
lssolve() — Solve AX=B for X using least-squares method

Description Syntax Remarks and examples Conformability Diagnostics Also see

Description
lssolve(A, B) finds the minimum-norm least-squares solution for min ‖A X − B‖2 and returns X. A

can be real or complex and can also be rank deficient. A does not have to be a square matrix.

lssolve(A, B, rank) does the same thing but also returns the effective rank in rank.

lssolve(A, B, rank, favorspeed) does the same thing but allows you to specify the computation

method; see Computation methods and tolerance under Remarks and examples below.

lssolve(A, B, rank, favorspeed, tol) does the same thing but allows you to specify the tolerance for
declaring the effective rank of A; see Computation methods and tolerance under Remarks and examples

below.

lssolve(A, B), lssolve(A, B, favorspeed), and lssolve(A, B, favorspeed, tol) do the same
thing except that rather than returning the solution X , they overwrite B with the solution and return the

effective rank. In the process of performing the calculation, they destroy the contents of A.

leastsquare lapacke(A, B, rank), leastsquare lapacke(A, B, rank, favorspeed), and

leastsquare lapacke(A, B, rank, favorspeed, tol) are the interfaces to the LAPACK routines that

do the work. They find the minimum-norm solution for the least-squares problem ‖A X − B‖2, return-

ing the solution in B and, in the process, using as workspace (overwriting) A. The routines return 0 if a

solution was found and 1 otherwise. If 1 is returned, B is overwritten with a matrix of missing values.

Note that these functions can be used only when set lapack mkl on is in effect on Windows or Linux

or when set lapack openblas on is in effect on Mac; see [M-1] LAPACK.

1

https://www.stata.com/manuals/m-5lssolve.pdf#m-5lssolve()RemarksandexamplesComputationmethodsandtolerance
https://www.stata.com/manuals/m-5lssolve.pdf#m-5lssolve()RemarksandexamplesComputationmethodsandtolerance
https://www.stata.com/manuals/m-1lapack.pdf#m-1LAPACK

lssolve() — Solve AX=B for X using least-squares method 2

Syntax
numeric matrix lssolve(A, B)

numeric matrix lssolve(A, B, rank)

numeric matrix lssolve(A, B, rank, favorspeed)

numeric matrix lssolve(A, B, rank, favorspeed, tol)

real scalar lssolve(A, B)

real scalar lssolve(A, B, favorspeed)

real scalar lssolve(A, B, favorspeed, tol)

real scalar leastsquare lapacke(A, B, rank)

real scalar leastsquare lapacke(A, B, rank, favorspeed)

real scalar leastsquare lapacke(A, B, rank, favorspeed, tol)

where inputs are

A: numeric matrix

B: numeric matrix

favorspeed: real scalar

tol: real scalar

and outputs are

B: numeric matrix (solution of A X = B overwritten in B)

rank: real scalar

result: real scalar

Remarks and examples
Remarks are presented under the following headings:

Introduction
Computation methods and tolerance
Examples

Introduction

The above functions solve A X = B via the least-squares method. A does not have to be square and can

be rank deficient.

The least-squares method tries to find the minimum-norm solution of the following problem:

min ‖A X − B‖2

When A is square and of full rank, the computed solution is the same as

X = A−1B

lssolve() — Solve AX=B for X using least-squares method 3

When A is not square and not rank deficient, the computed solution is

X = (A′A)−1A′B

when the number of rows of A is greater than the number of columns of A, and

X = A′(AA′)−1B

when the number of rows of A is less than the number of columns of A.

When A is rank deficient, the inverses in the above formulas are replaced by the generalized

Moore–Penrose pseudoinverse. See [M-5] pinv() for more details about the pseudoinverse.

Computation methods and tolerance

When favorspeed is missing or 0, singular value decomposition is used. This is also the default method
when favorspeed is not specified. It works with the optional argument tol to decide whether the matrix

A is rank deficient.

When favorspeed is not missing and not 0, the QR or LQ factorization method is used. This method is

faster but assumes A has full rank, so the optional argument tol is irrelevant in this case.

The default tolerance used is

𝜂 = (1e-13)*trace(abs(A))
l

where A is m × n and l is the minimum of m and n. A singular value of A is considered 0 if it is less than

or equal to tol × the largest singular value of A.

If you specify tol > 0, the value you specify is used to multiply 𝜂. You may instead specify tol ≤ 0, and

then the negative of the value you specify is used in place of 𝜂; see [M-1] Tolerance.

See [M-5] lusolve() for a detailed discussion of the issues surrounding solving nearly singular systems.

The main point is that if A is ill conditioned, then small changes in A or B can lead to radically large

differences in the solution for X .

Examples

Example 1: Square matrix

If A is square and has full rank, the minimum-norm least-squares solution computed by lssolve() is

the same as X = A−1B.

: A = (3, 2, 5 \ 2, 3, 1 \ 1, 2, 10)
: b = (1 \ 1.5 \ 2)
: A

1 2 3

1 3 2 5
2 2 3 1
3 1 2 10

https://www.stata.com/manuals/m-5pinv.pdf#m-5pinv()
https://www.stata.com/manuals/m-1tolerance.pdf#m-1Tolerance
https://www.stata.com/manuals/m-5lusolve.pdf#m-5lusolve()

lssolve() — Solve AX=B for X using least-squares method 4

: b
1

1 1
2 1.5
3 2

: X = lssolve(A, b)
: X

1

1 -.2549019608
2 .637254902
3 .0980392157

: mreldif(A * X, b)
3.70074e-16

We can also check the effective rank by typing

: X = lssolve(A, b, rank = .)
: rank

3

Example 2: Nonsquare matrix

When A is not square and is not rank deficient, the solution of the least-squares problem provided by

lssolve(),
min ‖A X − B‖2

is the same as X = (A’A)−1A’B. We can confirm that we get the same result with both methods with the

example below.

: A = (3, 2 \ 2, 1 \ 1, 20)
: b = (1 \ 1.5 \ 2)
: A

1 2

1 3 2
2 2 1
3 1 20

: b
1

1 1
2 1.5
3 2

: X = lssolve(A, b)

lssolve() — Solve AX=B for X using least-squares method 5

: X
1

1 .4138354482
2 .0787965616

: mreldif(luinv(A’A) * A’ * b, X)
1.28641e-17

Now the effective rank is

: X = lssolve(A, b, rank = .)
: rank

2

Example 3: Rank-deficient matrix

When A is not square but is rank deficient, we can find the solution to the least-squares problem

min ‖A X − B‖2

with lssolve() as well. Note that we cannot specify the parameter favorspeed this time.

: A = (3, 3 \ 2, 2 \ 20, 20)
: b = (1 \ 1.5 \ 2)
: A

1 2

1 3 3
2 2 2
3 20 20

: b
1

1 1
2 1.5
3 2

: X = lssolve(A, b)
: X

1

1 .0556900726
2 .0556900726

: mreldif(pinv(A’A) * A’ * b, X)
1.97186e-17

lssolve() — Solve AX=B for X using least-squares method 6

Now the effective rank is

: X = lssolve(A, b, rank = .)
: rank

1

Conformability
lssolve(A, B, rank, favorspeed, tol):

input:

A: m × n

B: m × k

favorspeed: 1 × 1 (optional)

tol: 1 × 1 (optional)

output:

rank: 1 × 1 (optional)

result: n × k

lssolve(A, B, favorspeed, tol):
input:

A: m × n

B: m × k

favorspeed: 1 × 1 (optional)

tol: 1 × 1 (optional)

output:

A: 0 × 0

B: n × k

rank: 1 × 1

leastsquare lapacke(A, B, rank, favorspeed, tol) :
input:

A: m × n

B: m × k

favorspeed: 1 × 1 (optional)

tol: 1 × 1 (optional)

output:

A: 0 × 0

B: n × k

rank: 1 × 1 (optional)

result: 1 × 1

lssolve() — Solve AX=B for X using least-squares method 7

Diagnostics
lssolve(A, B, ...), lssolve(A, B, ...), and leastsquare lapacke(A, B, ...) return a re-
sult containing missing ifA or B contains missing values. The functions with a nonzero favorspeed return

a result containing all missing values if A is singular. The functions abort with error if set lapack mkl
on is not in effect on Windows or Linux or when set lapack openblas on is not in effect on Mac.

lssolve(A, B, ...) and leastsquare lapacke(A, B, ...) abort with error if A or B is a view.

leastsquare lapacke(A, B, ...) should not be used directly; use lssolve().

Also see
[M-5] qrsolve() — Solve AX=B for X using QR decomposition

[M-5] svsolve() — Solve AX=B for X using singular value decomposition

[M-4]Matrix — Matrix functions

[M-4] Solvers — Functions to solve AX=B and to obtain A inverse

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata
Press are registered trademarks with the World Intellectual Property Organization of the
United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other
brand and product names are registered trademarks or trademarks of their respective com-
panies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights
reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/m-5qrsolve.pdf#m-5qrsolve()
https://www.stata.com/manuals/m-5svsolve.pdf#m-5svsolve()
https://www.stata.com/manuals/m-4matrix.pdf#m-4Matrix
https://www.stata.com/manuals/m-4solvers.pdf#m-4Solvers
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

