation

] [
|| re equation . . .

] [
, options

]
where the syntax of fe equation is[

indepvars
] [

if
] [

in
] [

weight
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all
representing one group comprising all observations.

fe options Description

Model

noconstant suppress the constant term from the fixed-effects equation
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
fweight(varname) frequency weights at higher levels
iweight(varname) importance weights at higher levels
pweight(varname) sampling weights at higher levels
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options Description

Model

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)

irr report fixed-effects coefficients as incidence-rate ratios
nocnsreport do not display constraints
notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intmethod(intmethod) integration method
intpoints(#) set the number of integration (quadrature) points for all levels;

default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values
startgrid

[
(gridspec)

]
perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead
dnumerical use numerical derivative techniques
collinear keep collinear variables
coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated
fixed(matname) user-selected variances and covariances constrained to specified

values; the remaining variances and covariances unrestricted
pattern(matname) user-selected variances and covariances constrained to be equal;

the remaining variances and covariances unrestricted
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intmethod Description

mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature
pcaghermite Pinheiro–Chao mode-curvature adaptive Gauss–Hermite

quadrature
ghermite nonadaptive Gauss–Hermite quadrature
laplace Laplacian approximation; the default for crossed random-effects

models
pclaplace Pinheiro–Chao Laplacian approximation

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see

[BAYES] bayes: mepoisson.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified.

Weights are not supported under the Laplacian approximation or for crossed models.
startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog

box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any of or all the random-effects equations.

exposure(varnamee) specifies a variable that reflects the amount of exposure over which the depvar
events were observed for each observation; ln(varnamee) is included in the fixed-effects portion
of the model with the coefficient constrained to be 1.

offset(varnameo) specifies that varnameo be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent) unless a crossed random-effects model is fit, in which case the
default is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2
unique parameters.
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covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures
provide a convenient way to impose constraints on variances and covariances of random effects.
Each specification requires a matname that defines the restrictions placed on variances and
covariances. Only elements in the lower triangle of matname are used, and row and column names
of matname are ignored. A missing value in matname means that a given element is unrestricted.
In a fixed(matname) covariance structure, (co)variance (i, j) is constrained to equal the
value specified in the i, jth entry of matname. In a pattern(matname) covariance structure,
(co)variances (i, j) and (k, l) are constrained to be equal if matname[i, j] = matname[k, l].

fweight(varname) specifies frequency weights at higher levels in a multilevel model, whereas
frequency weights at the first level (the observation level) are specified in the usual manner, for
example, [fw=fwtvar1]. varname can be any valid Stata variable name, and you can specify
fweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wt1] || school: . . . , fweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2
would hold the second-level (the school-level) frequency weights.

iweight(varname) specifies importance weights at higher levels in a multilevel model, whereas
importance weights at the first level (the observation level) are specified in the usual manner,
for example, [iw=iwtvar1]. varname can be any valid Stata variable name, and you can specify
iweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: . . . , iweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) importance weights, and wt2
would hold the second-level (the school-level) importance weights.

pweight(varname) specifies sampling weights at higher levels in a multilevel model, whereas
sampling weights at the first level (the observation level) are specified in the usual manner, for
example, [pw=pwtvar1]. varname can be any valid Stata variable name, and you can specify
pweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wt1] || school: . . . , pweight(wt2) . . .

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would
hold the second-level (the school-level) sampling weights.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is
specified, robust variances are clustered at the highest level in the multilevel model.

� � �
Reporting �

level(#); see [R] Estimation options.

irr reports estimated fixed-effects coefficients transformed to incidence-rate ratios, that is, exp(β)
rather than β. Standard errors and confidence intervals are similarly transformed. This option
affects how results are displayed, not how they are estimated or stored. irr may be specified
either at estimation or upon replay.

nocnsreport; see [R] Estimation options.
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notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model.
mvaghermite performs mean–variance adaptive Gauss–Hermite quadrature; mcaghermite and
pcaghermite perform mode-curvature adaptive Gauss–Hermite quadrature; ghermite performs
nonadaptive Gauss–Hermite quadrature; and laplace and pclaplace perform the Laplacian
approximation, equivalent to mode-curvature adaptive Gaussian quadrature with one integration
point. Techniques pcaghermite and pclaplace obtain the random-effects mode and curvature
using the efficient hierarchical decomposition algorithm described in Pinheiro and Chao (2006). For
hierarchical models, this algorithm takes advantage of the design structure to minimize memory use
and utilizes a series of orthogonal triangulations to compute the factored random-effects Hessian
indirectly, avoiding the sparse full Hessian. Techniques mcaghermite and laplace use Cholesky
factorization on the full Hessian. For four- and higher-level hierarchical designs, there can be
dramatic computation-time differences.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in
which case the default integration method is laplace. The Laplacian approximation has been
known to produce biased parameter estimates; however, the bias tends to be more prominent in
the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be
prohibitively intensive even for a small number of levels. For this reason, the integration method
defaults to the Laplacian approximation. You may override this behavior by specifying a different
integration method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option
is not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases as a function of the number of quadrature points raised to a power
equaling the dimension of the random-effects specification. In crossed random-effects models and
in models with many levels or many random coefficients, this increase can be substantial.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. Those that require
special mention for mepoisson are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.
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The following options are available with mepoisson but are not shown in the dialog box:

startvalues(svmethod), startgrid
[
(gridspec)

]
, noestimate, and dnumerical; see [ME]

meglm.

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
For a general introduction to me commands, see [ME] me.

Remarks are presented under the following headings:

Introduction
Two-level models
Higher-level models

Introduction

Mixed-effects Poisson regression is Poisson regression containing both fixed effects and random
effects. In longitudinal data and panel data, random effects are useful for modeling intracluster
correlation; that is, observations in the same cluster are correlated because they share common
cluster-level random effects.

mepoisson allows for many levels of random effects. However, for simplicity, for now we consider
the two-level model, where for a series of M independent clusters, and conditional on a set of random
effects uj ,

Pr(yij = y|xij ,uj) = exp (−µij)µyij/y! (1)

for µij = exp(xijβ + zijuj), j = 1, . . . ,M clusters, with cluster j consisting of i = 1, . . . , nj
observations. The responses are counts yij . The 1× p row vector xij are the covariates for the fixed
effects, analogous to the covariates you would find in a standard Poisson regression model, with
regression coefficients (fixed effects) β. For notational convenience here and throughout this manual
entry, we suppress the dependence of yij on xij .

The 1 × q vector zij are the covariates corresponding to the random effects and can be used to
represent both random intercepts and random coefficients. For example, in a random-intercept model,
zij is simply the scalar 1. The random effects uj are M realizations from a multivariate normal
distribution with mean 0 and q× q variance matrix Σ. The random effects are not directly estimated
as model parameters but are instead summarized according to the unique elements of Σ, known
as variance components. One special case of (1) places zij = xij so that all covariate effects are
essentially random and distributed as multivariate normal with mean β and variance Σ.

As noted in section 13.7 of Rabe-Hesketh and Skrondal (2022), the inclusion of a random intercept
causes the marginal variance of yij to be greater than the marginal mean, provided the variance of
the random intercept is not 0. Thus the random intercept in a mixed-effects Poisson model produces
overdispersion, a measure of variability above and beyond that allowed by a Poisson process; see
[R] nbreg and [ME] menbreg.

Below we present examples of mixed-effects Poisson regression; refer to [ME] me and [ME] meglm
for additional examples including crossed random-effects models. A two-level Poisson model can also
be fit using xtpoisson with the re option; see [XT] xtpoisson. In the absence of random effects,
mixed-effects Poisson regression reduces to standard Poisson regression; see [R] poisson.



mepoisson — Multilevel mixed-effects Poisson regression 383

Two-level models

Example 1: Two-level random-intercept model

Breslow and Clayton (1993) fit a mixed-effects Poisson model to data from a randomized trial of
the drug progabide for the treatment of epilepsy.

. use https://www.stata-press.com/data/r18/epilepsy
(Epilepsy data; progabide drug treatment)

. describe

Contains data from https://www.stata-press.com/data/r18/epilepsy.dta
Observations: 236 Epilepsy data; progabide drug

treatment
Variables: 8 31 May 2022 14:09

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

subject byte %9.0g Subject ID: 1-59
seizures int %9.0g No. of seizures
treat byte %9.0g treat Treatment
visit float %9.0g Doctor’s visit
lage float %9.0g log(age), mean-centered
lbas float %9.0g log(0.25*baseline seizures),

mean-centered
lbas_trt float %9.0g lbas/treat interaction
v4 byte %8.0g Fourth visit indicator

Sorted by: subject

Originally from Thall and Vail (1990), data were collected on 59 subjects (31 on progabide, 28 on
placebo). The number of epileptic seizures (seizures) was recorded during the two weeks prior to
each of four doctor visits (visit). The treatment group is identified by the indicator variable treat.
Data were also collected on the logarithm of age (lage) and the logarithm of one-quarter the number
of seizures during the eight weeks prior to the study (lbas). The variable lbas trt represents the
interaction between lbas and treatment. lage, lbas, and lbas trt are mean centered. Because the
study originally noted a substantial decrease in seizures prior to the fourth doctor visit, an indicator,
v4, for the fourth visit was also recorded.

Breslow and Clayton (1993) fit a random-effects Poisson model for the number of observed seizures

log(µij) = β0 + β1treatij + β2lbasij + β3lbas trtij + β4lageij + β5v4ij + uj

for j = 1, . . . , 59 subjects and i = 1, . . . , 4 visits. The random effects uj are assumed to be normally
distributed with mean 0 and variance σ2

u.
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. mepoisson seizures treat lbas lbas_trt lage v4 || subject:

Fitting fixed-effects model:

Iteration 0: Log likelihood = -1016.4106
Iteration 1: Log likelihood = -819.20112
Iteration 2: Log likelihood = -817.66006
Iteration 3: Log likelihood = -817.65925
Iteration 4: Log likelihood = -817.65925

Refining starting values:

Grid node 0: Log likelihood = -680.40523

Refining starting values (unscaled likelihoods):

Grid node 0: Log likelihood = -680.40523

Fitting full model:

Iteration 0: Log likelihood = -680.40523 (not concave)
Iteration 1: Log likelihood = -672.95766 (not concave)
Iteration 2: Log likelihood = -667.14039
Iteration 3: Log likelihood = -665.51823
Iteration 4: Log likelihood = -665.29165
Iteration 5: Log likelihood = -665.29067
Iteration 6: Log likelihood = -665.29067

Mixed-effects Poisson regression Number of obs = 236
Group variable: subject Number of groups = 59

Obs per group:
min = 4
avg = 4.0
max = 4

Integration method: mvaghermite Integration pts. = 7

Wald chi2(5) = 121.70
Log likelihood = -665.29067 Prob > chi2 = 0.0000

seizures Coefficient Std. err. z P>|z| [95% conf. interval]

treat -.9330306 .4007512 -2.33 0.020 -1.718489 -.1475727
lbas .8844225 .1312033 6.74 0.000 .6272689 1.141576

lbas_trt .3382561 .2033021 1.66 0.096 -.0602087 .736721
lage .4842226 .3471905 1.39 0.163 -.1962582 1.164703

v4 -.1610871 .0545758 -2.95 0.003 -.2680536 -.0541206
_cons 2.154578 .2199928 9.79 0.000 1.7234 2.585756

subject
var(_cons) .2528664 .0589844 .1600801 .399434

LR test vs. Poisson model: chibar2(01) = 304.74 Prob >= chibar2 = 0.0000

The number of seizures before the fourth visit does exhibit a significant drop, and the patients on
progabide demonstrate a decrease in frequency of seizures compared with the placebo group. The
subject-specific random effects also appear significant: σ̂2

u = 0.25 with standard error 0.06.

Because this is a simple random-intercept model, you can obtain equivalent results by using
xtpoisson with the re and normal options.

Example 2: Two-level random-slope model

In their study of PQL, Breslow and Clayton (1993) also fit a model where they dropped the fixed
effect on v4 and replaced it with a random subject-specific linear trend over the four doctor visits.
The model they fit is
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log(µij) = β0 + β1treatij + β2lbasij+β3lbas trtij+

β4lageij + β5visitij + uj + vjvisitij

where (uj , vj) are bivariate normal with 0 mean and variance–covariance matrix

Σ = Var
[
uj
vj

]
=

[
σ2
u σuv

σuv σ2
v

]
. mepoisson seizures treat lbas lbas_trt lage visit || subject: visit,
> covariance(unstructured) intpoints(9) nolog

Mixed-effects Poisson regression Number of obs = 236
Group variable: subject Number of groups = 59

Obs per group:
min = 4
avg = 4.0
max = 4

Integration method: mvaghermite Integration pts. = 9

Wald chi2(5) = 115.56
Log likelihood = -655.68103 Prob > chi2 = 0.0000

seizures Coefficient Std. err. z P>|z| [95% conf. interval]

treat -.9286592 .4021715 -2.31 0.021 -1.716901 -.1404175
lbas .8849762 .1312535 6.74 0.000 .627724 1.142228

lbas_trt .3379759 .2044471 1.65 0.098 -.062733 .7386849
lage .4767192 .3536276 1.35 0.178 -.2163781 1.169817

visit -.2664098 .1647098 -1.62 0.106 -.5892352 .0564156
_cons 2.099555 .2203749 9.53 0.000 1.667629 2.531482

subject
var(visit) .5314803 .229385 .2280928 1.238405
var(_cons) .2514923 .0587902 .1590534 .3976549

subject
cov(visit,

_cons) .0028715 .0887037 0.03 0.974 -.1709846 .1767276

LR test vs. Poisson model: chi2(3) = 324.54 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

In the above, we specified the covariance(unstructured) option to allow correlation between
uj and vj , although on the basis of the above output it probably was not necessary—the default
independent structure would have sufficed. In the interest of getting more accurate estimates, we
also increased the number of quadrature points to nine, although the estimates do not change much
when compared with estimates based on the default seven quadrature points.

The essence of the above-fitted model is that after adjusting for other covariates, the log trend in
seizures is modeled as a random subject-specific line, with intercept distributed as N(β0, σ

2
u) and

slope distributed as N(β5, σ
2
v). From the above output, β̂0 = 2.10, σ̂2

u = 0.25, β̂5 = −0.27, and
σ̂2
v = 0.53.

You can predict the random effects uj and vj by using predict after mepoisson; see [ME] mepois-
son postestimation. Better still, you can obtain a predicted number of seizures that takes these random
effects into account.
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Higher-level models

Example 3: Three- and four-level random-intercept model

Rabe-Hesketh and Skrondal (2022, exercise 13.7) describe data from the Atlas of Cancer Mortality
in the European Economic Community (EEC) (Smans, Mair, and Boyle 1993). The data were analyzed
in Langford, Bentham, and McDonald (1998) and record the number of deaths among males due to
malignant melanoma during 1971–1980.

. use https://www.stata-press.com/data/r18/melanoma
(Skin cancer (melanoma) data)

. describe

Contains data from https://www.stata-press.com/data/r18/melanoma.dta
Observations: 354 Skin cancer (melanoma) data

Variables: 6 30 May 2022 17:10
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

nation byte %11.0g n Nation ID
region byte %9.0g Region ID: EEC level-I areas
county int %9.0g County ID: EEC level-II/level-III

areas
deaths int %9.0g No. deaths during 1971-1980
expected float %9.0g No. expected deaths
uv float %9.0g UV dose, mean-centered

Sorted by:

Nine European nations (variable nation) are represented, and data were collected over geographical
regions defined by EEC statistical services as level I areas (variable region), with deaths being
recorded for each of 354 counties, which are level II or level III EEC-defined areas (variable county,
which identifies the observations). Counties are nested within regions, and regions are nested within
nations.

The variable deaths records the number of deaths for each county, and expected records the
expected number of deaths (the exposure) on the basis of crude rates for the combined countries.
Finally, the variable uv is a measure of exposure to ultraviolet (UV) radiation.

In modeling the number of deaths, one possibility is to include dummy variables for the nine nations
as fixed effects. Another is to treat these as random effects and fit the three-level random-intercept
Poisson model,

log(µijk) = log(expectedijk) + β0 + β1uvijk + uk + vjk

for nation k, region j, and county i. The model includes an exposure term for expected deaths.
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. mepoisson deaths uv, exposure(expected) || nation: || region:

Fitting fixed-effects model:

Iteration 0: Log likelihood = -2136.5847
Iteration 1: Log likelihood = -1723.8955
Iteration 2: Log likelihood = -1723.7727
Iteration 3: Log likelihood = -1723.7727

Refining starting values:

Grid node 0: Log likelihood = -1166.6536

Refining starting values (unscaled likelihoods):

Grid node 0: Log likelihood = -1166.6536

Fitting full model:

Iteration 0: Log likelihood = -1166.6536 (not concave)
Iteration 1: Log likelihood = -1152.2741 (not concave)
Iteration 2: Log likelihood = -1146.3094 (not concave)
Iteration 3: Log likelihood = -1119.8479 (not concave)
Iteration 4: Log likelihood = -1108.0129 (not concave)
Iteration 5: Log likelihood = -1098.8067
Iteration 6: Log likelihood = -1095.7563
Iteration 7: Log likelihood = -1095.3164
Iteration 8: Log likelihood = -1095.31
Iteration 9: Log likelihood = -1095.31

Mixed-effects Poisson regression Number of obs = 354

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

nation 9 3 39.3 95
region 78 1 4.5 13

Integration method: mvaghermite Integration pts. = 7

Wald chi2(1) = 6.12
Log likelihood = -1095.31 Prob > chi2 = 0.0134

deaths Coefficient Std. err. z P>|z| [95% conf. interval]

uv -.0282041 .0113998 -2.47 0.013 -.0505473 -.0058608
_cons -.0639672 .1335515 -0.48 0.632 -.3257234 .197789

ln(expected) 1 (exposure)

nation
var(_cons) .1371732 .0723303 .048802 .3855676

nation>
region

var(_cons) .0483483 .0109079 .0310699 .0752353

LR test vs. Poisson model: chi2(2) = 1256.93 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

By including an exposure variable that is an expected rate, we are in effect specifying a linear model
for the log of the standardized mortality ratio, the ratio of observed deaths to expected deaths that is
based on a reference population. Here the reference population is all nine nations.

Looking at the estimated variance components, we can see there is more unobserved variability
between nations than between regions within each nation. This may be due to, for example, country-
specific informational campaigns on the risks of sun exposure.
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We now add a random intercept for counties nested within regions, making this a four-level
model. Because counties also identify the observations, the corresponding variance component can be
interpreted as a measure of overdispersion, variability above and beyond that allowed by a Poisson
process; see [R] nbreg and [ME] menbreg.

. mepoisson deaths uv, exposure(expected) || nation: || region: || county:,
> intmethod(mcaghermite)

Fitting fixed-effects model:

Iteration 0: Log likelihood = -2136.5847
Iteration 1: Log likelihood = -1723.8955
Iteration 2: Log likelihood = -1723.7727
Iteration 3: Log likelihood = -1723.7727

Refining starting values:

Grid node 0: Log likelihood = -1379.3466

Refining starting values (unscaled likelihoods):

Grid node 0: Log likelihood = -1379.3466

Fitting full model:

Iteration 0: Log likelihood = -1379.3466 (not concave)
Iteration 1: Log likelihood = -1310.4947 (not concave)
Iteration 2: Log likelihood = -1245.534 (not concave)
Iteration 3: Log likelihood = -1218.5474 (not concave)
Iteration 4: Log likelihood = -1207.881 (not concave)
Iteration 5: Log likelihood = -1122.0585 (not concave)
Iteration 6: Log likelihood = -1092.4049
Iteration 7: Log likelihood = -1088.0486
Iteration 8: Log likelihood = -1086.7175
Iteration 9: Log likelihood = -1086.6756
Iteration 10: Log likelihood = -1086.6754
Iteration 11: Log likelihood = -1086.6754

Mixed-effects Poisson regression Number of obs = 354

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

nation 9 3 39.3 95
region 78 1 4.5 13
county 354 1 1.0 1
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Integration method: mcaghermite Integration pts. = 7

Wald chi2(1) = 8.62
Log likelihood = -1086.6754 Prob > chi2 = 0.0033

deaths Coefficient Std. err. z P>|z| [95% conf. interval]

uv -.0334702 .0113968 -2.94 0.003 -.0558075 -.0111329
_cons -.0864583 .1299275 -0.67 0.506 -.3411115 .168195

ln(expected) 1 (exposure)

nation
var(_cons) .1288627 .0681643 .0456949 .3634011

nation>
region

var(_cons) .0406279 .0105154 .0244633 .0674735

nation>
region>
county

var(_cons) .0146672 .0050979 .0074215 .0289867

LR test vs. Poisson model: chi2(3) = 1274.19 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

In the above, we used intmethod(mcaghermite), which is not only faster but also produces
estimates that closely agree with those obtained with the default mvaghermite integration method.

Stored results
mepoisson stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k dv) number of dependent variables
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k f) number of fixed-effects parameters
e(k r) number of random-effects parameters
e(k rs) number of variances
e(k rc) number of covariances
e(df m) model degrees of freedom
e(ll) log likelihood
e(N clust) number of clusters
e(chi2) χ2

e(p) p-value for model test
e(ll c) log likelihood, comparison model
e(chi2 c) χ2, comparison test
e(df c) degrees of freedom, comparison test
e(p c) p-value for comparison test
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) meglm
e(cmd2) mepoisson
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e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression (first-level weights)
e(fweightk) fweight variable for kth highest level, if specified
e(iweightk) iweight variable for kth highest level, if specified
e(pweightk) pweight variable for kth highest level, if specified
e(covariates) list of covariates
e(ivars) grouping variables
e(model) poisson
e(title) title in estimation output
e(link) log
e(family) poisson
e(clustvar) name of cluster variable
e(offset) offset
e(intmethod) integration method
e(n quad) number of integration points
e(chi2type) Wald; type of model χ2

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(N g) group counts
e(g min) group-size minimums
e(g avg) group-size averages
e(g max) group-size maximums
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.
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Methods and formulas
mepoisson is a convenience command for meglm with a log link and an poisson family; see

[ME] meglm.

In a two-level Poisson model, for cluster j, j = 1, . . . ,M , the conditional distribution of
yj = (yj1, . . . , yjnj )

′, given a set of cluster-level random effects uj , is

f(yj |uj) =

nj∏
i=1

[{ exp (xijβ+ zijuj)}yij exp {− exp (xijβ+ zijuj)} /yij !]

= exp

[
nj∑
i=1

{yij (xijβ+ zijuj)− exp (xijβ+ zijuj)− log(yij !)}

]

Defining c (yj) =
∑nj
i=1 log(yij !), where c(yj) does not depend on the model parameters, we

can express the above compactly in matrix notation,

f(yj |uj) = exp
{
y′j (Xjβ+ Zjuj)− 1′ exp (Xjβ+ Zjuj)− c (yj)

}
where Xj is formed by stacking the row vectors xij and Zj is formed by stacking the row vectors
zij . We extend the definition of exp(·) to be a vector function where necessary.

Because the prior distribution of uj is multivariate normal with mean 0 and q× q variance matrix
Σ, the likelihood contribution for the jth cluster is obtained by integrating uj out of the joint density
f(yj ,uj),

Lj(β,Σ) = (2π)−q/2 |Σ|−1/2
∫
f(yj |uj) exp

(
−u′jΣ

−1uj/2
)
duj

= exp {−c (yj)} (2π)−q/2 |Σ|−1/2
∫

exp {h (β,Σ,uj)} duj
(2)

where
h (β,Σ,uj) = y′j (Xjβ+ Zjuj)− 1′ exp (Xjβ+ Zjuj)− u′jΣ

−1uj/2

and for convenience, in the arguments of h(·) we suppress the dependence on the observable data
(yj ,Xj ,Zj).

The integration in (2) has no closed form and thus must be approximated; see Methods and
formulas in [ME] meglm for details.

mepoisson supports multilevel weights and survey data; see Methods and formulas in [ME] meglm
for details.
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Postestimation commands
The following postestimation command is of special interest after mepoisson:

Command Description

estat group summarize the composition of the nested groups
estat sd display variance components as standard deviations and correlations

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian

information criteria (AIC, CAIC, AICc, and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
etable table of estimation results
∗hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
∗lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combi-

nations of coefficients
predict means, probabilities, densities, REs, residuals, etc.
predictnl point estimates, standard errors, testing, and inference for generalized pre-

dictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

∗hausman and lrtest are not appropriate with svy estimation results.
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predict

Description for predict

predict creates a new variable containing predictions such as mean responses; linear predictions;
density and distribution functions; standard errors; and Pearson, deviance, and Anscombe residuals.

Menu for predict

Statistics > Postestimation

Syntax for predict

Syntax for obtaining predictions of the outcome and other statistics

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
] [

, statistic options
]

Syntax for obtaining estimated random effects and their standard errors

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, reffects

[
re options

]
Syntax for obtaining ML scores

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, scores

statistic Description

Main

mu mean response; the default
eta fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp standard error of the fixed-portion linear prediction
density predicted density function
distribution predicted distribution function
pearson Pearson residuals
deviance deviance residuals
anscombe Anscombe residuals

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample.
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options Description

Main

conditional(ctype) compute statistic conditional on estimated random effects; default is
conditional(ebmeans)

marginal compute statistic marginally with respect to the random effects
nooffset make calculation ignoring offset or exposure

Integration

int options integration options

pearson, deviance, anscombe may not be combined with marginal.

ctype Description

ebmeans empirical Bayes means of random effects; the default
ebmodes empirical Bayes modes of random effects
fixedonly prediction for the fixed portion of the model only

re options Description

Main

ebmeans use empirical Bayes means of random effects; the default
ebmodes use empirical Bayes modes of random effects
reses(stub* | newvarlist) calculate standard errors of empirical Bayes estimates

Integration

int options integration options

int options Description

intpoints(#) use # quadrature points to compute marginal predictions and empirical
Bayes means

iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators

tolerance(#) set convergence tolerance for computing statistics involving empirical
Bayes estimators

Options for predict

� � �
Main �

mu, the default, calculates the predicted mean, that is, the predicted number of events.

eta, xb, stdp, density, distribution, pearson, deviance, anscombe, scores, condi-
tional(), marginal, and nooffset; see [ME] meglm postestimation.

reffects, ebmeans, ebmodes, and reses(); see [ME] meglm postestimation.

� � �
Integration �

intpoints(), iterate(), and tolerance(); see [ME] meglm postestimation.
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margins

Description for margins

margins estimates margins of response for mean responses and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . . )

[
predict(statistic . . . ) . . .

] [
options

]
statistic Description

mu mean response; the default
eta fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp not allowed with margins

density not allowed with margins

distribution not allowed with margins

pearson not allowed with margins

deviance not allowed with margins

anscombe not allowed with margins

reffects not allowed with margins

scores not allowed with margins

Options conditional(ebmeans) and conditional(ebmodes) are not allowed with margins.
Option marginal is assumed where applicable if conditional(fixedonly) is not specified.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples
Various predictions, statistics, and diagnostic measures are available after fitting a mixed-effects

Poisson model with mepoisson. For the most part, calculation centers around obtaining estimates
of the subject/group-specific random effects. Random effects are not estimated when the model is fit
but instead need to be predicted after estimation.

Here we show a short example of predicted counts and predicted random effects; refer to [ME] meglm
postestimation for additional examples applicable to mixed-effects generalized linear models.
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Example 1: Predicting counts and random effects

In example 2 of [ME] mepoisson, we modeled the number of observed epileptic seizures as a
function of treatment with the drug progabide and other covariates,

log(µij) = β0 + β1treatij + β2lbasij+β3lbas trtij+

β4lageij + β5visitij + uj + vjvisitij

where (uj , vj) are bivariate normal with 0 mean and variance–covariance matrix

Σ = Var
[
uj
vj

]
=

[
σ2
u σuv

σuv σ2
v

]

. use https://www.stata-press.com/data/r18/epilepsy
(Epilepsy data; progabide drug treatment)

. mepoisson seizures treat lbas lbas_trt lage visit || subject: visit,
> cov(unstructured) intpoints(9)

(iteration log omitted )
Mixed-effects Poisson regression Number of obs = 236
Group variable: subject Number of groups = 59

Obs per group:
min = 4
avg = 4.0
max = 4

Integration method: mvaghermite Integration pts. = 9

Wald chi2(5) = 115.56
Log likelihood = -655.68103 Prob > chi2 = 0.0000

seizures Coefficient Std. err. z P>|z| [95% conf. interval]

treat -.9286592 .4021715 -2.31 0.021 -1.716901 -.1404175
lbas .8849762 .1312535 6.74 0.000 .627724 1.142228

lbas_trt .3379759 .2044471 1.65 0.098 -.062733 .7386849
lage .4767192 .3536276 1.35 0.178 -.2163781 1.169817

visit -.2664098 .1647098 -1.62 0.106 -.5892352 .0564156
_cons 2.099555 .2203749 9.53 0.000 1.667629 2.531482

subject
var(visit) .5314803 .229385 .2280928 1.238405
var(_cons) .2514923 .0587902 .1590534 .3976549

subject
cov(visit,

_cons) .0028715 .0887037 0.03 0.974 -.1709846 .1767276

LR test vs. Poisson model: chi2(3) = 324.54 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

The purpose of this model was to allow subject-specific linear log trends over each subject’s four
doctor visits, after adjusting for the other covariates. The intercepts of these lines are distributed
N(β0, σ

2
u), and the slopes are distributedN(β5, σ

2
v), based on the fixed effects and assumed distribution

of the random effects.

We can use predict to obtain estimates of the random effects uj and vj and combine these with
our estimates of β0 and β5 to obtain the intercepts and slopes of the linear log trends.
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. predict re_visit re_cons, reffects
(calculating posterior means of random effects)
(using 9 quadrature points)

. generate b1 = _b[visit] + re_visit

. generate b0 = _b[_cons] + re_cons

. by subject, sort: generate tolist = _n==1

. list subject treat b1 b0 if tolist & (subject <=5 | subject >=55)

subject treat b1 b0

1. 1 Placebo -.428854 2.13539
5. 2 Placebo -.2731013 2.149744
9. 3 Placebo .0022089 2.417506

13. 4 Placebo -.3197094 2.238224
17. 5 Placebo .6082718 2.110739

217. 55 Progabide -.2308834 2.282539
221. 56 Progabide .2912798 3.19678
225. 57 Progabide -.4828764 1.423153
229. 58 Progabide -.2519466 1.131373
233. 59 Progabide -.1269573 2.171541

We list these slopes (b1) and intercepts (b0) for five control subjects and five subjects on the treatment.

. count if tolist & treat
31

. count if tolist & treat & b1 < 0
25

. count if tolist & !treat
28

. count if tolist & !treat & b1 < 0
20

We also find that 25 of the 31 subjects taking progabide were estimated to have a downward trend
in seizures over their four doctor visits, compared with 20 of the 28 control subjects.

We also obtain predictions for number of seizures, and unless we specify the condi-
tional(fixedonly) option, these predictions will incorporate the estimated subject-specific random
effects.

. predict n
(option mu assumed)
(predictions based on fixed effects and posterior means of random effects)
(using 9 quadrature points)
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. list subject treat visit seizures n if subject <= 2 | subject >= 58, sep(0)

subject treat visit seizures n

1. 1 Placebo -.3 5 3.775774
2. 1 Placebo -.1 3 3.465422
3. 1 Placebo .1 3 3.18058
4. 1 Placebo .3 3 2.919151
5. 2 Placebo -.3 3 3.598805
6. 2 Placebo -.1 5 3.40751
7. 2 Placebo .1 3 3.226382
8. 2 Placebo .3 3 3.054883

229. 58 Progabide -.3 0 .9611137
230. 58 Progabide -.1 0 .9138838
231. 58 Progabide .1 0 .8689747
232. 58 Progabide .3 0 .8262726
233. 59 Progabide -.3 1 2.40652
234. 59 Progabide -.1 4 2.346184
235. 59 Progabide .1 3 2.287361
236. 59 Progabide .3 2 2.230013

Methods and formulas
Methods and formulas for predicting random effects and other statistics are given in Methods and

formulas of [ME] meglm postestimation.

Also see
[ME] mepoisson — Multilevel mixed-effects Poisson regression

[ME] meglm postestimation — Postestimation tools for meglm

[U] 20 Estimation and postestimation commands



Title

meprobit — Multilevel mixed-effects probit regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

meprobit fits mixed-effects models for binary or binomial responses. The conditional distribution
of the response given the random effects is assumed to be Bernoulli, with success probability determined
by the standard normal cumulative distribution function.

Quick start
Two-level probit model of y and covariate x and random intercepts by lev2

meprobit y x || lev2:

Add random coefficients for x
meprobit y x || lev2: x

Same as above, but specify that y records the number of successes from 10 trials
meprobit y x || lev2: x, binomial(10)

Same as above, but with the number of trials stored in variable n

meprobit y x || lev2: x, binomial(n)

Three-level random-intercept model of y and covariate x with lev2 nested within lev3

meprobit y x || lev3: || lev2:

Two-way crossed random effects by factors a and b

meprobit y x || _all:R.a || b:

Menu
Statistics > Multilevel mixed-effects models > Probit regression

400
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Syntax
meprobit depvar fe equation

[
|| re equation

] [
|| re equation . . .

] [
, options

]
where the syntax of fe equation is[

indepvars
] [

if
] [

in
] [

weight
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all
representing one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation
offset(varname) include varname in model with coefficient constrained to 1
asis retain perfect predictor variables

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
fweight(varname) frequency weights at higher levels
iweight(varname) importance weights at higher levels
pweight(varname) sampling weights at higher levels
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options Description

Model

binomial(varname | #) set binomial trials if data are in binomial form
constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intmethod(intmethod) integration method
intpoints(#) set the number of integration (quadrature) points for all levels;

default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values
startgrid

[
(gridspec)

]
perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead
dnumerical use numerical derivative techniques
collinear keep collinear variables
coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated
fixed(matname) user-selected variances and covariances constrained to specified

values; the remaining variances and covariances unrestricted
pattern(matname) user-selected variances and covariances constrained to be equal;

the remaining variances and covariances unrestricted
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intmethod Description

mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature
ghermite nonadaptive Gauss–Hermite quadrature
laplace Laplacian approximation; the default for crossed random-effects

models

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see

[BAYES] bayes: meprobit.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified.

Weights are not supported under the Laplacian approximation or for crossed models.
startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog

box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any of or all the random-effects equations.

offset(varname) specifies that varname be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

asis forces retention of perfect predictor variables and their associated, perfectly predicted observations
and may produce instabilities in maximization; see [R] probit.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent) unless a crossed random-effects model is fit, in which case the
default is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2
unique parameters.

covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures
provide a convenient way to impose constraints on variances and covariances of random effects.
Each specification requires a matname that defines the restrictions placed on variances and
covariances. Only elements in the lower triangle of matname are used, and row and column names
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of matname are ignored. A missing value in matname means that a given element is unrestricted.
In a fixed(matname) covariance structure, (co)variance (i, j) is constrained to equal the
value specified in the i, jth entry of matname. In a pattern(matname) covariance structure,
(co)variances (i, j) and (k, l) are constrained to be equal if matname[i, j] = matname[k, l].

fweight(varname) specifies frequency weights at higher levels in a multilevel model, whereas
frequency weights at the first level (the observation level) are specified in the usual manner, for
example, [fw=fwtvar1]. varname can be any valid Stata variable name, and you can specify
fweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wt1] || school: . . . , fweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2
would hold the second-level (the school-level) frequency weights.

iweight(varname) specifies importance weights at higher levels in a multilevel model, whereas
importance weights at the first level (the observation level) are specified in the usual manner,
for example, [iw=iwtvar1]. varname can be any valid Stata variable name, and you can specify
iweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: . . . , iweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) importance weights, and wt2
would hold the second-level (the school-level) importance weights.

pweight(varname) specifies sampling weights at higher levels in a multilevel model, whereas
sampling weights at the first level (the observation level) are specified in the usual manner, for
example, [pw=pwtvar1]. varname can be any valid Stata variable name, and you can specify
pweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wt1] || school: . . . , pweight(wt2) . . .

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would
hold the second-level (the school-level) sampling weights.

binomial(varname | #) specifies that the data are in binomial form; that is, depvar records the number
of successes from a series of binomial trials. This number of trials is given either as varname,
which allows this number to vary over the observations, or as the constant #. If binomial() is
not specified (the default), depvar is treated as Bernoulli, with any nonzero, nonmissing values
indicating positive responses.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is
specified, robust variances are clustered at the highest level in the multilevel model.

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.
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display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model.
mvaghermite performs mean–variance adaptive Gauss–Hermite quadrature; mcaghermite per-
forms mode-curvature adaptive Gauss–Hermite quadrature; ghermite performs nonadaptive Gauss–
Hermite quadrature; and laplace performs the Laplacian approximation, equivalent to mode-
curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in
which case the default integration method is laplace. The Laplacian approximation has been
known to produce biased parameter estimates; however, the bias tends to be more prominent in
the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be
prohibitively intensive even for a small number of levels. For this reason, the integration method
defaults to the Laplacian approximation. You may override this behavior by specifying a different
integration method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option
is not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases as a function of the number of quadrature points raised to a power
equaling the dimension of the random-effects specification. In crossed random-effects models and
in models with many levels or many random coefficients, this increase can be substantial.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. Those that require
special mention for meprobit are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

The following options are available with meprobit but are not shown in the dialog box:

startvalues(svmethod), startgrid
[
(gridspec)

]
, noestimate, and dnumerical; see [ME]

meglm.

collinear, coeflegend; see [R] Estimation options.
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Remarks and examples
Mixed-effects probit regression is probit regression containing both fixed effects and random effects.

In longitudinal data and panel data, random effects are useful for modeling intracluster correlation;
that is, observations in the same cluster are correlated because they share common cluster-level random
effects.

meprobit allows for many levels of random effects. However, for simplicity, we here consider
the two-level model, where for a series of M independent clusters, and conditional on a set of fixed
effects xij and a set of random effects uj ,

Pr(yij = 1|xij ,uj) = H(xijβ+ zijuj) (1)

for j = 1, . . . ,M clusters, with cluster j consisting of i = 1, . . . , nj observations. The responses are
the binary-valued yij , and we follow the standard Stata convention of treating yij = 1 if depvarij 6= 0
and treating yij = 0 otherwise. The 1 × p row vector xij are the covariates for the fixed effects,
analogous to the covariates you would find in a standard probit regression model, with regression
coefficients (fixed effects) β. For notational convenience here and throughout this manual entry, we
suppress the dependence of yij on xij .

The 1 × q vector zij are the covariates corresponding to the random effects and can be used to
represent both random intercepts and random coefficients. For example, in a random-intercept model,
zij is simply the scalar 1. The random effects uj are M realizations from a multivariate normal
distribution with mean 0 and q× q variance matrix Σ. The random effects are not directly estimated
as model parameters but are instead summarized according to the unique elements of Σ, known
as variance components. One special case of (1) places zij = xij , so that all covariate effects are
essentially random and distributed as multivariate normal with mean β and variance Σ.

Finally, because this is probit regression, H(·) is the standard normal cumulative distribution
function, which maps the linear predictor to the probability of a success (yij = 1) with H(v) = Φ(v).

Model (1) may also be stated in terms of a latent linear response, where only yij = I(y∗ij > 0)
is observed for the latent

y∗ij = xijβ+ zijuj + εij

The errors εij are distributed as a standard normal with mean 0 and variance 1 and are independent
of uj .

Below we present two short examples of mixed-effects probit regression; refer to [ME] me and
[ME] meglm for examples of other random-effects models. A two-level probit model can also be fit
using xtprobit with the re option; see [XT] xtprobit. In the absence of random effects, mixed-effects
probit regression reduces to standard probit regression; see [R] probit.

Example 1: Two-level random-intercept model

Ng et al. (2006) analyzed a subsample of data from the 1989 Bangladesh fertility survey (Huq and
Cleland 1990), which polled 1,934 Bangladeshi women on their use of contraception. The women
sampled were from 60 districts, identified by the variable district. Each district contained either
urban or rural areas (variable urban) or both. The variable c use is the binary response, with a value
of 1 indicating contraceptive use. Other covariates include mean-centered age and three indicator
variables recording number of children.
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. use https://www.stata-press.com/data/r18/bangladesh
(Bangladesh Fertility Survey, 1989)

. meprobit c_use i.urban age i.children || district:

Fitting fixed-effects model:

Iteration 0: Log likelihood = -1228.8313
Iteration 1: Log likelihood = -1228.2466
Iteration 2: Log likelihood = -1228.2466

Refining starting values:

Grid node 0: Log likelihood = -1237.3973

Fitting full model:

Iteration 0: Log likelihood = -1237.3973 (not concave)
Iteration 1: Log likelihood = -1221.2111 (not concave)
Iteration 2: Log likelihood = -1207.4451
Iteration 3: Log likelihood = -1206.7002
Iteration 4: Log likelihood = -1206.5346
Iteration 5: Log likelihood = -1206.5336
Iteration 6: Log likelihood = -1206.5336

Mixed-effects probit regression Number of obs = 1,934
Group variable: district Number of groups = 60

Obs per group:
min = 2
avg = 32.2
max = 118

Integration method: mvaghermite Integration pts. = 7

Wald chi2(5) = 115.36
Log likelihood = -1206.5336 Prob > chi2 = 0.0000

c_use Coefficient Std. err. z P>|z| [95% conf. interval]

urban
Urban .4490191 .0727176 6.17 0.000 .3064953 .5915429

age -.0162203 .0048005 -3.38 0.001 -.0256291 -.0068114

children
1 child .674377 .0947829 7.11 0.000 .488606 .8601481

2 children .8281581 .1048136 7.90 0.000 .6227272 1.033589
3 or more.. .8137876 .1073951 7.58 0.000 .6032972 1.024278

_cons -1.02799 .0870307 -11.81 0.000 -1.198567 -.8574132

district
var(_cons) .0798719 .026886 .0412921 .1544972

LR test vs. probit model: chibar2(01) = 43.43 Prob >= chibar2 = 0.0000

Probit regression coefficients are most commonly interpreted in terms of partial effects, as we
demonstrate in example 1 of [ME] meprobit postestimation. For now, we only note that urban
women and women with more children are more likely to use contraceptives and that contraceptive
use decreases with age. The estimated variance of the random intercept at the district level, σ̂2, is
0.08 with standard error 0.03. The reported likelihood-ratio test shows that there is enough variability
between districts to favor a mixed-effects probit regression over an ordinary probit regression; see
Distribution theory for likelihood-ratio test in [ME] me for a discussion of likelihood-ratio testing of
variance components.
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Example 2: Three-level random-intercept model

Rabe-Hesketh, Toulopoulou, and Murray (2001) analyzed data from a study that measured the
cognitive ability of patients with schizophrenia compared with their relatives and control subjects.
Cognitive ability was measured as the successful completion of the “Tower of London”, a computerized
task, measured at three levels of difficulty. For all but one of the 226 subjects, there were three
measurements (one for each difficulty level). Because patients’ relatives were also tested, a family
identifier, family, was also recorded.

We fit a probit model with response dtlm, the indicator of cognitive function, and with covariates
difficulty and a set of indicator variables for group, with the controls (group==1) being the base
category. We also allow for random effects due to families and due to subjects within families. The
first is a random intercept (constant only) at the family level, and the second is a random intercept at
the subject level. The order in which these are specified (from left to right) is significant—meprobit
assumes that subject is nested within family. The equations are separated by ||.
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. use https://www.stata-press.com/data/r18/towerlondon
(Tower of London data)

. meprobit dtlm difficulty i.group || family: || subject:

Fitting fixed-effects model:

Iteration 0: Log likelihood = -317.11238
Iteration 1: Log likelihood = -314.50535
Iteration 2: Log likelihood = -314.50121
Iteration 3: Log likelihood = -314.50121

Refining starting values:

Grid node 0: Log likelihood = -326.18533

Fitting full model:

Iteration 0: Log likelihood = -326.18533 (not concave)
Iteration 1: Log likelihood = -313.16256 (not concave)
Iteration 2: Log likelihood = -308.47528
Iteration 3: Log likelihood = -305.02228
Iteration 4: Log likelihood = -304.88972
Iteration 5: Log likelihood = -304.88845
Iteration 6: Log likelihood = -304.88845

Mixed-effects probit regression Number of obs = 677

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

family 118 2 5.7 27
subject 226 2 3.0 3

Integration method: mvaghermite Integration pts. = 7

Wald chi2(3) = 83.28
Log likelihood = -304.88845 Prob > chi2 = 0.0000

dtlm Coefficient Std. err. z P>|z| [95% conf. interval]

difficulty -.9329891 .1037376 -8.99 0.000 -1.136311 -.7296672

group
2 -.1632243 .204265 -0.80 0.424 -.5635763 .2371276
3 -.6220196 .228063 -2.73 0.006 -1.069015 -.1750244

_cons -.8405154 .1597223 -5.26 0.000 -1.153565 -.5274654

family
var(_cons) .2120948 .1736281 .0426292 1.055244

family>
subject

var(_cons) .3559141 .219331 .106364 1.190956

LR test vs. probit model: chi2(2) = 19.23 Prob > chi2 = 0.0001

Note: LR test is conservative and provided only for reference.

We see that we have 226 subjects from 118 families. After adjusting for the random-effects
structure, the probability of successful completion of the Tower of London decreases dramatically as
the level of difficulty increases. Also, people with schizophrenia (group==3) tended not to perform
as well as the control subjects.
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The above extends to models with more than two levels of nesting by adding more random-effects
equations, each separated by ||.

Stored results
meprobit stores the following in e():
Scalars

e(N) number of observations
e(k) number of parameters
e(k dv) number of dependent variables
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k f) number of fixed-effects parameters
e(k r) number of random-effects parameters
e(k rs) number of variances
e(k rc) number of covariances
e(df m) model degrees of freedom
e(ll) log likelihood
e(N clust) number of clusters
e(chi2) χ2

e(p) p-value for model test
e(ll c) log likelihood, comparison model
e(chi2 c) χ2, comparison test
e(df c) degrees of freedom, comparison test
e(p c) p-value for comparison test
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) meglm
e(cmd2) meprobit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression (first-level weights)
e(fweightk) fweight variable for kth highest level, if specified
e(iweightk) iweight variable for kth highest level, if specified
e(pweightk) pweight variable for kth highest level, if specified
e(covariates) list of covariates
e(ivars) grouping variables
e(model) probit
e(title) title in estimation output
e(link) probit
e(family) bernoulli or binomial
e(clustvar) name of cluster variable
e(offset) offset
e(binomial) binomial number of trials
e(intmethod) integration method
e(n quad) number of integration points
e(chi2type) Wald; type of model χ2

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
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e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(N g) group counts
e(g min) group-size minimums
e(g avg) group-size averages
e(g max) group-size maximums
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
meprobit is a convenience command for meglm with a probit link and a bernoulli or binomial

family; see [ME] meglm.

Model (1) assumes Bernoulli data, a special case of the binomial. Because binomial data are also
supported by meprobit (option binomial()), the methods presented below are in terms of the more
general binomial mixed-effects model.

For a two-level binomial model, consider the response yij as the number of successes from a
series of rij Bernoulli trials (replications). For cluster j, j = 1, . . . ,M , the conditional distribution
of yj = (yj1, . . . , yjnj )

′, given a set of cluster-level random effects uj , is

f(yj |uj) =

nj∏
i=1

[(
rij
yij

){
Φ(ηij)

}yij {
1− Φ(ηij)

}rij−yij]

= exp

(
nj∑
i=1

[
yij log

{
Φ(ηij)

}
− (rij − yij) log

{
Φ(−ηij)

}
+ log

(
rij
yij

)])

for ηij = xijβ+ zijuj + offsetij .

Defining rj = (rj1, . . . , rjnj )
′ and

c (yj , rj) =

nj∑
i=1

log
(
rij
yij

)
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where c(yj , rj) does not depend on the model parameters, we can express the above compactly in
matrix notation,

f(yj |uj) = exp
[
y′j log

{
Φ(ηj)

}
− (rj − yj)

′ log
{

Φ(−ηj)
}

+ c (yj , rj)
]

where ηj is formed by stacking the row vectors ηij . We extend the definitions of Φ(·), log(·), and
exp(·) to be vector functions where necessary.

Because the prior distribution of uj is multivariate normal with mean 0 and q× q variance matrix
Σ, the likelihood contribution for the jth cluster is obtained by integrating uj out of the joint density
f(yj ,uj),

Lj(β,Σ) = (2π)−q/2 |Σ|−1/2
∫
f(yj |uj) exp

(
−u′jΣ

−1uj/2
)
duj

= exp {c (yj , rj)} (2π)−q/2 |Σ|−1/2
∫

exp {h (β,Σ,uj)} duj
(2)

where
h (β,Σ,uj) = y′j log

{
Φ(ηj)

}
− (rj − yj)

′ log
{

Φ(−ηj)
}
− u′jΣ

−1uj/2

and for convenience, in the arguments of h(·) we suppress the dependence on the observable data
(yj , rj ,Xj ,Zj).

The integration in (2) has no closed form and thus must be approximated; see Methods and
formulas in [ME] meglm for details.

meprobit supports multilevel weights and survey data; see Methods and formulas in [ME] meglm
for details.
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[ME] mecloglog — Multilevel mixed-effects complementary log–log regression

[ME] melogit — Multilevel mixed-effects logistic regression

[ME] me — Introduction to multilevel mixed-effects models

[BAYES] bayes: meprobit — Bayesian multilevel probit regression

[SEM] Intro 5 — Tour of models (Multilevel mixed-effects models)
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meprobit postestimation — Postestimation tools for meprobit

Postestimation commands predict margins
Remarks and examples Methods and formulas Also see

Postestimation commands
The following postestimation commands are of special interest after meprobit:

Command Description

estat group summarize the composition of the nested groups
estat icc estimate intraclass correlations
estat sd display variance components as standard deviations and correlations

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian

information criteria (AIC, CAIC, AICc, and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
etable table of estimation results
∗hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
∗lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combi-

nations of coefficients
predict means, probabilities, densities, REs, residuals, etc.
predictnl point estimates, standard errors, testing, and inference for generalized pre-

dictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

∗hausman and lrtest are not appropriate with svy estimation results.
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predict

Description for predict

predict creates a new variable containing predictions such as mean responses; linear predictions;
density and distribution functions; standard errors; and Pearson, deviance, and Anscombe residuals.

Menu for predict

Statistics > Postestimation

Syntax for predict

Syntax for obtaining predictions of the outcome and other statistics

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
] [

, statistic options
]

Syntax for obtaining estimated random effects and their standard errors

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, reffects

[
re options

]
Syntax for obtaining ML scores

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, scores

statistic Description

Main

mu mean response; the default
eta fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp standard error of the fixed-portion linear prediction
density predicted density function
distribution predicted distribution function
pearson Pearson residuals
deviance deviance residuals
anscombe Anscombe residuals

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample.



meprobit postestimation — Postestimation tools for meprobit 415

options Description

Main

conditional(ctype) compute statistic conditional on estimated random effects; default is
conditional(ebmeans)

marginal compute statistic marginally with respect to the random effects
nooffset make calculation ignoring offset or exposure

Integration

int options integration options

pearson, deviance, anscombe may not be combined with marginal.

ctype Description

ebmeans empirical Bayes means of random effects; the default
ebmodes empirical Bayes modes of random effects
fixedonly prediction for the fixed portion of the model only

re options Description

Main

ebmeans use empirical Bayes means of random effects; the default
ebmodes use empirical Bayes modes of random effects
reses(stub* | newvarlist) calculate standard errors of empirical Bayes estimates

Integration

int options integration options

int options Description

intpoints(#) use # quadrature points to compute marginal predictions and empirical
Bayes means

iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators

tolerance(#) set convergence tolerance for computing statistics involving empirical
Bayes estimators

Options for predict

� � �
Main �

mu, the default, calculates the predicted mean, that is, the probability of a positive outcome.

eta, xb, stdp, density, distribution, pearson, deviance, anscombe, scores, condi-
tional(), marginal, and nooffset; see [ME] meglm postestimation.

reffects, ebmeans, ebmodes, and reses(); see [ME] meglm postestimation.

� � �
Integration �

intpoints(), iterate(), and tolerance(); see [ME] meglm postestimation.
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margins

Description for margins

margins estimates margins of response for mean responses and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . . )

[
predict(statistic . . . ) . . .

] [
options

]
statistic Description

mu mean response; the default
eta fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp not allowed with margins

density not allowed with margins

distribution not allowed with margins

pearson not allowed with margins

deviance not allowed with margins

anscombe not allowed with margins

reffects not allowed with margins

scores not allowed with margins

Options conditional(ebmeans) and conditional(ebmodes) are not allowed with margins.
Option marginal is assumed where applicable if conditional(fixedonly) is not specified.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples

Various predictions, statistics, and diagnostic measures are available after fitting a mixed-effects
probit model using meprobit. Here we show a short example of predicted probabilities and predicted
random effects; refer to [ME] meglm postestimation for additional examples.

Example 1: Predicting random effects and estimating intraclass correlations

In example 2 of [ME] meprobit, we analyzed the cognitive ability (dtlm) of patients with
schizophrenia compared with their relatives and control subjects, by using a three-level probit model
with random effects at the family and subject levels. Cognitive ability was measured as the successful
completion of the “Tower of London”, a computerized task, measured at three levels of difficulty.

. use https://www.stata-press.com/data/r18/towerlondon
(Tower of London data)

. meprobit dtlm difficulty i.group || family: || subject:

(output omitted )

We obtain predicted probabilities based on the contribution of both fixed effects and random effects
by typing

. predict pr
(option mu assumed)
(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)

As the note says, the predicted values are based on the posterior means of random effects. You can
use the modes option to obtain predictions based on the posterior modes of random effects.

We obtain predictions of the posterior means themselves by typing

. predict re*, reffects
(calculating posterior means of random effects)
(using 7 quadrature points)

Because we have one random effect at the family level and another random effect at the subject level,
Stata saved the predicted posterior means in the variables re1 and re2, respectively. If you are not
sure which prediction corresponds to which level, you can use the describe command to show the
variable labels.

Here we list the data for family 16:

. list family subject dtlm pr re1 re2 if family==16, sepby(subject)

family subject dtlm pr re1 re2

208. 16 5 1 .5301687 .5051272 .1001124
209. 16 5 0 .1956408 .5051272 .1001124
210. 16 5 0 .0367041 .5051272 .1001124

211. 16 34 1 .8876646 .5051272 .7798247
212. 16 34 1 .6107262 .5051272 .7798247
213. 16 34 1 .2572725 .5051272 .7798247

214. 16 35 0 .6561904 .5051272 -.0322885
215. 16 35 1 .2977437 .5051272 -.0322885
216. 16 35 0 .071612 .5051272 -.0322885
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The predicted random effects at the family level (re1) are the same for all members of the family.
Similarly, the predicted random effects at the individual level (re2) are constant within each individual.
The predicted probabilities (pr) for this family seem to be in fair agreement with the response (dtlm)
based on a cutoff of 0.5.

We can use estat icc to estimate the residual intraclass correlation (conditional on the difficulty
level and the individual’s category) between the latent responses of subjects within the same family
or between the latent responses of the same subject and family:

. estat icc

Residual intraclass correlation

Level ICC Std. err. [95% conf. interval]

family .1352637 .1050492 .0261998 .4762821
subject|family .3622485 .0877459 .2124808 .5445812

estat icc reports two intraclass correlations for this three-level nested model. The first is the
level-3 intraclass correlation at the family level, the correlation between latent measurements of the
cognitive ability in the same family. The second is the level-2 intraclass correlation at the subject-
within-family level, the correlation between the latent measurements of cognitive ability in the same
subject and family.

There is not a strong correlation between individual realizations of the latent response, even within
the same subject.

Methods and formulas
Methods and formulas for predicting random effects and other statistics are given in Methods and

formulas of [ME] meglm postestimation.

Also see
[ME] meprobit — Multilevel mixed-effects probit regression

[ME] meglm postestimation — Postestimation tools for meglm

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

mestreg fits a mixed-effects parametric survival-time model. The conditional distribution of the
response given the random effects is assumed to be an exponential, Weibull, lognormal, loglogistic,
or gamma distribution. mestreg can be used with single- or multiple-record st data.

Quick start
Without weights

Two-level Weibull survival model with covariates x1 and x2 and random intercepts by lev2 using
stset data

mestreg x1 x2 || lev2:, distribution(weibull)

Mixed-effects model adding random coefficients for x1
mestreg x1 x2 || lev2:x1, distribution(weibull)

Three-level random-intercept model with lev2 nested within lev3

mestreg x1 x2 || lev3: || lev2:, distribution(weibull)

With weights

Two-level Weibull survival model with covariates x1 and x2, random intercepts by lev2, and
observation-level frequency weights wvar1 using stset data

mestreg x1 x2 [fweight=wvar1] || lev2:, distribution(weibull)

Two-level random-intercept model from a two-stage sampling design with PSUs identified by psu
using PSU-level and observation-level sampling weights wvar2 and wvar1

mestreg x1 x2 [pweight=wvar1] || psu:, pweight(wvar2)

Same as above, but svyset the data first
svyset psu, weight(wvar2) || _n, weight(wvar1)
svy: mestreg x1 x2 || psu:, distribution(weibull)

Note: Any supported parametric survival distribution may be specified in place of weibull above.

Menu
Statistics > Multilevel mixed-effects models > Parametric survival regression

419
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Syntax
mestreg fe equation

[
|| re equation

] [
|| re equation . . .

]
,

distribution(distname)
[

options
]

where the syntax of fe equation is[
indepvars

] [
if
] [

in
] [

weight
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all
representing one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation
offset(varname) include varname in model with coefficient constrained to 1

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
fweight(varname) frequency weights at higher levels
iweight(varname) importance weights at higher levels
pweight(varname) sampling weights at higher levels
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options Description

Model
∗distribution(distname) specify survival distribution
time use accelerated failure-time metric
constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)

nohr do not report hazard ratios
tratio report time ratios
noshow do not show st setting information
nocnsreport do not display constraints
notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intmethod(intmethod) integration method
intpoints(#) set the number of integration (quadrature) points for all levels;

default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values
startgrid

[
(gridspec)

]
perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead
dnumerical use numerical derivative techniques
collinear keep collinear variables
coeflegend display legend instead of statistics

∗distribution(distname) is required.
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vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated
fixed(matname) user-selected variances and covariances constrained to specified

values; the remaining variances and covariances unrestricted
pattern(matname) user-selected variances and covariances constrained to be equal;

the remaining variances and covariances unrestricted

distname Description

exponential exponential survival distribution
loglogistic loglogistic survival distribution
llogistic synonym for loglogistic
weibull Weibull survival distribution
lognormal lognormal survival distribution
lnormal synonym for lognormal
gamma gamma survival distribution

intmethod Description

mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature
ghermite nonadaptive Gauss–Hermite quadrature
laplace Laplacian approximation; the default for crossed random-effects

models

You must stset your data before using mestreg; see [ST] stset.
indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see

[BAYES] bayes: mestreg.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified.

Weights are not supported under the Laplacian approximation or for crossed models.
startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog

box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any of or all the random-effects equations.
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offset(varname) specifies that varname be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent) unless a crossed random-effects model is fit, in which case the
default is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2
unique parameters.

covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures
provide a convenient way to impose constraints on variances and covariances of random effects.
Each specification requires a matname that defines the restrictions placed on variances and
covariances. Only elements in the lower triangle of matname are used, and row and column names
of matname are ignored. A missing value in matname means that a given element is unrestricted.
In a fixed(matname) covariance structure, (co)variance (i, j) is constrained to equal the
value specified in the i, jth entry of matname. In a pattern(matname) covariance structure,
(co)variances (i, j) and (k, l) are constrained to be equal if matname[i, j] = matname[k, l].

fweight(varname) specifies frequency weights at higher levels in a multilevel model, whereas
frequency weights at the first level (the observation level) are specified in the usual manner, for
example, [fw=fwtvar1]. varname can be any valid Stata variable name, and you can specify
fweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wt1] || school: . . . , fweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2
would hold the second-level (the school-level) frequency weights.

iweight(varname) specifies importance weights at higher levels in a multilevel model, whereas
importance weights at the first level (the observation level) are specified in the usual manner,
for example, [iw=iwtvar1]. varname can be any valid Stata variable name, and you can specify
iweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: . . . , iweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) importance weights, and wt2
would hold the second-level (the school-level) importance weights.

pweight(varname) specifies sampling weights at higher levels in a multilevel model, whereas
sampling weights at the first level (the observation level) are specified in the usual manner, for
example, [pw=pwtvar1]. varname can be any valid Stata variable name, and you can specify
pweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wt1] || school: . . . , pweight(wt2) . . .

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would
hold the second-level (the school-level) sampling weights.
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distribution(distname) specifies the survival model to be fit. distname is one of the following:
exponential, loglogistic, llogistic, weibull, lognormal, lnormal, or gamma. This
option is required.

time specifies that the model be fit in the accelerated failure-time metric rather than in the log
relative-hazard metric. This option is valid only for the exponential and Weibull models because
these are the only models that have both a proportional-hazards and an accelerated failure-time
parameterization. Regardless of metric, the likelihood function is the same, and models are equally
appropriate in either metric; it is just a matter of changing interpretation.

time must be specified at estimation.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is
specified, robust variances are clustered at the highest level in the multilevel model.

� � �
Reporting �

level(#); see [R] Estimation options.

nohr, which may be specified at estimation or upon redisplaying results, specifies that coefficients
rather than exponentiated coefficients be displayed, that is, that coefficients rather than hazard ratios
be displayed. This option affects only how coefficients are displayed, not how they are estimated.

This option is valid only for the exponential and Weibull models because they have a natu-
ral proportional-hazards parameterization. These two models, by default, report hazards ratios
(exponentiated coefficients).

tratio specifies that exponentiated coefficients, which are interpreted as time ratios, be displayed.
tratio is appropriate only for the loglogistic, lognormal, and gamma models or for the exponential
and Weibull models when fit in the accelerated failure-time metric.

tratio may be specified at estimation or upon replay.

noshow prevents mestreg from showing the key st variables. This option is rarely used because most
users type stset, show or stset, noshow to set once and for all whether they want to see these
variables mentioned at the top of the output of every st command; see [ST] stset.

nocnsreport; see [R] Estimation options.

notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.
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� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model.
mvaghermite performs mean–variance adaptive Gauss–Hermite quadrature; mcaghermite per-
forms mode-curvature adaptive Gauss–Hermite quadrature; ghermite performs nonadaptive Gauss–
Hermite quadrature; and laplace performs the Laplacian approximation, equivalent to mode-
curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in
which case the default integration method is laplace. The Laplacian approximation has been
known to produce biased parameter estimates; however, the bias tends to be more prominent in
the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be
prohibitively intensive even for a small number of levels. For this reason, the integration method
defaults to the Laplacian approximation. You may override this behavior by specifying a different
integration method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option
is not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases as a function of the number of quadrature points raised to a power
equaling the dimension of the random-effects specification. In crossed random-effects models and
in models with many levels or many random coefficients, this increase can be substantial.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. Those that require
special mention for mestreg are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

The following options are available with mestreg but are not shown in the dialog box:

startvalues(svmethod), startgrid
[
(gridspec)

]
, noestimate, and dnumerical; see [ME]

meglm.

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
For a general introduction to me commands, see [ME] me.

Remarks are presented under the following headings:

Introduction
Two-level models
Three-level models
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Introduction

Mixed-effects survival models contain both fixed effects and random effects. In longitudinal data
and panel data, random effects are useful for modeling intracluster correlation; that is, observations
in the same cluster are correlated because they share common cluster-level random effects.

mestreg allows for many levels of random effects. However, for simplicity, we now consider
two-level models, where we have a series of M independent clusters and a set of random effects
uj corresponding to those clusters. Two often-used models for adjusting survivor functions for the
effects of covariates are the accelerated failure-time (AFT) model and the multiplicative or proportional
hazards (PH) model.

In the AFT model, the natural logarithm of the survival time, log t, is expressed as a linear function
of the covariates; when we incorporate random-effects, this yields the model

logtji = xjiβ+ zjiuj + vji

for j = 1, . . . ,M clusters, with cluster j consisting of i = 1, . . . , nj observations. The 1 × p row
vector xji contains the covariates for the fixed effects, with regression coefficients (fixed effects) β.

The 1×q vector zji contains the covariates corresponding to the random effects and can be used to
represent both random intercepts and random coefficients. For example, in a random-intercept model,
zji is simply the scalar 1. The random effects uj are M realizations from a multivariate normal
distribution with mean 0 and q× q variance matrix Σ. The random effects are not directly estimated
as model parameters but are instead summarized according to the unique elements of Σ, known as
variance components.

Finally, vji are the observation-level errors with density ϕ(·). The distributional form of the error
term determines the regression model. Five regression models are implemented in mestreg using
the AFT parameterization: exponential, gamma, loglogistic, lognormal, and Weibull. The lognormal
regression model is obtained by letting ϕ(·) be the normal density. Similarly, by letting ϕ(·) be the
logistic density, one obtains the loglogistic regression. Setting ϕ(·) equal to the extreme-value density
yields the exponential and the Weibull regression models.

In the PH models fit by mestreg, the covariates have a multiplicative effect on the hazard function

h(tji) = h0(tji) exp(xjiβ+ zjiuj)

for some baseline hazard function h0(t). For the mestreg command, h0(t) is assumed to be parametric.
The exponential and Weibull models are implemented in mestreg for the PH parameterization. These
two models are implemented using both the AFT and PH parameterizations.

mestreg is suitable only for data that have been stset. By using stset on your data, you define
the variables t0, t, and d, which serve as the trivariate response variable (t0, t, d). Each response
corresponds to a period under observation, (t0, t], resulting in either failure (d = 1) or right-censoring
(d = 0) at time t.

mestreg does not allow delayed entry or gaps. However, mestreg is appropriate for data exhibiting
multiple records per subject and time-varying covariates. mestreg requires subjects to be nested within
clusters.

stset weights are not used; instead, weights must be specified at estimation. Weights are not
allowed with crossed models or the Laplacian approximation. See Survey estimation in Methods and
formulas for details.
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Two-level models

Example 1: Two-level random-intercept PH model

In example 11 of [ST] streg, we fit a Weibull model with an inverse-Gaussian shared frailty to the
recurrence times for catheter-insertion point infection for 38 kidney dialysis patients. In this example,
the subjects are the catheter insertions, not the patients themselves. This is a function of how the
data were recorded—the onset of risk occurs at the time the catheter is inserted and not, say, at the
time of admission of the patient into the study. Thus we have two subjects (insertions) within each
group (patient). Each catheter insertion results in either infection (infect==1) or right-censoring
(infect==0). The stset results are shown below.

. use https://www.stata-press.com/data/r18/catheter
(Kidney data, McGilchrist and Aisbett, Biometrics, 1991)

. stset
-> stset time, failure(infect)

Survival-time data settings

Failure event: infect!=0 & infect<.
Observed time interval: (0, time]

Exit on or before: failure

76 total observations
0 exclusions

76 observations remaining, representing
58 failures in single-record/single-failure data

7,424 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 562

While it is reasonable to assume independence of patients, we would not want to assume that
recurrence times within each patient are independent. The model used in [ST] streg allowed us to
model the correlation by assuming that it was the result of a latent patient-level effect, or frailty.

The random-effects approach used by mestreg is more flexible because it allows you to experiment
with several levels of random effects, including random coefficients, or both. You can then choose
the model that best suits your data. Here we use mestreg to fit a random-effects Weibull model
with normally distributed random effects. This model can be viewed as a shared frailty model with
lognormal frailty.
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. mestreg age female || patient:, distribution(weibull)

Failure _d: infect
Analysis time _t: time

Fitting fixed-effects model:

Iteration 0: Log likelihood = -1700989.9
Iteration 1: Log likelihood = -440.1998
Iteration 2: Log likelihood = -336.62162
Iteration 3: Log likelihood = -334.64937
Iteration 4: Log likelihood = -334.57959
Iteration 5: Log likelihood = -334.57944
Iteration 6: Log likelihood = -334.57944

Refining starting values:

Grid node 0: Log likelihood = -336.03604

Fitting full model:

Iteration 0: Log likelihood = -336.03604 (not concave)
Iteration 1: Log likelihood = -333.14043
Iteration 2: Log likelihood = -330.40952
Iteration 3: Log likelihood = -329.89242
Iteration 4: Log likelihood = -329.87847
Iteration 5: Log likelihood = -329.87832
Iteration 6: Log likelihood = -329.87832

Mixed-effects Weibull PH regression Number of obs = 76
Group variable: patient Number of groups = 38

Obs per group:
min = 2
avg = 2.0
max = 2

Integration method: mvaghermite Integration pts. = 7

Wald chi2(2) = 10.12
Log likelihood = -329.87832 Prob > chi2 = 0.0063

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

age 1.007348 .013788 0.53 0.593 .9806828 1.034737
female .1904727 .099992 -3.16 0.002 .0680737 .5329493
_cons .0072901 .0072274 -4.96 0.000 .0010444 .0508881

/ln_p .2243233 .1402795 -.0506195 .4992661

patient
var(_cons) .8308495 .4978425 .256735 2.688808

Note: Estimates are transformed only in the first equation to hazard ratios.
Note: _cons estimates baseline hazard (conditional on zero random effects).
LR test vs. Weibull model: chibar2(01) = 9.40 Prob >= chibar2 = 0.0011

The results are similar to those in [ST] streg. The likelihood-ratio test compares the random-effects
model with a survival model with fixed-effects only. The results support the random-effects model.

By default, when fitting a model with the PH parameterization, mestreg displays exponentiated
coefficients, labeled as hazard ratios. These hazard ratios should be interpreted as “conditional hazard
ratios”, that is, conditional on the random effects.

For example, the hazard ratio for age is 1.01. This means that according to the model, for a
given patient, the hazard would increase 1% with each year of age. However, at the population level,
marginal hazards corresponding to different levels of the covariates are not necessarily proportional.
Example 5 in [ME] mestreg postestimation illustrates this point with simulated data.
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The exponentiated coefficients of covariates that usually remain constant within a group do not
have a natural interpretation as conditional hazard ratios. However, the magnitude of the exponentiated
coefficients always gives an idea of the effect of the covariates. In this example, female is constant
within the group. The estimated hazard ratio for female is 0.19, which indicates that hazard functions
for females tend to be smaller than hazard functions for males. Both conditional and unconditional
predictions can be obtained with predict. Unconditional predictions can be visualized by using
stcurve. Unconditional effects can be tested and visualized by using margins and marginsplot.
See example 1 in [ME] mestreg postestimation for an example using predict, margins, and
marginsplot.

Example 2: Two-level random-intercept AFT model

Although the PH parameterization is more popular in the literature because the output is easier to
interpret, the AFT parameterization is useful when we need to make comparisons with other models
that have only an AFT parameterization. For example, we might want to compare the Weibull results
from example 1 with the results from a gamma model.

Let’s redisplay the results of a Weibull PH model from example 1 as coefficients:

. mestreg, nohr

Mixed-effects Weibull PH regression Number of obs = 76
Group variable: patient Number of groups = 38

Obs per group:
min = 2
avg = 2.0
max = 2

Integration method: mvaghermite Integration pts. = 7

Wald chi2(2) = 10.12
Log likelihood = -329.87832 Prob > chi2 = 0.0063

_t Coefficient Std. err. z P>|z| [95% conf. interval]

age .0073207 .0136874 0.53 0.593 -.0195062 .0341476
female -1.658247 .5249676 -3.16 0.002 -2.687164 -.629329
_cons -4.921236 .9914009 -4.96 0.000 -6.864346 -2.978126

/ln_p .2243233 .1402795 -.0506195 .4992661

patient
var(_cons) .8308495 .4978425 .256735 2.688808

LR test vs. Weibull model: chibar2(01) = 9.40 Prob >= chibar2 = 0.0011
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We can refit the Weibull model using the AFT parameterization by specifying option time.

. mestreg age female || patient:, distribution(weibull) time

Failure _d: infect
Analysis time _t: time

Fitting fixed-effects model:

Iteration 0: Log likelihood = -346.46486
Iteration 1: Log likelihood = -343.29515
Iteration 2: Log likelihood = -335.0513
Iteration 3: Log likelihood = -334.58308
Iteration 4: Log likelihood = -334.57944
Iteration 5: Log likelihood = -334.57944

Refining starting values:

Grid node 0: Log likelihood = -335.10428

Fitting full model:

Iteration 0: Log likelihood = -335.10428
Iteration 1: Log likelihood = -332.13546
Iteration 2: Log likelihood = -330.01623
Iteration 3: Log likelihood = -329.88013
Iteration 4: Log likelihood = -329.87832
Iteration 5: Log likelihood = -329.87832

Mixed-effects Weibull AFT regression Number of obs = 76
Group variable: patient Number of groups = 38

Obs per group:
min = 2
avg = 2.0
max = 2

Integration method: mvaghermite Integration pts. = 7

Wald chi2(2) = 13.00
Log likelihood = -329.87832 Prob > chi2 = 0.0015

_t Coefficient Std. err. z P>|z| [95% conf. interval]

age -.0058496 .010872 -0.54 0.591 -.0271585 .0154592
female 1.325034 .3719102 3.56 0.000 .596103 2.053964
_cons 3.932346 .5663757 6.94 0.000 2.82227 5.042422

/ln_p .2243237 .1402794 -.0506189 .4992663

patient
var(_cons) .5304902 .2343675 .2231626 1.261053

LR test vs. Weibull model: chibar2(01) = 9.40 Prob >= chibar2 = 0.0011

The estimates of coefficients and variance components are different between the two models. In
fact, the coefficients have the opposite signs. This is expected because the two models have different
parameterizations. The relationship between the coefficients and variances of the two parameterizations
for the Weibull model is

βPH = −p× βAFT

varPH = p2 × varAFT

where p denotes the ancillary parameter. It is estimated in the logarithmic metric and is displayed in
the output as /ln p.

For example, we could calculate βPH for female as approximately − exp(0.22)× 1.33 = −1.66.
If we exponentiate this to obtain the hazard ratio that was reported in example 1, we obtain the same
reported result, 0.19.
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For a discussion of the differences between the PH and AFT parameterizations, see, for example,
Cleves, Gould, and Marchenko (2016).

Now, we can compare the results from our Weibull specification with the results from a gamma
specification.

. mestreg age female || patient:, distribution(gamma)

Failure _d: infect
Analysis time _t: time

Fitting fixed-effects model:

Iteration 0: Log likelihood = -351.17349
Iteration 1: Log likelihood = -337.04571
Iteration 2: Log likelihood = -335.10167
Iteration 3: Log likelihood = -335.09115
Iteration 4: Log likelihood = -335.09115

Refining starting values:

Grid node 0: Log likelihood = -334.49759

Fitting full model:

Iteration 0: Log likelihood = -334.49759
Iteration 1: Log likelihood = -331.87827
Iteration 2: Log likelihood = -329.64795
Iteration 3: Log likelihood = -329.52682
Iteration 4: Log likelihood = -329.52635
Iteration 5: Log likelihood = -329.52634

Mixed-effects gamma AFT regression Number of obs = 76
Group variable: patient Number of groups = 38

Obs per group:
min = 2
avg = 2.0
max = 2

Integration method: mvaghermite Integration pts. = 7

Wald chi2(2) = 13.23
Log likelihood = -329.52634 Prob > chi2 = 0.0013

_t Coefficient Std. err. z P>|z| [95% conf. interval]

age -.0060276 .0108267 -0.56 0.578 -.0272475 .0151924
female 1.324745 .3685132 3.59 0.000 .6024726 2.047018
_cons 3.873854 .5628993 6.88 0.000 2.770592 4.977117

/logs -.1835075 .1008892 -.3812467 .0142317

patient
var(_cons) .5071823 .2241959 .213254 1.206232

LR test vs. gamma model: chibar2(01) = 11.13 Prob >= chibar2 = 0.0004

The coefficients and the random-effects variance are very similar for the two AFT models.

We can compare the marginal distributions or hazard functions for the two models by using
stcurve; see example 2 in [ME] mestreg postestimation.
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Example 3: Two-level random-slope model

In this example, we use a modified form of the dataset from Rabe-Hesketh and Skrondal (2022,
sec. 15.7), previously published in Danahy et al. (1977) and analyzed by Pickles and Crouchley (1994,
1995) and Rabe-Hesketh, Skrondal, and Pickles (2004).

angina.dta includes data on 21 patients with coronary heart disease who participated in a
randomized crossover trial comparing a drug to prevent angina (chest pain) with a placebo. The
participants are identified by pid.

Before receiving the drug (or placebo), participants were asked to exercise on exercise bikes to the
onset of angina or, if angina did not occur, to exhaustion. The exercise time, seconds, and the result
of the exercise, angina—angina (angina=1) or exhaustion (angina=0)—were recorded. The drug
(treat=1) or placebo (treat=0) was then taken orally, and the exercise test was repeated one, three,
and five hours (variable occasion) after drug or placebo administration. Because each exercise test
can have a failure (the occurrence of angina), the test is the subject. Each test is identified by tid.
Failure is indicated by the variable angina. In this case, we have eight repeated measures per study
participant.

Before fitting the model, we stset our data:

. use https://www.stata-press.com/data/r18/angina
(Angina drug data, Rabe-Hesketh and Skrondal (2021, ch. 15.7))

. stset seconds, failure(angina) id(tid)

Survival-time data settings

ID variable: tid
Failure event: angina!=0 & angina<.

Observed time interval: (seconds[_n-1], seconds]
Exit on or before: failure

168 total observations
0 exclusions

168 observations remaining, representing
168 subjects
155 failures in single-failure-per-subject data

47,267 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 743

To reiterate, we specify seconds as the time variable, angina as the failure variable, and tid as
the variable identifying multiple observations per test.

Rabe-Hesketh and Skrondal (2022) apply several models to this dataset, including a lognormal
model and a Cox model with random effects. We fit a Weibull model with covariates occasion and
treat and interaction between occasion and treat. We include a random effect at the subject
level.
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. mestreg occasion##treat || pid:, distribution(weibull) nofvlabel

Failure _d: angina
Analysis time _t: seconds

ID variable: tid
note: 1.occasion#1.treat identifies no observations in the sample.
note: 4.occasion#1.treat omitted because of collinearity.

(output omitted )
Mixed-effects Weibull PH regression Number of obs = 168
Group variable: pid Number of groups = 21

Obs per group:
min = 8
avg = 8.0
max = 8

Integration method: mvaghermite Integration pts. = 7

Wald chi2(6) = 78.14
Log likelihood = -885.67135 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

occasion
2 .719456 .2031744 -1.17 0.244 .4136423 1.251364
3 .902988 .2542476 -0.36 0.717 .5200146 1.568009
4 1.264262 .3516347 0.84 0.399 .7329746 2.180648

1.treat .3825531 .128784 -2.85 0.004 .1977608 .7400195

occasion#
treat
1 1 1 (empty)
2 1 .1576401 .0804767 -3.62 0.000 .0579589 .4287586
3 1 .4512793 .2127706 -1.69 0.091 .1791093 1.137032
4 1 1 (omitted)

_cons 4.90e-13 9.98e-13 -13.91 0.000 9.03e-15 2.66e-11

/ln_p 1.640297 .0689544 1.505149 1.775445

pid
var(_cons) 4.529641 1.544175 2.322124 8.835725

Note: Estimates are transformed only in the first equation to hazard ratios.
Note: _cons estimates baseline hazard (conditional on zero random effects).
LR test vs. Weibull model: chibar2(01) = 177.40 Prob >= chibar2 = 0.0000

Because individuals were exercising without the administration of a placebo or treatment at the first
occasion (occasion==1), the category for interaction between occasion==1 and treat==1 is empty.

The estimated variance at the individual level (that is, the variance between individuals) is equal
to 4.53. The likelihood-ratio test shows evidence in favor of the random-effects model versus the
fixed-effects model.

The parameter p is exp(1.640297) = 5.16, which is larger than 1. This means that the estimated
hazard (conditional on the covariates and on the random effects) is a monotonically increasing function
if we assume a Weibull distribution.
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The model contains interaction terms for occasion and treat. Interpretation of interaction terms
is usually less straightforward. Briefly, to interpret the exponentiated coefficients as conditional hazard
ratios, we need to examine all the covariates in the interaction. The hazard function for pid = j,
when we set occasion = k and treat = l, will be

h(t) = h0(t)× exp(βocck + βtreatl + βocck×treatl + cons + uj)

where βocck , βtreatl , and βocck×treatl are, respectively, the coefficients for the dummies for
occasion = k and treat = l and the interaction (occasion = k × treatment = l).

For example, when treat = 0, the hazard function is

h(t|treat = 0, occasion = k, pid = j) = h0(t)× exp(βocck + cons + uj)

where βocc1 is equal to 0 because occasion = 1 is the base category. This means that for a given
pid,

h(t|treat = 0, occ = k, pid = j)

h(t|treat = 0, occ = 1, pid = j)
= exp(βocck)

Notice that this is only true within pid, because different participants have different ujs.

The coefficients have already been exponentiated, so we can see clearly that according to this
model, when there is no treatment, the hazard for occasion 2 is smaller than the hazard for occasion 1.
The increasing ratios indicate that the hazard increases with the occasion. Similar calculations could
be performed for other interaction terms.

The easiest way to interpret models with interactions is by using margins and marginsplot,
which allow us to compute and then visualize unconditional predictions and marginal effects. See
[R] margins for more information.

Above we assumed a constant treatment effect for all individuals for each occasion. However, we
may instead believe that the treatment effect varies also with individuals. This can be modeled by
adding a random coefficient for the treatment, i.treat, at the individual level; we also include the
covariance(unstructured) option to estimate a covariance term between the random intercept
and the random slope for 1.treat.
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. mestreg occasion##treat || pid: i.treat, distribution(weibull)
> covariance(unstructured) nofvlabel

Failure _d: angina
Analysis time _t: seconds

ID variable: tid
note: 1.occasion#1.treat identifies no observations in the sample.
note: 4.occasion#1.treat omitted because of collinearity.

(output omitted )
Mixed-effects Weibull PH regression Number of obs = 168
Group variable: pid Number of groups = 21

Obs per group:
min = 8
avg = 8.0
max = 8

Integration method: mvaghermite Integration pts. = 7

Wald chi2(6) = 50.18
Log likelihood = -859.50038 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

occasion
2 .5993591 .1861745 -1.65 0.099 .3260503 1.101766
3 .8643306 .2560242 -0.49 0.623 .483665 1.544597
4 1.333201 .3843218 1.00 0.318 .7577392 2.345694

1.treat .2147751 .1280091 -2.58 0.010 .0667814 .6907365

occasion#
treat
1 1 1 (empty)
2 1 .1594337 .0885644 -3.31 0.001 .0536714 .4736058
3 1 .4632936 .2273925 -1.57 0.117 .1770402 1.212385
4 1 1 (omitted)

_cons 6.21e-17 1.75e-16 -13.20 0.000 2.44e-19 1.58e-14

/ln_p 1.91931 .0736166 1.775024 2.063596

pid
var(1.treat) 4.682507 1.956897 2.064178 10.62208

var(_cons) 6.939041 2.372975 3.549852 13.56403

pid
cov(1.treat,

_cons) 1.73782 1.313054 1.32 0.186 -.8357182 4.311357

Note: Estimates are transformed only in the first equation to hazard ratios.
Note: _cons estimates baseline hazard (conditional on zero random effects).
LR test vs. Weibull model: chi2(3) = 229.74 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.
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We obtain somewhat different estimates of hazard ratios, but our inferential conclusions remain the
same. We now observe two variances in the output, the variance for the intercept at the individual level
and the variance for the coefficient for treatment at the individual level. The variance for the intercept
is smaller because some of the variability is now explained by varying coefficients for treatment.
The covariance is positive, meaning that the random slope tends to be larger for individuals who
have a larger random intercept. See example 4 in [ME] mestreg postestimation for an application of
predict that presents a graphical analysis of this relationship.

Three-level models

Example 4: Three-level random-slope model

Blossfeld, Golsch, and Rohwer (2007) analyze a dataset based on the German Life History Study
of Mayer and Brückner (1989), collected in the years 1981–1983. (This dataset is also available in
Blossfeld, Rohwer, and Schneider (2019), a second edition of the 2007 reference.) The jobhistory
dataset contains a modified version of Blossfeld, Golsch, and Rohwer’s anonymization of a random
sample of 201 respondents from the original data. Each of the 600 observations in the dataset
corresponds to a job episode. Variable id contains identification of the individual, tstart contains
the starting point of the job (in months from the beginning of the century), tend is the end of the
job episode, and failure indicates whether the date in tend corresponds to the actual end of the
employment in a certain job or whether it is a censored observation.

We first stset the data. As explained in Cleves (1999) and Therneau and Grambsch (2000), when
analyzing multiple-failure data, we can consider two main approaches. One approach is to define the
study time from the first time that an individual starts being at risk. The second approach is to define
the study time from the last failure. We will take the second approach, which means that we treat
each job episode as the subject.

Therefore, the origin is defined as the start of each job episode, and the study time will be the
time from the start of each episode until the jobs end or the episode is censored.

. use https://www.stata-press.com/data/r18/jobhistory
(Job history data, Event History Analysis with Stata, Blossfeld et al. 2007)

. stset tend, origin(tstart) failure(failure)

Survival-time data settings

Failure event: failure!=0 & failure<.
Observed time interval: (origin, tend]

Exit on or before: failure
Time for analysis: (time-origin)

Origin: time tstart

600 total observations
0 exclusions

600 observations remaining, representing
458 failures in single-record/single-failure data

40,782 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 428
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We want to fit a Weibull model using the education level, the number of previous jobs, the prestige
of the current job, and gender as explanatory variables. education records the highest education level
before entering the labor market, njobs contains the number of previous jobs for each individual,
and prestige is an index for the prestige of the current job. The birthyear variable indicates the
year of birth. female is 1 for women, 0 for men. To account for individual heterogeneity, we include
a random effect at the individual level.

. mestreg education njobs prestige i.female || id:, distribution(weibull)

Failure _d: failure
Analysis time _t: (tend-origin)

Origin: time tstart

Fitting fixed-effects model:

Iteration 0: Log likelihood = -5736904.5
Iteration 1: Log likelihood = -2664.7487
Iteration 2: Log likelihood = -2484.7829
Iteration 3: Log likelihood = -2477.4358
Iteration 4: Log likelihood = -2477.3338
Iteration 5: Log likelihood = -2477.3337

Refining starting values:

Grid node 0: Log likelihood = -2491.2191

Fitting full model:

Iteration 0: Log likelihood = -2491.2191 (not concave)
Iteration 1: Log likelihood = -2468.3995
Iteration 2: Log likelihood = -2450.0938
Iteration 3: Log likelihood = -2443.0739
Iteration 4: Log likelihood = -2442.875
Iteration 5: Log likelihood = -2442.8747
Iteration 6: Log likelihood = -2442.8746

Mixed-effects Weibull PH regression Number of obs = 600
Group variable: id Number of groups = 201

Obs per group:
min = 1
avg = 3.0
max = 9

Integration method: mvaghermite Integration pts. = 7

Wald chi2(4) = 87.38
Log likelihood = -2442.8746 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

education 1.11897 .0463468 2.71 0.007 1.031722 1.213597
njobs .7071195 .0357624 -6.85 0.000 .6403884 .7808043

prestige .9677567 .0069576 -4.56 0.000 .9542157 .98149
1.female 1.75651 .3185526 3.11 0.002 1.231063 2.506228

_cons .0053352 .0029015 -9.62 0.000 .0018376 .0154904

/ln_p .1695545 .0453649 .0806409 .2584681

id
var(_cons) 1.016459 .2149037 .671623 1.538347

Note: Estimates are transformed only in the first equation to hazard ratios.
Note: _cons estimates baseline hazard (conditional on zero random effects).
LR test vs. Weibull model: chibar2(01) = 68.92 Prob >= chibar2 = 0.0000

The estimated variance of the random intercept is equal to 1.02

According to this model, an increase in the number of previous jobs is negatively associated with
job mobility; the same is true for an increase in the prestige of the current job. By contrast, an
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increase in the years of education is positively associated with job mobility. Also, women seem to
be more mobile than men.

We now store our estimates for later use:

. estimates store randint

The dataset has only two natural levels. However, for illustration purposes, let’s consider the
following situation. Assume that we want to account for unobserved variables associated with the
date of birth, such as life experience, level of familiarity with new technologies, and family situation.
We therefore add a random effect for the year of birth. Now, individuals will be nested within birth
years.

. mestreg education njobs prestige i.female || birthyear: || id:,
> distribution(weibull)

Failure _d: failure
Analysis time _t: (tend-origin)

Origin: time tstart

(output omitted )

Mixed-effects Weibull PH regression Number of obs = 600

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

birthyear 12 3 50.0 99
id 201 1 3.0 9

Integration method: mvaghermite Integration pts. = 7

Wald chi2(4) = 83.20
Log likelihood = -2439.9066 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

education 1.120373 .045203 2.82 0.005 1.035189 1.212566
njobs .7181197 .0372039 -6.39 0.000 .6487813 .7948686

prestige .966567 .0069189 -4.75 0.000 .9531009 .9802234
1.female 1.734236 .3022479 3.16 0.002 1.232419 2.440384

_cons .0059091 .0031758 -9.55 0.000 .0020609 .0169429

/ln_p .1685641 .0454824 .0794203 .257708

birthyear
var(_cons) .0950371 .0741445 .0205976 .4385006

birthyear>id
var(_cons) .8728384 .2020938 .5544339 1.374099

Note: Estimates are transformed only in the first equation to hazard ratios.
Note: _cons estimates baseline hazard (conditional on zero random effects).
LR test vs. Weibull model: chi2(2) = 74.85 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

The results for the fixed part of the model are similar to the ones in the previous model.

Now, we have two estimated variances—one estimate for the random intercept at the individual
level and one estimate for the random intercept at the birth-year level.

The variance component for the individual level is smaller for this model, and it looks as if the first
model might have been trying to explain a variance component at the birth-year level by incorporating
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it into the individual-level variance. We can perform a likelihood-ratio test to compare the stored
model randint with the current model:

. lrtest randint .

Likelihood-ratio test
Assumption: randint nested within .

LR chi2(1) = 5.94
Prob > chi2 = 0.0148

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

The test is conservative because we are testing on the boundary of the parameter space; see
Distribution theory for likelihood-ratio test in [ME] me for details. Provided that we are testing only
one variance component, we can adjust the p-value accordingly by dividing the reported value by
two, which results in an adjusted p-value equal to 0.0074.

The test is significant at the 0.05 level. It supports the three-level model with the additional variance
component at the birth-year level.

Stored results
mestreg stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(k f) number of fixed-effects parameters
e(k r) number of random-effects parameters
e(k rs) number of variances
e(k rc) number of covariances
e(df m) model degrees of freedom
e(ll) log likelihood
e(chi2) χ2

e(p) p-value for model test
e(ll c) log likelihood, comparison model
e(chi2 c) χ2, comparison test
e(df c) degrees of freedom, comparison test
e(p c) p-value for comparison test
e(N clust) number of clusters
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) gsem
e(cmd2) mestreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression (first-level weights)
e(fweightk) fweight variable for kth highest level, if specified
e(iweightk) iweight variable for kth highest level, if specified
e(pweightk) pweight variable for kth highest level, if specified
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e(covariates) list of covariates
e(ivars) grouping variables
e(model) model name
e(title) title in estimation output
e(distribution) distribution
e(clustvar) name of cluster variable
e(offset) offset
e(intmethod) integration method
e(n quad) number of integration points
e(chi2type) Wald; type of model χ2

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(frm2) hazard or time
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(N g) group counts
e(g min) group-size minimums
e(g avg) group-size averages
e(g max) group-size maximums
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

Survival models
Survey data
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Survival models
Survival models have a trivariate response (t0, t, d):

t0 is the starting time under observation t0 ≥ 0;

t is the ending time under observation t ≥ t0; and

d is an indicator for failure d ∈ {0, 1}.
The survival function for a given family is the complement of the cumulative distribution function,
S(t) = 1− F (t). The unconditional density for a failure at time t is given by

g(t) =
∂F (t)

∂t
= −∂S(t)

∂t
Some distributions contain ancillary parameters that are not denoted here.

The conditional density for a failure at time t is

g(t|t ≥ t0, d = 1) = g(t)/S(t0)

and the conditional probability of survival without failure up to time t is

P (T ≥ t|t ≥ t0, d = 0) = S(t)/S(t0)

The conditional likelihood is given by

L(t, t0, d) =

{
g(t)

S(t0)

}d{
S(t)

S(t0)

}1−d

See Survival distributions in [SEM] Methods and formulas for gsem for the specific density function
corresponding to each distribution.

Given a set of cluster-level random effects uj for j = 1, . . . ,M , the conditional distribution of
tj = (tj1, . . . , tjnj )

′ on ηj = Xjβ+ Zjuj = (xj1β+ zjiuj , . . . ,xjnjβ+ zjnjuj) for cluster j is

f(tj |ηj) =

nj∏
i=1

f(tji|ηji)

where f(tji|ηji) is the contribution to the likelihood from observation ji; that is,

f(tji|ηji) =

{
g(tji|xjiβ+ zjiuj)

S(t0ji|xjiβ+ zjiuj)

}dji { S(tji|xjiβ+ zjiuj)

S(t0ji|xjiβ+ zjiuj)

}1−dji
(1)

where g(t|η) and S(t|η) are, respectively, the density and the survivor function conditional on the
linear prediction η.

As mentioned in Introduction under Remarks and examples, mestreg does not allow delayed
entry or gaps. Therefore, the first observation for a given subject will have a value of t0 = 0, and
subsequent spells for the subject must start at the end of the previous spell. That is, if observations
ji and j, i+ 1 belong to the same subject, then t0j,i+1 = tji.

Because the prior distribution of uj is multivariate normal with mean 0 and q× q variance matrix
Σ, the likelihood contribution for the jth cluster is obtained by integrating uj out of the joint density
f(tj ,uj),

Lj(β,Σ) = (2π)−q/2 |Σ|−1/2
∫
f(tj |Xjβ+ Zjuj) exp

(
−u′jΣ

−1uj/2
)
duj (2)

The integration in (2) has no closed form and thus must be approximated; see Methods and formulas
in [ME] meglm for details.
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Survey data

In the presence of sampling weights, following Rabe-Hesketh and Skrondal (2006), the weighted
log pseudolikelihood for a two-level model is given as

L(β,Σ) =

M∑
j=1

wj log
∫ ∞
−∞

exp

{
nj∑
i=1

wi|j logf(tji|ηji)

}
φ(vj1) dvj1

where wj is the inverse of the probability of selection for the jth cluster; wi|j is the inverse of the
conditional probability of selection of individual i, given the selection of cluster j; f(tji|ηji) is as
in (1); and ηji, φ(·), vj1 are defined as in Methods and formulas in [ME] meglm.

Weighted estimation is achieved through the direct application of wj and wi|j into the likelihood
calculations as detailed above to reflect replicated clusters for wj and replicated observations within
clusters for wi|j . Because this estimation is based on replicated clusters and observations, frequency
weights are handled similarly.
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der Erhebung von Lebensverläufen der Geburtsjahrgänge 1929–1931, 1939–1941, 1949–1951. Materialien aus der
Bildungsforschung 35, Max-Planck-Institut für Bildungsforschung, Berlin.

McCulloch, C. E., S. R. Searle, and J. M. Neuhaus. 2008. Generalized, Linear, and Mixed Models. 2nd ed. Hoboken,
NJ: Wiley.

McLachlan, G. J., and K. E. Basford. 1988. Mixture Models: Inference and Applications to Clustering. New York:
Dekker.

Pickles, A., and R. Crouchley. 1994. Generalizations and applications of frailty models for survival and event data.
Statistical Methods in Medical Research 3: 263–278. https://doi.org/10.1177/096228029400300305.

. 1995. A comparison of frailty models for multivariate survival data. Statistics in Medicine 14: 1447–1461.
https://doi.org/10.1002/sim.4780141305.

http://www.stata-journal.com/article.html?article=st0112
http://www.stata-journal.com/article.html?article=st0112
http://www.stata.com/bookstore/event-history-analysis-stata/
https://www.stata.com/support/faqs/statistics/multiple-failure-time-data
https://www.stata.com/support/faqs/statistics/multiple-failure-time-data
http://www.stata-press.com/books/survival-analysis-stata-introduction/
https://doi.org/10.1177/1536867X19893639
https://doi.org/10.1161/01.cir.55.2.381
https://doi.org/10.1016/j.csda.2008.05.002
https://doi.org/10.2307/2529876
https://doi.org/10.2307/2291720
http://www.stata-journal.com/article.html?article=st0095
https://doi.org/10.1177/096228029400300305
https://doi.org/10.1002/sim.4780141305


mestreg — Multilevel mixed-effects parametric survival models 443

Rabe-Hesketh, S., and A. Skrondal. 2006. Multilevel modelling of complex survey data. Journal of the Royal Statistical
Society, Series A 169: 805–827. https://doi.org/10.1111/j.1467-985X.2006.00426.x.

. 2022. Multilevel and Longitudinal Modeling Using Stata. 4th ed. College Station, TX: Stata Press.

Rabe-Hesketh, S., A. Skrondal, and A. Pickles. 2004. Generalized multilevel structural equation modeling. Psychometrika
69: 167–190. https://doi.org/10.1007/BF02295939.

. 2005. Maximum likelihood estimation of limited and discrete dependent variable models with nested random
effects. Journal of Econometrics 128: 301–323. https://doi.org/10.1016/j.jeconom.2004.08.017.

Raudenbush, S. W., and A. S. Bryk. 2002. Hierarchical Linear Models: Applications and Data Analysis Methods.
2nd ed. Thousand Oaks, CA: Sage.

Self, S. G., and K.-Y. Liang. 1987. Asymptotic properties of maximum likelihood estimators and likeli-
hood ratio tests under nonstandard conditions. Journal of the American Statistical Association 82: 605–610.
https://doi.org/10.2307/2289471.

Skrondal, A., and S. Rabe-Hesketh. 2004. Generalized Latent Variable Modeling: Multilevel, Longitudinal, and
Structural Equation Models. Boca Raton, FL: Chapman and Hall/CRC.

Therneau, T. M., and P. M. Grambsch. 2000. Modeling Survival Data: Extending the Cox Model. New York: Springer.

Also see
[ME] mestreg postestimation — Postestimation tools for mestreg

[ME] me — Introduction to multilevel mixed-effects models

[BAYES] bayes: mestreg — Bayesian multilevel parametric survival models

[ST] streg — Parametric survival models

[ST] Glossary
[SVY] svy estimation — Estimation commands for survey data

[XT] xtstreg — Random-effects parametric survival models

[U] 20 Estimation and postestimation commands

https://doi.org/10.1111/j.1467-985X.2006.00426.x
http://www.stata-press.com/books/multilevel-longitudinal-modeling-stata/
https://doi.org/10.1007/BF02295939
https://doi.org/10.1016/j.jeconom.2004.08.017
https://doi.org/10.2307/2289471
http://www.stata.com/bookstore/glvm.html
http://www.stata.com/bookstore/glvm.html


Title

mestreg postestimation — Postestimation tools for mestreg

Postestimation commands predict margins
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Postestimation commands
The following postestimation commands are of special interest after mestreg:

Command Description

stcurve plot the survivor, hazard, and cumulative hazard functions
estat group summarize the composition of the nested groups
estat sd display variance components as standard deviations and correlations

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian

information criteria (AIC, CAIC, AICc, and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
etable table of estimation results
∗hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
∗lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combi-

nations of coefficients
predict means, medians, hazards, densities, REs, residuals, etc.
predictnl point estimates, standard errors, testing, and inference for generalized pre-

dictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

∗hausman and lrtest are not appropriate with svy estimation results.

444
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predict

Description for predict

predict creates a new variable containing predictions such as mean and median survival times,
hazards, survivor functions, linear predictions, and standard errors.

Menu for predict

Statistics > Postestimation

Syntax for predict

Syntax for obtaining predictions of the outcome and other statistics

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
] [

, statistic options
]

Syntax for obtaining estimated random effects and their standard errors

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, reffects

[
re options

]
Syntax for obtaining ML scores

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, scores

statistic Description

Main

mean mean survival time; the default
median median survival time
hazard hazard
eta fitted linear predictor
xb linear predictor for the fixed portion of the model only
stdp standard error of the fixed-portion linear prediction
surv predicted survivor function
density predicted density function
distribution predicted distribution function

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample.
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options Description

Main

conditional(ctype) compute statistic conditional on estimated random effects; default is
conditional(ebmeans)

marginal compute statistic marginally with respect to the random effects
nooffset make calculation ignoring offset or exposure

Integration

int options integration options

median may not be combined with marginal.

ctype Description

ebmeans empirical Bayes means of random effects; the default
ebmodes empirical Bayes modes of random effects
fixedonly prediction for the fixed portion of the model only

re options Description

Main

ebmeans use empirical Bayes means of random effects; the default
ebmodes use empirical Bayes modes of random effects
reses(stub* | newvarlist) calculate standard errors of empirical Bayes estimates

Integration

int options integration options

int options Description

intpoints(#) use # quadrature points to compute marginal predictions and empirical
Bayes means

iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators

tolerance(#) set convergence tolerance for computing statistics involving empirical
Bayes estimators

Options for predict

� � �
Main �

mean, the default, calculates the mean survival time.

median calculates the median survival time.

hazard calculates the hazard. When marginal is specified, marginal hazard is calculated as a ratio
of the marginal density to the marginal survivor function.

surv calculates the predicted survivor function.

eta, xb, stdp, density, distribution, scores, conditional(), marginal, and nooffset;
see [ME] meglm postestimation. marginal may not be specified with median.
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reffects, ebmeans, ebmodes, and reses(); see [ME] meglm postestimation.

� � �
Integration �

intpoints(), iterate(), and tolerance(); see [ME] meglm postestimation.

margins

Description for margins

margins estimates margins of response for mean and median survival times and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . . )

[
predict(statistic . . . ) . . .

] [
options

]
statistic Description

mean mean survival time; the default
median median survival time
xb linear predictor for the fixed portion of the model only
hazard not allowed with margins

eta not allowed with margins

stdp not allowed with margins

surv not allowed with margins

density not allowed with margins

distribution not allowed with margins

reffects not allowed with margins

scores not allowed with margins

Options conditional(ebmeans) and conditional(ebmodes) are not allowed with margins.
Option marginal is assumed where applicable if conditional(fixedonly) is not specified.

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples
Various predictions, statistics, and diagnostic measures are available after fitting a mixed-effects

parametric survival model with mestreg. For the most part, predictions center on obtaining estimates
of the survival times or hazard functions. Conditional predictions are based on the computation of
the group-specific random effects, and marginal predictions are obtained by numerically integrating
out the random effects.



448 mestreg postestimation — Postestimation tools for mestreg

Example 1 : Predicting conditional and marginal mean survival time

In example 1 of [ME] mestreg, we analyzed the time to infection of the catheter insertion point
for 38 kidney dialysis patients. We fit the following model:

. use https://www.stata-press.com/data/r18/catheter
(Kidney data, McGilchrist and Aisbett, Biometrics, 1991)

. stset time, failure(infect)
(output omitted )

. mestreg age female || patient:, distribution(weibull)
(output omitted )

The predict command allows us to compute marginal and conditional predictions. Unless stated
differently, we use the word “conditional” to mean “conditional on the empirical Bayes predictions of
the random effects”. Below we compute marginal and conditional means for the mean survival time.

. predict m_marg, mean marginal

. predict m_cond, mean conditional
(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)

Now, we can display the predictions for some of the patients.

. sort female age patient

. list patient female age m_* in 15/20, sepby(patient)

patient female age m_marg m_cond

15. 29 0 53 52.79355 22.36027
16. 29 0 53 52.79355 22.36027

17. 16 0 60 50.67546 28.01295
18. 16 0 60 50.67546 28.01295

19. 38 0 60 50.67546 49.47013
20. 38 0 60 50.67546 49.47013

We see in the output that the predicted expected conditional mean for patient 29 is equal to 22.36
(shown in m cond). This is the expected time to infection for this patient. However, the predicted
marginal mean for this patient is 52.79 (shown in m marg). This is the expected time to infection
for a patient from the population who is male and is 53 years old. This particular patient seems to
be more prone to infection than would be expected based on his age and gender.

Conditional predictions are specific to each group, while marginal predictions are the same within
each covariate pattern through the data. Patients 16 and 38 have the same covariate patterns; therefore,
their marginal predicted means are the same. However, conditional predicted means differ.
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margins and marginsplot show the changes in the marginal means for different ages.

. margins, predict(mean marginal) at(female=0 age=(20(5)70)) noatlegend

Adjusted predictions Number of obs = 76
Model VCE: OIM

Expression: Marginal predicted mean, predict(mean marginal)

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_at
1 64.03481 28.99882 2.21 0.027 7.19816 120.8715
2 62.18903 26.33284 2.36 0.018 10.57761 113.8005
3 60.39646 24.11456 2.50 0.012 13.13279 107.6601
4 58.65556 22.37001 2.62 0.009 14.81116 102.5
5 56.96484 21.11488 2.70 0.007 15.58043 98.34925
6 55.32285 20.34538 2.72 0.007 15.44663 95.19908
7 53.7282 20.03192 2.68 0.007 14.46635 92.99004
8 52.17951 20.12 2.59 0.010 12.74503 91.61398
9 50.67546 20.53852 2.47 0.014 10.42071 90.93021

10 49.21476 21.21134 2.32 0.020 7.64129 90.78823
11 47.79617 22.06715 2.17 0.030 4.545348 91.04698

. marginsplot

Variables that uniquely identify margins: age
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We see that the predicted marginal mean decreases with age; older patients are expected to have
an event earlier. This is consistent with the findings from example 1 of [ME] mestreg that the hazard
is increasing with age.
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Example 2 : Predicting survivor functions

Continuing with example 1, we now predict survivor functions.

. predict S_marg, surv marginal
(using 7 quadrature points)

. predict S_cond, surv conditional
(predictions based on fixed effects and posterior means of random effects)
(using 7 quadrature points)

. sort female age patient _t

. list patient female age _t S_* in 15/20, sepby(patient)

patient female age _t S_marg S_cond

15. 29 0 53 2 .9628581 .9564017
16. 29 0 53 25 .5165027 .3493623

17. 16 0 60 4 .9122225 .9230723
18. 16 0 60 17 .6273606 .6129264

19. 38 0 60 8 .8141544 .9107039
20. 38 0 60 63 .20487 .2900458

Survival predictions vary with the value of the study time variable because they are predictions
of the survivor function at the study time t. For example, patient 29 has a 0.96 probability that a
new insertion remains at least 2 days without infection and a 0.35 probability that a new insertion
remains at least 25 days without infection. For a randomly chosen 53-year-old male patient from the
population, the probabilities to remain at least 2 or 25 days without infection are, respectively, 0.96
and 0.52.

We can use stcurve to plot these predictions simultaneously for males and females of the same
age.

. stcurve, surv at1(female=0 age=53) at2(female=1 age=53)
(option unconditional assumed)
note: function evaluated at specified values of selected covariates and

overall means of other covariates (if any).
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We see that the survivor function for females is above the survivor function for males, which means
that females have a greater probability of not having an episode by study time t.
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Example 3 : Comparing marginal hazards

In example 2 of [ME] mestreg, we estimated two different distributions with random effects on
patient and covariates age and female. Here we compare the marginal hazards using stcurve. By
default, stcurve plots predictions at the mean of the covariates, computed over the whole estimation
sample. We plot the predictions for female==1.

. mestreg age female || patient:, dist(weibull) time
(output omitted )

. stcurve, hazard at(female=1)
(option unconditional assumed)
note: function evaluated at specified values of selected covariates and

overall means of other covariates (if any).

. graph save g1
file g1.gph saved

. mestreg age female || patient:, dist(gamma)
(output omitted )

. stcurve, hazard at(female=1)
(option unconditional assumed)
note: function evaluated at specified values of selected covariates and

overall means of other covariates (if any).

. graph save g2
file g2.gph saved

. graph combine g1.gph g2.gph
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The two estimated marginal hazards are similar. The marginal hazard has a very different shape
from the conditional hazards. The conditional hazard function for a Weibull or a gamma distribution
are both monotonic (increasing, constant, or decreasing, depending on the parameters).
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Example 4 : Obtaining predictions of random effects

In example 3 of [ME] mestreg, we fit a Weibull model with random intercepts and random
coefficients at the subject level. We obtained a positive covariance between the random effects. We
refit the model here and then use predict with the option reffects to obtain predictions of the
random effects based on the empirical Bayes posterior means.

. use https://www.stata-press.com/data/r18/angina, clear
(Angina drug data, Rabe-Hesketh and Skrondal (2021, ch. 15.7))

. mestreg occasion##treat || pid: i.treat, distribution(weibull)
> covariance(unstructured) nofvlabel

(output omitted )
. predict re*, reffects
(calculating posterior means of random effects)
(using 7 quadrature points)

Plotting the predictions of the predicted random coefficient versus the random intercept shows the
pattern we discussed in the main section: individuals with a larger random slope tend also to have a
larger random intercept.

. twoway scatter re1 re2, ytitle(EB means for random coefficient)
> xtitle(EB means for random intercept)
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Individuals with large random intercepts have individual hazards that are larger than those of other
individuals with the same covariate patterns. Also, individuals with large random coefficients have
individual conditional hazard ratios for treatment that are larger than those of other individuals with
the same covariate pattern.

In other words, if the aim of the treatment is to decrease the hazard, then the positive correlation
means that the treatment tends to be less effective for individuals who have a higher individual hazard
(within the same occasion number).

Example 5 : Conditional and marginal hazards

In example 1 of [ME] mestreg, we mentioned that hazard ratios should be interpreted as conditional
on the random effects. Here we use predict to illustrate this concept. We use a simulated dataset
for a Weibull model with random effects for group and a binary covariate x.
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We show that for a given group, the conditional hazard function satisfies the proportional-hazards
(PH) assumption. That is, for a given group j,

h(t|x = 1, group = j) = exp(βx)× h(t|x = 0, group = j)

is equivalent to

log{h(t|x = 1, group = j)} = βx + log{h(t|x = 0, group = j)}

This property of the log hazard-function translates to one curve being a shifted version of the other,
which is easier to see than the proportionality of the (untransformed) hazard function.

After fitting the model, we use predict to compute the conditional prediction of the hazard function
for group 1; we create the variables hcond0 and hcond1. hcond0 will contain the conditional hazard
for group 1 when x==0; hcond1 will contain the conditional hazard for group 1 when x==1.

We also create zcond = loghcond0 + βx. If the PH assumption is satisfied, then the plotted
values of zcond will be superimposed on those of loghcond1.

. use https://www.stata-press.com/data/r18/weibre, clear

. mestreg i.x || group:, distribution(weibull) nolog

Failure _d: 1 (meaning all fail)
Analysis time _t: t

Mixed-effects Weibull PH regression Number of obs = 100,000
Group variable: group Number of groups = 500

Obs per group:
min = 200
avg = 200.0
max = 200

Integration method: mvaghermite Integration pts. = 7

Wald chi2(1) = 21447.86
Log likelihood = 175196.47 Prob > chi2 = 0.0000

_t Haz. ratio Std. err. z P>|z| [95% conf. interval]

1.x 2.713138 .0184908 146.45 0.000 2.677137 2.749622
_cons 2.564135 .0797385 30.28 0.000 2.412518 2.725281

/ln_p -.6925791 .0024746 -.6974291 -.687729

group
var(_cons) .472804 .0303096 .4169789 .536103

Note: Estimates are transformed only in the first equation to hazard ratios.
Note: _cons estimates baseline hazard (conditional on zero random effects).
LR test vs. Weibull model: chibar2(01) = 35800.39 Prob >= chibar2 = 0.0000

. predict hcond, hazard conditional(ebmeans)
(predictions based on fixed effects and posterior means of random effects)

. gen loghcond0 = log(hcond) if x==0
(49,991 missing values generated)

. gen loghcond1 = log(hcond) if x==1
(50,009 missing values generated)

. gen zcond = loghcond0 + _b[_t:1.x]
(49,991 missing values generated)

. sort _t group
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. twoway line loghcond0 loghcond1 zcond _t if group==1

-5

0

5

10

15

0 5 10 15 20
Analysis time when record ends

loghcond0
loghcond1
zcond

In the graph above, the line for loghcond1 cannot be distinguished from the line for zcond for
most of the distribution. This illustrates that the PH assumption is satisfied for the conditional hazard.
Notice that you can still see a part of loghcond1 near the origin. This is because the two variables
correspond to different values of t and only loghcond1 happens to be defined at the early values.

Now, we make the same computation for the marginal hazard.

. predict hmarg, hazard marginal

. gen loghmarg0 = log(hmarg) if x==0
(49,991 missing values generated)

. gen loghmarg1 = log(hmarg) if x==1
(50,009 missing values generated)

. gen zmarg = loghmarg0 + _b[_t:1.x]
(49,991 missing values generated)

. sort _t group

. twoway line loghmarg0 loghmarg1 zmarg _t
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The curve for zmarg is clearly different from the curve for loghmarg1, demonstrating that the
marginal distribution does not meet the PH assumption. Notice that the line for loghmarg1 is shorter
than the others. This is because predictions are obtained at the values of t in the dataset. These
values of t were simulated based on the model, which determines that observations with x==1 fail
earlier.

Methods and formulas
Methods and formulas for predicting random effects and other statistics are given in Methods

and formulas of [ME] meglm postestimation. Statistics of special interest for survival analysis are
described below.

predict newvar with the conditional() option computes the following predictions:

median:
newvarji = {t : Ŝ(t|xji, ûji) = 1/2}

where Ŝ(t|xji, ûji) is S(t|xjiβ̂ + ûji), where ûji are the empirical Bayes predictions for uji. If
conditional(fixedonly) is specified, then 0 is substituted for ûji.

mean:

newvarji =

∫ ∞
0

Ŝ(t|xji, uji)dt

surv:
newvarji = Ŝ(tji|xji, ûji)

hazard:
newvarji = ĝ(tji|xji, ûji)/Ŝ(tji|xji, ûji)

where ĝ(t|xji, uji) is the density g(t|xjiβ̂+ ûji).

When the marginal option is used with mean or surv, the prediction is computed marginally with
respect to the random effects. That is, the prediction is integrated over the random-effects distributions.
When the marginal option is used with hazard, the hazard for the marginal distribution is computed.
That is, the predicted hazard is computed as the quotient of the marginal hazard and the marginal
survivor function.

Also see
[ME] mestreg — Multilevel mixed-effects parametric survival models

[ME] meglm postestimation — Postestimation tools for meglm

[ME] mixed postestimation — Postestimation tools for mixed

[ST] stcurve — Plot the survivor or related function after streg, stcox, and more

[U] 20 Estimation and postestimation commands
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metobit — Multilevel mixed-effects tobit regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Also see

Description

metobit fits mixed-effects models for continuous responses where the outcome variable is censored.
Censoring limits may be fixed for all observations or vary across observations.

Quick start
Without weights

Two-level tobit regression of y on x with random intercepts by lev2 where y is censored at a lower
limit of 5

metobit y x || lev2:, ll(5)

Same as above, but specify that left-censoring occurs at 5 and right-censoring occurs at 25
metobit y x || lev2:, ll(5) ul(25)

Same as above, but where lower and upper are variables containing the censoring limits
metobit y x || lev2:, ll(lower) ul(upper)

Mixed-effects model adding random coefficients for x
metobit y x || lev2: x, ll(5)

Three-level random-intercept model of y on x with lev2 nested within lev3

metobit y x || lev3: || lev2:, ll(5)

Crossed-effects model of y on x with two-way crossed random effects by factors a and b

metobit y x || _all:R.a || b:, ll(5)

With weights

Two-level tobit regression of y on x with random intercepts by lev2 and observation-level frequency
weights wvar1

metobit y x [fweight=wvar1] || lev2:, ll(5)

Two-level random-intercept model from a two-stage sampling design with PSUs identified by psu
using PSU-level and observation-level sampling weights wvar2 and wvar1, respectively

metobit y x [pweight=wvar1] || psu:, pweight(wvar2) ll(5)

Same as above, but svyset data first
svyset psu, weight(wvar2) || _n, weight(wvar1)
svy: metobit y x || psu:, ll(5)

456
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Menu
Statistics > Multilevel mixed-effects models > Tobit regression

Syntax
metobit depvar fe equation

[
|| re equation

] [
|| re equation . . .

] [
, options

]
where the syntax of fe equation is[

indepvars
] [

if
] [

in
] [

weight
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname

levelvar is a variable identifying the group structure for the random effects at that level or is all
representing one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation
offset(varname) include varname in model with coefficient constrained to 1

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
fweight(varname) frequency weights at higher levels
iweight(varname) importance weights at higher levels
pweight(varname) sampling weights at higher levels



458 metobit — Multilevel mixed-effects tobit regression

options Description

Model

ll
[
(varname | #)

]
left-censoring variable or limit

ul
[
(varname | #)

]
right-censoring variable or limit

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, opg, robust, or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
notable suppress coefficient table
noheader suppress output header
nogroup suppress table summarizing groups
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intmethod(intmethod) integration method
intpoints(#) set the number of integration (quadrature) points for all levels;

default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values
startgrid

[
(gridspec)

]
perform a grid search to improve starting values

noestimate do not fit the model; show starting values instead
dnumerical use numerical derivative techniques
collinear keep collinear variables
coeflegend display legend instead of statistics

vartype Description

independent one unique variance parameter per random effect and all covariances
0; the default unless the R. notation is used

exchangeable equal variances for random effects and one common pairwise
covariance

identity equal variances for random effects and all covariances 0; the
default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated
fixed(matname) user-selected variances and covariances constrained to specified

values; the remaining variances and covariances unrestricted
pattern(matname) user-selected variances and covariances constrained to be equal;

the remaining variances and covariances unrestricted
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intmethod Description

mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default
unless a crossed random-effects model is fit

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature
ghermite nonadaptive Gauss–Hermite quadrature
laplace Laplacian approximation; the default for crossed random-effects

models

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bayes, by, collect, and svy are allowed; see [U] 11.1.10 Prefix commands. For more details, see

[BAYES] bayes: metobit.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. Only one type of weight may be specified.

Weights are not supported under the Laplacian approximation or for crossed models.
startvalues(), startgrid, noestimate, dnumerical, collinear, and coeflegend do not appear in the dialog

box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any of or all the random-effects equations.

ll
[
(varname | #)

]
and ul

[
(varname | #)

]
indicate the lower and upper limits for censoring, re-

spectively. Observations with depvar≤ ll() are left-censored; observations with depvar≥ ul()
are right-censored; and remaining observations are not censored. You do not have to specify the
censoring values. If you specify ll, the lower limit is the minimum of depvar. If you specify ul,
the upper limit is the maximum of depvar.

offset(varname) specifies that varname be included in the fixed-effects portion of the model with
the coefficient constrained to be 1.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, unstructured, fixed(matname), or pattern(matname).

covariance(independent) covariance structure allows for a distinct variance for each random
effect within a random-effects equation and assumes that all covariances are 0. The default is
covariance(independent) unless a crossed random-effects model is fit, in which case the
default is covariance(identity).

covariance(exchangeable) structure specifies one common variance for all random effects and
one common pairwise covariance.

covariance(identity) is short for “multiple of the identity”; that is, all variances are equal
and all covariances are 0.

covariance(unstructured) allows for all variances and covariances to be distinct. If an equation
consists of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2
unique parameters.
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covariance(fixed(matname)) and covariance(pattern(matname)) covariance structures
provide a convenient way to impose constraints on variances and covariances of random effects.
Each specification requires a matname that defines the restrictions placed on variances and
covariances. Only elements in the lower triangle of matname are used, and row and column names
of matname are ignored. A missing value in matname means that a given element is unrestricted.
In a fixed(matname) covariance structure, (co)variance (i, j) is constrained to equal the
value specified in the i, jth entry of matname. In a pattern(matname) covariance structure,
(co)variances (i, j) and (k, l) are constrained to be equal if matname[i, j] = matname[k, l].

fweight(varname) specifies frequency weights at higher levels in a multilevel model, whereas
frequency weights at the first level (the observation level) are specified in the usual manner, for
example, [fw=fwtvar1]. varname can be any valid Stata variable name, and you can specify
fweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [fw = wt1] || school: . . . , fweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2
would hold the second-level (the school-level) frequency weights.

iweight(varname) specifies importance weights at higher levels in a multilevel model, whereas
importance weights at the first level (the observation level) are specified in the usual manner,
for example, [iw=iwtvar1]. varname can be any valid Stata variable name, and you can specify
iweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [iw = wt1] || school: . . . , iweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) importance weights, and wt2
would hold the second-level (the school-level) importance weights.

pweight(varname) specifies sampling weights at higher levels in a multilevel model, whereas
sampling weights at the first level (the observation level) are specified in the usual manner, for
example, [pw=pwtvar1]. varname can be any valid Stata variable name, and you can specify
pweight() at levels two and higher of a multilevel model. For example, in the two-level model

. mecmd fixed_portion [pw = wt1] || school: . . . , pweight(wt2) . . .

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would
hold the second-level (the school-level) sampling weights.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is
specified, robust variances are clustered at the highest level in the multilevel model.

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.
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display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model.
mvaghermite performs mean–variance adaptive Gauss–Hermite quadrature; mcaghermite per-
forms mode-curvature adaptive Gauss–Hermite quadrature; ghermite performs nonadaptive Gauss–
Hermite quadrature; and laplace performs the Laplacian approximation, equivalent to mode-
curvature adaptive Gaussian quadrature with one integration point.

The default integration method is mvaghermite unless a crossed random-effects model is fit, in
which case the default integration method is laplace. The Laplacian approximation has been
known to produce biased parameter estimates; however, the bias tends to be more prominent in
the estimates of the variance components rather than in the estimates of the fixed effects.

For crossed random-effects models, estimation with more than one quadrature point may be
prohibitively intensive even for a small number of levels. For this reason, the integration method
defaults to the Laplacian approximation. You may override this behavior by specifying a different
integration method.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used for each level of random effects. This option
is not allowed with intmethod(laplace).

The more integration points, the more accurate the approximation to the log likelihood. However,
computation time increases as a function of the number of quadrature points raised to a power
equaling the dimension of the random-effects specification. In crossed random-effects models and
in models with many levels or many random coefficients, this increase can be substantial.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. Those that require
special mention for metobit are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.
A list of values is not allowed.

The following options are available with metobit but are not shown in the dialog box:

startvalues(svmethod), startgrid
[
(gridspec)

]
, noestimate, and dnumerical; see [ME]

meglm.

collinear, coeflegend; see [R] Estimation options.

Remarks and examples

Mixed-effects tobit regression is tobit regression containing both fixed effects and random effects.
In longitudinal data and panel data, random effects are useful for modeling intracluster correlation;
that is, observations in the same cluster are correlated because they share common cluster-level random
effects.
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In a mixed-effects tobit regression, the values of the outcome variable may be observed, unobserved
but known to fall below a given limit (left-censored data), or unobserved but known to fall above a
given limit (right-censored data). That is, the observed data, y∗ij , represent possibly censored versions
of yij for the ith observation within the jth cluster.

The observed outcome is therefore defined as

y∗ij =


yij if a < yij < b
a if yij ≤ a
b if yij ≥ b

where a is the lower-censoring limit and b is the upper-censoring limit. If the data are uncensored,
y∗ij = yij , and the value is determined by the value of the outcome variable. If they are left-censored,
all that is known is that yij ≤ a and y∗ij is determined by ll(). If they are right-censored, all that
is known is that yij ≥ b and y∗ij is determined by ul(). The censoring limits specified in ll() and
ul() can be the same for all observations or can vary from observation to observation.

Regardless of the type of censoring, the expected value of the underlying dependent variable—say,
y—is modeled using the following linear prediction:

E(y|X,u) = Xβ+ Zu (1)

X is an n×p design/covariate matrix, analogous to the covariates you would find in a standard linear
regression model, with regression coefficients (fixed effects) β. Z is the n× q design/covariate matrix
for the random effects u. This linear prediction also contains the offset when offset() is specified.

The columns of matrix Z are the covariates corresponding to the random effects and can be used
to represent both random intercepts and random coefficients. For example, in a random-intercepts
model, Z is simply the scalar 1. The random effects u are realizations from a multivariate normal
distribution with mean 0 and q× q variance matrix Σ. The random effects are not directly estimated
as model parameters but are instead summarized according to the unique elements of Σ, known as
variance components. One special case of (1) places Z = X so that all covariate effects are essentially
random and distributed as multivariate normal with mean β and variance Σ.

Below we present a short example of mixed-effects tobit regression; refer to [ME] me and
[ME] meglm for additional examples of random-effects models. A two-level tobit model can also be
fit using xttobit; see [XT] xttobit. In the absence of random effects, mixed-effects tobit regression
reduces to standard tobit regression; see [R] tobit.

Example 1: Random-intercept model

We have wage data on young women who were between ages 14 and 24 in 1968 and who were
surveyed over the period 1968–1988; see [XT] xt for a more detailed discussion of the data. We are
interested in the effect of completed years of schooling, current age, union membership, and residence
in the South on wages.

. use https://www.stata-press.com/data/r18/nlswork
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)

We fit a mixed-effects tobit model of the log of inflation-adjusted wages (ln wage). For illustration
purposes, we use the ul() option to impose an artificial upper limit at 1.96, the 75th percentile of
the recorded log wages.
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. metobit ln_wage i.union age south##c.grade || idcode:, ul(1.96)

Fitting fixed-effects model:

Iteration 0: Log likelihood = -11628.188
Iteration 1: Log likelihood = -10617.455
Iteration 2: Log likelihood = -10555.304
Iteration 3: Log likelihood = -10554.78
Iteration 4: Log likelihood = -10554.78

Refining starting values:

Grid node 0: Log likelihood = -10225.917

Fitting full model:

Iteration 0: Log likelihood = -10225.917 (not concave)
Iteration 1: Log likelihood = -8728.9674 (not concave)
Iteration 2: Log likelihood = -7827.6894 (not concave)
Iteration 3: Log likelihood = -7112.0272
Iteration 4: Log likelihood = -6894.0253
Iteration 5: Log likelihood = -6821.7055
Iteration 6: Log likelihood = -6818.5592
Iteration 7: Log likelihood = -6818.5512
Iteration 8: Log likelihood = -6818.5512

Mixed-effects tobit regression Number of obs = 19,224
Uncensored = 13,188

Limits: Lower = -inf Left-censored = 0
Upper = 1.96 Right-censored = 6,036

Group variable: idcode Number of groups = 4,148
Obs per group:

min = 1
avg = 4.6
max = 12

Integration method: mvaghermite Integration pts. = 7

Wald chi2(5) = 2812.43
Log likelihood = -6818.5512 Prob > chi2 = 0.0000

ln_wage Coefficient Std. err. z P>|z| [95% conf. interval]

1.union .1418088 .0068398 20.73 0.000 .1284029 .1552146
age .0107585 .0004068 26.45 0.000 .0099612 .0115559

1.south -.2373995 .048346 -4.91 0.000 -.3321559 -.1426431
grade .0763865 .0029104 26.25 0.000 .0706822 .0820909

south#
c.grade

1 .0099306 .0037452 2.65 0.008 .0025902 .0172709

_cons .4146363 .0396691 10.45 0.000 .3368864 .4923862

idcode
var(_cons) .0985482 .003018 .0928071 .1046444

var(e.ln_w~e) .0619327 .000876 .0602394 .0636736

LR test vs. tobit model: chibar2(01) = 7472.46 Prob >= chibar2 = 0.0000

The estimation table reports the fixed effects, which are interpreted just as you would the output from
tobit, and the estimated variance components. Because the dependent variable is log transformed,
the fixed-effects coefficients can be interpreted in terms of a percent change. For example, we see
that on average, union members make 14.2% more than nonunion members and that each additional
year of age is associated with a 1.1% increase in wages.
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The random-effects equation is labeled idcode. The estimated variance of the subject-specific
random intercept is 0.099 with standard error 0.003. A likelihood-ratio test comparing the model with
a tobit model without random effects is provided under the table and indicates that the two-level tobit
model is preferred.

Stored results
metobit stores the following in e():

Scalars
e(N) number of observations
e(N unc) number of uncensored observations
e(N lc) number of left-censored observations
e(N rc) number of right-censored observations
e(k) number of parameters
e(k dv) number of dependent variables
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k f) number of fixed-effects parameters
e(k r) number of random-effects parameters
e(k rs) number of variances
e(k rc) number of covariances
e(df m) model degrees of freedom
e(ll) log likelihood
e(N clust) number of clusters
e(chi2) χ2

e(p) p-value for model test
e(ll c) log likelihood, comparison model
e(chi2 c) χ2, comparison test
e(df c) degrees of freedom, comparison test
e(p c) p-value for comparison test
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) meglm
e(cmd2) metobit
e(cmdline) command as typed
e(depvar) names of dependent variables
e(llopt) minimum of depvar or contents of ll()
e(ulopt) maximum of depvar or contents of ul()
e(wtype) weight type
e(wexp) weight expression (first-level weights)
e(fweightk) fweight variable for kth highest level, if specified
e(iweightk) iweight variable for kth highest level, if specified
e(pweightk) pweight variable for kth highest level, if specified
e(covariates) list of covariates
e(ivars) grouping variables
e(model) tobit
e(title) title in estimation output
e(link) identity
e(family) gaussian
e(clustvar) name of cluster variable
e(offset) offset
e(intmethod) integration method
e(n quad) number of integration points
e(chi2type) Wald; type of model χ2
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e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(N g) group counts
e(g min) group-size minimums
e(g avg) group-size averages
e(g max) group-size maximums
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
Without a loss of generality, consider a two-level regression model

E(yj |Xj ,uj) = Xjβ+ Zjuj y ∼ normal

for j = 1, . . . ,M clusters, with the jth cluster consisting of nj observations, where, for the jth
cluster, yj is the nj × 1 censored response vector, Xj is the nj × p matrix of fixed predictors, Zj is
the nj × q matrix of random predictors, uj is the q× 1 vector of random effects, and β is the p× 1
vector of regression coefficients on the fixed predictors. The random effects, uj , are assumed to be
multivariate normal with mean 0 and variance Σ.

Let ηj be the linear predictor, ηj = Xjβ + Zjuj , that also includes the offset variable when
offset() is specified. yij and ηij are the ith individual elements of yj and ηj , i = 1, . . . , nj . aij
refers to the lower limit for observation ij, and bij refers to the upper limit for observation ij. The
conditional density function for the response at observation ij is then
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f(y∗ij |ηij) =



(√
2πσε

)−1
exp−(yij−ηij)

2/(2σ2
ε ) if yij = y∗ij

Φ
(
aij−ηij
σε

)
if yij ≤ y∗ij

1− Φ
(
bij−ηij
σε

)
if yij ≥ y∗ij

where Φ(·) is the cumulative normal distribution.

Because the observations are assumed to be conditionally independent, the conditional log density
function for cluster j is

logf(y∗j |ηj) =

ni∑
j=1

logf(y∗ij |ηij)

and the likelihood function for cluster j is given by

Lj(β,Σ) = (2π)−q/2|Σ|−1/2
∫
<q
f(y∗j |ηj) exp

(
−1

2
u′jΣ

−1uj

)
duj

= (2π)−q/2|Σ|−1/2
∫
<q

exp
{

logf(y∗j |ηj)−
1

2
u′jΣ

−1uj

}
duj

(2)

where < denotes the set of values on the real line and <q is the analog in q-dimensional space.

The integration in (2) has no closed form and thus must be approximated; see Methods and
formulas in [ME] meglm for details.

metobit supports multilevel weights and survey data; see Methods and formulas in [ME] meglm
for details.

Also see
[ME] metobit postestimation — Postestimation tools for metobit

[ME] meintreg — Multilevel mixed-effects interval regression

[ME] me — Introduction to multilevel mixed-effects models

[BAYES] bayes: metobit — Bayesian multilevel tobit regression

[R] tobit — Tobit regression

[SEM] Intro 5 — Tour of models (Multilevel mixed-effects models)

[SVY] svy estimation — Estimation commands for survey data

[XT] xttobit — Random-effects tobit models

[U] 20 Estimation and postestimation commands
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metobit postestimation — Postestimation tools for metobit

Postestimation commands predict margins
Remarks and examples Methods and formulas Also see

Postestimation commands
The following postestimation commands are of special interest after metobit:

Command Description

estat group summarize the composition of the nested groups
estat icc estimate intraclass correlations
estat sd display variance components as standard deviations and correlations

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian

information criteria (AIC, CAIC, AICc, and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
etable table of estimation results
∗hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
∗lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combi-

nations of coefficients
predict means, probabilities, densities, REs, residuals, etc.
predictnl point estimates, standard errors, testing, and inference for generalized pre-

dictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

∗hausman and lrtest are not appropriate with svy estimation results.

467



468 metobit postestimation — Postestimation tools for metobit

predict

Description for predict

predict creates a new variable containing predictions such as linear predictions, standard errors,
probabilities, and expected values.

Menu for predict

Statistics > Postestimation

Syntax for predict

Syntax for obtaining predictions of the outcome and other statistics

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
] [

, statistic options
]

Syntax for obtaining estimated random effects and their standard errors

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, reffects

[
re options

]
Syntax for obtaining ML scores

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, scores

statistic Description

Main

eta fitted linear predictor; the default
xb linear predictor for the fixed portion of the model only
stdp standard error of the fixed-portion linear prediction
pr(a,b) Pr(a < y < b)
e(a,b) E(y | a < y < b)
ystar(a,b) E(y∗), y∗ = max{a,min(y, b)}

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample.

where a and b may be numbers or variables; a missing (a ≥ .) means −∞, and b missing (b ≥ .)
means +∞; see [U] 12.2.1 Missing values.
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options Description

Main

conditional(ctype) compute statistic conditional on estimated random effects; default is
conditional(ebmeans)

marginal compute statistic marginally with respect to the random effects
nooffset make calculation ignoring offset or exposure

Integration

int options integration options

ctype Description

ebmeans empirical Bayes means of random effects; the default
ebmodes empirical Bayes modes of random effects
fixedonly prediction for the fixed portion of the model only

re options Description

Main

ebmeans use empirical Bayes means of random effects; the default
ebmodes use empirical Bayes modes of random effects
reses(stub* | newvarlist) calculate standard errors of empirical Bayes estimates

Integration

int options integration options

int options Description

intpoints(#) use # quadrature points to compute marginal predictions and empirical
Bayes means

iterate(#) set maximum number of iterations in computing statistics involving
empirical Bayes estimators

tolerance(#) set convergence tolerance for computing statistics involving empirical
Bayes estimators

Options for predict� � �
Main �

eta, the default, calculates the fitted linear prediction.

pr(a,b) calculates estimates of Pr(a < y < b), which is the probability that y would be observed
in the interval (a, b).

a and b may be specified as numbers or variable names; lb and ub are variable names;
pr(20,30) calculates Pr(20 < y < 30);
pr(lb,ub) calculates Pr(lb < y < ub); and
pr(20,ub) calculates Pr(20 < y < ub).

a missing (a ≥ .) means −∞; pr(.,30) calculates Pr(−∞ < y < 30);
pr(lb,30) calculates Pr(−∞ < y < 30) in observations for which lb ≥ .
(and calculates Pr(lb < y < 30) elsewhere).
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b missing (b ≥ .) means +∞; pr(20,.) calculates Pr(+∞ > y > 20);
pr(20,ub) calculates Pr(+∞ > y > 20) in observations for which ub ≥ .
(and calculates Pr(20 < y < ub) elsewhere).

e(a,b) calculates estimates of E(y | a < y < b), which is the expected value of y conditional on
y being in the interval (a, b), meaning that y is truncated. a and b are specified as they are for
pr().

ystar(a,b) calculates estimates of E(y∗), where y∗ = a if y ≤ a, y∗ = b if y ≥ b, and y∗ = y
otherwise, meaning that y∗ is the censored version of y. a and b are specified as they are for
pr().

xb, stdp, scores, conditional(), marginal, and nooffset; see [ME] meglm postestimation.

reffects, ebmeans, ebmodes, and reses(); see [ME] meglm postestimation.

� � �
Integration �

intpoints(), iterate(), tolerance(); see [ME] meglm postestimation.

margins

Description for margins

margins estimates margins of response for linear predictions, probabilities, and expected values.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . . )

[
predict(statistic . . . ) . . .

] [
options

]
statistic Description

eta fitted linear predictor; the default
xb linear predictor for the fixed portion of the model only
pr(a,b) Pr(a < y < b)
e(a,b) E(y | a < y < b)
ystar(a,b) E(y∗), y∗ = max{a,min(y, b)}
stdp not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples
Various predictions, statistics, and diagnostic measures are available after fitting a mixed-effects

tobit model with metobit.

The predict command allows us to compute marginal and conditional predictions. Unless stated
differently, we use the word “conditional” to mean “conditional on the empirical Bayes predictions
of the random effects.” The default prediction is the linear prediction, eta, which is the expected
value of the unobserved censored variable. Predictions of expected values for censored and truncated
versions of the response are also available.

Example 1: Predicting censored and uncensored means

In example 1 of [ME] metobit, we analyzed wages for a subpopulation from the National Longitudinal
Survey. The dependent variable is the logarithm of wage, and we fit a model that assumes that the
data are right-censored at 1.9.

. use https://www.stata-press.com/data/r18/nlswork3
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)

. metobit ln_wage union age south##c.grade || idcode:, ul(1.9)
(output omitted )

Below, we use predict to predict both the mean for the (unobserved) uncensored variable and
the (censored) observed values. We also manually generate the censored version of ln wage.

. predict uncens_pred, eta marginal
(9310 missing values generated)

. predict cens_pred, ystar(.,1.9) marginal

. generate double ln_wage_cens = min(ln_wage,1.9)
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To see how the two predictions differ, we can plot them side by side against the censored wage
(ln wage cens).

. scatter uncens_pred ln_wage_cens, name(gr1) xsize(4) ysize(4)

. scatter cens_pred ln_wage_cens, name(gr2) xsize(4) ysize(4)

. graph combine gr1 gr2, ycommon
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We see that many of the predictions for the uncensored variable exceed the censoring point, while
the predictions for the censored variable never fall above the upper-censoring limit.

Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
Conditional predictions
Marginal predictions
Marginal variance of the linear predictor

Introduction

This postestimation entry presents the methods and formulas used to calculate the pr(), e(),
and ystar() statistics. See Methods and formulas of [ME] estat icc for a discussion of intraclass
correlations. See Methods and formulas of [ME] meglm postestimation for a discussion of the
remaining postestimation features.

Recall that in a two-level model, the linear predictor for any ith observation in the jth cluster is
defined as ηij = xijβ+ zijuj . Let ``ij represent a lower bound for yij and u`ij represent an upper
bound.
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Conditional predictions

The probability that yij |η̂ij is observed in the interval (``ij , u`ij)—the pr(a,b) option—is
calculated as

pr(``ij , u`ij) = Pr(``ij < η̂ij + εij < u`ij) = Φ

(
u`ij − η̂ij

σ̂ε

)
− Φ

(
``ij − η̂ij

σ̂ε

)
where σ̂ε is the estimated residual standard deviation.

The e(a,b) option computes the expected value of yij |η̂ij conditional on yij |η̂ij being in the
interval (``ij , u`ij), that is, when yij |η̂ij is truncated. The expected value is calculated as

e(``ij , u`ij) = E(η̂ij + εij | ``ij < η̂ij + εij < u`ij)

= η̂ij − σ̂ε
φ
(
u`ij−η̂ij

σ̂ε

)
− φ

(
``ij−η̂ij

σ̂ε

)
Φ
(
u`ij−η̂ij

σ̂ε

)
− Φ

(
``ij−η̂ij

σ̂ε

)
where φ is the normal density and Φ is the cumulative normal distribution.

You can also compute ystar(a, b)—the expected value of yij |η̂ij , where yij is assumed censored
at ``ij and u`ij :

y∗ij =


``ij if yij ≤ ``ij
ηij + εij if ``ij < yij < u`ij
u`ij if yij ≥ u`ij

This computation can be expressed in several ways, but the most intuitive formulation involves a
combination of the two statistics just defined:

E(y∗ij) = pr(−∞, ``ij)``ij + pr(``ij , u`ij)e(``ij , u`ij) + pr(u`ij ,+∞)u`ij

Marginal predictions
When the marginal option is specified, the pr() statistic is calculated as

pr(``ij , u`ij) = Φ

(
u`ij − xijβ̂

ŝij

)
− Φ

(
``ij − xijβ̂

ŝij

)

where ŝij is the square root of the estimated marginal variance of the linear predictor, defined in
detail below.

The marginal e() statistic is calculated as

e(``ij , u`ij) = xijβ̂− ŝij
φ

(
u`ij−xijβ̂

ŝij

)
− φ

(
``ij−xijβ̂

ŝij

)
Φ

(
u`ij−xijβ̂

ŝij

)
− Φ

(
``ij−xijβ̂

ŝij

)
and the marginal ystar() statistic is calculated as above with marginal predictions used in place of
the conditional ones.
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Marginal variance of the linear predictor

In a two-level model, the marginal variance for observation ij is given by

σ2
ij = σ2

ε + zijΣ2z
′
ij

where σ2
ε is the residual variance at level 1 and Σ2 is the variance matrix of the random effects at

level 2. The marginal standard deviation is sij =
√
σ2
ij .

In general, for a G-level random-effects model, the marginal variance for one observation is given
by

σ2 = σ2
ε +

G∑
g=2

zgΣgz
′
g

where zg is a row vector of the covariates at level g for that observation and Σg is the variance
matrix of the random effects at level g.

Also see
[ME] metobit — Multilevel mixed-effects tobit regression

[ME] meglm postestimation — Postestimation tools for meglm

[U] 20 Estimation and postestimation commands
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mixed — Multilevel mixed-effects linear regression

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgments References Also see

Description
mixed fits linear mixed-effects models. These models are also known as multilevel models or

hierarchical linear models. The overall error distribution of the linear mixed-effects model is assumed to
be Gaussian, and heteroskedasticity and correlations within lowest-level groups also may be modeled.

Quick start
Linear mixed-effects model of y on x with random intercepts by lev2

mixed y x || lev2:

Same as above, but perform restricted maximum-likelihood (REML) estimation instead of the default
maximum likelihood (ML) estimation

mixed y x || lev2:, reml

Same as above, but perform small-sample inference on x using the Kenward–Roger degrees of freedom
(DF) method

mixed y x || lev2:, reml dfmethod(kroger)

Add random coefficients on x

mixed y x || lev2: x

Same as above, but allow correlation between the random slopes and intercepts
mixed y x || lev2: x, covariance(unstructured)

Three-level model with random intercepts by lev2 and lev3 for lev2 nested within lev3

mixed y x || lev3: || lev2:

Crossed-effects model with two-way crossed effects by factors a and b

mixed y x || _all:R.a || b:

Menu
Statistics > Multilevel mixed-effects models > Linear regression

475
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Syntax
mixed depvar fe equation

[
|| re equation

] [
|| re equation . . .

] [
, options

]
where the syntax of fe equation is[

indepvars
] [

if
] [

in
] [

weight
] [

, fe options
]

and the syntax of re equation is one of the following:

for random coefficients and intercepts

levelvar:
[

varlist
] [

, re options
]

for random effects among the values of a factor variable in a crossed-effects model

levelvar: R.varname
[
, re options

]
levelvar is a variable identifying the group structure for the random effects at that level or is all
representing one group comprising all observations.

fe options Description

Model

noconstant suppress constant term from the fixed-effects equation
constraints(constraints)apply specified linear constraints

re options Description

Model

covariance(vartype) variance–covariance structure of the random effects
noconstant suppress constant term from the random-effects equation
fweight(exp) frequency weights at higher levels
pweight(exp) sampling weights at higher levels

collinear keep collinear variables
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options Description

Model

mle fit model via maximum likelihood; the default
reml fit model via restricted maximum likelihood
dfmethod(df method) specify method for computing DF of a t distribution
residuals(restype

[
, resopts

]
) structure of residual errors

pwscale(scale method) control scaling of sampling weights in two-level models

SE/Robust

vce(vcetype) vcetype may be oim, robust, or cluster clustvar; types other
than oim may not be combined with dfmethod()

Reporting

level(#) set confidence level; default is level(95)

variance show random-effects and residual-error parameter estimates as
variances and covariances; the default

stddeviations show random-effects and residual-error parameter estimates as
standard deviations and correlations

dftable(dftable) specify contents of fixed-effects table; requires dfmethod() at
estimation

noretable suppress random-effects table
nofetable suppress fixed-effects table
estmetric show parameter estimates as stored in e(b)

noheader suppress output header
nogroup suppress table summarizing groups
nostderr do not estimate standard errors of random-effects parameters
nocnsreport do not display constraints
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

EM options

emiterate(#) number of EM iterations; default is emiterate(20)

emtolerance(#) EM convergence tolerance; default is emtolerance(1e-10)

emonly fit model exclusively using EM
emlog show EM iteration log
emdots show EM iterations as dots

Maximization

maximize options control the maximization process; seldom used
matsqrt parameterize variance components using matrix square roots;

the default
matlog parameterize variance components using matrix logarithms

small replay small-sample inference results
coeflegend display legend instead of statistics
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vartype Description

independent one unique variance parameter per random effect, all covariances 0;
the default unless the R. notation is used

exchangeable equal variances for random effects, and one common pairwise
covariance

identity equal variances for random effects, all covariances 0;
the default if the R. notation is used

unstructured all variances and covariances to be distinctly estimated

df method Description

residual residual degrees of freedom, n− rank(X)
repeated repeated-measures ANOVA

anova ANOVA
satterthwaite

[
, dfopts

]
generalized Satterthwaite approximation; REML estimation only

kroger
[
, dfopts

]
Kenward–Roger; REML estimation only

restype Description

independent i.i.d. Gaussian within-group errors with one common variance;
the default

exchangeable within-group errors with equal variances and one common
covariance

ar
[

#
]

within-group errors with autoregressive (AR) structure of order #,
AR(#); ar 1 is implied by ar

ma
[

#
]

within-group errors with moving-average (MA) structure of order #,
MA(#); ma 1 is implied by ma

unstructured within-group errors with distinct variances and covariances
banded

[
#
]

within-group errors with distinct variances and covariances within
first # off-diagonals; banded implies all matrix bands
(unstructured)

toeplitz
[

#
]

within-group errors have Toeplitz structure of order #;
toeplitz implies that all matrix off-diagonals be estimated

exponential within-group errors with an exponential function for the pairwise
correlations and one overall error variance

scale method Description

size scale first-level (observation-level) weights to sum to the sample size
of their corresponding second-level cluster

effective scale first-level weights to sum to the effective sample size of their
corresponding second-level cluster

gk set second-level weights to the cluster averages of the products of
the weights at both levels and first-level weights to 1
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dftable Description

default test statistics, p-values, and confidence intervals; the default
ci DFs and confidence intervals
pvalue DFs, test statistics, and p-values

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bayes, bootstrap, by, collect, jackknife, mi estimate, rolling, and statsby are allowed; see [U] 11.1.10 Prefix

commands. For more details, see [BAYES] bayes: mixed.
mi estimate is not allowed if dfmethod() is specified.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
pweights and fweights are allowed; see [U] 11.1.6 weight. However, no weights are allowed if either option reml

or option dfmethod() is specified.
small and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the constant (intercept) term and may be specified for the fixed-effects
equation and for any of or all the random-effects equations.

covariance(vartype) specifies the structure of the covariance matrix for the random effects and
may be specified for each random-effects equation. vartype is one of the following: independent,
exchangeable, identity, or unstructured.

independent allows for a distinct variance for each random effect within a random-effects equation
and assumes that all covariances are 0.

exchangeable specifies one common variance for all random effects and one common pairwise
covariance.

identity is short for “multiple of the identity”; that is, all variances are equal and all covariances
are 0.

unstructured allows for all variances and covariances to be distinct. If an equation consists
of p random-effects terms, the unstructured covariance matrix will have p(p + 1)/2 unique
parameters.

covariance(independent) is the default, except when the R. notation is used, in which
case covariance(identity) is the default and only covariance(identity) and covari-
ance(exchangeable) are allowed.

fweight(exp) specifies frequency weights at higher levels in a multilevel model, whereas frequency
weights at the first level (the observation level) are specified in the usual manner, for example,
[fw=fwtvar1]. exp can be any valid Stata variable, and you can specify fweight() at levels two
and higher of a multilevel model. For example, in the two-level model

. mixed fixed_portion [fw = wt1] || school: . . . , fweight(wt2) . . .

the variable wt1 would hold the first-level (the observation-level) frequency weights, and wt2
would hold the second-level (the school-level) frequency weights.
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pweight(exp) specifies sampling weights at higher levels in a multilevel model, whereas sampling
weights at the first level (the observation level) are specified in the usual manner, for example,
[pw=pwtvar1]. exp can be any valid Stata variable, and you can specify pweight() at levels two
and higher of a multilevel model. For example, in the two-level model

. mixed fixed_portion [pw = wt1] || school: . . . , pweight(wt2) . . .

variable wt1 would hold the first-level (the observation-level) sampling weights, and wt2 would
hold the second-level (the school-level) sampling weights.

See Survey data in Remarks and examples below for more information regarding the use of
sampling weights in multilevel models.

mle and reml specify the statistical method for fitting the model.

mle, the default, specifies that the model be fit using ML. Options dfmethod(satterthwaite)
and dfmethod(kroger) are not supported under ML estimation.

reml specifies that the model be fit using REML, also known as residual maximum likelihood.

dfmethod(df method) requests that reported hypothesis tests for the fixed effects (coefficients) use
a small-sample adjustment. By default, inference is based on a large-sample approximation of
the sampling distributions of the test statistics by normal and χ2 distributions. Caution should be
exercised when choosing a DF method; see Small-sample inference for fixed effects in Remarks
and examples for details.

When dfmethod(df method) is specified, the sampling distributions of the test statistics are
approximated by a t distribution, according to the requested method for computing the DF.
df method is one of the following: residual, repeated, anova, satterthwaite, or kroger.

residual uses the residual degrees of freedom, n − rank(X), as the DF for all tests of fixed
effects. For a linear model without random effects with independent and identically distributed
(i.i.d.) errors, the distributions of the test statistics for fixed effects are t distributions with the
residual DF. For other mixed-effects models, this method typically leads to poor approximations
of the actual sampling distributions of the test statistics.

repeated uses the repeated-measures ANOVA method for computing the DF. It is used with balanced
repeated-measures designs with spherical correlation error structures. It partitions the residual
degrees of freedom into the between-subject degrees of freedom and the within-subject degrees of
freedom. repeated is supported only with two-level models. For more complex mixed-effects
models or with unbalanced data, this method typically leads to poor approximations of the
actual sampling distributions of the test statistics.

anova uses the traditional ANOVA method for computing the DF. According to this method, the DF
for a test of a fixed effect of a given variable depends on whether that variable is also included in
any of the random-effects equations. For traditional ANOVA models with balanced designs, this
method provides exact sampling distributions of the test statistics. For more complex mixed-
effects models or with unbalanced data, this method typically leads to poor approximations of
the actual sampling distributions of the test statistics.

satterthwaite
[
, dfopts

]
implements a generalization of the Satterthwaite (1946) approximation

of the unknown sampling distributions of test statistics for complex linear mixed-effect models.
This method is supported only with REML estimation.

kroger
[
, dfopts

]
implements the Kenward and Roger (1997) method, which is designed to

approximate unknown sampling distributions of test statistics for complex linear mixed-effects
models. This method is supported only with REML estimation.
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dfopts is either eim or oim.

eim specifies that the expected information matrix be used to compute Satterthwaite or
Kenward–Roger degrees of freedom. This is the default.

oim specifies that the observed information matrix be used to compute Satterthwaite or
Kenward–Roger degrees of freedom.

Residual, repeated, and ANOVA methods are suitable only when the sampling distributions of the
test statistics are known to be t or F . This is usually only known for certain classes of linear
mixed-effects models with simple covariance structures and when data are balanced. These methods
are available with both ML and REML estimation.

For unbalanced data or balanced data with complicated covariance structures, the sampling dis-
tributions of the test statistics are unknown and can only be approximated. The Satterthwaite and
Kenward–Roger methods provide approximations to the distributions in these cases. According
to Schaalje, McBride, and Fellingham (2002), the Kenward–Roger method should, in general, be
preferred to the Satterthwaite method. However, there are situations in which the two methods
are expected to perform similarly, such as with compound symmetry covariance structures. The
Kenward–Roger method is more computationally demanding than the Satterthwaite method. Both
methods are available only with REML estimation. See Small-sample inference for fixed effects in
Remarks and examples for examples and more detailed descriptions of the DF methods.

dfmethod() may not be combined with weighted estimation, the mi estimate prefix, or vce(),
unless it is the default vce(oim).

residuals(restype
[
, resopts

]
) specifies the structure of the residual errors within the lowest-

level groups (the second level of a multilevel model with the observations comprising the first
level) of the linear mixed model. For example, if you are modeling random effects for classes
nested within schools, then residuals() refers to the residual variance–covariance structure of the
observations within classes, the lowest-level groups. restype is one of the following: independent,
exchangeable, ar

[
#
]
, ma

[
#
]
, unstructured, banded

[
#
]
, toeplitz

[
#
]
, or exponential.

independent, the default, specifies that all residuals be i.i.d. Gaussian with one common variance.
When combined with by(varname), independence is still assumed, but you estimate a distinct
variance for each level of varname. Unlike with the structures described below, varname does
not need to be constant within groups.

exchangeable estimates two parameters, one common within-group variance and one common
pairwise covariance. When combined with by(varname), these two parameters are distinctly
estimated for each level of varname. Because you are modeling a within-group covariance,
varname must be constant within lowest-level groups.

ar
[

#
]

assumes that within-group errors have an autoregressive (AR) structure of order #; ar 1 is the
default. The t(varname) option is required, where varname is an integer-valued time variable
used to order the observations within groups and to determine the lags between successive
observations. Any nonconsecutive time values will be treated as gaps. For this structure, # + 1
parameters are estimated (# AR coefficients and one overall error variance). restype ar may be
combined with by(varname), but varname must be constant within groups.

ma
[

#
]

assumes that within-group errors have a moving-average (MA) structure of order #; ma 1 is
the default. The t(varname) option is required, where varname is an integer-valued time variable
used to order the observations within groups and to determine the lags between successive
observations. Any nonconsecutive time values will be treated as gaps. For this structure, # + 1
parameters are estimated (# MA coefficients and one overall error variance). restype ma may be
combined with by(varname), but varname must be constant within groups.
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unstructured is the most general structure; it estimates distinct variances for each within-
group error and distinct covariances for each within-group error pair. The t(varname) option is
required, where varname is a nonnegative-integer–valued variable that identifies the observations
within each group. The groups may be unbalanced in that not all levels of t() need to be
observed within every group, but you may not have repeated t() values within any particular
group. When you have p levels of t(), then p(p + 1)/2 parameters are estimated. restype
unstructured may be combined with by(varname), but varname must be constant within
groups.

banded
[

#
]

is a special case of unstructured that restricts estimation to the covariances within
the first # off-diagonals and sets the covariances outside this band to 0. The t(varname)
option is required, where varname is a nonnegative-integer–valued variable that identifies the
observations within each group. # is an integer between 0 and p − 1, where p is the number
of levels of t(). By default, # is p − 1; that is, all elements of the covariance matrix are
estimated. When # is 0, only the diagonal elements of the covariance matrix are estimated.
restype banded may be combined with by(varname), but varname must be constant within
groups.

toeplitz
[

#
]

assumes that within-group errors have Toeplitz structure of order #, for which
correlations are constant with respect to time lags less than or equal to # and are 0 for lags greater
than #. The t(varname) option is required, where varname is an integer-valued time variable
used to order the observations within groups and to determine the lags between successive
observations. # is an integer between 1 and the maximum observed lag (the default). Any
nonconsecutive time values will be treated as gaps. For this structure, # + 1 parameters are
estimated (# correlations and one overall error variance). restype toeplitz may be combined
with by(varname), but varname must be constant within groups.

exponential is a generalization of the AR covariance model that allows for unequally spaced
and noninteger time values. The t(varname) option is required, where varname is real-valued.
For the exponential covariance model, the correlation between two errors is the parameter ρ,
raised to a power equal to the absolute value of the difference between the t() values for
those errors. For this structure, two parameters are estimated (the correlation parameter ρ and
one overall error variance). restype exponential may be combined with by(varname), but
varname must be constant within groups.

resopts are by(varname) and t(varname).

by(varname) is for use within the residuals() option and specifies that a set of distinct
residual-error parameters be estimated for each level of varname. In other words, you use
by() to model heteroskedasticity.

t(varname) is for use within the residuals() option to specify a time variable for the ar,
ma, toeplitz, and exponential structures, or to identify the observations when restype
is unstructured or banded.

pwscale(scale method) controls how sampling weights (if specified) are scaled in two-level models.
scale method is one of the following: size, effective, or gk.

size specifies that first-level (observation-level) weights be scaled so that they sum to the sample size
of their corresponding second-level cluster. Second-level sampling weights are left unchanged.

effective specifies that first-level weights be scaled so that they sum to the effective sample size
of their corresponding second-level cluster. Second-level sampling weights are left unchanged.

gk specifies the Graubard and Korn (1996) method. Under this method, second-level weights are
set to the cluster averages of the products of the weights at both levels, and first-level weights
are then set equal to 1.
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pwscale() is supported only with two-level models. See Survey data in Remarks and exam-
ples below for more details on using pwscale(). pwscale() may not be combined with the
dfmethod() option.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory (oim), that are robust to some kinds of misspecification (robust), and
that allow for intragroup correlation (cluster clustvar); see [R] vce option. If vce(robust) is
specified, robust variances are clustered at the highest level in the multilevel model.

vce(robust) and vce(cluster clustvar) are not supported with REML estimation. Only
vce(oim) is allowed in combination with dfmethod().

� � �
Reporting �

level(#); see [R] Estimation options.

variance, the default, displays the random-effects and residual-error parameter estimates as variances
and covariances.

stddeviations displays the random-effects and residual-error parameter estimates as standard
deviations and correlations.

dftable(dftable) specifies the contents of the fixed-effects table for small-sample inference when
dfmethod() is used during estimation. dftable is one of the following: default, ci, or pvalue.

default displays the default standard fixed-effects table that contains test statistics, p-values, and
confidence intervals.

ci displays the fixed-effects table in which the columns containing statistics and p-values are replaced
with a column containing coefficient-specific DFs. Confidence intervals are also displayed.

pvalue displays the fixed-effects table that includes a column containing DFs with the standard
columns containing test statistics and p-values. Confidence intervals are not displayed.

noretable suppresses the random-effects table from the output.

nofetable suppresses the fixed-effects table from the output.

estmetric displays all parameter estimates in one table using the metric in which they are stored in
e(b). The results are stored in the same metric regardless of the parameterization of the variance
components, matsqrt or matlog, used at estimation time. Random-effects parameter estimates
are stored as log standard-deviations and hyperbolic arctangents of correlations, with equation
names that organize them by model level. Residual-variance parameter estimates are stored as
log standard-deviations and, when applicable, as hyperbolic arctangents of correlations. Note that
fixed-effects estimates are always stored and displayed in the same metric.

noheader suppresses the output header, either at estimation or upon replay.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) from the output header.

nostderr prevents mixed from calculating standard errors for the estimated random-effects parameters,
although standard errors are still provided for the fixed-effects parameters. Specifying this option
will speed up computation times. nostderr is available only when residuals are modeled as
independent with constant variance.

nocnsreport; see [R] Estimation options.
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display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
EM options �

These options control the expectation-maximization (EM) iterations that take place before estimation
switches to a gradient-based method. When residuals are modeled as independent with constant
variance, EM will either converge to the solution or bring parameter estimates close to the solution.
For other residual structures or for weighted estimation, EM is used to obtain starting values.

emiterate(#) specifies the number of EM iterations to perform. The default is emiterate(20).

emtolerance(#) specifies the convergence tolerance for the EM algorithm. The default is
emtolerance(1e-10). EM iterations will be halted once the log (restricted) likelihood changes
by a relative amount less than #. At that point, optimization switches to a gradient-based method,
unless emonly is specified, in which case maximization stops.

emonly specifies that the likelihood be maximized exclusively using EM. The advantage of specifying
emonly is that EM iterations are typically much faster than those for gradient-based methods.
The disadvantages are that EM iterations can be slow to converge (if at all) and that EM provides
no facility for estimating standard errors for the random-effects parameters. emonly is available
only with unweighted estimation and when residuals are modeled as independent with constant
variance.

emlog specifies that the EM iteration log be shown. The EM iteration log is, by default, not
displayed unless the emonly option is specified.

emdots specifies that the EM iterations be shown as dots. This option can be convenient because
the EM algorithm may require many iterations to converge.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), and nonrtolerance; see [R] Maximize. Those that require special mention
for mixed are listed below.

For the technique() option, the default is technique(nr). The bhhh algorithm may not be
specified.

matsqrt (the default), during optimization, parameterizes variance components by using the matrix
square roots of the variance–covariance matrices formed by these components at each model level.

matlog, during optimization, parameterizes variance components by using the matrix logarithms of
the variance–covariance matrices formed by these components at each model level.

The matsqrt parameterization ensures that variance–covariance matrices are positive semidefinite,
while matlog ensures matrices that are positive definite. For most problems, the matrix square root
is more stable near the boundary of the parameter space. However, if convergence is problematic,
one option may be to try the alternate matlog parameterization. When convergence is not an issue,
both parameterizations yield equivalent results.
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The following options are available with mixed but are not shown in the dialog box:

small replays previously obtained small-sample results. This option is available only upon replay
and requires that the dfmethod() option be used during estimation. small is equivalent to
dftable(default) upon replay.

collinear specifies that mixed not omit collinear variables from the random-effects equation.
Usually, there is no reason to leave collinear variables in place; in fact, doing so usually causes
the estimation to fail because of the matrix singularity caused by the collinearity. However, with
certain models (for example, a random-effects model with a full set of contrasts), the variables
may be collinear, yet the model is fully identified because of restrictions on the random-effects
covariance structure. In such cases, using the collinear option allows the estimation to take
place with the random-effects equation intact.

coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Two-level models
Covariance structures
Likelihood versus restricted likelihood
Three-level models
Blocked-diagonal covariance structures
Heteroskedastic random effects
Heteroskedastic residual errors
Other residual-error structures
Crossed-effects models
Diagnosing convergence problems
Survey data
Small-sample inference for fixed effects

Introduction
Linear mixed models are models containing both fixed effects and random effects. They are a

generalization of linear regression allowing for the inclusion of random deviations (effects) other than
those associated with the overall error term. In matrix notation,

y = Xβ+ Zu + ε (1)

where y is the n× 1 vector of responses, X is an n× p design/covariate matrix for the fixed effects
β, and Z is the n× q design/covariate matrix for the random effects u. The n× 1 vector of errors
ε is assumed to be multivariate normal with mean 0 and variance matrix σ2

εR.

The fixed portion of (1), Xβ, is analogous to the linear predictor from a standard OLS regression
model with β being the regression coefficients to be estimated. For the random portion of (1), Zu+ε,
we assume that u has variance–covariance matrix G and that u is orthogonal to ε so that

Var
[

u
ε

]
=

[
G 0
0 σ2

εR

]
The random effects u are not directly estimated (although they may be predicted), but instead are
characterized by the elements of G, known as variance components, that are estimated along with
the overall residual variance σ2

ε and the residual-variance parameters that are contained within R.
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The general forms of the design matrices X and Z allow estimation for a broad class of linear
models: blocked designs, split-plot designs, growth curves, multilevel or hierarchical designs, etc.
They also allow a flexible method of modeling within-cluster correlation. Subjects within the same
cluster can be correlated as a result of a shared random intercept, or through a shared random
slope on (say) age, or both. The general specification of G also provides additional flexibility—the
random intercept and random slope could themselves be modeled as independent, or correlated, or
independent with equal variances, and so forth. The general structure of R also allows for residual
errors to be heteroskedastic and correlated, and allows flexibility in exactly how these characteristics
can be modeled.

Comprehensive treatments of mixed models are provided by, among others, Searle, Casella, and
McCulloch (1992); McCulloch, Searle, and Neuhaus (2008); Verbeke and Molenberghs (2000);
Raudenbush and Bryk (2002); and Pinheiro and Bates (2000). In particular, chapter 2 of Searle,
Casella, and McCulloch (1992) provides an excellent history.

The key to fitting mixed models lies in estimating the variance components, and for that there exist
many methods. Most of the early literature in mixed models dealt with estimating variance components
in ANOVA models. For simple models with balanced data, estimating variance components amounts
to solving a system of equations obtained by setting expected mean-squares expressions equal to their
observed counterparts. Much of the work in extending the ANOVA method to unbalanced data for
general ANOVA designs is due to Henderson (1953).

The ANOVA method, however, has its shortcomings. Among these is a lack of uniqueness in that
alternative, unbiased estimates of variance components could be derived using other quadratic forms
of the data in place of observed mean squares (Searle, Casella, and McCulloch 1992, 38–39). As a
result, ANOVA methods gave way to more modern methods, such as minimum norm quadratic unbiased
estimation (MINQUE) and minimum variance quadratic unbiased estimation (MIVQUE); see Rao (1973)
for MINQUE and LaMotte (1973) for MIVQUE. Both methods involve finding optimal quadratic forms
of the data that are unbiased for the variance components.

The most popular methods, however, are ML and REML, and these are the two methods that are
supported by mixed. The ML estimates are based on the usual application of likelihood theory, given
the distributional assumptions of the model. The basic idea behind REML (Thompson 1962) is that
you can form a set of linear contrasts of the response that do not depend on the fixed effects β, but
instead depend only on the variance components to be estimated. You then apply ML methods by
using the distribution of the linear contrasts to form the likelihood.

Returning to (1): in clustered-data situations, it is convenient not to consider all n observations at
once but instead to organize the mixed model as a series of M independent groups or clusters

yj = Xjβ+ Zjuj + εj (2)

for j = 1, . . . ,M , with cluster j consisting of nj observations. The response yj comprises the rows
of y corresponding with the jth cluster, with Xj and εj defined analogously. The random effects uj
can now be thought of as M realizations of a q × 1 vector that is normally distributed with mean 0
and q × q variance matrix Σ. The matrix Zi is the nj × q design matrix for the jth cluster random
effects. Relating this to (1), note that

Z =


Z1 0 · · · 0
0 Z2 · · · 0
...

...
. . .

...
0 0 0 ZM

 ; u =

 u1
...

uM

 ; G = IM ⊗ Σ; R = IM ⊗ Λ (3)

The mixed-model formulation (2) is from Laird and Ware (1982) and offers two key advantages.
First, it makes specifications of random-effects terms easier. If the clusters are schools, you can
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simply specify a random effect at the school level, as opposed to thinking of what a school-level
random effect would mean when all the data are considered as a whole (if it helps, think Kronecker
products). Second, representing a mixed-model with (2) generalizes easily to more than one set of
random effects. For example, if classes are nested within schools, then (2) can be generalized to allow
random effects at both the school and the class-within-school levels. This we demonstrate later.

In the sections that follow, we assume that residuals are independent with constant variance; that
is, in (3) we treat Λ equal to the identity matrix and limit ourselves to estimating one overall residual
variance, σ2

ε . Beginning in Heteroskedastic residual errors, we relax this assumption.

Two-level models
We begin with a simple application of (2) as a two-level model, because a one-level linear model,

by our terminology, is just standard OLS regression.

Example 1: Two-level random intercept model

Consider a longitudinal dataset, used by both Ruppert, Wand, and Carroll (2003) and Diggle
et al. (2002), consisting of weight measurements of 48 pigs on 9 successive weeks. Pigs are
identified by the variable id. Below is a plot of the growth curves for the first 10 pigs.

. use https://www.stata-press.com/data/r18/pig
(Longitudinal analysis of pig weights)

. twoway connected weight week if id<=10, connect(L)

20

40

60

80

w
ei

gh
t

0 2 4 6 8 10
week

It seems clear that each pig experiences a linear trend in growth and that overall weight measurements
vary from pig to pig. Because we are not really interested in these particular 48 pigs per se, we
instead treat them as a random sample from a larger population and model the between-pig variability
as a random effect, or in the terminology of (2), as a random-intercept term at the pig level. We thus
wish to fit the model

weightij = β0 + β1weekij + uj + εij (4)

for i = 1, . . . , 9 weeks and j = 1, . . . , 48 pigs. The fixed portion of the model, β0 + β1weekij ,
simply states that we want one overall regression line representing the population average. The random
effect uj serves to shift this regression line up or down according to each pig. Because the random
effects occur at the pig level (id), we fit the model by typing
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. mixed weight week || id:

Performing EM optimization ...

Performing gradient-based optimization:
Iteration 0: Log likelihood = -1014.9268
Iteration 1: Log likelihood = -1014.9268

Computing standard errors ...

Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 25337.49
Log likelihood = -1014.9268 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0390124 159.18 0.000 6.133433 6.286359
_cons 19.35561 .5974059 32.40 0.000 18.18472 20.52651

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Identity
var(_cons) 14.81751 3.124225 9.801716 22.40002

var(Residual) 4.383264 .3163348 3.805112 5.04926

LR test vs. linear model: chibar2(01) = 472.65 Prob >= chibar2 = 0.0000

Notes:

1. By typing weight week, we specified the response, weight, and the fixed portion of the model
in the same way that we would if we were using regress or any other estimation command. Our
fixed effects are a coefficient on week and a constant term.

2. When we added || id:, we specified random effects at the level identified by the group variable
id, that is, the pig level (level two). Because we wanted only a random intercept, that is all we
had to type.

3. The estimation log consists of three parts:

a. A set of EM iterations used to refine starting values. By default, the iterations themselves are
not displayed, but you can display them with the emlog option.

b. A set of gradient-based iterations. By default, these are Newton–Raphson iterations, but other
methods are available by specifying the appropriate maximize options; see [R] Maximize.

c. The message “Computing standard errors”. This is just to inform you that mixed has finished
its iterative maximization and is now reparameterizing from a matrix-based parameterization
(see Methods and formulas) to the natural metric of variance components and their estimated
standard errors.

4. The output title, “Mixed-effects ML regression”, informs us that our model was fit using ML, the
default. For REML estimates, use the reml option.

Because this model is a simple random-intercept model fit by ML, it would be equivalent to using
xtreg with its mle option.

5. The first estimation table reports the fixed effects. We estimate β0 = 19.36 and β1 = 6.21.
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6. The second estimation table shows the estimated variance components. The first section of the
table is labeled id: Identity, meaning that these are random effects at the id (pig) level and that
their variance–covariance matrix is a multiple of the identity matrix; that is, Σ = σ2

uI. Because
we have only one random effect at this level, mixed knew that Identity is the only possible
covariance structure. In any case, the variance of the level-two errors, σ2

u, is estimated as 14.82
with standard error 3.12.

7. The row labeled var(Residual) displays the estimated variance of the overall error term; that
is, σ̂2

ε = 4.38. This is the variance of the level-one errors, that is, the residuals.

8. Finally, a likelihood-ratio test comparing the model with one-level ordinary linear regression, model
(4) without uj , is provided and is highly significant for these data.

We now store our estimates for later use:

. estimates store randint

Example 2: Two-level random slope model

Extending (4) to allow for a random slope on week yields the model

weightij = β0 + β1weekij + u0j + u1jweekij + εij (5)

and we fit this with mixed:

. mixed weight week || id: week

Performing EM optimization ...

Performing gradient-based optimization:
Iteration 0: Log likelihood = -869.03825
Iteration 1: Log likelihood = -869.03825

Computing standard errors ...

Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 4689.51
Log likelihood = -869.03825 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0906819 68.48 0.000 6.032163 6.387629
_cons 19.35561 .3979159 48.64 0.000 18.57571 20.13551

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Independent
var(week) .3680668 .0801181 .2402389 .5639103

var(_cons) 6.756364 1.543503 4.317721 10.57235

var(Residual) 1.598811 .1233988 1.374359 1.85992

LR test vs. linear model: chi2(2) = 764.42 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. estimates store randslope
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Because we did not specify a covariance structure for the random effects (u0j , u1j)
′, mixed used

the default Independent structure; that is,

Σ = Var
[
u0j
u1j

]
=

[
σ2
u0 0
0 σ2

u1

]
(6)

with σ̂2
u0 = 6.76 and σ̂2

u1 = 0.37. Our point estimates of the fixed effects are essentially identical to
those from model (4), but note that this does not hold generally. Given the 95% confidence interval
for σ̂2

u1, it would seem that the random slope is significant, and we can use lrtest and our two
stored estimation results to verify this fact:

. lrtest randslope randint

Likelihood-ratio test
Assumption: randint nested within randslope

LR chi2(1) = 291.78
Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

The near-zero significance level favors the model that allows for a random pig-specific regression
line over the model that allows only for a pig-specific shift.

Covariance structures
In example 2, we fit a model with the default Independent covariance given in (6). Within any

random-effects level specification, we can override this default by specifying an alternative covariance
structure via the covariance() option.

Example 3: Two-level model with correlated random effects

We generalize (6) to allow u0j and u1j to be correlated; that is,

Σ = Var
[
u0j
u1j

]
=

[
σ2
u0 σ01
σ01 σ2

u1

]
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. mixed weight week || id: week, covariance(unstructured)

Performing EM optimization ...

Performing gradient-based optimization:
Iteration 0: Log likelihood = -868.96185
Iteration 1: Log likelihood = -868.96185

Computing standard errors ...

Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 4649.17
Log likelihood = -868.96185 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0910745 68.18 0.000 6.031393 6.388399
_cons 19.35561 .3996387 48.43 0.000 18.57234 20.13889

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Unstructured
var(week) .3715251 .0812958 .2419532 .570486

var(_cons) 6.823363 1.566194 4.351297 10.69986
cov(week,_cons) -.0984378 .2545767 -.5973991 .4005234

var(Residual) 1.596829 .123198 1.372735 1.857505

LR test vs. linear model: chi2(3) = 764.58 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

But we do not find the correlation to be at all significant.

. lrtest . randslope

Likelihood-ratio test
Assumption: randslope nested within .

LR chi2(1) = 0.15
Prob > chi2 = 0.6959

Instead, we could have also specified covariance(identity), restricting u0j and u1j to not
only be independent but also to have common variance, or we could have specified covari-
ance(exchangeable), which imposes a common variance but allows for a nonzero correlation.

Likelihood versus restricted likelihood
Thus far, all our examples have used ML to estimate variance components. We could have just as

easily asked for REML estimates. Refitting the model in example 2 by REML, we get
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. mixed weight week || id: week, reml

Performing EM optimization ...

Performing gradient-based optimization:
Iteration 0: Log restricted-likelihood = -870.51473
Iteration 1: Log restricted-likelihood = -870.51473

Computing standard errors ...

Mixed-effects REML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 4592.10
Log restricted-likelihood = -870.51473 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0916387 67.77 0.000 6.030287 6.389504
_cons 19.35561 .4021144 48.13 0.000 18.56748 20.14374

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Independent
var(week) .3764405 .0827027 .2447317 .5790317

var(_cons) 6.917604 1.593247 4.404624 10.86432

var(Residual) 1.598784 .1234011 1.374328 1.859898

LR test vs. linear model: chi2(2) = 765.92 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Although ML estimators are based on the usual likelihood theory, the idea behind REML is to
transform the response into a set of linear contrasts whose distribution is free of the fixed effects β.
The restricted likelihood is then formed by considering the distribution of the linear contrasts. This
not only frees the maximization problem from β but also incorporates the degrees of freedom used
to estimate β into the estimation of the variance components. This follows because, by necessity, the
rank of the linear contrasts must be less than the number of observations.

As a simple example, consider a constant-only regression where yi ∼ N(µ, σ2) for i = 1, . . . , n.
The ML estimate of σ2 can be derived theoretically as the n-divided sample variance. The REML
estimate can be derived by considering the first n− 1 error contrasts, yi− y, whose joint distribution
is free of µ. Applying maximum likelihood to this distribution results in an estimate of σ2, that is,
the (n− 1)-divided sample variance, which is unbiased for σ2.

The unbiasedness property of REML extends to all mixed models when the data are balanced, and
thus REML would seem the clear choice in balanced-data problems, although in large samples the
difference between ML and REML is negligible. One disadvantage of REML is that likelihood-ratio (LR)
tests based on REML are inappropriate for comparing models with different fixed-effects specifications.
ML is appropriate for such LR tests and has the advantage of being easy to explain and being the
method of choice for other estimators.

Another factor to consider is that ML estimation under mixed is more feature-rich, allowing for
weighted estimation and robust variance–covariance matrices, features not supported under REML. In
the end, which method to use should be based both on your needs and on personal taste.
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Examining the REML output, we find that the estimates of the variance components are slightly
larger than the ML estimates. This is typical, because ML estimates, which do not incorporate the
degrees of freedom used to estimate the fixed effects, tend to be biased downward.

Three-level models
The clustered-data representation of the mixed model given in (2) can be extended to two nested

levels of clustering, creating a three-level model once the observations are considered. Formally,

yjk = Xjkβ+ Z
(3)
jk u

(3)
k + Z

(2)
jk u

(2)
jk + εjk (7)

for i = 1, . . . , njk first-level observations nested within j = 1, . . . ,Mk second-level groups, which
are nested within k = 1, . . . ,M third-level groups. Group j, k consists of njk observations, so yjk,
Xjk, and εjk each have row dimension njk. Z

(3)
jk is the njk × q3 design matrix for the third-level

random effects u
(3)
k , and Z

(2)
jk is the njk× q2 design matrix for the second-level random effects u

(2)
jk .

Furthermore, assume that

u
(3)
k ∼ N(0,Σ3); u

(2)
jk ∼ N(0,Σ2); εjk ∼ N(0, σ2

ε I)

and that u
(3)
k , u

(2)
jk , and εjk are independent.

Fitting a three-level model requires you to specify two random-effects equations: one for level
three and then one for level two. The variable list for the first equation represents Z

(3)
jk and for the

second equation represents Z
(2)
jk ; that is, you specify the levels top to bottom in mixed.

Example 4: Three-level model with random intercepts
Baltagi, Song, and Jung (2001) estimate a Cobb–Douglas production function examining the

productivity of public capital in each state’s private output. Originally provided by Munnell (1990),
the data were recorded over 1970–1986 for 48 states grouped into nine regions.
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. use https://www.stata-press.com/data/r18/productivity
(Public capital productivity)

. describe

Contains data from https://www.stata-press.com/data/r18/productivity.dta
Observations: 816 Public capital productivity

Variables: 11 29 Mar 2022 10:57
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

state byte %9.0g States 1-48
region byte %9.0g Regions 1-9
year int %9.0g Years 1970-1986
public float %9.0g Public capital stock
hwy float %9.0g log(highway component of public)
water float %9.0g log(water component of public)
other float %9.0g log(bldg/other component of

public)
private float %9.0g log(private capital stock)
gsp float %9.0g log(gross state product)
emp float %9.0g log(nonagriculture payrolls)
unemp float %9.0g State unemployment rate

Sorted by:

Because the states are nested within regions, we fit a three-level mixed model with random intercepts
at both the region and the state-within-region levels. That is, we use (7) with both Z

(3)
jk and Z

(2)
jk set

to the njk × 1 column of ones, and Σ3 = σ2
3 and Σ2 = σ2

2 are both scalars.

. mixed gsp private emp hwy water other unemp || region: || state:

(output omitted )
Mixed-effects ML regression Number of obs = 816

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

region 9 51 90.7 136
state 48 17 17.0 17

Wald chi2(6) = 18829.06
Log likelihood = 1430.5017 Prob > chi2 = 0.0000

gsp Coefficient Std. err. z P>|z| [95% conf. interval]

private .2671484 .0212591 12.57 0.000 .2254814 .3088154
emp .754072 .0261868 28.80 0.000 .7027468 .8053973
hwy .0709767 .023041 3.08 0.002 .0258172 .1161363

water .0761187 .0139248 5.47 0.000 .0488266 .1034109
other -.0999955 .0169366 -5.90 0.000 -.1331906 -.0668004
unemp -.0058983 .0009031 -6.53 0.000 -.0076684 -.0041282
_cons 2.128823 .1543854 13.79 0.000 1.826233 2.431413
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Random-effects parameters Estimate Std. err. [95% conf. interval]

region: Identity
var(_cons) .0014506 .0012995 .0002506 .0083957

state: Identity
var(_cons) .0062757 .0014871 .0039442 .0099855

var(Residual) .0013461 .0000689 .0012176 .0014882

LR test vs. linear model: chi2(2) = 1154.73 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Notes:

1. Our model now has two random-effects equations, separated by ||. The first is a random intercept
(constant only) at the region level (level three), and the second is a random intercept at the state
level (level two). The order in which these are specified (from left to right) is significant—mixed
assumes that state is nested within region.

2. The information on groups is now displayed as a table, with one row for each grouping. You can
suppress this table with the nogroup or the noheader option, which will suppress the rest of the
header, as well.

3. The variance-component estimates are now organized and labeled according to level.

After adjusting for the nested-level error structure, we find that the highway and water components
of public capital had significant positive effects on private output, whereas the other public buildings
component had a negative effect.

Technical note
In the previous example, the states are coded 1–48 and are nested within nine regions. mixed

treated the states as nested within regions, regardless of whether the codes for each state were unique
between regions. That is, even if codes for states were duplicated between regions, mixed would
have enforced the nesting and produced the same results.

The group information at the top of the mixed output and that produced by the postestimation
command estat group (see [ME] estat group) take the nesting into account. The statistics are thus
not necessarily what you would get if you instead tabulated each group variable individually.

Model (7) extends in a straightforward manner to more than three levels, as does the specification
of such models in mixed.

Blocked-diagonal covariance structures

Covariance matrices of random effects within an equation can be modeled either as a multiple of
the identity matrix, as diagonal (that is, Independent), as exchangeable, or as general symmetric
(Unstructured). These may also be combined to produce more complex block-diagonal covariance
structures, effectively placing constraints on the variance components.
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Example 5: Using repeated levels to induce blocked-diagonal covariance structures

Returning to our productivity data, we now add random coefficients on hwy and unemp at the
region level. This only slightly changes the estimates of the fixed effects, so we focus our attention
on the variance components:

. mixed gsp private emp hwy water other unemp || region: hwy unemp || state:,
> nolog nogroup nofetable

Mixed-effects ML regression Number of obs = 816
Wald chi2(6) = 17137.94

Log likelihood = 1447.6787 Prob > chi2 = 0.0000

Random-effects parameters Estimate Std. err. [95% conf. interval]

region: Independent
var(hwy) .0000209 .0001103 6.71e-10 .6507106

var(unemp) .0000238 .0000135 7.84e-06 .0000722
var(_cons) .0030349 .0086684 .0000112 .8191376

state: Identity
var(_cons) .0063658 .0015611 .0039365 .0102943

var(Residual) .0012469 .0000643 .001127 .0013795

LR test vs. linear model: chi2(4) = 1189.08 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. estimates store prodrc

This model is the same as that fit in example 4 except that Z
(3)
jk is now the njk × 3 matrix with

columns determined by the values of hwy, unemp, and an intercept term (one), in that order, and
(because we used the default Independent structure) Σ3 is

Σ3 =

( hwy unemp cons

σ2
a 0 0

0 σ2
b 0

0 0 σ2
c

)

The random-effects specification at the state level remains unchanged; that is, Σ2 is still treated as
the scalar variance of the random intercepts at the state level.

An LR test comparing this model with that from example 4 favors the inclusion of the two random
coefficients, a fact we leave to the interested reader to verify.

The estimated variance components, upon examination, reveal that the variances of the random
coefficients on hwy and unemp could be treated as equal. That is,

Σ3 =

( hwy unemp cons

σ2
a 0 0

0 σ2
a 0

0 0 σ2
c

)

looks plausible. We can impose this equality constraint by treating Σ3 as block diagonal: the first
block is a 2× 2 multiple of the identity matrix, that is, σ2

aI2; the second is a scalar, equivalently, a
1× 1 multiple of the identity.
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We construct block-diagonal covariances by repeating level specifications:

. mixed gsp private emp hwy water other unemp || region: hwy unemp,
> cov(identity) || region: || state:, nolog nogroup nofetable

Mixed-effects ML regression Number of obs = 816
Wald chi2(6) = 17136.65

Log likelihood = 1447.6784 Prob > chi2 = 0.0000

Random-effects parameters Estimate Std. err. [95% conf. interval]

region: Identity
var(hwy unemp) .0000238 .0000134 7.89e-06 .0000719

region: Identity
var(_cons) .0028191 .0030429 .0003399 .023383

state: Identity
var(_cons) .006358 .0015309 .0039661 .0101925

var(Residual) .0012469 .0000643 .001127 .0013795

LR test vs. linear model: chi2(3) = 1189.08 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

We specified two equations for the region level: the first for the random coefficients on hwy and
unemp with covariance set to Identity and the second for the random intercept cons, whose
covariance defaults to Identity because it is of dimension 1. mixed labeled the estimate of σ2

a as
var(hwy unemp) to designate that it is common to the random coefficients on both hwy and unemp.

An LR test shows that the constrained model fits equally well.

. lrtest . prodrc

Likelihood-ratio test
Assumption: . nested within prodrc

LR chi2(1) = 0.00
Prob > chi2 = 0.9784

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

Because the null hypothesis for this test is one of equality (H0 : σ2
a = σ2

b ), it is not on the
boundary of the parameter space. As such, we can take the reported significance as precise rather
than a conservative estimate.

You can repeat level specifications as often as you like, defining successive blocks of a block-
diagonal covariance matrix. However, repeated-level equations must be listed consecutively; otherwise,
mixed will give an error.

Technical note

In the previous estimation output, there was no constant term included in the first region equation,
even though we did not use the noconstant option. When you specify repeated-level equations,
mixed knows not to put constant terms in each equation because such a model would be unidentified.
By default, it places the constant in the last repeated-level equation, but you can use noconstant
creatively to override this.
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Linear mixed-effects models can also be fit using meglm with the default gaussian family. meglm
provides two more covariance structures through which you can impose constraints on variance
components; see [ME] meglm for details.

Heteroskedastic random effects

Blocked-diagonal covariance structures and repeated-level specifications of random effects can also
be used to model heteroskedasticity among random effects at a given level.

Example 6: Using repeated levels to model heteroskedasticity

Following Rabe-Hesketh and Skrondal (2022, sec. 7.2), we analyze data from Asian children in
a British community who were weighed up to four times, roughly between the ages of 6 weeks and
27 months. The dataset is a random sample of data previously analyzed by Goldstein (1986) and
Prosser, Rasbash, and Goldstein (1991).

. use https://www.stata-press.com/data/r18/childweight
(Weight data on Asian children)

. describe

Contains data from https://www.stata-press.com/data/r18/childweight.dta
Observations: 198 Weight data on Asian children

Variables: 5 23 May 2022 15:12
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

id int %8.0g Child identifier
age float %8.0g Age in years
weight float %8.0g Weight in Kg
brthwt int %8.0g Birthweight in g
girl byte %9.0g bg Gender

Sorted by: id age

. graph twoway (line weight age, connect(ascending)), by(girl)
> xtitle(Age in years) ytitle(Weight in kg)
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Ignoring gender effects for the moment, we begin with the following model for the ith measurement
on the jth child:

weightij = β0 + β1ageij + β2age
2
ij + uj0 + uj1ageij + εij

This models overall mean growth as quadratic in age and allows for two child-specific random
effects: a random intercept uj0, which represents each child’s vertical shift from the overall mean
(β0), and a random age slope uj1, which represents each child’s deviation in linear growth rate from
the overall mean linear growth rate (β1). For simplicity, we do not consider child-specific changes in
the quadratic component of growth.

. mixed weight age c.age#c.age || id: age, nolog

Mixed-effects ML regression Number of obs = 198
Group variable: id Number of groups = 68

Obs per group:
min = 1
avg = 2.9
max = 5

Wald chi2(2) = 1863.46
Log likelihood = -258.51915 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

age 7.693701 .2381076 32.31 0.000 7.227019 8.160384

c.age#c.age -1.654542 .0874987 -18.91 0.000 -1.826037 -1.483048

_cons 3.497628 .1416914 24.68 0.000 3.219918 3.775338

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Independent
var(age) .2987207 .0827569 .1735603 .5141388

var(_cons) .5023857 .141263 .2895294 .8717297

var(Residual) .3092897 .0474887 .2289133 .417888

LR test vs. linear model: chi2(2) = 114.70 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Because there is no reason to believe that the random effects are uncorrelated, it is always a good
idea to first fit a model with the covariance(unstructured) option. We do not include the output
for such a model because for these data the correlation between random effects is not significant;
however, we did check this before reverting to mixed’s default Independent structure.

Next we introduce gender effects into the fixed portion of the model by including a main gender effect
and a gender–age interaction for overall mean growth. We specify ibn.girl and the noconstant
option to omit the constant and estimate separate intercepts for boys and girls. The nofvlabel option
requests that the values of the girl variable instead of value labels be shown in the results.
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. mixed weight ibn.girl i.girl#c.age c.age#c.age, noconstant nofvlabel
> || id: age, nolog

Mixed-effects ML regression Number of obs = 198
Group variable: id Number of groups = 68

Obs per group:
min = 1
avg = 2.9
max = 5

Wald chi2(5) = 6583.73
Log likelihood = -253.182 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

girl
0 3.754275 .1726404 21.75 0.000 3.415906 4.092644
1 3.243808 .174255 18.62 0.000 2.902274 3.585341

girl#c.age
0 7.806765 .2524583 30.92 0.000 7.311956 8.301574
1 7.577296 .2531318 29.93 0.000 7.081166 8.073425

c.age#c.age -1.654323 .0871752 -18.98 0.000 -1.825183 -1.483463

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Independent
var(age) .2772846 .0769233 .1609861 .4775987

var(_cons) .4076892 .12386 .2247635 .7394906

var(Residual) .3131704 .047684 .2323672 .422072

LR test vs. linear model: chi2(2) = 104.39 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. estimates store homoskedastic

The main gender effect is significant at the 5% level, but the gender–age interaction is not:

. test 0.girl#c.age = 1.girl#c.age

( 1) [weight]0bn.girl#c.age - [weight]1.girl#c.age = 0

chi2( 1) = 1.66
Prob > chi2 = 0.1978

On average, boys are heavier than girls, but their average linear growth rates are not significantly
different.

In the above model, we introduced a gender effect on average growth, but we still assumed that the
variability in child-specific deviations from this average was the same for boys and girls. To check
this assumption, we introduce gender into the random component of the model.
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. mixed weight ibn.girl i.girl#c.age c.age#c.age, noconstant nofvlabel
> || id: ibn.girl i.girl#c.age, noconstant nolog nofetable

Mixed-effects ML regression Number of obs = 198
Group variable: id Number of groups = 68

Obs per group:
min = 1
avg = 2.9
max = 5

Wald chi2(5) = 7319.20
Log likelihood = -248.94752 Prob > chi2 = 0.0000

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Independent
var(0.girl) .3161091 .1557911 .1203181 .8305061
var(1.girl) .5798676 .1959725 .2989896 1.124609

var(0.girl#age) .4734482 .1574626 .2467028 .9085962
var(1.girl#age) .0664634 .0553274 .0130017 .3397538

var(Residual) .3078826 .046484 .2290188 .4139037

LR test vs. linear model: chi2(4) = 112.86 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. estimates store heteroskedastic

In the above, we suppress displaying the fixed portion of the model (the nofetable option)
because it does not differ much from that of the previous model.

Our previous model had the random-effects specification

|| id: age

which we have replaced with

|| id: ibn.girl i.girl#c.age, noconstant

The former models a random intercept and random slope on age, and does so treating all children as
a random sample from one population. The latter also specifies a random intercept and random slope
on age, but allows for the variability of the random intercepts and slopes to differ between boys and
girls. In other words, it allows for heteroskedasticity in random effects due to gender. We use the
noconstant option so that we can separate the overall random intercept (automatically provided by
the former syntax) into one specific to boys and one specific to girls.

There seems to be a large gender effect in the variability of linear growth rates. We can compare
both models with an LR test, recalling that we stored the previous estimation results under the name
homoskedastic:

. lrtest homoskedastic heteroskedastic

Likelihood-ratio test
Assumption: homoskedastic nested within heteroskedas~c

LR chi2(2) = 8.47
Prob > chi2 = 0.0145

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

Because the null hypothesis here is one of equality of variances and not that variances are 0, the
above does not test on the boundary; thus we can treat the significance level as precise and not
conservative. Either way, the results favor the new model with heteroskedastic random effects.
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Heteroskedastic residual errors
Up to this point, we have assumed that the level-one residual errors—the ε’s in the stated

models—have been i.i.d. Gaussian with variance σ2
ε . This is demonstrated in mixed output in the

random-effects table, where up until now we have estimated a single residual-error variance, labeled
as var(Residual).

To relax the assumptions of homoskedasticity or independence of residual errors, use the resid-
uals() option.

Example 7: Independent residual variance structure

West, Welch, and Gałecki (2022, chap. 7) analyze data studying the effect of ceramic dental veneer
placement on gingival (gum) health. Data on 55 teeth located in the maxillary arches of 12 patients
were considered.

. use https://www.stata-press.com/data/r18/veneer, clear
(Dental veneer data)

. describe

Contains data from https://www.stata-press.com/data/r18/veneer.dta
Observations: 110 Dental veneer data

Variables: 7 24 May 2022 12:11
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

patient byte %8.0g Patient ID
tooth byte %8.0g Tooth number with patient
gcf byte %8.0g Gingival crevicular fluid (GCF)
age byte %8.0g Patient age
base_gcf byte %8.0g Baseline GCF
cda float %9.0g Average contour difference after

veneer placement
followup byte %9.0g t Follow-up time: 3 or 6 months

Sorted by:

Veneers were placed to match the original contour of the tooth as closely as possible, and researchers
were interested in how contour differences (variable cda) impacted gingival health. Gingival health
was measured as the amount of gingival crevicular fluid (GCF) at each tooth, measured at baseline
(variable base gcf) and at two posttreatment follow-ups at 3 and 6 months. The variable gcf records
GCF at follow-up, and the variable followup records the follow-up time.

Because two measurements were taken for each tooth and there exist multiple teeth per patient, we
fit a three-level model with the following random effects: a random intercept and random slope on
follow-up time at the patient level, and a random intercept at the tooth level. For the ith measurement
of the jth tooth from the kth patient, we have

gcfijk = β0 + β1followupijk + β2base gcfijk + β3cdaijk + β4ageijk+

u0k + u1kfollowupijk + v0jk + εijk
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which we can fit using mixed:

. mixed gcf followup base_gcf cda age || patient: followup, cov(un) || tooth:,
> reml nolog

Mixed-effects REML regression Number of obs = 110

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

patient 12 2 9.2 12
tooth 55 2 2.0 2

Wald chi2(4) = 7.48
Log restricted-likelihood = -420.92761 Prob > chi2 = 0.1128

gcf Coefficient Std. err. z P>|z| [95% conf. interval]

followup .3009815 1.936863 0.16 0.877 -3.4952 4.097163
base_gcf -.0183127 .1433094 -0.13 0.898 -.299194 .2625685

cda -.329303 .5292525 -0.62 0.534 -1.366619 .7080128
age -.5773932 .2139656 -2.70 0.007 -.9967582 -.1580283

_cons 45.73862 12.55497 3.64 0.000 21.13133 70.34591

Random-effects parameters Estimate Std. err. [95% conf. interval]

patient: Unstructured
var(followup) 41.88772 18.79997 17.38009 100.9535

var(_cons) 524.9851 253.0205 204.1287 1350.175
cov(followup,_cons) -140.4229 66.57623 -270.9099 -9.935904

tooth: Identity
var(_cons) 47.45738 16.63034 23.8792 94.3165

var(Residual) 48.86704 10.50523 32.06479 74.47382

LR test vs. linear model: chi2(4) = 91.12 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

We used REML estimation for no other reason than variety.

Among the other features of the model fit, we note that the residual variance σ2
ε was estimated

as 48.87 and that our model assumed that the residuals were independent with constant variance
(homoskedastic). Because it may be the case that the precision of gcf measurements could change
over time, we modify the above to estimate two distinct error variances: one for the 3-month follow-up
and one for the 6-month follow-up.

To fit this model, we add the residuals(independent, by(followup)) option, which maintains
independence of residual errors but allows for heteroskedasticity with respect to follow-up time.
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. mixed gcf followup base_gcf cda age || patient: followup, cov(un) || tooth:,
> residuals(independent, by(followup)) reml nolog

Mixed-effects REML regression Number of obs = 110

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

patient 12 2 9.2 12
tooth 55 2 2.0 2

Wald chi2(4) = 7.51
Log restricted-likelihood = -420.4576 Prob > chi2 = 0.1113

gcf Coefficient Std. err. z P>|z| [95% conf. interval]

followup .2703944 1.933096 0.14 0.889 -3.518405 4.059193
base_gcf .0062144 .1419121 0.04 0.965 -.2719283 .284357

cda -.2947235 .5245126 -0.56 0.574 -1.322749 .7333023
age -.5743755 .2142249 -2.68 0.007 -.9942487 -.1545024

_cons 45.15089 12.51452 3.61 0.000 20.62288 69.6789

Random-effects parameters Estimate Std. err. [95% conf. interval]

patient: Unstructured
var(followup) 41.75169 18.72989 17.33099 100.583

var(_cons) 515.2018 251.9661 197.5542 1343.595
cov(followup,_cons) -139.0496 66.27806 -268.9522 -9.146944

tooth: Identity
var(_cons) 47.35914 16.48931 23.93514 93.70693

Residual: Independent,
by followup

3 months: var(e) 61.36785 18.38913 34.10946 110.4096
6 months: var(e) 36.42861 14.97501 16.27542 81.53666

LR test vs. linear model: chi2(5) = 92.06 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Comparison of both models via an LR test reveals the difference in residual variances to be not
significant, something we leave to you to verify as an exercise.

The default residual-variance structure is independent, and when specified without by() is
equivalent to the default behavior of mixed: estimating one overall residual standard variance for the
entire model.

Other residual-error structures

Besides the default independent residual-error structure, mixed supports four other structures that
allow for correlation between residual errors within the lowest-level (smallest or level two) groups.
For purposes of notation, in what follows we assume a two-level model, with the obvious extension
to higher-level models.
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The exchangeable structure assumes one overall variance and one common pairwise covariance;
that is,

Var(εj) = Var


εj1
εj2

...
εjnj

 =


σ2
ε σ1 · · · σ1
σ1 σ2

ε · · · σ1
...

...
. . .

...
σ1 σ1 σ1 σ2

ε


By default, mixed will report estimates of the two parameters as estimates of the common variance
σ2
ε and of the covariance σ1. When the by(varname) option is also specified, these two parameters

are estimated for each level varname.

The ar p structure assumes that the errors have an AR structure of order p. That is,

εij = φ1εi−1,j + · · ·+ φpεi−p,j + uij

where uij are i.i.d. Gaussian with mean 0 and variance σ2
u. mixed reports estimates of φ1, . . . , φp

and the overall error variance σ2
ε , which can be derived from the above expression. The t(varname)

option is required, where varname is a time variable used to order the observations within lowest-level
groups and to determine any gaps between observations. When the by(varname) option is also
specified, the set of p + 1 parameters is estimated for each level of varname. If p = 1, then the
estimate of φ1 is reported as rho, because in this case it represents the correlation between successive
error terms.

The ma q structure assumes that the errors are an MA process of order q. That is,

εij = uij + θ1ui−1,j + · · ·+ θqui−q,j

where uij are i.i.d. Gaussian with mean 0 and variance σ2
u. mixed reports estimates of θ1, . . . , θq

and the overall error variance σ2
ε , which can be derived from the above expression. The t(varname)

option is required, where varname is a time variable used to order the observations within lowest-level
groups and to determine any gaps between observations. When the by(varname) option is also
specified, the set of q + 1 parameters is estimated for each level of varname.

The unstructured structure is the most general and estimates unique variances and unique pairwise
covariances for all residuals within the lowest-level grouping. Because the data may be unbalanced
and the ordering of the observations is arbitrary, the t(varname) option is required, where varname
is an identification variable that matches error terms in different groups. If varname has n distinct
levels, then n(n+ 1)/2 parameters are estimated. Not all n levels need to be observed within each
group, but duplicated levels of varname within a given group are not allowed because they would
cause a singularity in the estimated error-variance matrix for that group. When the by(varname)
option is also specified, the set of n(n+ 1)/2 parameters is estimated for each level of varname.

The banded q structure is a special case of unstructured that confines estimation to within
the first q off-diagonal elements of the residual variance–covariance matrix and sets the covariances
outside this band to 0. As is the case with unstructured, the t(varname) option is required, where
varname is an identification variable that matches error terms in different groups. However, with
banded variance structures, the ordering of the values in varname is significant because it determines
which covariances are to be estimated and which are to be set to 0. For example, if varname has
n = 5 distinct values t = 1, 2, 3, 4, 5, then a banded variance–covariance structure of order q = 2
would estimate the following:
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Var(εj) = Var


ε1j
ε2j
ε3j
ε4j
ε5j

 =


σ2
1 σ12 σ13 0 0

σ12 σ2
2 σ23 σ24 0

σ13 σ23 σ2
3 σ34 σ35

0 σ24 σ34 σ2
4 σ45

0 0 σ35 σ45 σ2
5


In other words, you would have an unstructured variance matrix that constrains σ14 = σ15 = σ25 = 0.
If varname has n distinct levels, then (q + 1)(2n− q)/2 parameters are estimated. Not all n levels
need to be observed within each group, but duplicated levels of varname within a given group are
not allowed because they would cause a singularity in the estimated error-variance matrix for that
group. When the by(varname) option is also specified, the set of parameters is estimated for each
level of varname. If q is left unspecified, then banded is equivalent to unstructured; that is, all
variances and covariances are estimated. When q = 0, Var(εj) is treated as diagonal and can thus be
used to model uncorrelated yet heteroskedastic residual errors.

The toeplitz q structure assumes that the residual errors are homoskedastic and that the correlation
between two errors is determined by the time lag between the two. That is, Var(εij) = σ2

ε and

Corr(εij , εi+k,j) = ρk

If the lag k is less than or equal to q, then the pairwise correlation ρk is estimated; if the lag is greater
than q, then ρk is assumed to be 0. If q is left unspecified, then ρk is estimated for each observed lag
k. The t(varname) option is required, where varname is a time variable t used to determine the lags
between pairs of residual errors. As such, t() must be integer-valued. q+1 parameters are estimated:
one overall variance σ2

ε and q correlations. When the by(varname) option is also specified, the set
of q + 1 parameters is estimated for each level of varname.

The exponential structure is a generalization of the AR structure that allows for noninteger and
irregularly spaced time lags. That is, Var(εij) = σ2

ε and

Corr(εij , εkj) = ρ|i−k|

for 0 ≤ ρ ≤ 1, with i and k not required to be integers. The t(varname) option is required, where
varname is a time variable used to determine i and k for each residual-error pair. t() is real-valued.
mixed reports estimates of σ2

ε and ρ. When the by(varname) option is also specified, these two
parameters are estimated for each level of varname.

Example 8: Autoregressive residual variance structure

Pinheiro and Bates (2000, chap. 5) analyze data from a study of the estrus cycles of mares.
Originally analyzed in Pierson and Ginther (1987), the data record the number of ovarian follicles
larger than 10mm, daily over a period ranging from three days before ovulation to three days after
the subsequent ovulation.
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. use https://www.stata-press.com/data/r18/ovary
(Ovarian follicles in mares)

. describe

Contains data from https://www.stata-press.com/data/r18/ovary.dta
Observations: 308 Ovarian follicles in mares

Variables: 6 20 May 2022 13:49
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

mare byte %9.0g Mare ID
stime float %9.0g Scaled time
follicles byte %9.0g Number of ovarian follicles > 10

mm in diameter
sin1 float %9.0g sine(2*pi*stime)
cos1 float %9.0g cosine(2*pi*stime)
time byte %9.0g Time order within mare

Sorted by: mare stime

The stime variable is time that has been scaled so that ovulation occurs at scaled times 0 and 1,
and the time variable records the time ordering within mares. Because graphical evidence suggests
a periodic behavior, the analysis includes the sin1 and cos1 variables, which are sine and cosine
transformations of scaled time, respectively.

We consider the following model for the ith measurement on the jth mare:

folliclesij = β0 + β1sin1ij + β2cos1ij + uj + εij

The above model incorporates the cyclical nature of the data as affecting the overall average
number of follicles and includes mare-specific random effects uj . Because we believe successive
measurements within each mare are probably correlated (even after controlling for the periodicity in
the average), we also model the within-mare errors as being AR of order 2.

. mixed follicles sin1 cos1 || mare:, residuals(ar 2, t(time)) reml nolog

Mixed-effects REML regression Number of obs = 308
Group variable: mare Number of groups = 11

Obs per group:
min = 25
avg = 28.0
max = 31

Wald chi2(2) = 34.72
Log restricted-likelihood = -772.59855 Prob > chi2 = 0.0000

follicles Coefficient Std. err. z P>|z| [95% conf. interval]

sin1 -2.899228 .5110784 -5.67 0.000 -3.900923 -1.897532
cos1 -.8652936 .5432923 -1.59 0.111 -1.930127 .1995397

_cons 12.14455 .9473731 12.82 0.000 10.28773 14.00137
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Random-effects parameters Estimate Std. err. [95% conf. interval]

mare: Identity
var(_cons) 7.09265 4.402051 2.101409 23.93903

Residual: AR(2)
phi1 .5386103 .0624897 .4161328 .6610878
phi2 .1446711 .0632039 .0207938 .2685484

var(e) 14.25103 2.435226 10.19512 19.9205

LR test vs. linear model: chi2(3) = 251.67 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

We picked an order of 2 as a guess, but we could have used LR tests of competing AR models to
determine the optimal order, because models of smaller order are nested within those of larger order.

Example 9: Unstructured residual variance structure

Fitzmaurice, Laird, and Ware (2011, chap. 7) analyzed data on 37 subjects who participated in an
exercise therapy trial.

. use https://www.stata-press.com/data/r18/exercise
(Exercise Therapy Trial)

. describe

Contains data from https://www.stata-press.com/data/r18/exercise.dta
Observations: 259 Exercise Therapy Trial

Variables: 4 24 Jun 2022 18:35
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

id byte %9.0g Person ID
day byte %9.0g Day of measurement
program byte %9.0g 1 = reps increase; 2 = weights

increase
strength byte %9.0g Strength measurement

Sorted by: id day

Subjects (variable id) were placed on either an increased-repetition regimen (program==1) or a program
that kept the repetitions constant but increased weight (program==2). Muscle-strength measurements
(variable strength) were taken at baseline (day==0) and then every two days over the next twelve
days.

Following Fitzmaurice, Laird, and Ware (2011, chap. 7), and to demonstrate fitting residual-error
structures to data collected at uneven time points, we confine our analysis to those data collected at
baseline and at days 4, 6, 8, and 12. We fit a full two-way factorial model of strength on program
and day, with an unstructured residual-error covariance matrix over those repeated measurements
taken on the same subject:
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. keep if inlist(day, 0, 4, 6, 8, 12)
(74 observations deleted)

. mixed strength i.program##i.day || id:,
> noconstant residuals(unstructured, t(day)) nolog

Mixed-effects ML regression Number of obs = 173
Group variable: id Number of groups = 37

Obs per group:
min = 3
avg = 4.7
max = 5

Wald chi2(9) = 45.85
Log likelihood = -296.58215 Prob > chi2 = 0.0000

strength Coefficient Std. err. z P>|z| [95% conf. interval]

2.program 1.360119 1.003549 1.36 0.175 -.6068012 3.327039

day
4 1.125 .3322583 3.39 0.001 .4737858 1.776214
6 1.360127 .3766894 3.61 0.000 .6218298 2.098425
8 1.583563 .4905876 3.23 0.001 .6220286 2.545097

12 1.623576 .5372947 3.02 0.003 .5704978 2.676654

program#day
2 4 -.169034 .4423472 -0.38 0.702 -1.036019 .6979505
2 6 .2113012 .4982385 0.42 0.671 -.7652283 1.187831
2 8 -.1299762 .6524813 -0.20 0.842 -1.408816 1.148864
2 12 .3212829 .7306782 0.44 0.660 -1.11082 1.753386

_cons 79.6875 .7560446 105.40 0.000 78.20568 81.16932

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: (empty)

Residual: Unstructured
var(e0) 9.145656 2.12624 5.798586 14.42473
var(e4) 11.87114 2.761205 7.524962 18.72752
var(e6) 10.0657 2.348851 6.371103 15.9028
var(e8) 13.22463 3.113906 8.335996 20.9802

var(e12) 13.16908 3.167331 8.219224 21.0999
cov(e0,e4) 9.625231 2.331958 5.054677 14.19579
cov(e0,e6) 8.489039 2.106366 4.360637 12.61744
cov(e0,e8) 9.28041 2.36954 4.636196 13.92462

cov(e0,e12) 8.898002 2.34823 4.295557 13.50045
cov(e4,e6) 10.49184 2.492516 5.6066 15.37708
cov(e4,e8) 11.89787 2.848735 6.314448 17.48128

cov(e4,e12) 11.28344 2.805011 5.785717 16.78116
cov(e6,e8) 11.05069 2.646974 5.862721 16.23867

cov(e6,e12) 10.5006 2.590263 5.423775 15.57742
cov(e8,e12) 12.4091 3.010778 6.508084 18.31012

LR test vs. linear model: chi2(14) = 314.67 Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

Because we are using the variable id only to group the repeated measurements and not to introduce
random effects at the subject level, we use the noconstant option to omit any subject-level effects.
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The unstructured covariance matrix is the most general and contains many parameters. In this example,
we estimate a distinct residual variance for each day and a distinct covariance for each pair of days.

That there is positive covariance between all pairs of measurements is evident, but what is not as
evident is whether the covariances may be more parsimoniously represented. One option would be to
explore whether the correlation diminishes as the time gap between strength measurements increases
and whether it diminishes systematically. Given the irregularity of the time intervals, an exponential
structure would be more appropriate than, say, an AR or MA structure.

. estimates store unstructured

. mixed strength i.program##i.day || id:, noconstant
> residuals(exponential, t(day)) nolog nofetable

Mixed-effects ML regression Number of obs = 173
Group variable: id Number of groups = 37

Obs per group:
min = 3
avg = 4.7
max = 5

Wald chi2(9) = 36.77
Log likelihood = -307.83324 Prob > chi2 = 0.0000

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: (empty)

Residual: Exponential
rho .9786462 .0051238 .9659207 .9866854

var(e) 11.22349 2.338372 7.460764 16.88389

LR test vs. linear model: chi2(1) = 292.17 Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.

In the above example, we suppressed displaying the main regression parameters because they
did not differ much from those of the previous model. While the unstructured model estimated 15
variance–covariance parameters, the exponential model claims to get the job done with just 2, a fact
that is not disputed by an LR test comparing the two nested models (at least not at the 0.01 level).

. lrtest unstructured .

Likelihood-ratio test
Assumption: . nested within unstructured

LR chi2(13) = 22.50
Prob > chi2 = 0.0481

Note: The reported degrees of freedom assumes the null hypothesis is not on
the boundary of the parameter space. If this is not true, then the
reported test is conservative.
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Crossed-effects models
Not all mixed models contain nested levels of random effects.

Example 10: Crossed-effects model

Returning to our longitudinal analysis of pig weights, suppose that instead of (5) we wish to fit

weightij = β0 + β1weekij + ui + vj + εij (8)

for the i = 1, . . . , 9 weeks and j = 1, . . . , 48 pigs and

ui ∼ N(0, σ2
u); vj ∼ N(0, σ2

v); εij ∼ N(0, σ2
ε )

all independently. Both (5) and (8) assume an overall population-average growth curve β0 + β1week
and a random pig-specific shift.

The models differ in how week enters into the random part of the model. In (5), we assume
that the effect due to week is linear and pig specific (a random slope); in (8), we assume that the
effect due to week, ui, is systematic to that week and common to all pigs. The rationale behind (8)
could be that, assuming that the pigs were measured contemporaneously, we might be concerned that
week-specific random factors such as weather and feeding patterns had significant systematic effects
on all pigs.

Model (8) is an example of a two-way crossed-effects model, with the pig effects vj being crossed
with the week effects ui. One way to fit such models is to consider all the data as one big cluster,
and treat the ui and vj as a series of 9 + 48 = 57 random coefficients on indicator variables for
week and pig. In the notation of (2),

u =



u1
...
u9
v1
...
v48


∼ N(0,G); G =

[
σ2
uI9 0
0 σ2

vI48

]

Because G is block diagonal, it can be represented in mixed as repeated-level equations. All we
need is an identification variable to identify all the observations as one big group and a way to
tell mixed to treat week and pig as crossed-effects factor variables (or equivalently, as two sets of
overparameterized indicator variables identifying weeks and pigs, respectively). mixed supports the
special group designation all for the former and the R.varname notation for the latter.



512 mixed — Multilevel mixed-effects linear regression

. use https://www.stata-press.com/data/r18/pig, clear
(Longitudinal analysis of pig weights)

. mixed weight week || _all: R.week || _all: R.id

Performing EM optimization ...

Performing gradient-based optimization:
Iteration 0: Log likelihood = -1013.824
Iteration 1: Log likelihood = -1013.824

Computing standard errors ...

Mixed-effects ML regression Number of obs = 432
Group variable: _all Number of groups = 1

Obs per group:
min = 432
avg = 432.0
max = 432

Wald chi2(1) = 13258.28
Log likelihood = -1013.824 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0539313 115.14 0.000 6.104192 6.315599
_cons 19.35561 .6333982 30.56 0.000 18.11418 20.59705

Random-effects parameters Estimate Std. err. [95% conf. interval]

_all: Identity
var(R.week) .0849874 .0868856 .0114588 .6303302

_all: Identity
var(R.id) 14.83623 3.126142 9.816733 22.42231

var(Residual) 4.297328 .3134404 3.724888 4.957741

LR test vs. linear model: chi2(2) = 474.85 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. estimates store crossed

Thus we estimate σ̂2
u = 0.08 and σ̂2

v = 14.84. Both (5) and (8) estimate a total of five parameters:
two fixed effects and three variance components. The models, however, are not nested within each
other, which precludes the use of an LR test to compare both models. Refitting model (5) and looking
at the Akaike information criteria values by using estimates stats,

. quietly mixed weight week || id:week

. estimates stats crossed .

Akaike’s information criterion and Bayesian information criterion

Model N ll(null) ll(model) df AIC BIC

crossed 432 . -1013.824 5 2037.648 2057.99
. 432 . -869.0383 5 1748.077 1768.419

Note: BIC uses N = number of observations. See [R] IC note.

definitely favors model (5). This finding is not surprising given that our rationale behind (8) was
somewhat fictitious. In our estimates stats output, the values of ll(null) are missing. mixed
does not fit a constant-only model as part of its usual estimation of the full model, but you can use
mixed to fit a constant-only model directly, if you wish.
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The R.varname notation is equivalent to giving a list of overparameterized (none dropped) indicator
variables for use in a random-effects specification. When you specify R.varname, mixed handles the
calculations internally rather than creating the indicators in the data. Because the set of indicators is
overparameterized, R.varname implies noconstant.

Technical note

Although we were able to fit the crossed-effects model (8), it came at the expense of increasing the
column dimension of our random-effects design from 2 in model (5) to 57 in model (8). Computation
time and memory requirements grow (roughly) quadratically with the dimension of the random effects.
As a result, fitting such crossed-effects models is feasible only when the total column dimension is
small to moderate.

Reexamining model (8), we note that if we drop ui, we end up with a model equivalent to (4),
meaning that we could have fit (4) by typing

. mixed weight week || _all: R.id

instead of

. mixed weight week || id:

as we did when we originally fit the model. The results of both estimations are identical, but the
latter specification, organized at the cluster (pig) level with random-effects dimension 1 (a random
intercept) is much more computationally efficient. Whereas with the first form we are limited in how
many pigs we can analyze, there is no such limitation with the second form.

Furthermore, we fit model (8) by using

. mixed weight week || _all: R.week || _all: R.id

as a direct way to demonstrate the R. notation. However, we can technically treat pigs as nested
within the all group, yielding the equivalent and more efficient (total column dimension 10) way
to fit (8):

. mixed weight week || _all: R.week || id:

We leave it to you to verify that both produce identical results. See Rabe-Hesketh and Skrondal (2022)
for additional techniques to make calculations more efficient in more complex models.

Example 11: Three-level model expressed in terms of a two-level model

As another example of how the same model may be fit in different ways by using mixed (and
as a way to demonstrate covariance(exchangeable)), consider the three-level model used in
example 4:

yjk = Xjkβ+ u
(3)
k + u

(2)
jk + εjk
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where yjk represents the logarithms of gross state products for the njk = 17 observations from state
j in region k, Xjk is a set of regressors, u(3)k is a random intercept at the region level, and u(2)jk is

a random intercept at the state (nested within region) level. We assume that u(3)k ∼ N(0, σ2
3) and

u
(2)
jk ∼ N(0, σ2

2) independently. Define

vk =


u
(3)
k + u

(2)
1k

u
(3)
k + u

(2)
2k

...
u
(3)
k + u

(2)
Mk,k


where Mk is the number of states in region k. Making this substitution, we can stack the observations
for all the states within region k to get

yk = Xkβ+ Zkvk + εk

where Zk is a set of indicators identifying the states within each region; that is,

Zk = IMk
⊗ J17

for a k-column vector of 1s Jk, and

Σ = Var(vk) =


σ2
3 + σ2

2 σ2
3 · · · σ2

3

σ2
3 σ2

3 + σ2
2 · · · σ2

3
...

...
. . .

...
σ2
3 σ2

3 σ2
3 σ2

3 + σ2
2


Mk×Mk

Because Σ is an exchangeable matrix, we can fit this alternative form of the model by specifying the
exchangeable covariance structure.
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. use https://www.stata-press.com/data/r18/productivity
(Public capital productivity)

. mixed gsp private emp hwy water other unemp || region: R.state,
> cov(exchangeable)

(output omitted )
Mixed-effects ML regression Number of obs = 816
Group variable: region Number of groups = 9

Obs per group:
min = 51
avg = 90.7
max = 136

Wald chi2(6) = 18829.06
Log likelihood = 1430.5017 Prob > chi2 = 0.0000

gsp Coefficient Std. err. z P>|z| [95% conf. interval]

private .2671484 .0212591 12.57 0.000 .2254813 .3088154
emp .7540721 .0261868 28.80 0.000 .7027468 .8053973
hwy .0709767 .023041 3.08 0.002 .0258172 .1161363

water .0761187 .0139248 5.47 0.000 .0488266 .1034109
other -.0999955 .0169366 -5.90 0.000 -.1331907 -.0668004
unemp -.0058983 .0009031 -6.53 0.000 -.0076684 -.0041282
_cons 2.128823 .1543855 13.79 0.000 1.826233 2.431413

Random-effects parameters Estimate Std. err. [95% conf. interval]

region: Exchangeable
var(R.state) .0077263 .0017926 .0049032 .0121749
cov(R.state) .0014506 .0012995 -.0010963 .0039975

var(Residual) .0013461 .0000689 .0012176 .0014882

LR test vs. linear model: chi2(2) = 1154.73 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

The estimates of the fixed effects and their standard errors are equivalent to those from example 4,
and remapping the variance components from (σ2

3 + σ2
2 , σ

2
3 , σ

2
ε ), as displayed here, to (σ2

3 , σ
2
2 , σ

2
ε ),

as displayed in example 4, will show that they are equivalent as well.

Of course, given the discussion in the previous technical note, it is more efficient to fit this model
as we did originally, as a three-level model.

Diagnosing convergence problems

Given the flexibility of mixed-effects models, you will find that some models fail to converge
when used with your data; see Diagnosing convergence problems in [ME] me for advice applicable
to mixed-effects models in general.

In unweighted linear mixed-effects models with independent and homoskedastic residuals, one
useful way to diagnose problems of nonconvergence is to rely on the EM algorithm (Dempster,
Laird, and Rubin 1977), normally used by mixed only as a means of refining starting values. The
advantages of EM are that it does not require a Hessian calculation, each successive EM iteration will
result in a larger likelihood, iterations can be calculated quickly, and iterations will quickly bring
parameter estimates into a neighborhood of the solution. The disadvantages of EM are that, once in
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a neighborhood of the solution, it can be slow to converge, if at all, and EM provides no facility for
estimating standard errors of the estimated variance components. One useful property of EM is that
it is always willing to provide a solution if you allow it to iterate enough times, if you are satisfied
with being in a neighborhood of the optimum rather than right on the optimum, and if standard errors
of variance components are not crucial to your analysis.

If you encounter a nonconvergent model, try using the emonly option to bypass gradient-based
optimization. Use emiterate(#) to specify the maximum number of EM iterations, which you will
usually want to set much higher than the default of 20. If your EM solution shows an estimated
variance component that is near 0, a ridge is formed by an interval of values near 0, which produces
the same likelihood and looks equally good to the optimizer. In this case, the solution is to drop the
offending variance component from the model.

Survey data

Multilevel modeling of survey data is a little different from standard modeling in that weighted
sampling can take place at multiple levels in the model, resulting in multiple sampling weights. Most
survey datasets, regardless of the design, contain one overall inclusion weight for each observation in
the data. This weight reflects the inverse of the probability of ultimate selection, and by “ultimate” we
mean that it factors in all levels of clustered sampling, corrections for noninclusion and oversampling,
poststratification, etc.

For simplicity, in what follows assume a simple two-stage sampling design where groups are
randomly sampled and then individuals within groups are sampled. Also assume that no additional
weight corrections are performed; that is, sampling weights are simply the inverse of the probability
of selection. The sampling weight for observation i in cluster j in our two-level sample is then
wij = 1/πij , where πij is the probability that observation i, j is selected. If you were performing a
standard analysis such as OLS regression with regress, you would simply use a variable holding wij
as your pweight variable, and the fact that it came from two levels of sampling would not concern
you. Perhaps you would type vce(cluster groupvar) where groupvar identifies the top-level groups
to get standard errors that control for correlation within these groups, but you would still use only a
single weight variable.

Now take these same data and fit a two-level model with mixed. As seen in (14) in Methods and
formulas later in this entry, it is not sufficient to use the single sampling weight wij , because weights
enter into the log likelihood at both the group level and the individual level. Instead, what is required
for a two-level model under this sampling design is wj , the inverse of the probability that group j
is selected in the first stage, and wi|j , the inverse of the probability that individual i from group j is
selected at the second stage conditional on group j already being selected. It simply will not do to
just use wij without making any assumptions about wj .

Given the rules of conditional probability, wij = wjwi|j . If your dataset has only wij , then you
will need to either assume equal probability sampling at the first stage (wj = 1 for all j) or find
some way to recover wj from other variables in your data; see Rabe-Hesketh and Skrondal (2006)
and the references therein for some suggestions on how to do this, but realize that there is little yet
known about how well these approximations perform in practice.

What you really need to fit your two-level model are data that contain wj in addition to either wij
or wi|j . If you have wij—that is, the unconditional inclusion weight for observation i, j—then you
need to either divide wij by wj to obtain wi|j or rescale wij so that its dependence on wj disappears.
If you already have wi|j , then rescaling becomes optional (but still an important decision to make).
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Weight rescaling is not an exact science, because the scale of the level-one weights is at issue
regardless of whether they represent wij or wi|j : because wij is unique to group j, the group-to-group
magnitudes of these weights need to be normalized so that they are “consistent” from group to group.
This is in stark contrast to a standard analysis, where the scale of sampling weights does not factor
into estimation, instead only affecting the estimate of the total population size.

mixed offers three methods for standardizing weights in a two-level model, and you can specify
which method you want via the pwscale() option. If you specify pwscale(size), then the wi|j (or
wij , it does not matter) are scaled to sum to the cluster size nj . Method pwscale(effective) adds
in a dependence on the sum of the squared weights so that level-one weights sum to the “effective”
sample size. Just like pwscale(size), pwscale(effective) also behaves the same whether you
have wi|j or wij , and so it can be used with either.

Although both pwscale(size) and pwscale(effective) leavewj untouched, the pwscale(gk)
method is a little different in that 1) it changes the weights at both levels and 2) it does assume
you have wi|j for level-one weights and not wij (if you have the latter, then first divide by wj).
Using the method of Graubard and Korn (1996), it sets the weights at the group level (level two) to
the cluster averages of the products of both level weights (this product being wij). It then sets the
individual weights to 1 everywhere; see Methods and formulas for the computational details of all
three methods.

Determining which method is “best” is a tough call and depends on cluster size (the smaller
the clusters, the greater the sensitivity to scale), whether the sampling is informative (that is, the
sampling weights are correlated with the residuals), whether you are interested primarily in regression
coefficients or in variance components, whether you have a simple random-intercept model or a
more complex random-coefficients model, and other factors; see Rabe-Hesketh and Skrondal (2006),
Carle (2009), and Pfeffermann et al. (1998) for some detailed advice. At the very least, you want
to compare estimates across all three scaling methods (four, if you add no scaling) and perform a
sensitivity analysis.

If you choose to rescale level-one weights, it does not matter whether you have wi|j or wij . For
the pwscale(size) and pwscale(effective) methods, you get identical results, and even though
pwscale(gk) assumes wi|j , you can obtain this as wi|j = wij/wj before proceeding.

If you do not specify pwscale(), then no scaling takes place, and thus at a minimum, you need
to make sure you have wi|j in your data and not wij .

Example 12: Mixed-effect models with survey data

Rabe-Hesketh and Skrondal (2006) analyzed data from the 2000 Programme for International
Student Assessment (PISA) study on reading proficiency among 15-year-old American students, as
performed by the Organisation for Economic Co-operation and Development (OECD). The original
study was a three-stage cluster sample, where geographic areas were sampled at the first stage, schools
at the second, and students at the third. Our version of the data does not contain the geographic-areas
variable, so we treat this as a two-stage sample where schools are sampled at the first stage and
students at the second.
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. use https://www.stata-press.com/data/r18/pisa2000
(Programme for International Student Assessment (PISA) 2000 data)

. describe

Contains data from https://www.stata-press.com/data/r18/pisa2000.dta
Observations: 2,069 Programme for International

Student Assessment (PISA) 2000
data

Variables: 11 12 Jun 2022 10:08
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

female byte %8.0g 1 if female
isei byte %8.0g International socioeconomic index
w_fstuwt float %9.0g Student-level weight
wnrschbw float %9.0g School-level weight
high_school byte %8.0g 1 if highest level by either

parent is high school
college byte %8.0g 1 if highest level by either

parent is college
one_for byte %8.0g 1 if one parent foreign born
both_for byte %8.0g 1 if both parents are foreign

born
test_lang byte %8.0g 1 if English (the test language)

is spoken at home
pass_read byte %8.0g 1 if passed reading proficiency

threshold
id_school int %8.0g School ID

Sorted by:

For student i in school j, where the variable id school identifies the schools, the variable
w fstuwt is a student-level overall inclusion weight (wij , not wi|j) adjusted for noninclusion and
nonparticipation of students, and the variable wnrschbw is the school-level weight wj adjusted for
oversampling of schools with more minority students. The weight adjustments do not interfere with
the methods prescribed above, and thus we can treat the weight variables simply as wij and wj ,
respectively.

Rabe-Hesketh and Skrondal (2006) fit a two-level logistic model for passing a reading proficiency
threshold. We fit a two-level linear random-intercept model for socioeconomic index. Because we
have wij and not wi|j , we rescale using pwscale(size) and thus obtain results as if we had wi|j .
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. mixed isei female high_school college one_for both_for test_lang
> [pw=w_fstuwt] || id_school:, pweight(wnrschbw) pwscale(size)

(output omitted )
Mixed-effects regression Number of obs = 2,069
Group variable: id_school Number of groups = 148

Obs per group:
min = 1
avg = 14.0
max = 28

Wald chi2(6) = 187.23
Log pseudolikelihood = -1443093.9 Prob > chi2 = 0.0000

(Std. err. adjusted for 148 clusters in id_school)

Robust
isei Coefficient std. err. z P>|z| [95% conf. interval]

female .59379 .8732886 0.68 0.497 -1.117824 2.305404
high_school 6.410618 1.500337 4.27 0.000 3.470011 9.351224

college 19.39494 2.121145 9.14 0.000 15.23757 23.55231
one_for -.9584613 1.789947 -0.54 0.592 -4.466692 2.54977

both_for -.2021101 2.32633 -0.09 0.931 -4.761633 4.357413
test_lang 2.519539 2.393165 1.05 0.292 -2.170978 7.210056

_cons 28.10788 2.435712 11.54 0.000 23.33397 32.88179

Robust
Random-effects parameters Estimate std. err. [95% conf. interval]

id_school: Identity
var(_cons) 34.69374 8.574865 21.37318 56.31617

var(Residual) 218.7382 11.22111 197.8147 241.8748

Notes:

1. We specified the level-one weights using standard Stata weight syntax, that is, [pw=w fstuwt].

2. We specified the level-two weights via the pweight(wnrschbw) option as part of the random-
effects specification for the id school level. As such, it is treated as a school-level weight.
Accordingly, wnrschbw needs to be constant within schools, and mixed did check for that before
estimating.

3. Because our level-one weights are unconditional, we specified pwscale(size) to rescale them.

4. As is the case with other estimation commands in Stata, standard errors in the presence of sampling
weights are robust.

5. Robust standard errors are clustered at the top level of the model, and this will always be true unless
you specify vce(cluster clustvar), where clustvar identifies an even higher level of grouping.

As a form of sensitivity analysis, we compare the above with scaling via pwscale(gk). Because
pwscale(gk) assumes wi|j , you want to first divide wij by wj . But you can handle that within the
weight specification itself.
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. mixed isei female high_school college one_for both_for test_lang
> [pw=w_fstuwt/wnrschbw] || id_school:, pweight(wnrschbw) pwscale(gk)

(output omitted )
Mixed-effects regression Number of obs = 2,069
Group variable: id_school Number of groups = 148

Obs per group:
min = 1
avg = 14.0
max = 28

Wald chi2(6) = 291.37
Log pseudolikelihood = -7270505.6 Prob > chi2 = 0.0000

(Std. err. adjusted for 148 clusters in id_school)

Robust
isei Coefficient std. err. z P>|z| [95% conf. interval]

female -.3519458 .7436334 -0.47 0.636 -1.80944 1.105549
high_school 7.074911 1.139777 6.21 0.000 4.84099 9.308833

college 19.27285 1.286029 14.99 0.000 16.75228 21.79342
one_for -.9142879 1.783091 -0.51 0.608 -4.409082 2.580506

both_for 1.214151 1.611885 0.75 0.451 -1.945085 4.373388
test_lang 2.661866 1.556491 1.71 0.087 -.3887996 5.712532

_cons 31.20145 1.907413 16.36 0.000 27.46299 34.93991

Robust
Random-effects parameters Estimate std. err. [95% conf. interval]

id_school: Identity
var(_cons) 31.67522 6.792239 20.80622 48.22209

var(Residual) 226.2429 8.150714 210.8188 242.7955

The results are somewhat similar to before, which is good news from a sensitivity standpoint. Note
that we specified [pw=w fstwtw/wnrschbw] and thus did the conversion from wij to wi|j within
our call to mixed.

We close this section with a bit of bad news. Although weight rescaling and the issues that arise
have been well studied for two-level models, as pointed out by Carle (2009), “. . . a best practice
for scaling weights across multiple levels has yet to be advanced.” As such, pwscale() is currently
supported only for two-level models. If you are fitting a higher-level model with survey data, you
need to make sure your sampling weights are conditional on selection at the previous stage and not
overall inclusion weights, because there is currently no rescaling option to fall back on if you do not.

Small-sample inference for fixed effects

Researchers are often interested in making inferences about fixed effects in a linear mixed-effects
model. In the special case where the data are balanced and the mixed-effects model has a simple
covariance structure, the sampling distributions of the statistics for testing hypotheses about fixed
effects are known to follow an F distribution with specific denominator degrees of freedom (DDF)
under the null hypothesis. For example, the test statistics for testing hypotheses about fixed effects in
balanced split-plot designs and balanced repeated-measures designs have exact t or F distributions.
In general, however, the null sampling distributions of test statistics for fixed effects are not known
and can only be approximated in more complicated mixed-effects models.
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For a large sample, the null sampling distributions of the test statistics can be approximated by a
normal distribution for a one-hypothesis test and a χ2 distribution for a multiple-hypotheses test. This
is the default behavior of mixed. However, these large-sample approximations may not be appropriate
in small samples, and t and F distributions may provide better approximations.

You can specify the dfmethod() option to request small-sample inference for fixed effects. mixed
with the dfmethod() option uses a t distribution for one-hypothesis tests and an F distribution for
multiple-hypotheses tests for inference about fixed effects. We use DF to refer to degrees of freedom
of a t distribution, and we use DDF to refer to denominator degrees of freedom of an F distribution.

Researchers have proposed various approximations that use t and F distributions but differ in
how respective DF and DDF are computed (for example, Khuri, Mathew, and Sinha [1998]; Brown
and Prescott [2015]; Schluchter and Elashoff [1990]; Elston [1998]; Kackar and Harville [1984];
Giesbrecht and Burns [1985]; Fai and Cornelius [1996]; and Kenward and Roger [1997, 2009]).
mixed provides five methods with the dfmethod() option for calculating the DF of a t distribution:
residual, repeated, anova, satterthwaite, and kroger.

Residual DDF (DF). This method uses the residual degrees of freedom, n − p, as the DDF for all
tests of fixed effects. For a linear model without random effects and with i.i.d errors, the distributions
of the test statistics for testing the fixed effects are exact t or F distributions with the residual DF.

Repeated DDF (DF). This method partitions the residual degrees of freedom into the between-subject
degrees of freedom and the within-subject degrees of freedom. This partitioning of the degrees of
freedom arises from balanced repeated-measures ANOVA analysis. If levels of a fixed effect change
within a subject, then the within-subject degrees of freedom is assigned to the fixed effect of interest;
otherwise, the between-subject degrees of freedom is assigned to that fixed effect. Winer, Brown,
and Michels (1991) showed that this method is appropriate only when the data are balanced and the
correlation structure is assumed to be spherical. The repeated DDF method is supported only with
two-level models. For DDF methods accounting for unbalanced repeated measures, see, for example,
Schluchter and Elashoff (1990).

ANOVA DDF (DF). This method mimics the traditional ANOVA method. It determines the DDF for a
fixed effect depending on whether the corresponding covariate is contained in any of the random-effects
equations. If the covariate is contained in a random-effects equation, the DDF for the fixed effect is
computed as the number of levels of the level variable from that equation minus one. If the covariate
is specified in more than one random-effects equation, the DDF for the fixed effect is computed as the
smallest number of levels of the level variables from those equations minus one and is a conservative
estimate of the true DDF. If the covariate is specified only in the fixed-effects equation, the DDF is
computed as νddf = n− rank(X,Z). This method leads to an exact sampling distribution of the test
statistics only when random effects are balanced and the residuals are i.i.d; see, for example, chapter
1.6 in Brown and Prescott (2015) for details.

Satterthwaite DDF (DF). This method performs a generalization of the Satterthwaite approximation
based on Kackar and Harville (1984), Giesbrecht and Burns (1985), and Fai and Cornelius (1996).
Giesbrecht and Burns (1985) developed a method of computing the DDF for a single-hypothesis test
that is analogous to Satterthwaite’s approximation of the degrees of freedom of a linear combination
of ANOVA mean squares. For a multiple-hypotheses test, Fai and Cornelius (1996) proposed an
extension of the Giesbrecht–Burns single-degree-of-freedom method. This method involves the spectral
decomposition of the contrast matrix of the hypothesis test and repeated application of the single-
degree-of-freedom t test. See Denominator degrees of freedom in Methods and formulas for more
computational details.

Kenward–Roger DDF (DF). This method, developed by Kenward and Roger (1997), was designed
to provide an approximation that improves the performance of hypothesis tests about fixed effects
in small samples for complicated mixed-effects models and reproduces the exact inference available
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for simpler mixed-effects models. It provides adjusted test statistics, more appropriate DDFs for the
approximate F distributions when exact inference is not available, and yields the exact t and F
distributions when exact inference is available. This method first accounts for the small-sample bias
and the variability of the estimated random effects to obtain an adjusted estimator of the fixed-effects
covariance matrix. Then, it proposes an approximate F test based on a scaled Wald test statistic that
uses the adjusted variance–covariance estimator. See Denominator degrees of freedom in Methods
and formulas for more computational details.

Residual, repeated, and ANOVA are known as “exact” methods in the literature. These methods are
suitable only when the sampling distributions of the test statistics are known to be t or F . This is
usually only known for certain classes of linear mixed-effects models with simple covariance structures
and when data are balanced. These methods are available with both ML and REML estimation.

Satterthwaite and Kenward–Roger are known as “approximation” methods in the literature. These
methods are for unbalanced data and complicated covariance structures where the sampling distributions
of test statistics are unknown and can only be approximated. Both methods are available only with
REML estimation. For single-hypothesis tests, DDFs calculated with the Kenward–Roger method are
the same as those calculated with the Satterthwaite method, but they differ for multiple-hypotheses
tests. Although DDFs of the two methods are the same for single-hypothesis tests, the inference is
not the same because the Kenward–Roger method uses bias-adjusted standard errors.

Except for the special cases for which the sampling distributions are known, there is no definitive
recommendation for which approximation performs best. Schaalje, McBride, and Fellingham (2002)
compared the Satterthwaite method with the Kenward–Roger method via simulation using different
covariance structures and various sample sizes. They concluded that the Kenward–Roger method
outperforms the Satterthwaite method in most situations. They recommend using the Satterthwaite
method only when the covariance structure of the data is compound symmetry and the sample size
is moderately large. The Kenward–Roger method, however, is not guaranteed to work well in all
situations. For example, for more complicated covariance structures and very small-sample sizes, the
Kenward–Roger method may produce inflated type I error rates. In conclusion, you should choose
your DDF method carefully. See, for example, Schaalje, McBride, and Fellingham (2002), Chen and
Wei (2003), Vallejo et al. (2004), and West, Welch, and Gałecki (2022) for a comparison of different
approximations.

Both types of methods, exact and approximation, are available for single-hypothesis tests. For
multiple-hypotheses tests, exact methods are available only if DDFs associated with fixed effects are
the same for all tested covariates. See Denominator degrees of freedom in Methods and formulas for
details.

Example 13: Small-sample inference with a balanced repeated-measures design

Consider an example from Winer, Brown, and Michels (1991, table 4.3), also analyzed in example 15
of [R] anova, which reports the reaction time for five subjects who were tested with four drugs. The
reaction time was recorded in the variable score. Assume that person is random (that is, we wish
to infer to the larger population of possible subjects) and drug is fixed (that is, only four drugs
are of interest). This is an example of a mixed-effects model with a simple covariance structure—a
balanced repeated-measures design. The dataset contains only 20 observations, so we would like to
account for the small sample in our analysis. Because this is a balanced repeated-measures design,
we can use the repeated method to obtain small-sample inference for fixed effects. We specify the
dfmethod(repeated) option with mixed. We also request REML estimates by specifying the reml
option to account for the small number of groups.
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. use https://www.stata-press.com/data/r18/t43
(T4.3 -- Winer, Brown, Michels)

. mixed score i.drug || person:, reml dfmethod(repeated)

Performing EM optimization ...

Performing gradient-based optimization:
Iteration 0: Log restricted-likelihood = -49.640099
Iteration 1: Log restricted-likelihood = -49.640099

Computing standard errors ...

Computing degrees of freedom ...

Mixed-effects REML regression Number of obs = 20
Group variable: person Number of groups = 5

Obs per group:
min = 4
avg = 4.0
max = 4

DF method: Repeated DF: min = 4.00
avg = 10.00
max = 12.00

F(3, 12.00) = 24.76
Log restricted-likelihood = -49.640099 Prob > F = 0.0000

score Coefficient Std. err. t P>|t| [95% conf. interval]

drug
2 -.8 1.939072 -0.41 0.687 -5.024874 3.424874
3 -10.8 1.939072 -5.57 0.000 -15.02487 -6.575126
4 5.6 1.939072 2.89 0.014 1.375126 9.824874

_cons 26.4 3.149604 8.38 0.001 17.6553 35.1447

Random-effects parameters Estimate Std. err. [95% conf. interval]

person: Identity
var(_cons) 40.20004 30.10272 9.264606 174.4319

var(Residual) 9.399997 3.837532 4.22305 20.92325

LR test vs. linear model: chibar2(01) = 15.03 Prob >= chibar2 = 0.0001

In the table for fixed effects, t statistics are reported instead of the default z statistics. We can
compare our small-sample inference with the corresponding large-sample inference for fixed effects.
We do not need to rerun the estimation command, because we can obtain large-sample results upon
replay by default.
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. mixed

Mixed-effects REML regression Number of obs = 20
Group variable: person Number of groups = 5

Obs per group:
min = 4
avg = 4.0
max = 4

Wald chi2(3) = 74.28
Log restricted-likelihood = -49.640099 Prob > chi2 = 0.0000

score Coefficient Std. err. z P>|z| [95% conf. interval]

drug
2 -.8 1.939072 -0.41 0.680 -4.600511 3.000511
3 -10.8 1.939072 -5.57 0.000 -14.60051 -6.999489
4 5.6 1.939072 2.89 0.004 1.799489 9.400511

_cons 26.4 3.149604 8.38 0.000 20.22689 32.57311

Random-effects parameters Estimate Std. err. [95% conf. interval]

person: Identity
var(_cons) 40.20004 30.10272 9.264606 174.4319

var(Residual) 9.399997 3.837532 4.22305 20.92325

LR test vs. linear model: chibar2(01) = 15.03 Prob >= chibar2 = 0.0001

Comparing the above large-sample inference for fixed effects of drug with the small-sample
inference, we see that the p-value for the level 4 of drug changes from 0.014 to 0.004.

If we wanted to replay our small-sample estimation results, we would type

. mixed, small

(output omitted )

The specified DF method and summaries of the coefficient-specific DFs are reported in the output
header. We can use the dftable() option to display a fixed-effects table containing coefficient-specific
DFs. dftable(pvalue) reports the fixed-effects table containing DFs, t statistics, and p-values, and
dftable(ci) reports the fixed-effects table containing DFs and confidence intervals.
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. mixed, dftable(pvalue) noretable

Mixed-effects REML regression Number of obs = 20
Group variable: person Number of groups = 5

Obs per group:
min = 4
avg = 4.0
max = 4

DF method: Repeated DF: min = 4.00
avg = 10.00
max = 12.00

F(3, 12.00) = 24.76
Log restricted-likelihood = -49.640099 Prob > F = 0.0000

score Coefficient Std. err. df t P>|t|

drug
2 -.8 1.939072 12.0 -0.41 0.687
3 -10.8 1.939072 12.0 -5.57 0.000
4 5.6 1.939072 12.0 2.89 0.014

_cons 26.4 3.149604 4.0 8.38 0.001

Because levels of drug vary within person, the within-subject degrees of freedom, 12, are assigned
to the coefficients for the levels of drug. The DF for the constant term is always the between-subject
degrees of freedom, 4 in this example, because it is constant within random-effects levels.

The model F test is reported in the output header instead of the default χ2 test. The F statistic
for testing drug = 0 is 24.76 with DDF = 12, which agrees with the results of anova, repeated():

. anova score person drug, repeated(drug)

Number of obs = 20 R-squared = 0.9244
Root MSE = 3.06594 Adj R-squared = 0.8803

Source Partial SS df MS F Prob>F

Model 1379 7 197 20.96 0.0000

person 680.8 4 170.2 18.11 0.0001
drug 698.2 3 232.73333 24.76 0.0000

Residual 112.8 12 9.4

Total 1491.8 19 78.515789

Between-subjects error term: person
Levels: 5 (4 df)

Lowest b.s.e. variable: person

Repeated variable: drug
Huynh-Feldt epsilon = 1.0789
*Huynh-Feldt epsilon reset to 1.0000
Greenhouse-Geisser epsilon = 0.6049
Box’s conservative epsilon = 0.3333

Prob > F
Source df F Regular H-F G-G Box

drug 3 24.76 0.0000 0.0000 0.0006 0.0076
Residual 12
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Example 14: Small-sample inference with an unbalanced repeated-measures design

Consider West, Welch, and Gałecki’s (2022) dental veneer dataset from example 7, containing
two measurements on each tooth from multiple teeth per patient. Because of small-sample size, we
would like to obtain small-sample inference for fixed effects.

Some patients are missing observations for some teeth:

. use https://www.stata-press.com/data/r18/veneer, clear
(Dental veneer data)

. table patient tooth

Tooth number with patient
6 7 8 9 10 11 Total

Patient ID
1 2 2 2 2 2 2 12
3 2 2 2 2 2 2 12
4 2 2 2 2 2 2 12
5 2 2 2 2 8
6 2 2 2 2 2 2 12
7 2 2 2 2 2 2 12
8 2 2 2 2 2 2 12
9 2 2 4
10 2 2 2 2 2 2 12
12 2 2 2 2 8
13 2 2
14 2 2 4
Total 16 20 20 18 22 14 110

The dataset is unbalanced; therefore, exact F tests for fixed effects are unavailable. As such, we
will use the Satterthwaite and the Kenward–Roger approximation methods for calculating DF. Let’s
fit the model using the Kenward–Roger method first by specifying dfmethod(kroger).

. mixed gcf followup base_gcf cda age || patient: followup, cov(un)
> || tooth:, reml nolog dfmethod(kroger)

Mixed-effects REML regression Number of obs = 110

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

patient 12 2 9.2 12
tooth 55 2 2.0 2

DF method: Kenward--Roger DF: min = 10.41
avg = 28.96
max = 50.71

F(4, 27.96) = 1.47
Log restricted-likelihood = -420.92761 Prob > F = 0.2370

gcf Coefficient Std. err. t P>|t| [95% conf. interval]

followup .3009815 1.938641 0.16 0.879 -3.96767 4.569633
base_gcf -.0183127 .1466261 -0.12 0.901 -.3132419 .2766164

cda -.329303 .5533506 -0.60 0.554 -1.440355 .7817493
age -.5773932 .2350491 -2.46 0.033 -1.098324 -.056462

_cons 45.73862 13.21824 3.46 0.002 18.53866 72.93858



mixed — Multilevel mixed-effects linear regression 527

Random-effects parameters Estimate Std. err. [95% conf. interval]

patient: Unstructured
var(followup) 41.88772 18.79997 17.38009 100.9535

var(_cons) 524.9851 253.0205 204.1287 1350.175
cov(followup,_cons) -140.4229 66.57623 -270.9099 -9.935904

tooth: Identity
var(_cons) 47.45738 16.63034 23.8792 94.3165

var(Residual) 48.86704 10.50523 32.06479 74.47382

LR test vs. linear model: chi2(4) = 91.12 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Compared with the p-values of the large-sample results from example 7, the p-values for age
and cons change substantially from 0.007 and 0.000 to 0.033 and 0.002, respectively. Note that for
the Kenward–Roger method, not only the p-values and confidence intervals differ from those of the
large-sample results but also the standard errors for the fixed effects differ. The standard errors differ
because this method uses a bias-adjusted estimator of the variance–covariance matrix of fixed effects.

Now, let’s fit the model using the Satterthwaite approximation:

. mixed gcf followup base_gcf cda age || patient: followup, cov(un)
> || tooth:, reml nolog dfmethod(satterthwaite)

Mixed-effects REML regression Number of obs = 110

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

patient 12 2 9.2 12
tooth 55 2 2.0 2

DF method: Satterthwaite DF: min = 10.41
avg = 28.96
max = 50.71

F(4, 16.49) = 1.87
Log restricted-likelihood = -420.92761 Prob > F = 0.1638

gcf Coefficient Std. err. t P>|t| [95% conf. interval]

followup .3009815 1.936863 0.16 0.879 -3.963754 4.565717
base_gcf -.0183127 .1433094 -0.13 0.899 -.3065704 .269945

cda -.329303 .5292525 -0.62 0.537 -1.39197 .7333636
age -.5773932 .2139656 -2.70 0.022 -1.051598 -.1031885

_cons 45.73862 12.55497 3.64 0.001 19.90352 71.57372
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Random-effects parameters Estimate Std. err. [95% conf. interval]

patient: Unstructured
var(followup) 41.88772 18.79997 17.38009 100.9535

var(_cons) 524.9851 253.0205 204.1287 1350.175
cov(followup,_cons) -140.4229 66.57623 -270.9099 -9.935904

tooth: Identity
var(_cons) 47.45738 16.63034 23.8792 94.3165

var(Residual) 48.86704 10.50523 32.06479 74.47382

LR test vs. linear model: chi2(4) = 91.12 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Using the Satterthwaite method, we see that the p-value for age is 0.022 and for cons is 0.001 and
that these are again substantially different from their large-sample counterparts. On the other hand,
unlike the standard errors for the Kenward–Roger method, those for the Satterthwaite method are the
same as the standard errors from the large-sample results.

Looking at the DF summaries in the output header of the two methods, we notice that they
are exactly the same. This is because DFs for fixed effects obtained using the Kenward–Roger and
Satterthwaite methods are the same for single-hypothesis tests. (You can verify this by specifying,
for example, dftable(pvalue) with the above commands or by using estat df; see [ME] estat
df.) The DDFs differ, however, for multiple-hypotheses tests. For example, DDF computed for the
overall model test using dfmethod(satterthwaite) (16.49) is smaller than that computed using
dfmethod(kroger) (27.96).

There are no general guidelines to which method should be preferred, but according to Schaalje,
McBride, and Fellingham (2002), the Kenward–Roger method outperforms the Satterthwaite method
when the variance–covariance structure of the random effects is unstructured, which is the case in
our example.

Determining which DDF method is best is a difficult task and may often need simulation. The
choice of the method depends on the specified covariance structure, sample size, and imbalance of
the data. No method applies to all situations; thus you should use caution when choosing among
methods.
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Stored results
mixed stores the following in e():
Scalars

e(N) number of observations
e(k) number of parameters
e(k f) number of fixed-effects parameters
e(k r) number of random-effects parameters
e(k rs) number of variances
e(k rc) number of covariances
e(k res) number of residual-error parameters
e(N clust) number of clusters
e(nrgroups) number of residual-error by() groups
e(ar p) AR order of residual errors, if specified
e(ma q) MA order of residual errors, if specified
e(res order) order of residual-error structure, if appropriate
e(df m) model degrees of freedom
e(small) 1 if dfmethod() option specified, 0 otherwise
e(F) overall F test statistic when dfmethod() is specified
e(ddf m) model DDF
e(df max) maximum DF
e(df avg) average DF
e(df min) minimum DF
e(ll) log (restricted) likelihood
e(chi2) χ2

e(p) p-value for model test
e(ll c) log likelihood, comparison model
e(chi2 c) χ2, comparison test
e(df c) degrees of freedom, comparison test
e(p c) p-value for comparison test
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) mixed
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type (first-level weights)
e(wexp) weight expression (first-level weights)
e(fweightk) fweight variable for kth highest level, if specified
e(pweightk) pweight variable for kth highest level, if specified
e(ivars) grouping variables
e(title) title in estimation output
e(redim) random-effects dimensions
e(vartypes) variance-structure types
e(revars) random-effects covariates
e(resopt) residuals() specification, as typed
e(rstructure) residual-error structure
e(rstructlab) residual-error structure output label
e(rbyvar) residual-error by() variable, if specified
e(rglabels) residual-error by() groups labels
e(pwscale) sampling-weight scaling method
e(timevar) residual-error t() variable, if specified
e(dfmethod) DF method specified in dfmethod()
e(dftitle) title for DF method
e(chi2type) Wald; type of model χ2 test
e(clustvar) name of cluster variable
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(method) ML or REML
e(opt) type of optimization
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e(optmetric) matsqrt or matlog; random-effects matrix parameterization
e(emonly) emonly, if specified
e(ml method) type of ml method
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginswtype) weight type for margins
e(marginswexp) weight expression for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(N g) group counts
e(g min) group-size minimums
e(g avg) group-size averages
e(g max) group-size maximums
e(tmap) ID mapping for unstructured residual errors
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance
e(df) parameter-specific DF for fixed effects
e(V df) variance–covariance matrix of the estimators when dfmethod(kroger) is specified

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

Estimation using ML and REML
Denominator degrees of freedom

Residual DDF
Repeated DDF
ANOVA DDF
Satterthwaite DDF
Kenward–Roger DDF

Fixed-effects constraints
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Estimation using ML and REML

As given by (1), in the absence of weights we have the linear mixed model

y = Xβ+ Zu + ε

where y is the n× 1 vector of responses, X is an n× p design/covariate matrix for the fixed effects
β, and Z is the n× q design/covariate matrix for the random effects u. The n× 1 vector of errors
ε is for now assumed to be multivariate normal with mean 0 and variance matrix σ2

ε In. We also
assume that u has variance–covariance matrix G and that u is orthogonal to ε so that

Var
[

u
ε

]
=

[
G 0
0 σ2

ε In

]
Considering the combined error term Zu + ε, we see that y is multivariate normal with mean Xβ
and n× n variance–covariance matrix

V = ZGZ′ + σ2
ε In

Defining θ as the vector of unique elements of G results in the log likelihood

L(β, θ, σ2
ε ) = −1

2

{
n log(2π) + log |V|+ (y −Xβ)′V−1(y −Xβ)

}
(9)

which is maximized as a function of β, θ, and σ2
ε . As explained in chapter 6 of Searle, Casella,

and McCulloch (1992), considering instead the likelihood of a set of linear contrasts Ky that do not
depend on β results in the restricted log likelihood

LR(β, θ, σ2
ε ) = L(β, θ, σ2

ε )− 1

2
log
∣∣X′V−1X∣∣ (10)

Given the high dimension of V, however, the log-likelihood and restricted log-likelihood criteria are
not usually computed by brute-force application of the above expressions. Instead, you can simplify
the problem by subdividing the data into independent clusters (and subclusters if possible) and using
matrix decomposition methods on the smaller matrices that result from treating each cluster one at a
time.

Consider the two-level model described previously in (2),

yj = Xjβ+ Zjuj + εj

for j = 1, . . . ,M clusters with cluster j containing nj observations, with Var(uj) = Σ, a q × q
matrix.

Efficient methods for computing (9) and (10) are given in chapter 2 of Pinheiro and Bates (2000).
Namely, for the two-level model, define ∆ to be the Cholesky factor of σ2

εΣ
−1, such that σ2

εΣ
−1 =

∆′∆. For j = 1, . . . ,M , decompose [
Zj
∆

]
= Qj

[
R11j

0

]
by using an orthogonal-triangular (QR) decomposition, with Qj a (nj + q)-square matrix and R11j

a q-square matrix. We then apply Qj as follows:[
R10j

R00j

]
= Q′j

[
Xj

0

]
;

[
c1j
c0j

]
= Q′j

[
yj
0

]
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Stack the R00j and c0j matrices, and perform the additional QR decomposition R001 c01
...

...
R00M c0M

 = Q0

[
R00 c0
0 c1

]

Pinheiro and Bates (2000) show that ML estimates of β, σ2
ε , and ∆ (the unique elements of ∆,

that is) are obtained by maximizing the profile log likelihood (profiled in ∆)

L(∆) =
n

2
{ logn− log(2π)− 1} − n log||c1||+

M∑
j=1

log

∣∣∣∣ det(∆)

det(R11j)

∣∣∣∣ (11)

where || · || denotes the 2-norm. Following this maximization with

β̂ = R−100 c0; σ̂2
ε = n−1||c1||2 (12)

REML estimates are obtained by maximizing

LR(∆) =
n− p

2
{ log(n− p)− log(2π)− 1} − (n− p) log||c1||

− log |det(R00)|+
M∑
j=1

log

∣∣∣∣ det(∆)

det(R11j)

∣∣∣∣ (13)

followed by
β̂ = R−100 c0; σ̂2

ε = (n− p)−1||c1||2

For numerical stability, maximization of (11) and (13) is not performed with respect to the unique
elements of ∆ but instead with respect to the unique elements of the matrix square root (or matrix
logarithm if the matlog option is specified) of Σ/σ2

ε ; define γ to be the vector containing these
elements.

Once maximization with respect to γ is completed, (γ, σ2
ε ) is reparameterized to {α, log(σε)},

where α is a vector containing the unique elements of Σ, expressed as logarithms of standard
deviations for the diagonal elements and hyperbolic arctangents of the correlations for off-diagonal
elements. This last step is necessary 1) to obtain a joint variance–covariance estimate of the elements
of Σ and σ2

ε ; 2) to obtain a parameterization under which parameter estimates can be interpreted
individually, rather than as elements of a matrix square root (or logarithm); and 3) to parameterize
these elements such that their ranges each encompass the entire real line.

Obtaining a joint variance–covariance matrix for the estimated {α, log(σε)} requires the evaluation
of the log likelihood (or log-restricted likelihood) with only β profiled out. For ML, we have

L∗{α, log(σε)} = L{∆(α, σ2
ε ), σ2

ε }

= −n
2

log(2πσ2
ε )− ||c1||

2

2σ2
ε

+

M∑
j=1

log

∣∣∣∣ det(∆)

det(R11j)

∣∣∣∣
with the analogous expression for REML.
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The variance–covariance matrix of β̂ is estimated as

V̂ar(β̂) = σ̂2
εR
−1
00

(
R−100

)′
but this does not mean that V̂ar(β̂) is identical under both ML and REML because R00 depends on
∆. Because β̂ is asymptotically uncorrelated with {α̂, log(σ̂ε)}, the covariance of β̂ with the other
estimated parameters is treated as 0.

Parameter estimates are stored in e(b) as {β̂, α̂, log(σ̂ε)}, with the corresponding (block-diagonal)
variance–covariance matrix stored in e(V). Parameter estimates can be displayed in this metric by
specifying the estmetric option. However, in mixed output, variance components are most often
displayed either as variances and covariances or as standard deviations and correlations.

EM iterations are derived by considering the uj in (2) as missing data. Here we describe the
procedure for maximizing the log likelihood via EM; the procedure for maximizing the restricted log
likelihood is similar. The log likelihood for the full data (y,u) is

LF (β,Σ, σ2
ε ) =

M∑
j=1

{
logf1(yj |uj ,β, σ2

ε ) + logf2(uj |Σ)
}

where f1(·) is the density function for multivariate normal with mean Xjβ + Zjuj and variance
σ2
ε Inj , and f2(·) is the density for multivariate normal with mean 0 and q × q covariance matrix

Σ. As before, we can profile β and σ2
ε out of the optimization, yielding the following EM iterative

procedure:

1. For the current iterated value of Σ(t), fix β̂ = β̂(Σ(t)) and σ̂2
ε = σ̂2

ε (Σ(t)) according to (12).

2. Expectation step: Calculate

D(Σ) ≡ E
{
LF (β̂,Σ, σ̂2

ε )|y
}

= C − M

2
log det (Σ)− 1

2

M∑
j=1

E
(
u′jΣ

−1uj |y
)

where C is a constant that does not depend on Σ, and the expected value of the quadratic form
u′jΣ

−1uj is taken with respect to the conditional density f(uj |y, β̂,Σ(t), σ̂2
ε ).

3. Maximization step: Maximize D(Σ) to produce Σ(t+1).

For general, symmetric Σ, the maximizer of D(Σ) can be derived explicitly, making EM iterations
quite fast.

For general, residual-error structures,

Var(εj) = σ2
εΛj

where the subscript j merely represents that εj and Λj vary in dimension in unbalanced data, the
data are first transformed according to

y∗j = Λ̂
−1/2
j yj ; X∗j = Λ̂

−1/2
j Xj ; Z∗j = Λ̂

−1/2
j Zj ;
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and the likelihood-evaluation techniques described above are applied to y∗j , X∗j , and Z∗j instead.
The unique elements of Λ, ρ, are estimated along with the fixed effects and variance components.
Because σ2

ε is always estimated and multiplies the entire Λj matrix, ρ̂ is parameterized to take this
into account.

In the presence of sampling weights, following Rabe-Hesketh and Skrondal (2006), the weighted
log pseudolikelihood for a two-level model is given as

L(β,Σ, σ2
ε ) =

M∑
j=1

wj log

[∫
exp

{
nj∑
i=1

wi|j logf1(yij |uj ,β, σ2
ε )

}
f2(uj |Σ)duj

]
(14)

where wj is the inverse of the probability of selection for the jth cluster, wi|j is the inverse of the
conditional probability of selection of individual i given the selection of cluster j, and f1(·) and
f2(·) are the multivariate normal densities previously defined.

Weighted estimation is achieved through incorporating wj and wi|j into the matrix decomposition
methods detailed above to reflect replicated clusters for wj and replicated observations within clusters
for wi|j . Because this estimation is based on replicated clusters and observations, frequency weights
are handled similarly.

Rescaling of sampling weights can take one of three available forms:

Under pwscale(size),

w∗i|j = njwi|j

{
nj∑
i=1

wi|j

}−1
Under pwscale(effective),

w∗i|j = wi|j

{
nj∑
i=1

wi|j

}{
nj∑
i=1

w2
i|j

}−1

Under both the above, wj remains unchanged. For method pwscale(gk), however, both weights are
modified:

w∗j = n−1j

nj∑
i=1

wi|jwj w∗i|j = 1

Under ML estimation, robust standard errors are obtained in the usual way (see [P] robust) with
the one distinction being that in multilevel models, robust variances are, at a minimum, clustered at
the highest level. This is because given the form of the log likelihood, scores aggregate at the top-level
clusters. For a two-level model, scores are obtained as the partial derivatives of Lj(β,Σ, σ2

ε ) with
respect to {β,α, log(σε)}, where Lj is the log likelihood for cluster j and L =

∑M
j=1 Lj . Robust

variances are not supported under REML estimation because the form of the log restricted likelihood
does not lend itself to separation by highest-level clusters.

EM iterations always assume equal weighting and an independent, homoskedastic error structure.
As such, with weighted data or when error structures are more complex, EM is used only to obtain
starting values.

For extensions to models with three or more levels, see Bates and Pinheiro (1998) and Rabe-Hesketh
and Skrondal (2006).
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Denominator degrees of freedom

When the dfmethod() option is specified, mixed uses a t distribution with νddf degrees of
freedom to perform single-hypothesis tests for fixed effects H0 : βi = 0 for i = 1, 2, . . . , p or an
F distribution with model numerator degrees of freedom and νddfm DDF for a model (joint) test of
all coefficients (except the constant) being equal to zero. Denominator degrees of freedom νddf and
νddfm are computed according to the specified DDF method.

Residual DDF

This method uses the residual degrees of freedom as the DDF, νddf = n− p, where n is the total
number of observations, and p is the rank of the design matrix X.

Repeated DDF

This method partitions the residual degrees of freedom into the between-subject degrees of freedom
and the within-subject degrees of freedom. This partitioning of the degrees of freedom arises from
balanced repeated-measures ANOVA analysis. If levels of a fixed effect change within a subject, then
the within-subject degrees of freedom is assigned to the fixed effect of interest; otherwise, the between-
subject degrees of freedom is assigned to that fixed effect. See Schluchter and Elashoff (1990) for
more computational details and, specifically, for the expressions of between-subject and within-subject
degrees of freedom.

ANOVA DDF

This method determines the DDF for a fixed effect depending on whether the corresponding covariate
is contained in any of the random-effects equations. If the covariate is contained in a random-effects
equation, the DDF νddf for the fixed effect is computed as the number of levels of the level variable
from that equation minus one. If the covariate is specified in more than one random-effects equation,
the DDF νddf for the fixed effect is computed as the smallest number of levels of the level variables
from those equations minus one and is a conservative estimate of the true DDF. If the covariate is
specified only in the fixed-effects equation, the DDF is computed as νddf = n− rank(X,Z).

For example, suppose we have the following mixed model,

mixed y A B C || D: A || E: A B

where A, B, and C are fixed effects, and D and E are nested random effects. For the fixed effect A, νddf
is the smaller number of levels of variables D and E minus one because A is included in random-effects
equations at both levels D and E. For the fixed effect B, νddf is the number of levels of level variable
E minus one because B is included in the random-effects equation at the level E. For the fixed effect
C, νddf = n− rank(X,Z) because C is not included in any of the random-effects equations.

For the three methods above, the DDF for a model test of H0: β = 0 is computed as follows.
If all corresponding single-hypothesis tests H0: βi = 0 have the same DDF νddf , then model DDF
νddfm = νddf . If the single-hypothesis DDF differs, then νddfm is not defined, and the large-sample
χ2 test is reported instead of the F test.

To provide formulas for the Satterthwaite and Kenward–Roger methods, consider a general linear-
hypotheses test of fixed effects H0: C′β = b with a p × l matrix of linear hypotheses C of rank
l.
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The variance–covariance matrix of y is Var(y) = V = ZGZ′ + R = V(σ) and can be viewed
as a function of variance components σ (r×1). Suppose that the first two partial derivatives of V(σ)
with respect to σ exist.

Let σ̂ be the REML estimator of σ. Then, the REML estimator of the fixed effects β is the generalized
least-squares estimator

β̂ =
{
X′V−1(σ̂)X

}−1
X′V−1(σ̂)Y

where V̂ar(β̂) = Φ̂ = Φ(σ̂) =
{
X′V−1(σ̂)X

}−1
is the conventional estimator of the variance–

covariance matrix of the fixed effects β̂, and V(σ̂) is the estimator of the covariance matrix of
y.

Under the null H0: C′β = b, the F test statistic is

F =
1

l
(C′β̂− b)′(C′Φ̂C)−1(C′β̂− b)

and it has an F distribution with l numerator and νddfC DDF.

Satterthwaite DDF

This method is derived from the DDF formula of the original approximation attributable to
Satterthwaite (1946):

ddf =
2(C′Φ̂C)2

Var(C′Φ̂C)

For a single-hypothesis test of H0 : c′β = b, where c and b are vectors of known constants,
Giesbrecht and Burns (1985) proposed using

νddf =
2(c′Φ̂c)2

Var(c′Φ̂c)
=

2(c′Φ̂c)2

d′Wd
(15)

where d is a vector of partial derivatives of c′Φ(σ)c with respect to σ evaluated at σ̂, and V̂ar(σ̂) = W
is the estimator of the variance–covariance matrix of σ̂ computed based on the expected information
matrix IE in (17) or on the observed information matrix if suboption oim of dfmethod() is specified.

For a multiple-hypotheses test (when the rank of C is greater than 1), Fai and Cornelius (1996)
proposed an extension of the Giesbrecht–Burns single-degree-of-freedom method. Their method
involves the spectral decomposition C′Φ̂C = P′DP, where P = (p1,p2, . . . ,pl) is an orthogonal
matrix of eigenvectors, and D = diag(λ1, λ2, . . . , λl) is a diagonal matrix of the corresponding
eigenvalues. Using this decomposition, we can write the F -test statistic as a sum of l independent
approximate t random variates, F = Q/l with

Q =

l∑
k=1

{p′k(C′β̂− b)}2

λk
=

l∑
k=1

t2vk

where vk is computed using (15). Because tvks are independent and have approximate t distributions
with vk degrees of freedom,

E(Q) =

l∑
k=1

vk
vk − 2

I(vk > 2)
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Then, the DDF for a multiple-hypotheses test can be approximately written as

νddfC =
2E(Q)

E(Q)− l

For more computational details of the Satterthwaite method, see Fai and Cornelius (1996).

Kenward–Roger DDF

This method was developed by Kenward and Roger (1997). It is based on adjusting the conventional
variance–covariance estimator of fixed effects Φ̂ for small-sample bias and introducing a scaled F
test that improves the small-sample performance of the conventional F test of fixed effects.

Kenward and Roger (1997) propose the adjusted estimator,

Φ̂A = Φ̂ + 2Φ̂


r∑
i=1

r∑
j=1

Wij(Qij −PiΦ̂Pj −
1

4
Rij)

 Φ̂ (16)

where Pi = X′{∂V−1(σ)/∂σi}X, Qij = X′{∂V−1(σ)/∂σi}V(σ){∂V−1(σ)/∂σj}X, and
Rij = X′V−1(σ){∂2V(σ)/∂σi∂σj}V−1(σ)X evaluated at σ̂ and Wij is the (i, j)th element of
W, the estimator of the variance–covariance matrix of σ̂ computed from the inverse of the expected
information matrix IE , where the element IijE of IE is defined as

2IijE = tr
(
∂V−1

∂σi
V
∂V−1

∂σj
V

)
− tr(2ΦQij − ΦPiΦPj) (17)

Alternatively, you can use the observed information matrix as W by specifying suboption oim in
dfmethod().

All terms in (16), except those involving Rij , are invariant under reparameterization of the
covariance structures. Also, the second derivative requires more computational resources and may not
be numerically stable. For these reasons, the Rij terms are ignored in the computation of Φ̂A in (16).

For multiple-hypotheses testing, Kenward and Roger (1997) propose the scaled F -test statistic,
which under the null hypothesis can be written as

FKR =
λ

l
(C′β̂− b)′(C′Φ̂AC)−1(C′β̂− b)

and has an F distribution with l numerator and νddfC DDF. The scale factor λ = νddfC/(l−1+νddfC ).

The DDF νddfC and λ are approximated as

νddfC = 4 +
l + 2

l × ρ− 1
and λ =

νddfC
E∗(νddfC − 2)

where ρ = V ∗/2(E∗)2 and E∗ and V ∗ are the respective approximate mean and variance of the
FKR statistic; see Kenward and Roger (1997, 987) for expressions for E∗ and V ∗.
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Fixed-effects constraints

Fixed-effects constraints Rβ = r are computed by first generating the T and a matrices via
the eigenvalue decomposition described in [P] makecns. The fixed-effects model matrix is adjusted
by Xc = XT and the dependent variable by yc = y − Xa′. Computations then proceed with
unconstrained optimization using Xc and yc. On convergence, we solve for the reduced-form fixed
effects β̂c and then solve for the constrained fixed effects β̂ = Tβ̂c+a′. (Here, β̂ and β̂c correspond
to b′ and b′c in [P] makecns.)
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Also see
[ME] mixed postestimation — Postestimation tools for mixed

[ME] meglm — Multilevel mixed-effects generalized linear models

[ME] menl — Nonlinear mixed-effects regression

[ME] me — Introduction to multilevel mixed-effects models

[MI] Estimation — Estimation commands for use with mi estimate

[BAYES] bayes: mixed — Bayesian multilevel linear regression

[SEM] Intro 5 — Tour of models (Multilevel mixed-effects models)

[XT] xtrc — Random-coefficients model

[XT] xtreg — Fixed-, between-, and random-effects and population-averaged linear models+

[U] 20 Estimation and postestimation commands



Title

mixed postestimation — Postestimation tools for mixed

Postestimation commands predict margins
test and testparm lincom contrast
pwcompare Remarks and examples Stored results
Methods and formulas References Also see

Postestimation commands
The following postestimation commands are of special interest after mixed:

Command Description

estat df calculate and display degrees of freedom for fixed effects
estat group summarize the composition of the nested groups
estat icc estimate intraclass correlations
estat recovariance display the estimated random-effects covariance matrices
estat sd display variance components as standard deviations and correlations
estat wcorrelation display within-cluster correlations and standard deviations

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian

information criteria (AIC, CAIC, AICc, and BIC)
estat summarize summary statistics for the estimation sample
estat vce variance–covariance matrix of the estimators (VCE)
estimates cataloging estimation results
etable table of estimation results
hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combina-

tions of coefficients
lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal

effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear com-

binations of coefficients
predict predictions and their SEs, residuals, etc.
predictnl point estimates, standard errors, testing, and inference for generalized

predictions

542
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pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

predict

Description for predict
predict creates a new variable containing predictions such as linear predictions, standard errors,

fitted values, residuals, and standardized residuals.

Menu for predict

Statistics > Postestimation

Syntax for predict

Syntax for obtaining predictions of the outcome and other statistics

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic relevel(levelvar)
]

Syntax for obtaining BLUPs of random effects and the BLUPs’ standard errors

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, reffects

[
relevel(levelvar)

reses(stub* | newvarlist)
]

Syntax for obtaining scores after ML estimation

predict
[

type
]

stub*
[

if
] [

in
]
, scores

statistic Description

Main

xb linear prediction for the fixed portion of the model only; the default
stdp standard error of the fixed-portion linear prediction
fitted fitted values, fixed-portion linear prediction plus contributions based on

predicted random effects
residuals residuals, response minus fitted values
∗rstandard standardized residuals

Unstarred statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample. Starred statistics are calculated only for the estimation sample, even when
if e(sample) is not specified.
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Options for predict

� � �
Main �

xb, the default, calculates the linear prediction xβ based on the estimated fixed effects (coefficients)
in the model. This is equivalent to fixing all random effects in the model to their theoretical mean
value of 0.

stdp calculates the standard error of the linear predictor xβ.

fitted calculates fitted values, which are equal to the fixed-portion linear predictor plus contributions
based on predicted random effects, or in mixed-model notation, xβ+Zu. By default, the fitted values
take into account random effects from all levels in the model; however, if the relevel(levelvar)
option is specified, then the fitted values are fit beginning with the topmost level down to and
including level levelvar. For example, if classes are nested within schools, then typing

. predict yhat_school, fitted relevel(school)

would produce school-level predictions. That is, the predictions would incorporate school-specific
random effects but not those for each class nested within each school.

residuals calculates residuals, equal to the responses minus fitted values. By default, the fitted values
take into account random effects from all levels in the model; however, if the relevel(levelvar)
option is specified, then the fitted values are fit beginning at the topmost level down to and including
level levelvar.

rstandard calculates standardized residuals, equal to the residuals multiplied by the inverse square
root of the estimated error covariance matrix.

reffects calculates best linear unbiased predictions (BLUPs) of the random effects. By default, BLUPs
for all random effects in the model are calculated. However, if the relevel(levelvar) option is
specified, then BLUPs for only level levelvar in the model are calculated. For example, if classes
are nested within schools, then typing

. predict b*, reffects relevel(school)

would produce BLUPs at the school level. You must specify q new variables, where q is the number
of random-effects terms in the model (or level). However, it is much easier to just specify stub*
and let Stata name the variables stub1, stub2, . . . , stubq for you.

Rabe-Hesketh and Skrondal (2022, sec. 2.11.2) discuss the link between the empirical Bayes
predictions and BLUPs and how these predictions are unbiased. They are unbiased when the groups
associated with the random effects are expected to vary in repeated samples. If you expect the
groups to be fixed in repeated samples, then these predictions are no longer unbiased.

scores calculates the parameter-level scores, one for each parameter in the model including regression
coefficients and variance components. The score for a parameter is the first derivative of the log
likelihood (or log pseudolikelihood) with respect to that parameter. One score per highest-level
group is calculated, and it is placed on the last record within that group. Scores are calculated in
the estimation metric as stored in e(b).

scores is not available after restricted maximum-likelihood (REML) estimation.

relevel(levelvar) specifies the level in the model at which predictions involving random effects are
to be obtained; see the options above for the specifics. levelvar is the name of the model level
and is either the name of the variable describing the grouping at that level or is all, a special
designation for a group comprising all the estimation data.

reses(stub* | newvarlist) calculates the standard errors of the BLUPs of the random effects. By default,
standard errors for all BLUPs in the model are calculated. However, if the relevel(levelvar)
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option is specified, then standard errors for only level levelvar in the model are calculated; see
the reffects option.

You must specify q new variables, where q is the number of random-effects terms in the model
(or level). However, it is much easier to just specify stub* and let Stata name the variables stub1,
stub2, . . . , stubq for you. The new variables will have the same storage type as the corresponding
random-effects variables.

The reffects and reses() options often generate multiple new variables at once. When this
occurs, the random effects (or standard errors) contained in the generated variables correspond to
the order in which the variance components are listed in the output of mixed. Still, examining
the variable labels of the generated variables (with the describe command, for instance) can be
useful in deciphering which variables correspond to which terms in the model.

margins

Description for margins

margins estimates margins of response for linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins
[

marginlist
] [

, options
]

margins
[

marginlist
]
, predict(statistic . . . )

[
options

]
statistic Description

xb linear predictor for the fixed portion of the model only; the default
stdp not allowed with margins

fitted not allowed with margins

residuals not allowed with margins

rstandard not allowed with margins

reffects not allowed with margins

scores not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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test and testparm

Description for test and testparm

test and testparm, by default, perform χ2 tests of simple and composite linear hypotheses about
the parameters for the most recently fit mixed model. They also support F tests with a small-sample
adjustment for fixed effects.

Menu for test and testparm

Statistics > Postestimation

Syntax for test and testparm

test (spec)
[
(spec) . . .

] [
, test options small

]
testparm varlist

[
, testparm options small

]
Options for test and testparm

� � �
Options �

test options; see [R] test options. Options df(), common, and nosvyadjust may not be specified
together with small.

testparm options; see options of testparm in [R] test. Options df() and nosvyadjust may not be
specified together with small.

small specifies that F tests for fixed effects be carried out with the denominator degrees of
freedom (DDF) obtained by the same method used in the most recently fit mixed model. If option
dfmethod() is not specified in the previous mixed command, option small is not allowed. For
certain methods, the DDF for some tests may not be available. See Small-sample inference for
fixed effects in [ME] mixed for more details.



mixed postestimation — Postestimation tools for mixed 547

lincom

Description for lincom

lincom, by default, computes point estimates, standard errors, z statistics, p-values, and confidence
intervals for linear combinations of coefficients after mixed. lincom also provides t statistics for
linear combinations of the fixed effects, with the degrees of freedom calculated by the DF method
specified in option dfmethod() of mixed.

Menu for lincom
Statistics > Postestimation

Syntax for lincom

lincom exp
[
, lincom options small

]
Options for lincom

lincom options; see [R] lincom options. Option df() may not be specified together with small.

small specifies that t statistics for linear combinations of fixed effects be displayed with the degrees
of freedom obtained by the same method used in the most recently fit mixed model. If option
dfmethod() is not specified in the previous mixed command, option small is not allowed. For
certain methods, the degrees of freedom for some linear combinations may not be available. See
Small-sample inference for fixed effects in [ME] mixed for more details.
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contrast

Description for contrast

contrast, by default, performs χ2 tests of linear hypotheses and forms contrasts involving factor
variables and their interactions for the most recently fit mixed model. contrast also supports tests
with small-sample adjustments after mixed, dfmethod().

Menu for contrast
Statistics > Postestimation

Syntax for contrast

contrast termlist
[
, contrast options small

]
Options for contrast

contrast options; see [R] contrast options. Options df() and nosvyadjust may not be specified
together with small.

small specifies that tests for contrasts be carried out with the DDF obtained by the same method
used in the most recently fit mixed model. If option dfmethod() is not specified in the previous
mixed command, option small is not allowed. For certain methods, the DDF for some contrasts
may not be available. See Small-sample inference for fixed effects in [ME] mixed for more details.
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pwcompare

Description for pwcompare

pwcompare performs pairwise comparisons across the levels of factor variables from the most
recently fit mixed model. pwcompare, by default, reports the comparisons as contrasts (differences)
of margins along with z tests or confidence intervals for the pairwise comparisons. pwcompare also
supports t tests with small-sample adjustments after mixed, dfmethod().

Menu for pwcompare

Statistics > Postestimation

Syntax for pwcompare

pwcompare marginlist
[
, pwcompare options small

]
Options for pwcompare

pwcompare options; see [R] pwcompare options. Option df() may not be specified together with
small.

small specifies that t tests for pairwise comparisons be carried out with the degrees of freedom
obtained by the same method used in the most recently fit mixed model with the dfmethod()
option. If option dfmethod() is not specified in the previous mixed command, option small is
not allowed. For certain methods, the degrees of freedom for some pairwise comparisons may not
be available. See Small-sample inference for fixed effects in [ME] mixed for more details.

Remarks and examples
Various predictions, statistics, and diagnostic measures are available after fitting a mixed model

using mixed. For the most part, calculation centers around obtaining BLUPs of the random effects.
Random effects are not estimated when the model is fit but instead need to be predicted after
estimation. Calculation of intraclass correlations, estimating the dependence between responses for
different levels of nesting, may also be of interest.

Example 1: Obtaining predictions of random effects and checking model fit

In example 3 of [ME] mixed, we modeled the weights of 48 pigs measured on nine successive
weeks as

weightij = β0 + β1weekij + u0j + u1jweekij + εij (1)

for i = 1, . . . , 9, j = 1, . . . , 48, εij ∼ N(0, σ2
ε ), and u0j and u1j normally distributed with mean 0

and variance–covariance matrix

Σ = Var
[
u0j
u1j

]
=

[
σ2
u0 σ01
σ01 σ2

u1

]
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. use https://www.stata-press.com/data/r18/pig
(Longitudinal analysis of pig weights)

. mixed weight week || id: week, covariance(unstructured)

Performing EM optimization ...

Performing gradient-based optimization:
Iteration 0: Log likelihood = -868.96185
Iteration 1: Log likelihood = -868.96185

Computing standard errors ...

Mixed-effects ML regression Number of obs = 432
Group variable: id Number of groups = 48

Obs per group:
min = 9
avg = 9.0
max = 9

Wald chi2(1) = 4649.17
Log likelihood = -868.96185 Prob > chi2 = 0.0000

weight Coefficient Std. err. z P>|z| [95% conf. interval]

week 6.209896 .0910745 68.18 0.000 6.031393 6.388399
_cons 19.35561 .3996387 48.43 0.000 18.57234 20.13889

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Unstructured
var(week) .3715251 .0812958 .2419532 .570486

var(_cons) 6.823363 1.566194 4.351297 10.69986
cov(week,_cons) -.0984378 .2545767 -.5973991 .4005234

var(Residual) 1.596829 .123198 1.372735 1.857505

LR test vs. linear model: chi2(3) = 764.58 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Rather than see the estimated variance components listed as variance and covariances as above, we
can instead see them as correlations and standard deviations using estat sd; see [ME] estat sd.

. estat sd

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Unstructured
sd(week) .6095286 .0666874 .4918874 .7553052

sd(_cons) 2.612157 .2997895 2.085976 3.271064
corr(week,_cons) -.0618257 .1575911 -.3557072 .243182

sd(Residual) 1.263657 .0487466 1.171638 1.362903
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We can use estat recovariance to display the estimated variance components Σ̂ as a correlation
matrix; see [ME] estat recovariance.

. estat recovariance, correlation

Random-effects correlation matrix for level id

week _cons

week 1
_cons -.0618257 1

Finally, we can use estat wcorrelation to display the within-cluster marginal standard deviations
and correlations for one of the clusters; see [ME] estat wcorrelation.

. estat wcorrelation, format(%4.2g)

Standard deviations and correlations for id = 1:

Standard deviations:

obs 1 2 3 4 5 6 7 8 9

sd 2.9 3.1 3.3 3.7 4.1 4.5 5 5.5 6.1

Correlations:

obs 1 2 3 4 5 6 7 8 9

1 1
2 .8 1
3 .77 .83 1
4 .72 .81 .86 1
5 .67 .78 .85 .89 1
6 .63 .75 .83 .88 .91 1
7 .59 .72 .81 .87 .91 .93 1
8 .55 .69 .79 .86 .9 .93 .94 1
9 .52 .66 .77 .85 .89 .92 .94 .95 1

Because within-cluster correlations can vary between clusters, estat wcorrelation by default
displays the results for the first cluster. In this example, each cluster (pig) has the same number
of observations, and the timings of measurements (week) are the same between clusters. Thus the
within-cluster correlations are the same for all the clusters. In example 1 of [ME] estat wcorrelation,
we fit a model where different clusters have different within-cluster correlations and show how to
display these correlations.
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We can also obtain BLUPs of the pig-level random effects (u0j and u1j). We need to specify
the variables to be created in the order u1 u0 because that is the order in which the corresponding
variance components are listed in the output (week cons). We obtain the predictions and list them
for the first 10 pigs.

. predict u1 u0, reffects

. by id, sort: generate tolist = (_n==1)

. list id u0 u1 if id <=10 & tolist

id u0 u1

1. 1 .2369444 -.3957636
10. 2 -1.584127 .510038
19. 3 -3.526551 .3200372
28. 4 1.964378 -.7719702
37. 5 1.299236 -.9241479

46. 6 -1.147302 -.5448151
55. 7 -2.590529 .0394454
64. 8 -1.137067 -.1696566
73. 9 -3.189545 -.7365507
82. 10 1.160324 .0030772

If you forget how to order your variables in predict, or if you use predict stub*, remember
that predict labels the generated variables for you to avoid confusion.

. describe u0 u1

Variable Storage Display Value
name type format label Variable label

u0 float %9.0g BLUP r.e. for id: _cons
u1 float %9.0g BLUP r.e. for id: week

Examining (1), we see that within each pig, the successive weight measurements are modeled as
simple linear regression with intercept β0 + uj0 and slope β1 + uj1. We can generate estimates of
the pig-level intercepts and slopes with

. generate intercept = _b[_cons] + u0

. generate slope = _b[week] + u1

. list id intercept slope if id<=10 & tolist

id interc~t slope

1. 1 19.59256 5.814132
10. 2 17.77149 6.719934
19. 3 15.82906 6.529933
28. 4 21.31999 5.437926
37. 5 20.65485 5.285748

46. 6 18.20831 5.665081
55. 7 16.76509 6.249341
64. 8 18.21855 6.040239
73. 9 16.16607 5.473345
82. 10 20.51594 6.212973
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Thus we can plot estimated regression lines for each of the pigs. Equivalently, we can just plot
the fitted values because they are based on both the fixed and the random effects:

. predict fitweight, fitted

. twoway connected fitweight week if id<=10, connect(L)
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We can also generate standardized residuals and see whether they follow a standard normal
distribution, as they should in any good-fitting model:

. predict rs, rstandard

. summarize rs

Variable Obs Mean Std. dev. Min Max

rs 432 1.01e-09 .8929356 -3.621446 3.000929

. qnorm rs
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Example 2: Estimating the intraclass correlation

Following Rabe-Hesketh and Skrondal (2022, chap. 2), we fit a two-level random-effects model
for human peak-expiratory-flow rate. The subjects were each measured twice with the Mini-Wright
peak-flow meter. It is of interest to determine how reliable the meter is as a measurement device. The
intraclass correlation provides a measure of reliability. Formally, in a two-level random-effects model,
the intraclass correlation corresponds to the correlation of measurements within the same individual
and also to the proportion of variance explained by the individual random effect.

First, we fit the two-level model with mixed:
. use https://www.stata-press.com/data/r18/pefrate, clear
(Peak-expiratory-flow rate)

. mixed wm || id:

Performing EM optimization ...

Performing gradient-based optimization:
Iteration 0: Log likelihood = -184.57839
Iteration 1: Log likelihood = -184.57839

Computing standard errors ...

Mixed-effects ML regression Number of obs = 34
Group variable: id Number of groups = 17

Obs per group:
min = 2
avg = 2.0
max = 2

Wald chi2(0) = .
Log likelihood = -184.57839 Prob > chi2 = .

wm Coefficient Std. err. z P>|z| [95% conf. interval]

_cons 453.9118 26.18617 17.33 0.000 402.5878 505.2357

Random-effects parameters Estimate Std. err. [95% conf. interval]

id: Identity
var(_cons) 11458.94 3998.952 5782.176 22708.98

var(Residual) 396.441 135.9781 202.4039 776.4942

LR test vs. linear model: chibar2(01) = 46.27 Prob >= chibar2 = 0.0000

Now we use estat icc to estimate the intraclass correlation:
. estat icc

Intraclass correlation

Level ICC Std. err. [95% conf. interval]

id .9665602 .0159495 .9165853 .9870185

This correlation is close to 1, indicating that the Mini-Wright peak-flow meter is reliable. But
as noted by Rabe-Hesketh and Skrondal (2022), the reliability is not only a characteristic of the
instrument but also of the between-subject variance. Here we see that the between-subject standard
deviation, sd( cons), is much larger than the within-subject standard deviation, sd(Residual).

In the presence of fixed-effects covariates, estat icc reports the residual intraclass correlation,
the correlation between measurements conditional on the fixed-effects covariates. This is equivalent
to the correlation of the model residuals.



mixed postestimation — Postestimation tools for mixed 555

In the presence of random-effects covariates, the intraclass correlation is no longer constant and
depends on the values of the random-effects covariates. In this case, estat icc reports conditional
intraclass correlations assuming 0 values for all random-effects covariates. For example, in a two-level
model, this conditional correlation represents the correlation of the residuals for two measurements on
the same subject, which both have random-effects covariates equal to 0. Similarly to the interpretation
of intercept variances in random-coefficients models (Rabe-Hesketh and Skrondal 2022, chap. 4),
interpretation of this conditional intraclass correlation relies on the usefulness of the 0 baseline values
of random-effects covariates. For example, mean centering of the covariates is often used to make a
0 value a useful reference.

See [ME] estat icc for more information.

Example 3: Estimating residual intraclass correlations

In example 4 of [ME] mixed, we estimated a Cobb–Douglas production function with random
intercepts at the region level and at the state-within-region level:

yjk = Xjkβ+ u
(3)
k + u

(2)
jk + εjk

. use https://www.stata-press.com/data/r18/productivity
(Public capital productivity)

. mixed gsp private emp hwy water other unemp || region: || state:
(output omitted )

We can use estat group to see how the data are broken down by state and region:

. estat group

No. of Observations per group
Group variable groups Minimum Average Maximum

region 9 51 90.7 136
state 48 17 17.0 17

We are reminded that we have balanced productivity data for 17 years for each state.

We can use predict, fitted to get the fitted values

ŷjk = Xjkβ̂+ û
(3)
k + û

(2)
jk

but if we instead want fitted values at the region level, that is,

ŷjk = Xjkβ̂+ û
(3)
k

we need to use the relevel() option:
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. predict gsp_region, fitted relevel(region)

. list gsp gsp_region in 1/10

gsp gsp_re~n

1. 10.25478 10.40529
2. 10.2879 10.42336
3. 10.35147 10.47343
4. 10.41721 10.52648
5. 10.42671 10.54947

6. 10.4224 10.53537
7. 10.4847 10.60781
8. 10.53111 10.64727
9. 10.59573 10.70503

10. 10.62082 10.72794

Technical note

Out-of-sample predictions are permitted after mixed, but if these predictions involve BLUPs of
random effects, the integrity of the estimation data must be preserved. If the estimation data have
changed since the mixed model was fit, predict will be unable to obtain predicted random effects that
are appropriate for the fitted model and will give an error. Thus to obtain out-of-sample predictions
that contain random-effects terms, be sure that the data for these predictions are in observations that
augment the estimation data.

We can use estat icc to estimate residual intraclass correlations between productivity years in
the same region and in the same state and region.

. estat icc

Residual intraclass correlation

Level ICC Std. err. [95% conf. interval]

region .159893 .127627 .0287143 .5506202
state|region .8516265 .0301733 .7823466 .9016272

estat icc reports two intraclass correlations for this three-level nested model. The first is the
level-3 intraclass correlation at the region level, the correlation between productivity years in the same
region. The second is the level-2 intraclass correlation at the state-within-region level, the correlation
between productivity years in the same state and region.

Conditional on the fixed-effects covariates, we find that annual productivity is only slightly correlated
within the same region, but it is highly correlated within the same state and region. We estimate that
state and region random effects compose approximately 85% of the total residual variance.

Example 4: Small-sample adjusted tests for fixed effects

To illustrate the use of test and testparm with the small option for small-sample adjusted
tests for fixed effects, we refit the dental veneer data from example 14 of [ME] mixed using the
Satterthwaite method (option dfmethod(satterthwaite)) to compute the DF for fixed effects.
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. use https://www.stata-press.com/data/r18/veneer, clear
(Dental veneer data)

. mixed gcf followup base_gcf cda age
> || patient: followup, covariance(unstructured)
> || tooth:, reml nolog dfmethod(satterthwaite)

Mixed-effects REML regression Number of obs = 110

Grouping information

No. of Observations per group
Group variable groups Minimum Average Maximum

patient 12 2 9.2 12
tooth 55 2 2.0 2

DF method: Satterthwaite DF: min = 10.41
avg = 28.96
max = 50.71

F(4, 16.49) = 1.87
Log restricted-likelihood = -420.92761 Prob > F = 0.1638

gcf Coefficient Std. err. t P>|t| [95% conf. interval]

followup .3009815 1.936863 0.16 0.879 -3.963754 4.565717
base_gcf -.0183127 .1433094 -0.13 0.899 -.3065704 .269945

cda -.329303 .5292525 -0.62 0.537 -1.39197 .7333636
age -.5773932 .2139656 -2.70 0.022 -1.051598 -.1031885

_cons 45.73862 12.55497 3.64 0.001 19.90352 71.57372

Random-effects parameters Estimate Std. err. [95% conf. interval]

patient: Unstructured
var(followup) 41.88772 18.79997 17.38009 100.9535

var(_cons) 524.9851 253.0205 204.1287 1350.175
cov(followup,_cons) -140.4229 66.57623 -270.9099 -9.935904

tooth: Identity
var(_cons) 47.45738 16.63034 23.8792 94.3165

var(Residual) 48.86704 10.50523 32.06479 74.47382

LR test vs. linear model: chi2(4) = 91.12 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

Now we can, for example, test the hypotheses that all fixed effects are zero by typing

. testparm *, small

( 1) [gcf]followup = 0
( 2) [gcf]base_gcf = 0
( 3) [gcf]cda = 0
( 4) [gcf]age = 0

F( 4, 16.49) = 1.87
Prob > F = 0.1638

The F statistic for the overall test is 1.87, and the DDF is estimated to be 16.49. These results are
different from the model test using the Kenward–Roger DDF method reported in the header of the
estimation output in example 1 of [ME] estat df (the F statistic is 1.47, and the model DDF is 27.96).
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The results differ because the Kenward–Roger method uses an adjusted F -test statistic and adjusts
the fixed-effects variance–covariance estimator for a small sample. Both methods, however, lead to
the same conclusion of no joint significance of the fixed effects.

Without option small, the commands test and testparm report large-sample χ2 Wald tests.
We can compare the small-sample and large-sample tests of the joint hypotheses that the coefficient
on followup and the coefficient on age equal zero.

. test followup = age = 0, small

( 1) [gcf]followup - [gcf]age = 0
( 2) [gcf]followup = 0

F( 2, 10.75) = 3.65
Prob > F = 0.0617

. test followup = age = 0

( 1) [gcf]followup - [gcf]age = 0
( 2) [gcf]followup = 0

chi2( 2) = 7.30
Prob > chi2 = 0.0260

The DDF of the F test, which is computed using the Satterthwaite method from our posted results,
is 10.75. The p-values are very different (0.0617 versus 0.0260), and they lead to different conclusions
of whether we should reject the null hypotheses at the α = 0.05 level.

Similarly, you can use the small option with lincom to perform small-sample inference for linear
combinations of fixed effects.

Example 5: Small-sample adjusted contrasts

As we did with test, after fitting a mixed model with the dfmethod() option for small-sample
adjustment, we can use the small option with contrast to adjust for a small sample when estimating
contrasts. Suppose we have collected data on a vigilance performance test. This experiment has been
designed to test the response latency scores of two modes of signal during a four-hour monitoring
period. This is a split-plot factorial design where signal is the whole-plot factor, hour is the subplot
factor, and subject is the block factor. The whole-plot factor and the subplot factor are fixed; the
block factor is random. Also, suppose that two measurements are missing in this dataset.

. use https://www.stata-press.com/data/r18/vptscores, clear
(Vigilance performance test scores with missing data)

. tabdisp subject hour, cellvar(score) by(signal) concise missing

Signal
and
Subject Monitoring period
ID 1 2 3 4

Auditory
1 3 4 7 7
2 6 5 . 8
3 3 4 7 9
4 3 3 6 8

Visual
5 1 2 5 10
6 2 3 6 .
7 2 4 5 9
8 2 3 6 11
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We start by fitting a mixed model. Because the dataset is small and unbalanced, we apply the
Kenward–Roger method for small-sample adjustment:

. mixed score signal##hour || subject:, reml dfmethod(kroger) nolog nogroup

Mixed-effects REML regression Number of obs = 30
DF method: Kenward--Roger DF: min = 16.02

avg = 16.76
max = 18.29

F(7, 16.08) = 43.84
Log restricted-likelihood = -32.9724 Prob > F = 0.0000

score Coefficient Std. err. t P>|t| [95% conf. interval]

signal
Visual -2 .6288677 -3.18 0.005 -3.319693 -.6803071

hour
2 .25 .5359916 0.47 0.647 -.8861371 1.386137
3 3.108222 .5911044 5.26 0.000 1.859163 4.357281
4 4.25 .5359916 7.93 0.000 3.113863 5.386137

signal#hour
Visual#2 1 .7580066 1.32 0.206 -.6067405 2.606741
Visual#3 .6417778 .7979294 0.80 0.433 -1.046666 2.330221
Visual#4 4.044205 .7979294 5.07 0.000 2.355762 5.732649

_cons 3.75 .4446766 8.43 0.000 2.816836 4.683164

Random-effects parameters Estimate Std. err. [95% conf. interval]

subject: Identity
var(_cons) .2163751 .2345718 .0258477 1.811312

var(Residual) .574574 .2062107 .2843515 1.161011

LR test vs. linear model: chibar2(01) = 1.55 Prob >= chibar2 = 0.1069

We can test the main effects and the interaction effects by typing the contrast command. With
the small option, contrast reports small-sample adjusted F tests. Without the small option,
contrast performs large-sample χ2 Wald tests. Below is the comparison of the small-sample and
the large-sample contrasts:
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. contrast signal##hour, small

Contrasts of marginal linear predictions

Margins: asbalanced

df ddf F P>F

score
signal 1 5.95 1.78 0.2307

hour 3 16.35 100.62 0.0000

signal#hour 3 16.35 9.66 0.0007

. contrast signal##hour

Contrasts of marginal linear predictions

Margins: asbalanced

df chi2 P>chi2

score
signal 1 1.79 0.1810

hour 3 304.95 0.0000

signal#hour 3 29.35 0.0000

From these results, we can see that the p-values for the main effect of signal and the interaction
effect vary between small-sample and large-sample tests. However, both tests indicate that the hour
effect and the interaction effects are significant. We can decompose the interaction effect into separate
interaction contrasts for further investigation.
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. contrast r.signal#ar.hour, small

Contrasts of marginal linear predictions

Margins: asbalanced

df ddf F P>F

score
signal#hour

(Visual vs Auditory) (2 vs 1) 1 16.02 1.74 0.2056
(Visual vs Auditory) (3 vs 2) 1 16.37 0.20 0.6594
(Visual vs Auditory) (4 vs 3) 1 16.66 16.57 0.0008

Joint 3 16.35 9.66 0.0007

Contrast Std. err. df [95% conf. interval]

score
signal#hour

(Visual
vs

Auditory)
(2 vs 1) 1 .7580066 16.0 -.6067405 2.606741
(Visual

vs
Auditory)
(3 vs 2) -.3582222 .7979294 16.4 -2.046666 1.330221
(Visual

vs
Auditory)
(4 vs 3) 3.402427 .8359478 16.7 1.635991 5.168863

From previous analysis, we already knew the overall interaction was significant. From the decom-
position, we can easily see that the overall significance is driven by differences in the third and fourth
hours; the change in response latency from hour three to hour four is greater for visual signals than
for auditory signals.

We can also calculate the pairwise differences of the hourly marginal means by typing the
pwcompare command. With the small option, pwcompare reports small-sample adjusted pairwise
comparisons along with the degrees of freedom for each pairwise comparison.

. pwcompare hour, small

Pairwise comparisons of marginal linear predictions

Margins: asbalanced

Unadjusted
Contrast Std. err. df [95% conf. interval]

score
hour

2 vs 1 .75 .3790033 16.0 -.0533703 1.55337
3 vs 1 3.429111 .3989647 16.4 2.584889 4.273333
4 vs 1 6.272103 .3989647 16.4 5.427881 7.116324
3 vs 2 2.679111 .3989647 16.4 1.834889 3.523333
4 vs 2 5.522103 .3989647 16.4 4.677881 6.366324
4 vs 3 2.842991 .4179739 16.7 1.959774 3.726209

When we compare these results with the large-sample results below, we can see that the confidence
interval of hour 2 versus hour 1 changes to include 0. Therefore, after adjusting for small-sample
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size, we would not reject the hypothesis that the means for hour 1 and hour 2 are equivalent at the
5% significance level.

. pwcompare hour

Pairwise comparisons of marginal linear predictions

Margins: asbalanced

Unadjusted
Contrast Std. err. [95% conf. interval]

score
hour

2 vs 1 .75 .3790033 .0071672 1.492833
3 vs 1 3.429111 .3971529 2.650706 4.207516
4 vs 1 6.272103 .3971529 5.493697 7.050508
3 vs 2 2.679111 .3971529 1.900706 3.457516
4 vs 2 5.522103 .3971529 4.743697 6.300508
4 vs 3 2.842991 .4145085 2.03057 3.655413

Stored results
pwcompare with option small stores the following in r():
Matrices

r(L df) degrees of freedom for each margin difference
r(M df) degrees of freedom for each margin estimate

pwcompare with options post and small stores the following in e():
Matrices

e(L df) degrees of freedom for each margin difference
e(M df) degrees of freedom for each margin estimate

Methods and formulas
Methods and formulas are presented under the following headings:

Prediction
Small-sample inference

Prediction
Following the notation defined throughout [ME] mixed, BLUPs of random effects u are obtained as

ũ = G̃Z′Ṽ−1
(
y −Xβ̂

)
where G̃ and Ṽ are G and V = ZGZ′+σ2

εR with maximum likelihood (ML) or REML estimates of
the variance components plugged in. Standard errors for BLUPs are calculated based on the iterative
technique of Bates and Pinheiro (1998, sec. 3.3) for estimating the BLUPs themselves. If estimation
is done by REML, these standard errors account for uncertainty in the estimate of β, while for ML
the standard errors treat β as known. As such, standard errors of REML-based BLUPs will usually be
larger.
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Fitted values are given by Xβ̂+ Zũ, residuals as ε̂ = y−Xβ̂−Zũ, and standardized residuals
as

ε̂∗ = σ̂−1ε R̂−1/2ε̂

If the relevel(levelvar) option is specified, fitted values, residuals, and standardized residuals
consider only those random-effects terms up to and including level levelvar in the model.

For details concerning the calculation of scores, see Methods and formulas in [ME] mixed.

Small-sample inference

For small-sample computations performed when the small option is used with test, testparm,
lincom, contrast, or pwcompare, see Denominator degrees of freedom in Methods and formulas
of [ME] mixed.
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ANOVA denominator degrees of freedom (DDF) method. This method uses the traditional ANOVA
for computing DDF. According to this method, the DDF for a test of a fixed effect of a given variable
depends on whether that variable is also included in any of the random-effects equations. For
traditional ANOVA models with balanced designs, this method provides exact sampling distributions
of the test statistics. For more complex mixed-effects models or with unbalanced data, this method
typically leads to poor approximations of the actual sampling distributions of the test statistics.

approximation denominator degrees of freedom (DDF) methods. The Kenward–Roger and Sat-
terthwaite DDF methods are referred to as approximation methods because they approximate the
sampling distributions of test statistics using t and F distributions with the DDF specific to the
method for complicated mixed-effects models and for simple mixed models with unbalanced data.
Also see exact denominator degrees of freedom (DDF) methods.

between–within denominator degrees of freedom (DDF) method. See repeated denominator degrees
of freedom (DDF) method.

BLUPs. BLUPs are best linear unbiased predictions of either random effects or linear combinations of
random effects. In linear models containing random effects, these effects are not estimated directly
but instead are integrated out of the estimation. Once the fixed effects and variance components
have been estimated, you can use these estimates to predict group-specific random effects. These
predictions are called BLUPs because they are unbiased and have minimal mean squared errors
among all linear functions of the response.

canonical link. Corresponding to each family of distributions in a generalized linear model (GLM)
is a canonical link function for which there is a sufficient statistic with the same dimension as
the number of parameters in the linear predictor. The use of canonical link functions provides the
GLM with desirable statistical properties, especially when the sample size is small.

conditional hazard function. In the context of mixed-effects survival models, the conditional hazard
function is the hazard function computed conditionally on the random effects. Even within the
same covariate pattern, the conditional hazard function varies among individuals who belong to
different random-effects clusters.

conditional hazard ratio. In the context of mixed-effects survival models, the conditional hazard
ratio is the ratio of two conditional hazard functions evaluated at different values of the covariates.
Unless stated differently, the denominator corresponds to the conditional hazard function at baseline,
that is, with all the covariates set to zero.

conditional overdispersion. In a negative binomial mixed-effects model, conditional overdispersion
is overdispersion conditional on random effects. Also see overdispersion.

containment denominator degrees of freedom (DDF) method. See ANOVA denominator degrees
of freedom (DDF) method.

continuous-time autoregressive structure. A generalization of the autoregressive structure that allows
for unequally spaced and noninteger time values.

covariance structure. In a mixed-effects model, covariance structure refers to the variance–covariance
structure of the random effects.

crossed-effects model. A crossed-effects model is a mixed-effects model in which the levels of
random effects are not nested. A simple crossed-effects model for cross-sectional time-series data
would contain a random effect to control for panel-specific variation and a second random effect
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to control for time-specific random variation. Rather than being nested within panel, in this model
a random effect due to a given time is the same for all panels.

crossed-random effects. See crossed-effects model.

EB. See empirical Bayes.

empirical Bayes. In generalized linear mixed-effects models, empirical Bayes refers to the method
of prediction of the random effects after the model parameters have been estimated. The empirical
Bayes method uses Bayesian principles to obtain the posterior distribution of the random effects,
but instead of assuming a prior distribution for the model parameters, the parameters are treated
as given.

empirical Bayes mean. See posterior mean.

empirical Bayes mode. See posterior mode.

error covariance, error covariance structure. Variance–covariance structure of the errors within the
lowest-level group. For example, if you are modeling random effects for classes nested within
schools, then error covariance refers to the variance–covariance structure of the observations
within classes, the lowest-level groups. With a slight abuse of the terminology, error covariance is
sometimes also referred to as residual covariance or residual error covariance in the literature.

exact denominator degrees of freedom (DDF) methods. Residual, repeated, and ANOVA DDF methods
are referred to as exact methods because they provide exact t and F sampling distributions of
test statistics for special classes of mixed-effects models—linear regression, repeated-measures
designs, and traditional ANOVA models—with balanced data. Also see approximation denominator
degrees of freedom (DDF) methods.

fixed effects. In the context of multilevel mixed-effects models, fixed effects represent effects that
are constant for all groups at any level of nesting. In the ANOVA literature, fixed effects represent
the levels of a factor for which the inference is restricted to only the specific levels observed in
the study. See also fixed-effects model in [XT] Glossary.

free parameter. Free parameters are parameters that are not defined by a linear form. Free parameters
are displayed with a forward slash in front of their names or their equation names.

Gauss–Hermite quadrature. In the context of generalized linear mixed models, Gauss–Hermite
quadrature is a method of approximating the integral used in the calculation of the log likelihood.
The quadrature locations and weights for individual clusters are fixed during the optimization
process.

generalized linear mixed-effects model. A generalized linear mixed-effects model is an extension of
a generalized linear model allowing for the inclusion of random deviations (effects).

generalized linear model. The generalized linear model is an estimation framework in which the
user specifies a distributional family for the dependent variable and a link function that relates the
dependent variable to a linear combination of the regressors. The distribution must be a member of
the exponential family of distributions. The generalized linear model encompasses many common
models, including linear, probit, and Poisson regression.

GHQ. See Gauss–Hermite quadrature.

GLM. See generalized linear model.

GLME model. See generalized linear mixed-effects model.

GLMM. Generalized linear mixed model. See generalized linear mixed-effects model.
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hierarchical model. A hierarchical model is one in which successively more narrowly defined groups
are nested within larger groups. For example, in a hierarchical model, patients may be nested
within doctors who are in turn nested within the hospital at which they practice.

intraclass correlation. In the context of mixed-effects models, intraclass correlation refers to the
correlation for pairs of responses at each nested level of the model.

Kenward–Roger denominator degrees of freedom (DDF) method. This method implements the
Kenward and Roger (1997) method, which is designed to approximate unknown sampling distri-
butions of test statistics for complex linear mixed-effects models. This method is supported only
with restricted maximum-likelihood estimation.

Laplacian approximation. Laplacian approximation is a technique used to approximate definite
integrals without resorting to quadrature methods. In the context of mixed-effects models, Laplacian
approximation is as a rule faster than quadrature methods at the cost of producing biased parameter
estimates of variance components.

Lindstrom–Bates algorithm. An algorithm used by the linearization method.

linear form. A linear combination is what we call a “linear form” as long as you do not refer to its
coefficients or any subset of the linear combination anywhere in the expression. Linear forms are
beneficial for some nonlinear commands such as nl because they make derivative computation
faster and more accurate. In contrast to free parameters, parameters of a linear form are displayed
without forward slashes in the output. Rather, they are displayed as parameters within an equation
whose name is the linear combination name. Also see Linear forms versus linear combinations in
[ME] menl.

linear mixed model. See linear mixed-effects model.

linear mixed-effects model. A linear mixed-effects model is an extension of a linear model allowing
for the inclusion of random deviations (effects).

linearization log likelihood. Objective function used by the linearization method for optimization.
This is the log likelihood of the linear mixed-effects model used to approximate the specified
nonlinear mixed-effects model.

linearization method, Lindstrom–Bates method. Method developed by Lindstrom and Bates (1990)
to approximate for fitting nonlinear mixed-effects models. The linearization method uses a first-
order Taylor-series expansion of the specified nonlinear mean function to approximate it with a
linear function of fixed and random effects. Thus a nonlinear mixed-effects model is approximated
by a linear mixed-effects model, in which the fixed-effects and random-effects design matrices
involve derivatives of the nonlinear mean function with respect to fixed effects (coefficients) and
random effects, respectively. Also see Introduction in [ME] menl.

link function. In a generalized linear model or a generalized linear mixed-effects model, the link
function relates a linear combination of predictors to the expected value of the dependent variable.
In a linear regression model, the link function is simply the identity function.

LME model. See linear mixed-effects model.

lowest-level group. The second level of a multilevel model with the observations composing the first
level. For example, if you are modeling random effects for classes nested within schools, then
classes are the lowest-level groups.

MCAGH. See mode-curvature adaptive Gauss–Hermite quadrature.

mean–variance adaptive Gauss–Hermite quadrature. In the context of generalized linear mixed
models, mean–variance adaptive Gauss–Hermite quadrature is a method of approximating the
integral used in the calculation of the log likelihood. The quadrature locations and weights for
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individual clusters are updated during the optimization process by using the posterior mean and
the posterior standard deviation.

mixed model. See mixed-effects model.

mixed-effects model. A mixed-effects model contains both fixed and random effects. The fixed effects
are estimated directly, whereas the random effects are summarized according to their (co)variances.
Mixed-effects models are used primarily to perform estimation and inference on the regression
coefficients in the presence of complicated within-subject correlation structures induced by multiple
levels of grouping.

mode-curvature adaptive Gauss–Hermite quadrature. In the context of generalized linear mixed
models, mode-curvature adaptive Gauss–Hermite quadrature is a method of approximating the
integral used in the calculation of the log likelihood. The quadrature locations and weights for
individual clusters are updated during the optimization process by using the posterior mode and
the standard deviation of the normal density that approximates the log posterior at the mode.

MVAGH. See mean–variance adaptive Gauss–Hermite quadrature.

named substitutable expression. A named substitutable expression is a substitutable expression
defined within menl’s define() option; see Substitutable expressions in [ME] menl.

nested random effects. In the context of mixed-effects models, nested random effects refer to the
nested grouping factors for the random effects. For example, we may have data on students who
are nested in classes that are nested in schools.

NLME model. See nonlinear mixed-effects model.

nonlinear mixed-effects model. A model in which the conditional mean function given random effects
is a nonlinear function of fixed and random effects. A linear mixed-effects model is a special case
of a nonlinear mixed-effects model.

one-level model. A one-level model has no multilevel structure and no random effects. Linear
regression is a one-level model.

overdispersion. In count-data models, overdispersion occurs when there is more variation in the data
than would be expected if the process were Poisson.

posterior mean. In generalized linear mixed-effects models, posterior mean refers to the predictions
of random effects based on the mean of the posterior distribution.

posterior mode. In generalized linear mixed-effects models, posterior mode refers to the predictions
of random effects based on the mode of the posterior distribution.

QR decomposition. QR decomposition is an orthogonal-triangular decomposition of an augmented
data matrix that speeds up the calculation of the log likelihood; see Methods and formulas in
[ME] mixed for more details.

quadrature. Quadrature is a set of numerical methods to evaluate a definite integral.

random coefficient. In the context of mixed-effects models, a random coefficient is a counterpart to
a slope in the fixed-effects equation. You can think of a random coefficient as a randomly varying
slope at a specific level of nesting.

random effects. In the context of mixed-effects models, random effects represent effects that may
vary from group to group at any level of nesting. In the ANOVA literature, random effects represent
the levels of a factor for which the inference can be generalized to the underlying population
represented by the levels observed in the study. See also random-effects model in [XT] Glossary.
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random intercept. In the context of mixed-effects models, a random intercept is a counterpart to the
intercept in the fixed-effects equation. You can think of a random intercept as a randomly varying
intercept at a specific level of nesting.

random-effects substitutable expression. A random-effects substitutable expression is a substi-
tutable expression containing random-effects terms; see Random-effects substitutable expressions
in [ME] menl.

REML. See restricted maximum likelihood.

repeated denominator degrees of freedom (DDF) method. This method uses the repeated-measures
ANOVA for computing DDF. It is used with balanced repeated-measures designs with spherical
correlation error structures. It partitions the residual degrees of freedom into the between-subject
degrees of freedom and the within-subject degrees of freedom. The repeated method is supported
only with two-level models. For more complex mixed-effects models or with unbalanced data,
this method typically leads to poor approximations of the actual sampling distributions of the test
statistics.

residual covariance, residual error covariance. See error covariance.

residual denominator degrees of freedom (DDF) method. This method uses the residual degrees of
freedom, n− rank(X), as the DDF for all tests of fixed effects. For a linear model without random
effects with independent and identically distributed errors, the distributions of the test statistics
for fixed effects are t or F distributions with the residual DDF. For other mixed-effects models,
this method typically leads to poor approximations of the actual sampling distributions of the test
statistics.

restricted maximum likelihood. Restricted maximum likelihood is a method of fitting linear mixed-
effects models that involves transforming out the fixed effects to focus solely on variance–component
estimation.

Satterthwaite denominator degrees of freedom (DDF) method. This method implements a gener-
alization of the Satterthwaite (1946) approximation of the unknown sampling distributions of test
statistics for complex linear mixed-effects models. This method is supported only with restricted
maximum-likelihood estimation.

substitutable expression. Substitutable expressions are like any other mathematical expressions in-
volving scalars and variables, such as those you would use with Stata’s generate command,
except that the parameters to be estimated are bound in braces. See Substitutable expressions in
[ME] menl.

three-level model. A three-level mixed-effects model has one level of observations and two levels of
grouping. Suppose that you have a dataset consisting of patients overseen by doctors at hospitals,
and each doctor practices at one hospital. Then a three-level model would contain a set of random
effects to control for hospital-specific variation, a second set of random effects to control for
doctor-specific random variation within a hospital, and a random-error term to control for patients’
random variation.

two-level model. A two-level mixed-effects model has one level of observations and one level of
grouping. Suppose that you have a panel dataset consisting of patients at hospitals; a two-level
model would contain a set of random effects at the hospital level (the second level) to control for
hospital-specific random variation and a random-error term at the observation level (the first level)
to control for within-hospital variation.

variance components. In a mixed-effects model, the variance components refer to the variances and
covariances of the various random effects.
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within-group errors. In a two-level model with observations nested within groups, within-group
errors refer to error terms at the observation level. In a higher-level model, they refer to errors
within the lowest-level groups.
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Subject and author index

See the combined subject index and the combined author index in the Stata Index.
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