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Description
Machine learningmethods are commonly used to solve various research and business problems. These

methods can be used to predict the probability of a patient having a disease based on their symptoms,

forecast customer churn for the coming year, determine whether a customer is likely to default on a loan

based on their background characteristics, predict changes in house prices in the coming month, and

identify important factors in predicting the outcome of an election. And these are just a few examples.

These types of problems often require more sophisticated modeling approaches than, for instance, a

linear regression or generalized linear models. Ensemble decision tree methods, which combine multiple

decision trees to improve model predictive performance, have emerged as some of the more popular

and more effective methods for solving such problems because they perform well in practice (Shmuel,

Glickman, and Lazebnik 2024; Shwartz-Ziv and Armon 2022; and Borisov et al. 2024 ).

This entry provides a software-free introduction to ensemble decision tree methods. In particular, we

focus on two popular methods: gradient boostingmachine (GBM) and random forest. See [H2OML] h2oml

for the Stata implementation.
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Remarks and examples
Remarks are presented under the following headings:

Why machine learning?
Preliminaries
Fundamentals of machine learning
Decision trees

Classification trees
Regression trees
Pros and cons of decision trees

Ensemble methods
Bagging
Random forest
Boosting
GBM
Trees with monotonicity constraints

Model selection in machine learning
Three-way and two-way holdout methods
k-fold cross-validation
Hyperparameter tuning
Method comparison

Interpretation and explanation
Global surrogate models
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2 Intro — Introduction to machine learning and ensemble decision trees+

Why machine learning?
Linear and generalized linear models are among the most widely used models in various fields. How-

ever, they may not always capture more complex patterns in the data well and thus may lead to poor

prediction. As an example, consider a fictional dataset used to predict employee attrition based on salary

and performance. Figure 1 provides the scatterplot of the data, with blue dots representing employees

who stayed with the company and red dots representing those who left.
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Figure 1.

The data-generating mechanism is complex, and there is no one line that can separate the blue and

red dots. That is, the dataset is not linearly separable. To illustrate this point further, figure 2 shows

the decision surface, the predicted attrition based on performance and salary, for the logistic regression.

It predicts that an employee will leave (attrition = 1) for observations on the orange surface and

that an employee will stay for observations on the light-blue surface. As we can see, the linear decision

boundary misclassifies many blue dots as red and vice versa.
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Figure 2. Logistic regression decision surface
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Intro — Introduction to machine learning and ensemble decision trees+ 3

On the other hand, machine learning methods can capture the complex structure better. Figure 3 dis-

plays the decision surface for the random forest. Here we can easily see that the random forest performs

much better, with predictions more closely matching the observed attrition values.
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Figure 3. Random forest decision surface

Preliminaries
Before describing ensemble decision trees, we introduce the machine learning terminology that we

will use throughout this manual.

Predictors. The inputs for a machine learning model. In classical statistics, these may be referred to

as independent variables, covariates, 𝑥 variables, or predictors. In the machine learning literature,

they are also referred to as features.

Responses. The outputs for a machine learning model. In classical statistics, these may be referred to

as dependent variables, 𝑦 variables, or outcomes. In the machine learning literature, they are also

referred to as targets.

Learning, training. In the machine learning context, learning refers to the process when a model

uses data to adjust its parameters to increase prediction accuracy.

Learner. A model that is used for learning.

Supervised learning. A type of machine learning in which a method is trained on data where there

is an associated response for each observation.

Unsupervised learning. A type of machine learning where there is no response variable.

Hyperparameter. A parameter whose value is adjusted to control and improve a training process.

Tuning. A process where the hyperparameters of a model are optimized to improve model perfor-

mance.

Training data. A subset of the data that a model uses to learn.

Validation data. A subset of the data used to evaluate model performance during training as hyper-

parameters change.

Testing data. A subset of the data that is used to evaluate the performance of a trained model.

Performance metric. A quantitative measure or metric used to evaluate model performance.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow


4 Intro — Introduction to machine learning and ensemble decision trees+

Hyperparameter space. Possible values and ranges of the hyperparameters.

Grid search. A process of evaluating different hyperparameter configurations in the hyperparameter

space to find the best configuration that improves model performance.

Generalization. A concept that a model performs well not only on the training data but also on the

new (testing) data.

Generalization error, test error. A quantitative measure of how well a machine learning model can

predict responses for new (testing) data.

Overfitting. Fitting a model too well to the training data.

Metric scoring. A process of evaluating the performance of a machine learning method by using a

specified performance metric.

In a typical machine learning scenario, the goal is to predict a response based on a set of predictors. To

achieve this goal, a researcher uses training data to build (or train) a prediction model. A good model, or

learner, is one that accurately predicts the response for new or testing data and minimizes a generalization

error or test error. A generalization error of a learning model is a quantitative measure of how well a

machine learning model can predict responses for new data or, more formally, an expected error on any

testing data sampled from the data-generating distribution. In other words, the focus is on predictive

modeling, which is the process of “developing a mathematical tool or model that generates accurate

prediction” (Kuhn and Johnson 2013). Intuitively, success in predictive modeling depends on finding a

model that 1) has low generalization error, 2) is simple, and 3) can be used on a sufficiently large training

dataset.

Most machine learning problems can be divided into two categories: supervised learning and unsu-

pervised learning. In supervised learning, there is an associated response for each observation of the

predictors. Most types of regression and many tree-based methods are examples of supervised learning.

In contrast, in unsupervised learning, there is no response variable, and only the predictors are observed.

Cluster analysis is an example of unsupervised learning.

In what follows, we provide a more technical introduction to machine learning, including decision

trees and ensemble decision trees. For a brief and more gentle exposition of a machine learning workflow

by using the h2oml command, see h2oml in a nutshell in [H2OML] h2oml.

Fundamentals of machine learning
One of themain issues in machine learning, also known as a fundamental problem ofmachine learning

(Chollet 2021), is balancing learning and generalization. Recall that learning refers to the process of

adjusting a model to achieve the best performance on the training data, whereas generalization refers to

evaluating the performance of the model on the data it has never seen before such as the testing data.

Unfortunately, generalization cannot be fully controlled by a researcher because we observe only the

training data, and overfitting (fitting a model too well on the training data) can hurt the generalization of

the model. This is why it is important to “mimic” the presence of testing data by splitting the observed

training data, as we discuss in Three-way and two-way holdout methods.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
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The tradeoff between learning and generalization is related to the well-known bias–variance tradeoff,

where the aim is to lower the generalization error by reducing the bias and variance of the proposed

method. Suppose we have a supervised learning problem, where the relationship between predictors and

the response is described by some unknown function 𝑓(⋅) plus an additive error,

𝑦𝑖 = 𝑓(x𝑖) + 𝜀𝑖 𝑖 = 1, 2, . . . , 𝑛

where 𝐸(𝜀𝑖) = 0 and Var(𝜀𝑖) = 𝜎2.

The goal is to estimate 𝑓(⋅) by ̂𝑓(⋅) using a specific machine learning method on training data. How-
ever, if we use different training data, the learned ̂𝑓(⋅) is likely to be different. The amount by which ̂𝑓(⋅)
changes as we use different training data is the variance. Machine learning methods, like other statistical

estimation methods, often introduce bias because they typically impose simplifying assumptions during

the estimation of 𝑓(⋅).
The generalization error for training data 𝐷 = {(x1, 𝑦1), (x2, 𝑦2), . . . , (x𝑛, 𝑦𝑛)} and test observation

(x, 𝑦), sampled from the data-generating distribution, can be written as the sum of the error variance and

the squared bias and the variance of the estimate:

𝐸(x,𝑦,𝐷) [{ ̂𝑓(x) − 𝑓(x)}
2
] = 𝜎2 + Bias2{ ̂𝑓(x)} + Var{ ̂𝑓(x)}

The error variance 𝜎2 is inherited from the data and cannot be reduced. However, the bias, which is the

average difference between ̂𝑓(⋅) and 𝑓(⋅), is a result of underfitting and can be reduced. And the variance,
which is inextricably linked to overfitting, where the model fits the training data too well and thus the

variance of the model increases for new data, can also be reduced. Thus, an ideal machine learning

method reduces the bias without increasing the variance or reduces the variance without increasing the

bias. In practice, decreasing one will necessarily increase the other, so the preferred method strives to

achieve the best tradeoff between the bias and the variance.

Consider a hypothetical example below that shows two methods, Method 1 and Method 2. The red
points correspond to the training data and blue points to the testing data. From the left graph, Method 2
predicts the training points very well with possibly small bias and mean squared error (MSE). However,

compared with Method 1, the prediction of Method 2 deteriorates on the testing data because of the high

variance. Method 2 predicts the testing data poorly because it overfits the training data.

-3.5

-2.5

-1.5

-.5

.5

1.5

2.5

3.5

4.5

5.5

6.5

7.5

y

0 .5 1 1.5
x

Training data

Method 1

Method 2

Training data prediction

-3.5

-2.5

-1.5

-.5

.5

1.5

2.5

3.5

4.5

5.5

6.5

7.5

y

1.3 1.5 1.7 1.9
x

Testing data

Method 1

Method 2

Testing data prediction

Figure 4.
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The above example demonstrated the generalization of machine learning methods in just one dimen-

sion. In general, the ability of these methods, such as ensemble decision trees, to generalize well to

high-dimensional data can be explained by the so-called manifold hypothesis (Chollet 2021; Wyner et al.

2017 ; and Belkin et al. 2019 ). According to this hypothesis, the observed high-dimensional data can be

approximated by a low-dimensional manifold, or subspace. Informally, this means that a complex struc-

ture of the high-dimensional data can be represented by a simpler, lower-dimensional structure, which

machine learning methods tend to capture well.

Decision trees
Decision trees are versatile and powerful supervised machine learning methods that can be used for

both regression and classification. Decision trees repeatedly partition the data based on values of the

predictors by asking a series of Boolean-type (“yes” or “no”) questions. For each question, the data are

partitioned into two branches such that the response observations in each branch are more homogeneous.

Then a simple regression model is fit to each partition. Such repeated partitioning creates a treelike

structure with the branches based on the values of the predictors. Some popular methods for building

decision trees are CART (Breiman et al. 1984) and C4.5 (Quinlan 1993).

The hierarchical structure of a tree is inherently designed to capture and represent the interactions

between predictors. Decision trees are insensitive to outliers and can easily handle missing data in pre-

dictors. In practice, decision trees are grown using greedy-type methods that make locally optimal splits

at each step, instead of finding the globally optimal tree. Even though this can potentially lead to subopti-

mal trees, decision trees are effective in many applications. Decision trees are fast to train and can handle

high-dimensional data with many predictors. They are also easy to interpret and visualize, making them

a popular choice for many machine learning tasks. Decision trees have been widely used in scientific

fields such as biomedicine, genetics, and marketing, among many other fields.

We first focus on introducing decision trees for classification, where the dependent variable is cate-

gorical. Then we describe decision trees for regression, where the dependent variable is continuous.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
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Classification trees

To motivate the concept of a decision tree, we consider a toy dataset where the goal is to predict

whether a mushroom is edible or poisonous, coded as e and p, respectively, based on two predictors: cap
diameter and season. The cap diameter is a continuous variable and season is categorical, where s and w
denote summer and winter, respectively.

. list capdiam season class

capdiam season class

1. 7.3 s e
2. 7.68 s e
3. 8.4 s e
4. 8.86 w p
5. 9.03 s e

6. 9.1 s e
7. 9.59 w p
8. 9.59 s e
9. 10.42 w e

10. 10.5 s e

11. 12.85 s e
12. 13.55 w p
13. 14.07 w p
14. 14.17 s p
15. 14.64 s p

16. 14.85 s p
17. 14.86 s p
18. 15.26 w p
19. 15.34 s p
20. 16.6 w p

Based on the training data, a classification tree learns an ordered sequence of questions, where the

answer to each question in the sequence affects the type of question asked in the next step. The tree

diagram below shows the decision tree for our toy example. The method starts at the top of the tree,

called the root node, and uses the entire training dataset. In this example, the root node splits the dataset

into two parts based on the cap diameter predictor. By convention, the “yes” answer to the question at

the node splits to the left, and the “no” answer splits to the right. A node is a subset of predictors. It

can be classified as a terminal or nonterminal. A nonterminal node or parent node splits the data into

two regions using the predictor that results in the best fit. (We will describe later how such a predictor is

selected.) A terminal node or leaf node does not split the data further.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
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Figure 5.

For example, at the root node, the best split occurs for the predictor 𝑥𝑖 = capdiam at the split point

𝑡1 = 13.2. This split partitions the data into the {x|𝑥𝑖 ≤ 𝑡1} and {x|𝑥𝑖 > 𝑡1} regions. Throughout this

entry, we will denote the split points by 𝑡𝑠, where 𝑠 denotes the number of the split, counted from top to

bottom and left to right on the above tree. The partition of the predictor space continues recursively until

some stopping criterion is applied or there are no more splits. The set of all terminal nodes is called a

partition of the data. Each observation from the training data falls into one of the terminal nodes.

Below, we show the partition of the predictor space into the regions that correspond to the above

tree diagram. The red and yellow vertical lines correspond to the capdiam ≤ 13.2 and capdiam ≤ 10

conditions, and the horizontal line depicts the winter = 1 condition. The green and blue dots correspond

to the observations with classes p and e, respectively.

R1R2

R3

R4

s

w

se
as

on

5 10 13.2 15 20
capdiam

e
p

Figure 6.

We can now classify observations by first determining to which terminal node they belong based

on their predictor values and then finding the most common class in that terminal node. Thus, for an

observation in the terminal node 𝑗 with the corresponding region 𝑅𝑗, an observation is predicted to be

in the class with the largest proportion of observations from the training data, max𝑘𝑝𝑗𝑘, where 𝑝𝑗𝑘 is the

proportion of training observations in 𝑅𝑗 belonging to class 𝑘 and 𝑘 = 1, 2, . . . , 𝐾. Suppose we have

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
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a new observation for which capdiam = 8.32 and season = winter. If we “put” this observation in

the classification tree above, it will end up in the terminal node 4 in the region 𝑅4 with 0 edible and 2

poisonous mushrooms. Therefore, our tree will classify the new observation as a poisonous mushroom.

We now discuss how to choose which predictor to split on and how to determine the best split in

each nonterminal node in a decision tree. To choose the predictor and split point, we need to introduce

impurity measures that quantify the splitting criteria. One suchmeasure is the misclassification error rate.

For a terminal node 𝑗 with the corresponding region 𝑅𝑗, the misclassification error rate is the fraction of

training observations that do not belong to the most common class, that is, 1− max𝑘 ̂𝑝𝑗𝑘, where ̂𝑝𝑗𝑘 is an

estimate of 𝑝𝑗𝑘. Unfortunately, the misclassification error rate is not very sensitive to changes in the class

probabilities of each node, meaning that multiple splits may correspond to the same class probabilities,

making it difficult to select the best splits. Thus, the misclassification error rate is not recommended for

growing a classification tree.

Instead, the following measures are used: The Gini index,

𝐾
∑
𝑘=1

̂𝑝𝑗𝑘(1 − ̂𝑝𝑗𝑘)

and cross-entropy,

−
𝐾

∑
𝑘=1

̂𝑝𝑗𝑘 ln ̂𝑝𝑗𝑘

TheGini index and cross-entropy are close to zerowhen all proportions ̂𝑝𝑗𝑘’s are close to zero or one. This

explains the name “impurity measure”—a small value indicates that the node contains many observations

from the same class.

Here we focus on cross-entropy. When the number of groups 𝐾 = 2, cross-entropy is

𝚤𝑗 = − ̂𝑝𝑗1 ln ̂𝑝𝑗1 − (1 − ̂𝑝𝑗1) ln(1 − ̂𝑝𝑗1)

The goal of classification trees is to partition the predictor space into regions 𝑅1, 𝑅2, . . . , 𝑅𝐽 that

minimize cross-entropy. In practice, the consideration of every possible partition of the predictor space

into 𝐽 rectangles is computationally infeasible. A typical remedy for such problems is to use a greedy

approach and successively split the predictor space into two new regions through binary splitting. The

binary splitting is performed by first selecting the predictor 𝑥𝑖 and the split point 𝑡 such that it leads to
the greatest possible reduction in cross-entropy. In other words, the method examines all predictors 𝑥1
through 𝑥𝑝 and considers all possible values of the split point 𝑡 such that the selected predictor 𝑥𝑖 and

cutpoint 𝑡 result in the lowest cross-entropy. Once we have determined the best split point for a given

predictor, we can use this information to split the data into two sets and repeat the process for each of the

two new sets, continuing until we reach a terminal node or until a stopping criterion is reached.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
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We start by considering a possible split for the root node. Because the variable season is binary, we

can tabulate it to determine the possible split point 𝑡.
. tabulate class season, column

Key

frequency
column percentage

season
class s w Total

e 8 1 9
61.54 14.29 45.00

p 5 6 11
38.46 85.71 55.00

Total 13 7 20
100.00 100.00 100.00

From the above table, season splits the dataset into two nodes: summer, s, and winter, w. The summer
node contains 8 edible and 5 poisonous mushrooms, and the winter node contains 1 edible and 6 poi-

sonous mushrooms, respectively. The cross-entropy for the summer and winter nodes can be computed

as

𝚤(summer) = − 8
13

ln
8
13

− 5
13

ln
5
13

≈ 0.666

and

𝚤(winter) = −1
7
ln

1
7

− 6
7
ln

6
7

≈ 0.410

The summer and winter nodes contain different numbers of observations. Thus, to find the cross-entropy

for the split, we take the weighted average of the entropies in each region:

𝚤(season) = −13
20

0.666 − 7
20

0.410 ≈ 0.576

We can also find the importance or the goodness of fit of the split by measuring the improvement of the

impurity measure gained from splitting the parent node into the summer and winter children nodes,

𝚤(summer,winter) = 𝚤(season𝑏) − 𝚤(season) (1)

where season𝑏 indicates the cross-entropy before the split. Here

𝚤(season𝑏) = − 9
20

ln
9
20

− 11
20

ln
11
20

≈ 0.688

Therefore, 𝚤(summer,winter) = 0.112. This value indicates the improvement attributed to this split and

can be used as a measure of the predictor’s importance.

Next we consider splits for the cap diameter predictor. Conventionally, to estimate the cross-entropy

for a continuous variable, we first need to sort the data and consider all possible cutpoints (Breiman

et al. 1984). For example, for the cap diameter, a possible cutpoint 𝑡 between the respective 1st and 2nd
values of 7.3 and 7.68 is selected as 𝑡 = (7.3+ 7.68)/2, between the 2nd and 3rd values of 7.68 and 8.4,
𝑡 = (7.68+8.4)/2, and so on. However, for high-dimensional data such an approach is computationally

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
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expensive. To overcome this, some software packages, such as H2O, divide the data into discrete equal-

size sections by using histogram bins and then estimate the best split among those sections (Ben-Haim

and Tom-Tov 2010; Chen and Guestrin 2016; and Ke et al. 2017 ).
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Figure 7.

For illustration purposes, we considered five bins for the histogram of capdiam. The number of splits
to be evaluated is then determined by the number of bins in the histogram. In practice, the number

of bins is a hyperparameter, that is, a parameter that we learn or tune using the training data such that

the tuned parameters minimize the generalization error; see Hyperparameter tuning. After binning, the

number of possible split points reduces to five. For example, because the 1st bin contains 6 observa-

tions, a potential split point can be computed by averaging the 6th and 7th observations for capdiam
in the dataset: 𝑡 = (9.1 + 9.59)/2 = 9.345. Similarly, we can compute all 5 split points, which are

{9.345, 11.68, 13.2, 14.75, 16.6}.
We show the calculation of the cross-entropy only for the split point 𝑡 = 13.2, which is the best split

point. You can calculate the cross-entropy for the other split points similarly. The criterion (capdiam ≤
13.2) splits the data into two regions, where the left region contains 9 edible and 2 poisonous mushrooms

and the right region contains 0 edible and 9 poisonous mushrooms. The right region, which contains

observations for which (capdiam > 13.2), is called pure because it is homogeneous and is a terminal

node. Analogously to the splits for the season predictor, we can compute the cross-entropy for the left

and right regions as

𝚤(left) = − 9
11

ln
9
11

− 2
11

ln
2
11

≈ 0.474

and

𝚤(right) = 0

Therefore, the cross-entropy for the split is equal to

𝚤(capdiam ≤ 13.2) = 11
20

0.474 + 9
20

0 ≈ 0.261

The cross-entropy before the split can be computed by using the actual class distribution of class:

𝚤(capdiam𝑏) = −11
20

ln
11
20

− 9
20

ln
9
20

≈ 0.688

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
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From the above, the importance of the capdiam split is

𝚤(capdiam ≤ 13.2, capdiam > 13.2) ≈ 0.688 − 0.261 = 0.427

Thus, in the root node we select the cap diameter with the best split 𝑡 = 13.2, because the gain from

the cap diameter split (0.427) is larger than the gain from the season split (0.112). The next best split is

found following the same steps but by considering only the subset of the dataset that satisfies the criterion

(capdiam ≤ 13.2). The tree grows recursively until all observations are classified.

In the last recursive split (winter = 1), the left region contains only two observations. Splits with few

observations may lead to overfitting. To avoid overfitting, we recommend to limit the minimum number

of observations that a leaf node may have for the node to be considered for splitting. For example, if we

limit the minimum number of observations in the leaf nodes to three, then the last split (winter = 1)

will not occur because this criterion requires that both branches have at least three observations.

In general, each split increases the depth of the decision tree, and large trees usually overfit the data.

On the other hand, small trees may not capture a complex structure hidden in the data. Thus, the tree size

is treated as a hyperparameter, and its optimal value is chosen from the data.

For the multiclass classification with𝐾 classes, the preferred approach is to compare each class 𝑘with
the rest (Rifkin and Klautau 2004). That is, we grow 𝐾 different trees and for each 𝑘 find the probability

of class 𝑘, 𝑝𝑘. Then the final class prediction is computed as max𝑘𝑝𝑘.

Regression trees

The general idea for growing a regression tree is similar to a classification tree. The main goal

is to partition the predictor space into distinct and nonoverlapping regions by using binary splits.

However, because in regression trees the response is continuous, we use the residual sum of squares

RSS = ∑𝑁
𝑖=1(𝑦𝑖 − ̂𝑦𝑖)2 as an impurity measure instead of the cross-entropy to determine the best split at

each node. Then, for each terminal node, the prediction is computed as the mean of the response values

y in the region corresponding to the terminal node. For example, if the mean response of the training

observations in the first region 𝑅1 is ̂𝑐1 = 5, then for a given observation x𝑖 ∈ 𝑅1, the regression tree

will predict a value of ̂𝑐1 = 5. Thus, the regression model prediction for 𝐽 distinct and nonoverlapping

regions, which correspond to 𝐽 terminal nodes, can be represented as

̂𝑓(x) =
𝐽

∑
𝑗=1

̂𝑐𝑗𝐼{x ∈ 𝑅𝑗}

where ̂𝑐𝑗 = Mean(𝑦𝑖|x𝑖 ∈ 𝑅𝑗).
In general, growing a regression tree can be summarized by the following two steps (James et al.

2021):

1. Partition the predictor space into 𝐽 distinct and nonoverlapping regions 𝑅1, 𝑅2, . . . , 𝑅𝐽.

2. For each observation that belongs to the region𝑅𝑗, predict the response as themean of the response

values for the training observations in 𝑅𝑗.

Therefore, the goal of a regression tree is to partition the predictor space into rectangles

𝑅1, 𝑅2, . . . , 𝑅𝐽 that minimize the RSS:

𝐽
∑
𝑗=1

∑
𝑖∈𝑅𝑗

(𝑦𝑖 − ̂𝑐𝑗)2
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Similar to a classification tree, the binary splitting is performed by first selecting the predictor 𝑥𝑖
and the cutpoint 𝑡 such that it leads to the greatest possible reduction in RSS. Mathematically, in each

nonterminal node, a regression tree tries to select the predictor 𝑥𝑖 and cutpoint 𝑡 such that the following
expression is minimized,

min𝑖,𝑡 { ∑
x𝑖∈𝑅1(𝑖,𝑡)

(𝑦𝑖 − ̂𝑐1)2 + ∑
x𝑖∈𝑅2(𝑖,𝑡)

(𝑦𝑖 − ̂𝑐2)2}

where 𝑅1(𝑖, 𝑡) = {x|𝑥𝑖 ≤ 𝑡} and 𝑅2(𝑖, 𝑡) = {x|𝑥𝑖 > 𝑡}. Then the above process is repeated recursively
to minimize the RSS within each region. As for a classification tree, the importance of the split 𝚤(⋅) is
defined as the difference between the RSS before and after the split.

It is recommended to apply a stopping criterion to avoid overfitting. For example, the node splitting

may be terminated if the method reaches some predetermined tree depth or the terminal regions contain

no more than a prespecified number of observations.

After the terminal nodes and the corresponding regions are determined, we obtain predictions for the

test observations by first identifying to which terminal nodes the test observations belong. Then the

predicted response is computed as the mean of the training observations in the corresponding terminal

node. This is in contrast with classification trees, where the predicted response is determined by the most

common class among the training observations in the terminal node.

One issue with decision trees is that the partitioning of a categorical predictor can take different but

equally justifiable paths. For example, we can decompose categories into binary predictors and include

them individually in the model (also known as one-hot encoding) or implement more dynamic splits,

such as groups of two or more categories. The best approach depends on the specific data and model.

In general, the partitioning algorithm tends to favor categorical predictors with many levels, leading

to severe overfitting when the number of categories is large; see, for instance, Effect of categorical

predictors in [H2OML] h2oml. Therefore, it is recommended to avoid such predictors.

Pros and cons of decision trees

One of the key advantages of decision trees is that they represent information in an intuitive and easy-

to-visualize way. In a decision tree, predictors can be of any type: numeric, binary, categorical, etc. A

monotone transformation or different scales of measurements among predictors do not change the model

outcome.

Another advantage of decision trees is that they can handle missing data. For instance, missing val-

ues are often treated as containing information, which does not require the common missing-at-random

assumption. For categorical predictors, missing values are treated as a separate category that can split

left or right; for other types of predictors, the missing values split to the left. Then, for the testing or val-

idation data, the missing values follow the path on the tree that was determined during training. If there

are no missing values in the training data, then missing values in the testing or validation data follow the

path of the most training observations. Missing values in the response are also allowed, but nothing will

be learned from observations containing those missing values.

Despite their advantages, decision trees are notoriously unstable and have a high variance. Even

though a deep tree (with many terminal nodes) has a small bias, a small change in the data can lead to a

completely different set of splits and obscure its interpretation. Moreover, decision trees have difficulties

with modeling simple smooth functions; see, for instance, Introduction in [H2OML] h2oml gbm.

One solution is to use ensemble methods, which we introduce next.
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Ensemble methods
The basis for ensemble methods can be summarized as a mechanism that forms a smart committee

of incompetent but carefully selected members to solve a machine learning problem. As we discussed

in the previous section, despite their advantages such as efficiency and interpretability, decision trees

suffer from high variance and instability. Specifically, if we slightly modify the data by splitting them

or introducing nuisance predictors, the new results may differ substantially from the original results. In

contrast, the low-variance methods are more robust to small changes and tend to yield similar results.

Bagging and boosting are two methods used to improve the accuracy of a machine learning method

by combining unstable learners. Using unstable learners is important because they provide more variable

outcomes than stable learners and thus aid in generalization. Both methods perturb the original dataset

to generate an ensemble of various base learners and combine them into one method. The usefulness of

ensemble methods is established for unstable base learners, but these methods may produce contradictory

results for stable base learners such as a linear regression.

Both bagging and boostingmethods are general-purpose procedures and are not tied to a specific learn-

ing estimation method, but in this entry, our main focus is on bagging and boosting for decision trees.

The main difference between bagging and boosting is in how they perturb and generate new datasets.

Bagging, which was first introduced in Breiman (1996), generates the perturbations by random and inde-

pendent drawings (bootstrap samples) from the training data. In contrast, boosting, introduced by Freund

and Schapire (1997) to solve classification problems, has a deterministic approach and generates pertur-

bations by sequentially reweighting the dataset. In particular, at any step, the weights of the observations

that were misclassified in the previous step increase, whereas the weights for the correctly classified

observations decrease. Thus, boosting forces each successive classifier to focus on those observations

that were missed by the previous ones in the sequence. By design, bagging reduces variance, whereas

boosting tends to control the generalization error by reducing bias. The difference is summarized in the

figure below.

Training sample

Bootstrap sampleBootstrap sampleBootstrap sample

Bagging

𝑓3(𝑥)𝑓2(𝑥)𝑓1(𝑥)

Training sample

Boosting

Weighted sample Weighted sample Weighted sample

𝑓3(𝑥)𝑓2(𝑥)𝑓1(𝑥)

Figure 8.

Bagging

Bagging or bootstrap aggregation relies on a bootstrap procedure (Efron 1979) that combines an en-

semble of learners to improve the performance of the prediction. The main idea of bagging can be

motivated by the fact that the variance of the mean of 𝑛 independent observations x1, x2, . . . , x𝑛 with
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variance 𝜎2 is 𝜎2/𝑛. Consequently, averaging a set of independent observations reduces the variance. A
natural extension of this idea to the machine learning is to independently sample many training datasets

from the population, build a separate prediction model ̂𝑓𝑏(x) for each sample, and take the average.

Unfortunately, this approach is not viable because, in practice, we observe only one training dataset.

However, we can use bootstrap to generate samples from the training dataset. Thus, after building the

{ ̂𝑓𝑏(x) , 𝑏 = 1, 2, . . . , 𝐵} learners from the bootstrap samples, for the observation x, the bagging proce-

dure returns

̂𝑓bag(x) = 1
𝐵

𝐵
∑
𝑏=1

̂𝑓𝑏(x)

The bias of a bagged tree is the same as that of a single tree, because each tree generated from the

bootstrapped data is identically distributed and has the same expected value.

To apply bagging to regression trees, we grow 𝐵 deep regression trees using 𝐵 bootstrap samples

and take the average of the resulting predictions. Each deep regression tree has a high variance and low

bias. Therefore, averaging these 𝐵 trees substantially reduces the variance and improves the prediction

accuracy; see Fundamentals of machine learning for details about the bias–variance tradeoff.

There are several approaches for extending bagging to classification trees. The most common one is

the majority-vote rule. For the 𝑖th observation of the testing data, we can record the predicted class for
each of the 𝐵 classification trees. The majority-vote rule returns the most frequent class among these 𝐵
predictions.

A salient feature of bagging is its ability to estimate the test error of a bagged model. This feature

helps avoid arduous computations and is especially useful for large datasets. Bagging repeatedly builds

trees on bootstrap samples, and about 37% of the observations in the training data will not be selected

for each bootstrap sample (Izenman 2008, chap. 5). Therefore, each bagged tree is grown only on the

remaining two-thirds of observations. The 37% of observations that are not used to grow the tree serve

as an independent testing set. Such observations are called out-of-bag observations. Now, to predict the

response for the 𝑖th observation, we use each of the trees for which the 𝑖th observation was out of bag.
The average (or the majority vote in the case of classification) of those predicted responses yields a single

prediction for the 𝑖th observation. The estimated generalization error from the out-of-bag approach is a

valid estimate of the test error and is equivalent to using an independent testing set of the same size.

Random forest

Recall that bagging averages an ensemble of unstable decision trees to reduce the variance, which

leads to the improvement of the generalization error. However, this reduction may not be sufficient if the

trees in the ensemble are correlated with each other. For example, if the training data have one strong

and several moderately strong predictors, then in the ensemble of bagged decision trees, the majority of

the trees will have this strong predictor as the top split. Therefore, most of the bagged trees will have a

similar structure, resulting in predictors that are highly correlated.

Although historically a variety of tree ensembles have been referred to as a random forest (Lin and

Jeon 2006), nowadays, a random forest is associated with the random forest proposed in Breiman (2001),

which is a tree ensemble that uses both bagging and subsampling of predictors. It is a modification of the

bagging procedure that generates an ensemble of decorrelated trees and then averages them. To overcome

the shortcomings of the bagging procedure and achieve decorrelation, for each split in the tree, instead

of the full set of 𝑝 predictors, random forest selects a random sample of 𝑚 predictors as potential split

candidates. With this strategy, the strong predictors, on average, (𝑝 − 𝑚)/𝑝 times are not considered
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as potentially the best predictors to split on, which increases the chance that other predictors can be

considered for splitting. Below, we summarize the main steps of a random forest. For 𝑏 = 1, 2, . . . , 𝐵,

do the following:

1. Generate a bootstrap sample 𝐷𝑏 from the training data.

2. Until the stopping criterion is reached, recursively grow a tree 𝑇𝑏 by implementing the following

steps:

i. Randomly choose 𝑚 ≤ 𝑝 predictors.

ii. Select the predictor with the best split point from 𝑚 potential predictors.

iii. Split the selected node.

Similar to bagging, to make a prediction for a new test point x, random forest estimates ̂𝑓rf(𝑥) =
(1/𝐵) ∑𝐵

𝑏=1
̂𝑓𝑏(𝑥) for regression, where ̂𝑓𝑏(⋅) is a prediction model from the tree 𝑇𝑏, and uses the

majority-vote rule for classification. In practice, it is recommended to select 𝑚 = ⌊√𝑝⌋ for classifi-

cation and 𝑚 = ⌊𝑝/3⌋ for regression, where ⌊⋅⌋ is a floor function. The size of the bootstrap sample 𝐷𝑏

controls the bias–variance tradeoff of the random forest.

A smaller bootstrap sample size lowers the probability of a particular training observation to be in-

cluded in the bootstrap sample, which decreases similarity among the individual trees. The latter helps

reduce overfitting. Analogously, a larger bootstrap sample size increases the degree of overfitting.

The above approach describes a random forest as a complex black-box model. We find it helpful to

also describe a random forest from a different perspective that connects it to the existing well-understood

statistical methods. Specifically, the prediction from a random forest can be viewed as an adaptive neigh-

borhood classification or regression procedure (Lin and Jeon 2006). Recall from decision trees that every

terminal node 𝑗 = 1, 2, . . . , 𝐽 of a tree corresponds to a rectangular subspace 𝑅𝑗 of a predictor space

such that for every observation x𝑖, there is only one terminal node 𝑗 such that x𝑖 ∈ 𝑅𝑗. Let’s focus on

a prediction from a single tree 𝑇𝑏 at a new data point x0. Suppose that in the tree 𝑇𝑏, x0 belongs to the

terminal node 𝑗 with the corresponding region 𝑅𝑗(x0, 𝑏), where we make the dependence of the region
on x0 and tree 𝑇𝑏 explicit. Then the prediction is obtained by averaging the observed values 𝑦𝑖’s in the

region 𝑅𝑗(x0, 𝑏). Let’s assign the weight 𝑤𝑖(x0, 𝑏) a positive constant if the observation x𝑖 is in the

region 𝑅𝑗(x0, 𝑏) and 0 otherwise, such that

𝑤𝑖(x0, 𝑏) =
1{x𝑖 ∈ 𝑅𝑗(x0, 𝑏)}

|{𝑘∶ x𝑘 ∈ 𝑅𝑗(x0, 𝑏)}|

where | ⋅ | denotes the number of observations in the region 𝑅𝑗(x0, 𝑏) and 1(𝐴) is the identity func-

tion, which is equal to 1 if the condition 𝐴 holds and 0 otherwise. Note that the weights sum to one:

∑𝑛
𝑖=1 𝑤𝑖(x0, 𝑏) = 1. Thus, the prediction from a single tree given a new point x0 is the weighted aver-

age of the original observations 𝑦𝑖’s for 𝑖 = 1, 2, . . . , 𝑛:

̂𝑓𝑏(x0) =
𝑛

∑
𝑖=1

𝑤𝑖(x0, 𝑏)𝑦𝑖
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For a random forest, where 𝐵 trees are ensembled, the prediction at observation x0 can be written as

̂𝑓rf(x0) = 1
𝐵

𝐵
∑
𝑏=1

̂𝑓𝑏(x0) = 1
𝐵

𝐵
∑
𝑏=1

𝑛
∑
𝑖=1

𝑤𝑖(x0, 𝑏)𝑦𝑖 =
𝑛

∑
𝑖=1

𝑊𝑖(x0)𝑦𝑖

where 𝑊𝑖(x0) is the average of the weights 𝑤𝑖’s over 𝐵 trees:

𝑊𝑖(x0) = 1
𝐵

𝐵
∑
𝑏=1

𝑤𝑖(x0, 𝑏)

Consequently, a random forest prediction can be viewed as a weighted average of the observations

𝑦𝑖’s because ∑𝑛
𝑖=1 𝑊𝑖(x0) = 1, which makes a random forest an adaptive smoother (Curth, Jeffares,

and van der Schaar 2024). For most observations, the weight 𝑊𝑖 will be zero; see Lin and Jeon (2006),

Meinshausen (2006), and Biau and Scornet (2016).

Wager and Athey (2018) rely on the above approach to prove the consistency of the random forest

estimator. In figure 9, we use a toy example to visualize this approach. Here, for a new data point x0
(denoted by+), each tree assigns a positive weight to the observations in the same terminal node (denoted

in red) and zero weight to the rest of the observations. The random forest prediction averages the weights

from the three trees and measures how frequent each observation falls into the same terminal node as x0.

Tree 1 prediction Tree 2 prediction

Tree 3 prediction Random forest prediction

Figure 9.
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Boosting

Boosting is a powerful idea that can be applied to any regression or classification problem. In contrast

to bagging, where each tree in an ensemble is built on a bootstrap training dataset and independent of the

other trees, boosting grows trees sequentially. One of the first boosting methods, AdaBoost (Freund and

Schapire 1997), was introduced to solve classification problems. AdaBoost repeatedly applies weights

to the observations to produce a sequence of classifiers. The observations that are poorly modeled get

higher weights and vice versa. This way, each successive classifier is focused on those observations that

received higher weights in the previous iteration. The figure below summarizes the steps of AdaBoost.

Training data ƒ1(x)

ƒ2(x) ƒ 3(x)

Figure 10.

Here we have three classifiers or base learners, 𝑓1(x), 𝑓2(x), and 𝑓3(x), which can be classification

trees. The observations are classified based on +’s and 𝑜’s. AdaBoost starts by assigning the same

weight 1/𝑛 to all observations, where 𝑛 is the number of observations. 𝑓1(x) incorrectly classified three
+ observations, which are displayed in red. In the next iteration, those three observations were assigned

higher weights, and 𝑓2(x) classified those observations correctly. Similarly, 𝑓3(x) assigned more weight
to the three previously misclassified 𝑜 observations and classified them correctly. The final ensemble or

boosted classifier is obtained based on those three classifiers as 𝐹(x) = ∑𝑀
𝑚=1 𝛼𝑚𝑓𝑚(x), where 𝛼𝑚

measures the importance of the classifier 𝑓𝑚(⋅) and 𝑀 is the number of classifiers.

This approach tends to explain boosting in terms of updating weights, which makes it difficult to eval-

uate its performance (Schapire 2003). To establish a connection with the statistical framework, in their

seminal paper, Friedman, Hastie, and Tibshirani (2000) propose a different view of AdaBoost. In partic-

ular, the authors use a gradient-descent-based formulation to reformulate AdaBoost as an optimization

problem and show that it is a greedy procedure that minimizes the exponential loss,

𝐿{𝑦𝑖, 𝐹 (x𝑖)} = 1
𝑛

𝑛
∑
𝑖=1

𝑒−𝑦𝑖𝐹(x𝑖)

where𝐹(x𝑖) = ∑𝑀
𝑚=1 𝛼𝑚𝑓𝑚(x𝑖). They proposed the following coordinate descent algorithm to achieve

the minimization.
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1. Initialize: 𝐹0(x) = 0.

2. For 𝑚 = 1, 2, . . . , 𝑀:

i. Choose a classifier 𝑓𝑚(⋅) and 𝛼𝑚 to minimize

1
𝑛

𝑛
∑
𝑖=1

exp[−𝑦𝑖{𝐹𝑚−1(x𝑖) + 𝛼𝑚𝑓𝑚(x𝑖)}]

ii. Update: 𝐹𝑚(x) = 𝐹𝑚−1(x) + 𝛼𝑚𝑓𝑚(x).

3. Output: 𝐹𝑀(x).

Thus,AdaBoost minimizes its loss function by iteratively descending toward one coordinate direction

at each iteration.

The important feature of this loss-function formulation is that, instead of the exponential loss, one

can use any other loss function and extend AdaBoost from solving a classification problem to solving

a regression problem. For details, see Friedman, Hastie, and Tibshirani (2000), Schapire and Freund

(2012), and Hastie, Tibshirani, and Friedman (2009).

GBM

The formulation discussed in the previous section and the corresponding models are called GBMs.

GBM is one of the popular methods to implement boosting. Although the original method, proposed in

Friedman, Hastie, and Tibshirani (2000), can work with any base learner, in practice, decision trees are

some of the main choices.

In the previous section, we viewed AdaBoost as an optimization problem with some loss function

𝐿(𝐹). In Decision trees, we parameterized a decision tree as a model 𝑓(x) = ∑𝐽
𝑗=1 𝑐𝑗𝐼{x ∈ 𝑅𝑗}, where

𝐽 is the number of terminal nodes, 𝑅𝑗’s are nonoverlapping regions of the predictor space, and 𝑐𝑗 is the

prediction (the mean for regression and the most probable class for classification) in the terminal node 𝑗.
The main idea behind GBM is to parameterize the estimate of the ensemble function 𝐹(x) as

̂𝐹 (x) =
𝑀

∑
𝑖=0

̂𝐹𝑚(x)

where 𝑀 is the number of iterations, ̂𝐹0(⋅) is an initial guess, and { ̂𝐹𝑚(⋅)}𝑀
𝑚=1 are the function incre-

ments, also known as boosts.

Parameterizing the tree by Θ = {𝑅𝑗, 𝑐𝑗}𝐽
𝑗=1 and following the coordinatewise approach presented in

the previous section, for some loss function 𝐿(⋅), in the stage 𝑚, we can write the minimization of the

tree-boosting method as

(𝛼𝑚, Θ𝑚) = argmin𝛼,Θ

𝑛
∑
𝑖=1

𝐿{𝑦𝑖, ̂𝐹𝑚−1(x𝑖) + 𝛼𝑓(x𝑖, Θ)}

where 𝑛 is the number of observations in the training dataset, 𝛼 is a learning rate, and

̂𝐹𝑚(x) = ̂𝐹𝑚−1(x) + 𝛼𝑓(x, Θ𝑚)

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesDecisiontrees


20 Intro — Introduction to machine learning and ensemble decision trees+

Unfortunately, such minimization is practically infeasible to solve. To alleviate the issue, it was pro-

posed, at stage 𝑚, to choose a new function 𝑓(x, 𝜃) to be the most correlated with the negative gradient

𝑔𝑚(x𝑖) = [𝜕𝐿{𝑦𝑖, 𝐹 (x𝑖)}
𝜕𝐹(x𝑖)

]
𝐹(x𝑖)=𝐹𝑚−1(x𝑖)

by solving a classical least-squares minimization problem:

(𝛼𝑚, Θ𝑚) = argmin𝛼,Θ

𝑛
∑
𝑖=1

{−𝑔𝑚(x𝑖) + 𝛼𝑓(x𝑖, Θ)}

For example, if the loss function is the squared error loss 𝐿{𝑦𝑖, 𝐹 (x𝑖)} = (1/2){𝑦𝑖 − 𝐹(x𝑖)}2, then

the gradient 𝑔𝑚(x𝑖) = −{𝑦𝑖 − 𝐹(x𝑖)}.
Below, we summarize the gradient-tree boosting method for the squared error loss 𝐿(⋅) and fixed

learning rate 𝛼, with the number of iterations, that is, the number of trees in this context, equal to 𝑀.

1. Initialize: 𝐹0(x) and 𝑔𝑖 = 𝑦𝑖 for all 1 ≤ 𝑖 ≤ 𝑛.

2. For 𝑚 = 1, 2, . . . , 𝑀:

i. Compute 𝑔𝑚(x𝑖) = −{𝑦𝑖 − 𝐹𝑚−1(x𝑖)} for all 1 ≤ 𝑖 ≤ 𝑛.

ii. Fit a tree ̂𝑓𝑚(⋅) with 𝐽 splits to the training data {x𝑖, −𝑔𝑚(x𝑖)} for 𝑖 = 1, 2, . . . , 𝑛.

iii. Update ̂𝐹: ̂𝐹𝑚(x) = ̂𝐹𝑡−1(x) + 𝛼 ̂𝑓𝑚(x).

3. Output: ̂𝐹 (x) = ∑𝑀
𝑚=1

̂𝐹𝑚(x) = ∑𝑀
𝑚=1 𝛼𝑓𝑚(x).

The learning rate 𝛼 reduces the contribution of each tree as it is added to the model, which prevents

overfitting. The simulation studies indicate that a smaller 𝛼 reduces overfitting and provides a lower

generalization error. The relationship between the learning rate and the number of trees 𝑀 is reciprocal.

That is, decreasing the learning rate increases the required number of trees.

Historically, researchers suggested using a stump (decision tree with depth equal to one) as a base

learner in each iteration. However, current research on ensemble methods suggests that if the noise in

the data is small, it is preferable to use deeper trees as base learners to improve generalization (Wyner

et al. 2017). This is related to the idea that the ensemble methods are local interpolators. The depth of a

tree affects the selection of the optimal number of trees. For a given learning rate, fitting more complex

(deeper) trees results in a fewer number of trees being selected. Typically, the learning rate and tree

complexity are inversely related: doubling the tree depth should be matched with halving the learning

rate to provide roughly the same number of trees (Elith, Leathwick, and Hastie 2008).

Trees with monotonicity constraints

In some applications, it is reasonable to assume that the response is a monotone function of the predic-

tors. For example, in economic theory the price elasticity of the normal good is assumed to be positive, or

in hedonic price analysis, in which price is a function of the characteristics of the product, it is expected

that some of the characteristics will always have a positive or negative effect on the price. The original

decision trees and ensemble decision tree methods, described above, do not support such a constraint and

may violate the monotonicity assumption. However, there are modifications to the above methods that

incorporate the monotonicity constraints (Potharst and Feelders 2002).
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Model selection in machine learning
Most machine learning models are defined by a set of model parameters and hyperparameters. A

model parameter is initialized and computed during the learning process. A hyperparameter cannot be

directly estimated from the learning process and must be prespecified before training a machine learning

model (Kuhn and Johnson 2013). For example, in decision trees, the parameters correspond to the split

decisions and regions, and the hyperparameters include the tree depth, impurity measures, the minimum

number of observations in each terminal node, and more. The goal of machine learning models is to

make accurate predictions on future data. To build an optimal model, we need to explore a wide range

of values for hyperparameters and select the ones that improve the model performance the most. This

process is also known as model selection. So we are interested in selecting the best-performing model

from the set of potential models. That is, we want to evaluate the performances of the models and

compare them with each other. The process of designing an effective machine learning model with

an optimal hyperparameter configuration is called hyperparameter tuning. The material in this section

closely follows Raschka (2020) and Yang and Shami (2020).

The steps for selecting the best-performing model are summarized in table 1 below.

Table 1. Steps for selecting the best-performing model

To minimize the generalization error, which measures the predictive model performance on

new data, do the following:

1. Split the data for training and evaluating a model; see Three-way and two-way holdout

methods.

2. Optimize hyperparameters to select the best-performing model; see Hyperparameter tun-

ing.

3. Compare different machine learning methods and select the one that performs the best;

see Method comparison.

In the rest of this section, we will discuss different approaches to accomplish the above steps.

Three-way and two-way holdout methods

The simplest approach to evaluating a model is the two-way holdout method, in which we take the

observed data and split them into two parts: training data and testing data. A model is fit to the training

data, and the prediction is obtained on the testing data. It is important to perform the training and eval-

uation steps using different data. Otherwise, if a sufficiently complex model fits the training data too

well, it will be difficult to distinguish whether the model is memorizing the training data or generalizing

well to the “new” data. Thus, the model performance will suffer from the optimism bias. Even after we

randomly sample and split the data, it is essential to prevent the leakage of information from the testing

data into the training process (Raschka 2020 and Lones 2021). Common, seemingly innocuous mistakes

include using the information about the means and ranges of the predictors from the entire dataset to scale

the predictors or performing predictor selection before partitioning the data and using the same data as

testing data to evaluate the generality of multiple models. The best practical way to prevent informa-

tion leakage is to partition the data at the beginning of the analysis and use the testing data only once to

measure the generality of a final model at the end of the analysis (Cawley and Talbot 2010).
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The two-way holdout method addresses only the first generalization step from table 1 and cannot be

used to sequentially train multiple models for hyperparameter optimization, which we discuss later. In

contrast, the three-way holdout method partitions the dataset into training, validation, and testing data.

Model selection and hyperparameter tuning are performed on training and validation data and model

evaluation on testing data. This procedure avoids repeated use of the testing data and prevents informa-

tion leakage. Another advantage of including validation data is that we can impose early stopping rules,

in which the model performance is measured against validation data at each iteration, and stop training

when the performance score starts deteriorating or does not change over a sequence of iterations. In

general, to obtain a generalization error, which is independent from how we split the data into train-

ing, validation, and testing, we recommend to repeat the holdout method multiple times with different

random-number seeds and report the average performance over these repetitions. Alternatively, one can

use the leave-one-out bootstrap technique and evaluate the generalization error by using the out-of-bag

samples instead of the training data (Efron and Tibshirani 1993).

The steps for selecting the best-performing model with the three-way holdout method are summarized

in table 2.

Table 2. Steps for selecting the best-performing model with the three-way holdout method

1. Randomly partition the data into three parts: training for model fitting, validation for

model selection, and testing for the final evaluation of the selected model.

2. Hyperparameter tuning: define a grid of various hyperparameter configurations to fit

models to the training data; see Hyperparameter tuning.

3. Model selection: evaluate and compare the estimated performance metrics on the vali-

dation data, and choose hyperparameter values that provide the best-performing metrics.

4. Use independent testing data to estimate the generalization error by comparing various

metrics of the best-performing model.

In step 2, tuning can be performed by using either a Cartesian grid search (as described in table 4) or a

random grid search. We treat the splitting of a dataset into training, validation, and testing data as random

subsampling and assume that each observation has been drawn from the same probability distribution.

However, when the dataset is imbalanced, random subsampling is not recommended. A better approach

is to divide the dataset in a way that preserves the original class proportions in the resulting subsets

(training, validation, and testing). This approach is called stratification.

k-fold cross-validation

For small datasets, the three-way holdout method of splitting the data is not recommended because the

validation and testing data may not be representative. In such cases, 𝑘-fold cross-validation is the most
common model evaluation and selection technique. It starts by splitting the data into training and testing

data. For the training data, 𝑘-fold cross-validation splits them into 𝑘 parts or folds. In each 𝑘th iteration,
it uses one part for validation and the remaining 𝑘 − 1 parts as a training subset for model fitting. The

figure below illustrates 3-fold cross-validation for a toy example. The dataset is randomly split into three

folds, and red, blue, and green observations correspond to observations in folds 1, 2, and 3, respectively.

In the first cross-validation iteration, the method uses observations in folds 2 and 3 as a training set and
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observations in fold 1 as a validation set. The next two iterations follow a similar procedure but use

observations from folds 2 and 3, respectively, as validation sets. For example, for 𝑘 = 3, four models

are fit. The first three cross-validation models are fit using 2/3 of the training data, as described above,

and a different 1/3 of the training data is held out for validation for each of the three models. Then the

main fourth model is fit using the entire training data, and the cross-validation metrics are reported. Also

see [H2OML] h2omlestat cvsummary.
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Figure 11.

Hyperparameter tuning

A typical process to build an effective machine learning model is complicated and time consuming.

It involves choosing an appropriate method and selecting a model by tuning hyperparameters (see step 2

in table 1). The choice of optimal hyperparameters directly affects the model performance on the testing

data. The hyperparameter tuning depends on a machine learning method and the type of hyperparam-

eter, such as continuous, discrete, or categorical. Setting and testing hyperparameters manually is time

consuming and inefficient. Therefore, there exist automatic optimization techniques for hyperparameter

tuning.
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Themain goal of hyperparameter optimization is to achieve optimalmodel performancewithin a given

budget, where budget refers to computational resources or the time allocated to tuning. We summarize

the hyperparameter optimization process following Yang and Shami (2020) in table 3.

Table 3. Steps for hyperparameter optimization

1. Select the machine learning method and the performance metrics.

2. Select the hyperparameters that require tuning.

3. Determine the baseline or referencemodel by training themachine learningmethod using

the default hyperparameter configuration.

4. Start with a large search space such as the hyperparameter feasible domain.

5. Refine the search space using well-performing hyperparameter values, or explore new

areas if needed.

6. Select the best-performing hyperparameter configuration as the final result.

Some researchers often neglect the baseline determination step 3 and spend most of their time devel-

oping complex models, which may not outperform the simplest model. For example, if the task is binary

classification or regression, then the baseline method can be the simplest known method such as logistic

or linear regression. Or if our data are highly imbalanced with one of the classes containing 95% of

observations, then this 95% can serve as our baseline, because the method that always predicts this class

already has 95% accuracy and the preferred machine learning model should outperform this baseline.

The simplest hyperparameter tuning method is a so-called babysitting or trial and error approach,

where a researchermanually experiments with various hyperparameter values using experience, intuition,

or prior knowledge (Abreu 2019 and Elsken, Metzen, and Hutter 2019). Manual tuning is infeasible

for most machine learning methods because they are complex and require many hyperparameters. The

methods we describe next are more suitable for complex machine learning methods.

Decision-theoretical methods are one of the common techniques for hyperparameter optimization.

The most popular ones are a Cartesian grid search (Bergstra et al. 2011) and a random grid search

(Bergstra and Bengio 2012). A Cartesian grid search performs an exhaustive grid search of hyperpa-

rameter configurations and evaluates the Cartesian product of possible hyperparameter combinations.

Its search is limited to the grid specified by the user and cannot explore other regions. To achieve good

results, Yang and Shami (2020) suggest the steps that we summarize in table 4.

Table 4. Steps for Cartesian grid search

1. Choose a broad search space and a large step size.

2. Based on the results from step 1, refine the search space and step size using well-

performing hyperparameter configurations.

3. Repeat step 2 until there is no substantive improvement in the performance metric.
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ACartesian grid search is exhaustive, which makes it infeasible for a high-dimensional hyperparam-

eter configuration space. A random grid search overcomes this drawback by randomly choosing a set

number of samples within the upper and lower bounds as candidate hyperparameter values. Those values

are used to evaluate the model. The rest of the steps are the same as in table 4. Moreover, if the configu-

ration space is large enough, then the global optimum of the tuning metric can be achieved. On a limited

budget, a random grid search explores a larger search space than a Cartesian grid search. However, both

Cartesian and random grid search methods share the same drawback: each hyperparameter evaluation

is independent of the others, leading to wasted computational time and resources on poorly performing

areas of the search space. For a review of hyperparameter optimization techniques, see Yang and Shami

(2020).

Method comparison

Comparing evaluation results for different machine learning methods is fundamental to model selec-

tion (step 3 in table 1). This process typically includes a comparison of different performance metrics,

visualization, and statistical analysis. The performance metrics of various machine learning methods are

compared using testing data, and the best method is chosen based on the results. Visualization, such as

receiver operating characteristics curves and precision–recall curves, are commonly used for compari-

son during binary classification. For details, see [H2OML] h2omlgraph roc and [H2OML] h2omlgraph

prcurve and, more generally, [H2OML] h2oml postestimation. Depending on the research question, in

addition to performance metrics, it may be important to also explore the explainability of the method.

See the next section for details.

Interpretation and explanation
Machine learning models are ubiquitous in many fields. Despite their widespread use, they are often

treated as black boxes that do not explain their predictions in a way that practitioners can understand.

The misuse of black-box predictive models can lead to serious consequences, for instance, incorrectly

denying parole, releasing dangerous criminals because of inadequate bail decisions, mispredicting air

pollution level, and more (Rudin 2019). One of the concerns with deploying machine learning methods

is whether their models and predictions can be trusted. And it is difficult to trust something that cannot

be interpreted or explained. Traditionally, machine learning models are evaluated by comparing perfor-

mance metrics using validation data. This may be unreliable because validation data may not always be

fully representative of real-world data.

The use of interpretable models and explainable methods sheds light on model performance and en-

courages a transparent usage of black-box models. In machine learning, an interpretable model has

the ability to explain its results in an understandable and transparent way without the need for addi-

tional methods (Doshi-Velez and Kim 2017). Commonly used interpretable models are linear and logis-

tic regressions, decision trees, decision-set and rule-based methods and their extensions (Friedman and

Popescu 2008; Letham et al. 2015 ; Lakkaraju, Bach, and Leskovec 2016; Rudin and Ustun 2018; and

Chen et al. 2018 ). An interpretable model is judged based on several criteria, including interpretability

and accuracy (Guidotti et al. 2018).

In contrast with interpretable models, explainable methods rely on external models and methods to

make their predictions presentable and understandable to a human. In general, they do not create models

that are inherently interpretable, but provide post hoc models that explain the prediction of the original

black-box models (Goldstein et al. 2015 ; Ribeiro, Singh, and Guestrin 2016; Bastani, Kim, and Bastani

2017; and Lundberg and Lee 2017). It is not recommended to heavily rely on explainable models for

high-stake decisions, such as in medicine, criminal justice, social bias, and other fields (Rudin 2019
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and Ghassemi, Oakden-Rayner, and Beam 2021), but to use those techniques as a tool for analysis and

algorithmic audit (Raji et al. 2020). For more information, see Slack et al. (2020), Lakkaraju and Bastani

(2020), and Krishna et al. (2022).

In machine learning literature, explainable methods are divided into model specific and model agnos-

tic. A model-specific explainable method is inherently connected to the used machine learning model

such as a random forest or a deep neural network and cannot be used for other models. With a model-

agnostic explainable method, a user is free to use any black-box model for data analysis, and the explain-

able method can be applied to that model. There are two types of model-agnostic methods: local and

global. Local methods explain individual predictions and approximate a black-box model in the vicinity

of an individual observation. The popular methods include local surrogate models (Ribeiro, Singh, and

Guestrin 2016), individual conditional expectation curves (Goldstein et al. 2015), and Shapley values

(Lundberg and Lee 2017). A global method describes the average behavior of a black-box model. Partial

dependence plots (Friedman 2001), variable importance plots (Breiman 2001; Fisher, Rudin, and Do-

minici 2019), and global surrogate models (Bastani, Kim, and Bastani 2017) are some of the popular

choices.

See [H2OML] h2omlgraph ice, [H2OML] h2omlgraph shapvalues, and [H2OML] h2omlgraph shap-

summary for a few local model-agnostic methods and [H2OML] h2omlgraph pdp and [H2OML] h2oml-

graph varimp for global model-agnostic methods. We also describe the global surrogate models in the

next section.

Global surrogate models

Global surrogate models (Bastani, Kim, and Bastani 2017 and Craven and Shavlik 1995) are explain-

able models that approximate the predictions of a black-box model. In other words, a surrogate model

uses an interpretable model to explain a black-box model. The steps for obtaining a global surrogate

model are straightforward:

1. Obtain predictions from a well-tuned black-box model fit to the testing data.

2. Select and train an interpretable model (for example, a decision tree) for predictions on the testing

data.

3. Measure the goodness of fit of the surrogate model for the predictions, and interpret the model.

One way to measure the goodness of fit of a surrogate model for predictions is by using the 𝑅2 for

regression and accuracy or log loss for classification,

𝑅2 = 1 −
∑𝑛

𝑖=1{ ̂𝑔(x𝑖) − ̂𝑓(x𝑖)}2

∑𝑛
𝑖=1{ ̂𝑓(x𝑖) − 𝑓}2

where ̂𝑔(⋅) and ̂𝑓(⋅) are the respective predictions from the surrogate and black-box models and 𝑓 is

the mean of the black-box predictions. The larger the 𝑅2, the better the surrogate model replicates the

black-box model.

For example, suppose we used a GBM to obtain predictions of housing prices. We could then apply

the above method to explain its predictions by using a decision tree as a surrogate model. We show one

such tree below. We can easily see how the predictors explain the predicted log sales prices. The terminal

nodes of the tree show the predicted logarithm of the sales prices. For example, the houses with overall

quality (overallqual) greater than 7.5 and with the lot area (lotarea) greater than 12,332.5 square

feet have the highest predicted price of 12.74.
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