
invmat( ) — Inverse and pseudoinverse of a square matrix

Description Syntax Remarks and examples Conformability
Diagnostics References Also see

Description
invmat(A) and invmat(A, tol) overwrite the original real or complex, square matrix A with the

inverse of A if A has full rank and with the Moore–Penrose pseudoinverse if not. The function returns a

real scalar 0 if the inverse is computed and 1 if the pseudoinverse is computed.

The optional argument tol specifies the tolerance for determining singularity; see Remarks and examples

below.

Syntax
real scalar invmat(numeric matrix A)

real scalar invmat(numeric matrix A, real scalar tol)

Remarks and examples
These routines calculate the inverse of A if A has full rank. The inverse matrix A−1 of A satisfies the

conditions

AA−1 = I

A−1A = I

A is required to be square.

However, if A is singular or close to singular, the Moore–Penrose pseudoinverse is computed instead.

The Moore–Penrose pseudoinverse is also known as the Moore–Penrose inverse and as the generalized

inverse.

The pseudoinverse A* of A satisfies four conditions,

A(A*)A = A

(A*)A(A*) = A*

(AA*)′ = A(A*)
(A*A)′ = (A*)A

where the transpose operator ′ is understood to mean the conjugate transpose when A is complex. Also,

if A is of full rank, then

A* = A−1

See [M-5] pinv( ) for details about pseudoinverse.
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Example 1: Full-rank matrix

If A has full rank, the function returns 0 and computes the inverse. Here we compute the inverse and

show that AA−1 = I .

: A
1 2 3

1 1 2 3
2 2.5 5 1
3 3 2 1

: rc = _invmat(Ainv = A)
: rc

0
: Ainv

1 2 3

1 -.1153846154 -.1538461538 .5
2 -.0192307692 .3076923077 -.25
3 .3846153846 -.1538461538 0

: Ainv * A
1 2 3

1 1 -2.22045e-16 -1.11022e-16
2 1.11022e-16 1 2.77556e-17
3 0 0 1

You may verify other conditions for the inverse yourself.

Example 2: Singular matrix

If B does not have full rank, the function returns 1 and computes the pseudoinverse. Here we compute

the pseudoinverse and show that B(B*)B = B and (B*)B(B*) = B*.

: B
1 2

1 1 2
2 0 0

: rc = _invmat(Binv = B)
: rc

1
: Binv

1 2

1 .2 0
2 .4 0



invmat( ) — Inverse and pseudoinverse of a square matrix 3

: mreldif(B * Binv * B, B), mreldif(Binv * B * Binv, Binv)
1 2

1 0 3.96508e-17

You may verify other conditions for the pseudoinverse yourself.

Conformability
invmat(A, tol):

input:

A: n × n

tol: 1 × 1 (optional)

output:

A: n × n

result: 1 × 1

Diagnostics
The inverse returned by these functions is real if A is real and is complex if A is complex. The determina-

tion of singularity is made relative to tol. See Tolerance under Remarks and examples in [M-5] lusolve( )

for details.

invmat(A) returns a matrix containing missing if A contains missing values.

invmat(A) aborts with error if A is a view.

See [M-5] lusolve( ) and [M-1] Tolerance for information on the optional tol argument.
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Also see
[M-5] cholinv( ) — Symmetric, positive-definite matrix inversion

[M-5] invsym( ) — Symmetric real matrix inversion

[M-5] luinv( ) — Square matrix inversion

[M-5] pinv( ) — Moore–Penrose pseudoinverse

[M-5] qrinv( ) — Generalized inverse of matrix via QR decomposition

[M-5] solvemat( ) — Solve AX=B for X

[M-4]Matrix — Matrix functions

[M-4] Solvers — Functions to solve AX=B and to obtain A inverse
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