
h2oml gbm — Gradient boosting machine for regression and classification+

+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
The h2oml gbm commands implement the gradient boosting machine (GBM) method for regression,

binary classification, and multiclass classification. h2oml gbregress implements gradient boosting re-

gression for continuous and count responses; h2oml gbbinclass implements gradient boosting classi-

fication for binary responses; and h2oml gbmulticlass implements gradient boosting classification for

multiclass responses (categorical responses with more than two categories).

The h2oml gbm commands provide only measures of performance. See [H2OML] h2oml postestima-

tion for commands to compute and explain predictions, examine variable importance, and perform other

postestimation analyses.

For an introduction to decision trees and GBM, see [H2OML] Intro.

Quick start
Before running the h2oml gbm commands, an H2O cluster must be initialized and data must be im-

ported to an H2O frame; see [H2OML] H2O setup and Prepare your data for H2O machine learning in

Stata in [H2OML] h2oml.

Perform gradient boosting regression of response y1 on predictors x1 through x100
h2oml gbregress y1 x1-x100

As above, but perform classification for binary response y2, report measures of fit for the validation

frame named valid, and set an H2O random-number seed for reproducibility

h2oml gbbinclass y2 x1-x100, validframe(valid) h2orseed(123)

As above, but for categorical response y3 and instead of a validation frame, use 3-fold cross-validation

h2oml gbmulticlass y3 x1-x100, cv(3) h2orseed(123)

As above, but set the number of trees to 30, the maximum tree depth to 10, the learning rate to 0.01, and

the predictor sampling rate to 0.6

h2oml gbmulticlass y3 x1-x100, cv(3) h2orseed(123) ntrees(30) ///
maxdepth(10) lrate(0.01) predsamprate(0.6)

As above, but for binary response y2, and use the default exhaustive grid search to select the optimal

number of trees and the maximum tree depth that minimize the log-loss metric

h2oml gbbinclass y2 x1-x100, cv(3) h2orseed(123) lrate(0.01) ///
predsamprate(0.6) ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss))

1

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/h2omlh2omlgbregress.pdf#h2omlh2omlgbregress
https://www.stata.com/manuals/h2omlh2omlgbbinclass.pdf#h2omlh2omlgbbinclass
https://www.stata.com/manuals/h2omlh2omlgbmulticlass.pdf#h2omlh2omlgbmulticlass
https://www.stata.com/manuals/h2omlh2omlpostestimation.pdf#h2omlh2omlpostestimation
https://www.stata.com/manuals/h2omlh2omlpostestimation.pdf#h2omlh2omlpostestimation
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntro
https://www.stata.com/manuals/h2omlh2osetup.pdf#h2omlH2Osetup
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesPrepareyourdataforH2OmachinelearninginStata
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesPrepareyourdataforH2OmachinelearninginStata
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2oml

2 h2oml gbm — Gradient boosting machine for regression and classification+

As above, but use a random grid search, set an H2O random-number seed for this search, and limit the

maximum search time to 200 seconds

h2oml gbbinclass y2 x1-x100, cv(3) h2orseed(123) lrate(0.01) ///
predsamprate(0.6) ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss) grid(random, h2orseed(456)) maxtime(200))

As above, but specify a learning-rate decay of 0.9, and tune the number of bins for the categorical and

continuous predictors

h2oml gbbinclass y2 x1-x100, cv(3) h2orseed(123) lrate(0.01) ///
lratedecay(0.9) predsamprate(0.6) ntrees(10(5)100) ///
maxdepth(3(1)10) binscont(15(5)50) binscat(500(50)1100) ///
tune(metric(logloss) grid(random, h2orseed(456)) maxtime(200))

As above, but for continuous response y1, and use the mean squared error (MSE) as the metric for early

stopping and grid search

h2oml gbregress y1 x1-x100, cv(3) h2orseed(123) lrate(0.01) ///
lratedecay(0.9) predsamprate(0.6) ntrees(10(5)100) ///
maxdepth(3(1)10) binscont(15(5)50) binscat(500(50)1100) ///
tune(metric(mse) grid(random, h2orseed(456)) maxtime(200)) ///
stop(metric(mse))

Menu
Statistics > H2O machine learning

Syntax
Gradient boosting regression

h2oml gbregress response reg predictors [, gbmopts]

Gradient boosting binary classification for binary response

h2oml gbbinclass response bin predictors [, gbmopts]

Gradient boosting multiclass classification for categorical response

h2oml gbmulticlass response mult predictors [, gbmopts]

response reg, response bin, response mult, and predictors correspond to column names of the current

H2O frame.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmSyntaxgbmopts
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmSyntaxgbmopts
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmSyntaxgbmopts

h2oml gbm — Gradient boosting machine for regression and classification+ 3

gbmopts Description

Model

loss(losstype) specify the loss function with h2oml gbregress; default is
loss(gaussian)

validframe(framename) specify the name of the H2O frame containing the validation
dataset that will be used to evaluate the performance
of the model

cv[(# [, cvmethod])] specify the number of folds and method for cross-validation

cv(colname) specify the name of the variable (H2O column) for
cross-validation that identifies the fold to which each
observation is assigned

balanceclasses balance the distribution of classes (categories of
the response variable) by oversampling minority classes
with h2oml gbbinclass or h2oml gbmulticlass

h2orseed(#) set H2O random-number seed for GBM

encode(encode type) specify H2O encoding type for categorical predictors; default
is encode(enum)

auc enable potentially time-consuming calculation of the area
under the curve (AUC) and area under the precision–recall
curve (AUCPR) and metrics for multiclass classification with
h2oml gbmulticlass

stop[(# [, stop opts])] specify the number of training iterations and other criteria
for stopping GBM training if the stopping metric does
not improve

maxtime(#) specify the maximum run time in seconds for GBM;
by default, no time restriction is imposed

scoreevery(#) specify that metrics be scored after every # trees during training

monotone(predictors[, mon opts]) specify monotonicity constraints on the relationship between
the response and the specified predictors with h2oml
gbregress or h2oml gbbinclass

Hyperparameter

ntrees(# | numlist) specify the number of trees to build the GBM model; default
is ntrees(50)

lrate(# | numlist) specify the learning rate of each tree; default is lrate(0.1)
lratedecay(# | numlist) specify the rate by which the learning rate specified in

lrate() is decaying after adding each tree to the GBM;
default is lratedecay(1)

maxdepth(# | numlist) specify the maximum depth of each tree; default is
maxdepth(5)

minobsleaf(# | numlist) specify the minimum number of observations per child for
splitting a leaf node; default is minobsleaf(10)

predsamprate(# | numlist) specify the sampling rate for randomly selecting a fraction of
predictors to build a tree; default is predsamprate(1)

samprate(# | numlist) specify the sampling rate for randomly selecting a fraction of
observations to build a tree; default is samprate(1)

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmSyntaxdistoption
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmSyntaxcvstropts
https://www.stata.com/manuals/h2omlencode_option.pdf#h2omlencode_option
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmSyntaxstopoption
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmOptionsoptionsmon
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist

4 h2oml gbm — Gradient boosting machine for regression and classification+

minsplitthreshold(# | numlist) specify the threshold for the minimum relative improvement
needed for a node split; default is
minsplitthreshold(1e-05)

binscat(# | numlist) specify the number of bins to build the histogram for node
splits for categorical predictors (enum columns in H2O);
default is binscat(1024)

binsroot(# | numlist) specify the number of bins to build the histogram for root
node splits for continuous predictors (real and int
columns in H2O); default is binsroot(1024)

binscont(# | numlist) specify the number of bins to build the histogram for node
splits for continuous predictors (real and int columns
in H2O); default is binscont(20)

Tuning

tune(tune opts) specify hyperparameter tuning options for selecting the
best-performing model

Only one of validframe() or cv[()] is allowed.
If neither validframe() nor cv[()] is specified, the performance metrics are reported for the training dataset.
monotone() can be specified with h2oml gbregress only with loss(gaussian), loss(tweedie), or loss(quantile)

and with h2oml gbbinclass.
When numlist is specified in one or more hyperparameter options, tuning is performed for those hyperparameters.

collect is allowed; see [U] 11.1.10 Prefix commands.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

losstype Description

gaussian Gaussian loss; the default

tweedie[, power(#)] Tweedie loss; response must be nonnegative

poisson Poisson loss; response must be nonnegative

laplace Laplace loss

huber[, alpha(#)] Huber loss

quantile[, alpha(#)] quantile loss

cvmethod Description

random randomly split the training dataset into folds; the default

modulo evenly split the training dataset into folds using the modulo
operation

stratify evenly distribute observations from the different classes of
the response to all folds

stop opts Description

metric(metric option) specify stopping metric for training or grid search

tolerance(#) specify the tolerance value by which a model must improve
before the training or grid search stops; default is
tolerance(1e-3)

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmSyntaxtuneopts
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_option

h2oml gbm — Gradient boosting machine for regression and classification+ 5

tune opts Description

metric(metric option) specify metric for selecting the best-performing model

grid(gridspec) specify whether to perform an exhaustive or random search
for all hyperparameter combinations

maxmodels(#) specify the maximum number of models considered in the
grid search; default is all configurations

maxtime(#) specify the maximum run time for the grid search in seconds;
default is no time limit

stop[(#[, stop opts])] specify the number of iterations and other criteria for
stopping GBM training if the stopping metric does not
improve in the grid search

parallel(#) specify the number of models to build in parallel during
the grid search; default is parallel(1), sequential
model building

nooutput suppress the table summarizing hyperparameter tuning

If any of maxmodels(), maxtime(), or stop[()] is specified, then grid(random) is implied.

Options

� � �
Model �

loss(losstype) specifies the loss function for h2oml gbregress; see Introduction. For h2oml
gbbinclass, the Bernoulli loss function is used, and for h2oml gbmulticlass the multinomial loss

function is used.

loss(gaussian) specifies the Gaussian loss function. This is the default with h2oml gbregress.

loss(tweedie[, power(#)]) specifies the Tweedie loss function. This function is useful for mod-

eling a nonnegative response that has exact zeros. The Tweedie loss function is parameterized

by the variance power, specified via option power(#). power() is a number between 1 and 2,

exclusive. The default is power(1.5).

loss(poisson) specifies the Poisson loss function for a nonnegative response.

loss(laplace) specifies the Laplace loss function, which is an absolute loss function. It is useful

for predicting the median percentile.

loss(huber[, alpha(#)]) specifies the Huber loss function, which is useful when the response

has outliers. For the Huber loss function, alpha() is a number between 0 and 1, exclusive,

and indicates the top percentiles of residuals that should be considered as outliers. The default

is alpha(0.9).

loss(quantile[, alpha(#)]) specifies the quantile loss function, which is useful for predicting a

specified percentile. For the quantile loss function, alpha() is a number between 0 and 1, exclu-

sive, that specifies the desired quantile for quantile regression. For example, to predict the 60th

percentile of the response conditional on predictors, use alpha(0.6). The default is alpha(0.5),
which corresponds to the median.

validframe(framename) specifies the H2O frame name of the validation dataset used to evaluate the

performance of the model. This option is often used when the number of observations is large and the

data-splitting approach is the three-way (training-validation-testing) or two-way (training-validation)

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_option
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmOptionsgridspec
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmSyntaxstopoption
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexampleslossfunction
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesIntroduction

6 h2oml gbm — Gradient boosting machine for regression and classification+

holdout method. For definitions of different data-splitting approaches, see The three-way holdout

method in [H2OML] Intro. If neither validframe() nor cv[()] is specified, the model is evaluated
using the training dataset. Only one of validframe() or cv[()] may be specified.

cv(cvspec) and cv use cross-validation to evaluate model performance. cvspec is one of # [, cvmethod]
or colname. Only one of cv() or validframe() may be specified.

cv[(# [, cvmethod])] specifies the number of folds for cross-validation and, optionally, the cross-
validation method. This option is preferred when the number of observations is small for the training-

validation-testing split method.

cv is a synonym for cv(10).

cvmethod specifies the cross-validationmethod andmay be one of random, modulo, or stratify.

random specifies that training data be randomly split into the specified number of folds. It is

recommended for large datasets and may lead to imbalanced folds. This is the default.

modulo specifies that a deterministic assignment approach that evenly splits data into the spec-

ified number of folds be used. For example, if cv(3, modulo) is specified, then training

observations 1, 4, 7, . . . are assigned to fold 1; observations 2, 5, 8, . . . to fold 2, etc.

stratify specifies to try to evenly distribute observations from the different classes of the

response across all folds. This approach is useful when the number of classes is large and

the available dataset is small. stratify is not allowed when the response is H2O type real.

cv(colname) specifies the name of the variable (H2O column) that is used to split the data into subsets

according to colname. It provides a custom grouping index for the cross-validation split. This option

is suitable when the data are non-i.i.d. or for comparing different models using cross-validation. The

variable should be categorical (H2O data type enum).

balanceclasses is used with h2oml gbbinclass and h2oml gbmulticlass. It specifies to oversam-
ple the minority classes of the response to balance the class distribution. The imbalanced data can lead

to wrong performance evaluation, and oversampling tries to balance data by increasing the minority

classes. This can increase the size of the dataset. Minority classes are not oversampled by default.

h2orseed(#) sets the H2O random-number seed for H2O model reproducibility of the GBM estimation.

This option is not equivalent to the rseed() option available with other commands or the set seed
command. For reproducibility in H2O, see [H2OML] H2O reproducibility and H2O’s reproducibility

page.

encode(encode type) specifies the H2O encoding type to handle categorical variables, which in H2O are

supported as the data type enum. See https://www.stata.com/h2o/h2o18/h2oframe_describe.html for
information on the H2O data types. encode type may be one of enum, enumfreq, onehotexplicit,
binary, eigen, label, or sortbyresponse. For details, see [H2OML] encode option. The default

is encode(enum).

auc is used with h2oml gbmulticlass. It enables calculation of AUC and AUCPR metrics. Because

the computation of these metrics requires a large amount of memory and computational cost, by

default, H2O does not calculate these metrics. This option must be specified if you plan to use the

postestimation command h2omlestat aucmulticlass or to use one of these metrics for the early

stopping. When the number of classes in the response variable is greater than 50, H2O disables this

option.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesthreewaysplit
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesthreewaysplit
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntro
https://www.stata.com/manuals/h2omlh2oreproducibility.pdf#h2omlH2Oreproducibility
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm-faq/reproducibility.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm-faq/reproducibility.html
https://www.stata.com/h2o/h2o18/h2oframe_describe.html
https://www.stata.com/manuals/h2omlencode_option.pdf#h2omlencode_option
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_optionOptionsaucmulty
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_optionOptionsmultaucpr
https://www.stata.com/manuals/h2omlh2omlestataucmulticlass.pdf#h2omlh2omlestataucmulticlass

h2oml gbm — Gradient boosting machine for regression and classification+ 7

stop and stop(# [, metric(metric option) tolerance(#)]) specify the rules for early stopping for

GBM. Early-stopping rules help prevent the overfitting of machine learning methods and may reduce

the generalization error, which measures how well a model predicts outcome for new data; see Pre-

liminaries in [H2OML] Intro. stop(#) specifies the number of stopping rounds or training iterations

needed to stop model training when the selected stopping metric does not improve by tolerance().
For example, if metric(logloss) is used and the specified number of training iterations is 3, the

model will stop training after the performance has been scored three consecutive times without any

improvement in logloss by the specified tolerance(). For reproducibility, it is recommended to
use stop() with option scoreevery(#).

stop is a synonym for stop(5).

metric(metric option) specifies the metric used for early stopping. The list of allowed metrics

is provided in [H2OML] metric option. The default is metric(deviance) for regression and

metric(logloss) for binary and multiclass classification.

tolerance(#) specifies the tolerance value by which metric() must improve during training. If

the metric() does not improve by # after the number of consecutive training iterations specified

in stop(#), the training stops. The default is tolerance(1e-3).

maxtime(#) specifies the maximum run time in seconds for the GBM. No time limitation is imposed by

default.

scoreevery(#) specifies that metrics be scored after every # trees during model training. This option is

useful in combination with stop() for reproducibility. When used with early stopping, the specified

number of iterations needed to stop applies to the number of scoring iterations that H2O has performed.

The default is to use H2O’s assessment of a reasonable ratio of training iterations to scoring time,

which may not always guarantee reproducibility. For details on reproducibility, see [H2OML] H2O

reproducibility.

monotone(predictors[, mon opts]) imposes a monotonicity constraint on the specified predictors.

The data type of predictors should be continuous (H2O type int or real). mon opts can be

one of increasing or decreasing. The default is increasing. monotone() may be repeated

to specify both increasing constraints for some predictors and decreasing constraints for others.

For example, h2oml gbregress ..., monotone(predlist1, increasing) monotone(predlist2,
decreasing) would specify an increasing constraint for the first list of predictors and a decreasing

constraint for the second list. The option can be used with h2oml gbbinclass and h2oml gbregress
when the loss function is loss(gaussian), loss(tweedie), or loss(quantile). By default, no
constraint is imposed.

� � �
Hyperparameter �

When numlist is specified in one or more hyperparameter options below, tuning is performed for those

hyperparameters.

ntrees(# | numlist) specifies the number of trees to build the model. The default is ntrees(50). The
specified number of trees and the actual number of trees used during estimation can differ. This can

happen if the early-stopping rules have been specified or the performance of the model is not changing

after adding an additional tree.

lrate(# | numlist) specifies the learning rate of the GBM. The specified number must be in the range

(0, 1]. The relationship between the learning rate and the number of trees is reciprocal: a lower rate
requires a larger number of trees and vice versa. A well-tuned learning rate helps avoid overfitting.

The default is lrate(0.1).

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesprelim
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesprelim
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntro
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_option
https://www.stata.com/manuals/h2omlh2oreproducibility.pdf#h2omlH2Oreproducibility
https://www.stata.com/manuals/h2omlh2oreproducibility.pdf#h2omlH2Oreproducibility
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist

8 h2oml gbm — Gradient boosting machine for regression and classification+

lratedecay(# | numlist) specifies the factor by which the learning rate will be reduced after adding

each tree. The specified number must be in (0, 1]. The default is lratedecay(1). For example,

with 10 trees, the GBM starts with the learning rate lrate(), and the final 10th tree has a learning

rate equal to lrate() × lratedecay()10. Iteratively decreasing the learning rate implies that trees

contain more information (that is, have higher weights) at the beginning than at the end. When the

specified number is less than 1, it is recommended to initialize lrate() to a larger value, which leads

to faster convergence.

maxdepth(# | numlist) specifies the maximum depth of each tree. The default is maxdepth(5). The
splitting is stopped when the tree’s depth reaches the specified number. A deeper tree provides a

better training accuracy but may overfit the data.

minobsleaf(# | numlist) specifies the minimum number of observations required for splitting a leaf

node. The default is minobsleaf(10). For example, if we specify minobsleaf(50), then the node
will split if the training samples in each of the left and right children are at least 50.

predsamprate(# | numlist) specifies the sampling rate for the predictors. The sampling is without re-

placement. The sampling rate must be in the range (0, 1]. The default is predsamprate(1). The
predictor sampling rate reduces the correlation among trees and introduces an additional randomness

that might improve generalization of the model to the new data.

samprate(# | numlist) specifies the sampling rate for the observations. The sampling is without replace-
ment. The sampling rate must be in the range (0, 1]. The default is samprate(1). The observation
sampling introduces an additional randomization to the estimation method that might improve gener-

alization of the model to the new data.

minsplitthreshold(# | numlist) specifies the threshold for the required minimum relative improve-

ment in the impurity measure in order for a split to occur. The default is minsplitthreshold(1e-
05). A well-tuned minsplitthreshold() increases generalization because it precludes splits that

lead to overfitting.

binscat(# | numlist) specifies the number of bins to be included in the histogram for each categor-

ical (H2O type enum) predictor. The specified number should be greater than 1. The default is

binscat(1024). The histogram is used to split the tree node at the optimal point. Categorical

predictors are split by first assigning an integer to each distinct level. Then the method bins the

ordered integers according to the specified number of bins. Finally, the optimal split point is selected

among the bins. For details, see https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-

params/nbins_cats.html. For categorical predictors with many levels, a larger value of binscat()
leads to overfitting, and a smaller value adds randomness to the split decisions. Therefore, binscat()
is an important tuning parameter for datasets that contain categorical variables with many levels.

binsroot(# | numlist) specifies the number of bins to use at the root node of each tree for splitting

continuous (H2O type real or int) predictors. For the subsequent nodes, the specified # is divided

by 2, and the resulting number is used for splitting. The default is binsroot(1024). This option is
used in combination with binscont(), which controls the point when the method stops dividing by
2. The histogram is used to split the node at the optimal point. As the tree gets deeper, each subsequent

node includes predictors with a smaller range, and the bins are uniformly spread over this range. If the

number of observations in a node is smaller than the specified value, then the method creates empty

bins. If the number of bins is large, the method evaluates each individual observation as a potential

split point, which may increase the computation time. The number specified in binscont() must be

smaller than the number specified in binsroot().

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-params/nbins_cats.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-params/nbins_cats.html
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist

h2oml gbm — Gradient boosting machine for regression and classification+ 9

binscont(# | numlist) specifies the minimum number of bins in the histogram for the continuous (H2O

type real or int) predictors. The default is binscont(20). This option is used in combination with
binsroot(). The number specified in binsroot() must be greater than the number specified in

binscont().

In practice, a model is more generalizable to other datasets if binsroot() and binscat() are small and

tends to overfit for large values of binscont(), binsroot(), and binscat().

� � �
Tuning �

tune(tune opts) specifies options for the grid search method for tuning hyperparameters. In machine

learning, hyperparameter tuning is an important step in selecting a model that can be generalized

to other datasets. Because of the high dimensionality of hyperparameters and their types (continu-

ous, discrete, and categorical), manually setting and testing hyperparameters is time consuming and

inefficient. Grid search methods are designed to achieve optimal model performance within spec-

ified constraints such as time allocated for tuning or computational resources. Tuning begins with

the selection of the predetermined hyperparameters that you want to tune. Below, we describe the

available suboptions for controlling the tuning procedure. tune opts may be metric(), grid(),
maxmodels(), maxtime(), stop[()], or nooutput.

metric(metric option) specifies the metric for tuning. Allowed metrics are provided in

[H2OML] metric option. The default is metric(deviance) for regression and metric(log-
loss) for classification.

grid(gridspec) specifies whether to implement an exhaustive search or a random search for all hy-

perparameter combinations. gridspec is one of cartesian or random[, h2orseed(#)].
grid(cartesian) implements an exhaustive search for every possible combination in the search
space. This approach is recommended if the number of hyperparameters or the search space is

small. The default is grid(cartesian).

grid(random[, h2orseed(#)]) implements a random search for all hyperparameter combi-

nations. It is recommended to use grid(random) with maxmodels() and maxtime() to

reduce the computation time. If maxtime(), maxmodels(), or stop() is specified, then

grid(random) is implied.

h2orseed(#) sets an H2O random-number seed for the random grid search for reproducibility.

See [H2OML]H2O reproducibility and H2O’s reproducibility page for details. The behavior

of h2orseed() is different from the rseed() option allowed by many commands and the

set seed command.

maxmodels(#) specifies the maximum number of models to be considered in a grid search. By

default, all possible configurations are considered. If this option is specified, grid(random) is

implied.

maxtime(#) specifies the maximum run time for the grid search in seconds. By default, there is no

time limitation. If this option is specified, grid(random) is implied. This option can be specified

with option maxmodels() during the grid search. If maxtime() is also specified for the model

training, then each model building starts with a limit equal to the minimum of the maxtime() for

the model training, and the remaining time is used for the grid search.

stop and stop(# [, metric(metric option) tolerance(#)]) specify the rules for early stopping

for the grid search. This option implies grid(random). stop(#) specifies the number of grid

value configurations needed to stop the grid search when the selected metric does not improve

by tolerance(). For example, if the selected metric is the default for the binary and multiclass

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmSyntaxtuneopts
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesHyperparametertuning
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_option
https://www.stata.com/manuals/h2omlh2oreproducibility.pdf#h2omlH2Oreproducibility
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm-faq/reproducibility.html

10 h2oml gbm — Gradient boosting machine for regression and classification+

classification (metric(logloss)) and we specify stop(3), the grid search will stop after three
consecutive grid values chosen by the grid search do not lead to the improvement of the logloss
by the specified tolerance().

stop is a synonym for stop(5).

metric(metric option) specifies the metric used for early stopping. Allowed metrics are pro-

vided in [H2OML] metric option. The default is metric(deviance) for regression and

metric(logloss) for classification.

tolerance(#) specifies the tolerance value by which metric() must improve during the grid

search. If the metric() does not improve by # after the number of consecutive grid value

configurations specified in stop(#), the grid search stops. The default is tolerance(1e-3).

parallel(#) specifies the number of models to build in parallel during the grid search. This option

enables parallel model building, which reduces computational time. The default, parallel(1),
specifies sequential model building. parallel(0) enables adaptive parallelism, in which the

number of models to be built in parallel is automatically determined by H2O. Any integer greater

than 1 specifies the exact number of models to be built in parallel. This option is particularly

useful for improving speed when tuning many hyperparameters. However, results for models built

in parallel may not be reproducible; see [H2OML] H2O reproducibility for details.

nooutput suppresses the table summarizing hyperparameter tuning.

stata.com

Remarks and examples
We assume you have read the introduction to decision trees and ensemble methods in [H2OML] Intro.

Remarks are presented under the following headings:

Introduction
Tuning hyperparameters
Examples of using GBM

Example 1: Gradient boosting linear regression using default settings
Example 2: Using validation data and early stopping
Example 3: Using cross-validation
Example 4: User-specified hyperparameters
Example 5: Binary classification and hyperparameter tuning
Example 6: Multiclass classification
Example 7: Poisson regression
Example 8: Quantile regression and monotonicity constraint
Example 9: Handling imbalanced data with binary and multiclass classification

Introduction
The GBM (Friedman 2001) is a machine learning method that is useful for prediction, model selection,

and explaining the impact of predictors. Even though GBM works with any learner, in H2O it is based

on decision trees. A single decision tree is an easily interpretable method for predicting a response;

it repeatedly partitions the data into branches based on values of predictors so that responses within

each branch are as homogeneous as possible. Despite the advantages, such as interpretability and easy

implementation, single decision trees are prone to instability and can struggle to model some types of

functions. For example, in the figure below, a single decision tree fails to model simple data generated

from the sin(𝑥) function, where 𝑥 is generated from a uniform distribution. GBM (Friedman 2001) uses

boosting, which fits a series of decision trees that build on each other and gradually increase focus on

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_option
https://www.stata.com/manuals/h2omlh2oreproducibility.pdf#h2omlH2Oreproducibility
http://stata.com
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesDecisiontrees
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesEnsemblemethods
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntro
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmdefault
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmvalid
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmcv
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmuser
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmtune
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmmulti
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmpoisson
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmquantile
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmimbalance

h2oml gbm — Gradient boosting machine for regression and classification+ 11

observations that are not predicted well by the existing ensemble of decision trees. This boosting process

leads to a more stable and better predictive model than a single decision tree. From the figure below,

GBM accurately recovers the true data-generation process.

-1.5

-1

-.5

0

.5

1

-4 -2 0 2 4
x

Data
Decision tree
GBM

In GBM, boosting can be thought of as a numerical optimization technique that minimizes a given loss

function by adding a tree in each stage that best reduces the loss function. The list of loss functions for

regression and classification in the h2oml gbm commands is provided below, where 𝑦 denotes response

and 𝑓 is a link function.

Loss 𝐿(𝑦, 𝑓)

Gaussian 1
2 (𝑦 − 𝑓)2

Tweedie(𝜃) 2𝑦
(2−𝜃)

(1−𝜃)(2−𝜃) − 𝑦𝑒𝑓(1−𝜃)

1−𝜃 + 𝑒𝑓(2−𝜃)

2−𝜃 , for 1 < 𝜃 < 2

Poisson −2(𝑦𝑓 − 𝑒𝑓)

Laplace |𝑦 − 𝑓|

Huber(𝛼) (𝑦 − 𝑓)2, for |𝑦 − 𝑓| < 𝛼 and (2|𝑦 − 𝑓| − 𝛼)𝛼 otherwise

Quantile(𝛼) 𝛼(𝑦 − 𝑓), for 𝑦 > 𝑓 and (1 − 𝛼)(𝑓 − 𝑦) otherwise

Bernoulli −2(𝑦𝑓 − ln(1 + 𝑒𝑓)

Multinomial − ∑𝐾
𝑘=1 𝐼(𝑦 = 𝐶𝑘)𝑓𝑘 + ln(∑𝐾

𝑗=1 𝑒𝑓𝑗), where 𝐶𝑘 is the 𝑘th class

Gaussian, Laplace, Huber, and quantile loss functions use the identity link 𝐸[𝑦|𝑥] = 𝑓(𝑥). Tweedie,
Poisson, and multinomial use the log link function log(𝐸[𝑦|𝑥]) = 𝑓(𝑥). Finally, Bernoulli uses the logit
link function log(𝐸[𝑦|𝑥]/{1 − 𝐸[𝑦|𝑥]}) = 𝑓(𝑥). For details about GBM, see GBM in [H2OML] Intro.

Depending on the type of response, you can use one of the h2oml gbregress, h2oml gbbinclass,
or h2oml gbmulticlass commands to perform GBM. h2oml gbregress performs gradient boosting

regression for continuous and count responses. h2oml gbbinclass performs gradient boosting binary

classification for binary responses. h2oml gbmulticlass performs gradient boosting multiclass clas-

sification for categorical responses. In h2oml gbbinclass and h2oml gbmulticlass, the loss is set
to Bernoulli and multinomial, respectively. In h2oml gbregress, the loss() option is used to spec-

ify the loss, which can be one of Gaussian (the default), Tweedie, Poisson, Laplace, Huber, or quantile.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesGBM
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntro

12 h2oml gbm — Gradient boosting machine for regression and classification+

The commands have many common options. To perform GBM using a validation dataset, you can use the

validframe() option to specify the name of a validation frame. To perform GBM using cross-validation,

you can use the cv() option. You can choose between three cross-validation methods for splitting data

among folds by specifying the random, modulo, or stratify suboption within the cv() option. Al-

ternatively, you can specify a variable in the cv() option that defines how observations are split into

different folds.

For reproducibility, you can use the h2orseed() option to specify a random-number seed for H2O.

This option is different from Stata’s rseed() option and the set seed command. For early stopping,

you can use the stop[()] option. We highly recommend that you always specify the scoreevery()
option with early stopping to ensure reproducibility. For details, see [H2OML] H2O reproducibility and

H2O’s reproducibility page.

Tuning hyperparameters
All h2oml gbm commands provide default values for hyperparameters, but you can also specify your

own in the corresponding options. For instance, you can specify the number of trees for GBM in the

ntrees() option or the learning rate of a tree in the lrate() option. In practice, however, you would

want to tune your GBM model, that is, let the GBM method select the values of the model parameters that

correspond to the best-fitting model according to some metric. You can do this by specifying a possible

range of grid values for each hyperparameter you intend to tune and controlling the grid search by using

the tune() option. Currently, h2oml gbm provides two grid search strategies: an exhaustive (Cartesian)

grid search with tune(grid(cartesian)) and a random grid search with tune(grid(random)). And
several performance metrics are available in tune(metric()).

Tuning hyperparameters of the machine learning method is a complex and iterative procedure. Under-

standing the steps is important for the correct specification of the options provided. A brief overview

of these steps is provided below, and a deeper treatment can be found in Hyperparameter tuning in

[H2OML] Intro.

Step 1: Choose the data-splitting approach

Use either a three-way holdout method in which data are separated into training, validation, and testing

datasets or, if the number of observations is low, a two-way holdout method (training and testing) with

𝑘-fold cross-validation. Recall that the optimal hyperparameters are selected using the results of the
metric on the validation set (validframe()) or cross-validation (cv()), not on the training set.

Step 2: Select the hyperparameters and performance metric

From the list of hyperparameters such as ntrees() or maxdepth(), select the ones that require tuning
for your application. When numlist is specified in one or more of the hyperparameter options, tuning

is implemented based on the specified grid search suboptions in the tune() option. For instance,

you can specify the desired performance metric in the tune(metric()) option; see [H2OML] met-

ric option for supported metrics. The default metric is specific to each command. There is no sys-

tematic guidance on how many and which hyperparameters to choose: the inclusion of tuning hyper-

parameters depends on the data, machine learning method, and prior knowledge of the researcher.

The performance metric should be selected carefully because it may affect the estimation results. For

example, for the classification problem, if the data are imbalanced, metric accuracy is not recom-

mended and a more appropriate metric, such as aucpr, is preferred. For more details, see metric

options.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/h2omlh2oreproducibility.pdf#h2omlH2Oreproducibility
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm-faq/reproducibility.html
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesHyperparametertuning
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntro
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesthreewaysplit
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesk-foldcross-validation
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_option
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_option
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_optionOptionsaccuracy
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_optionOptionsaucpr
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_option
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_option

h2oml gbm — Gradient boosting machine for regression and classification+ 13

Step 3: Select the grid search strategy and search space

If the number of hyperparameters is large, then a random grid search specified via the

tune(grid(random)) option is a better choice than an exhaustive grid search that is performed

by default or when the tune(grid(cartesian)) option is specified. For the first run, it is recom-

mended that you specify a large search space and try to overfit the model. Then, on subsequent runs,

you should narrow the search space on high-performance hyperparameters and apply early-stopping

rules by specifying the tune(stop()) option to avoid overfitting.

Step 4: Use the best-performing hyperparameter configuration

Depending on your research problem, use the best-performing hyperparameter configuration to fit the

final model on the testing dataset.

Below, we demonstrate the use of options in various applications. In this entry, we focus on the syntax

and output of commands. For a more research-focused exposition, see [H2OML] h2oml.

Examples of using GBM
In this section, we demonstrate some of the uses of h2oml gbm. The examples are presented under

the following headings.

Example 1: Gradient boosting linear regression using default settings
Example 2: Using validation data and early stopping
Example 3: Using cross-validation
Example 4: User-specified hyperparameters
Example 5: Binary classification and hyperparameter tuning
Example 6: Multiclass classification
Example 7: Poisson regression
Example 8: Quantile regression and monotonicity constraint
Example 9: Handling imbalanced data with binary and multiclass classification

Examples 1 through 4 demonstrate gradient boosting regression, but their discussion applies to all

h2oml gbm commands. Similarly, example 5 demonstrates binary classification, but the steps for tuning

hyperparameters are applicable to all commands. Example 6 demonstrates multiclass classification. Ex-

amples 7 and 8 show how to specify a different loss function with h2oml gbregress to perform Poisson

and quantile gradient boosting. Example 8 also shows monotonicity constraints, which can also be ac-

commodated with binary classification. Finally, example 9 shows how to handle imbalanced data during

binary classification but is equally applicable to multiclass classification.

Example 1: Gradient boosting linear regression using default settings
For demonstration purposes, we start with gradient boosting linear regression using the default set-

tings. In practice, however, you would rarely use the default settings because the performance of the

model is improved during training by specifying options that allow optimization or tuning of hyperpa-

rameters.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2oml
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmdefault
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmvalid
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmcv
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmuser
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmtune
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmmulti
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmpoisson
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmquantile
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmimbalance

14 h2oml gbm — Gradient boosting machine for regression and classification+

We start by opening the 1978 automobile data (auto.dta) in Stata and then putting the data into an
H2O frame. Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset

into an H2O frame, and h2oframe changemakes the specified frame the current H2O frame. For details,

see Prepare your data for H2O machine learning in Stata in [H2OML] h2oml and [H2OML] H2O setup.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
(output omitted)

. _h2oframe put, into(auto)
Progress (%): 0 100
. _h2oframe change auto

We use gradient boosting linear regression of the response price on just a few predictors—weight,
length, and foreign—and we specify the h2orseed(19) option for reproducibility.

. h2oml gbregress price weight length foreign, h2orseed(19)
Progress (%): 0 100
Gradient boosting regression using H2O
Response: price
Loss: Gaussian
Frame: Number of observations:

Training: auto Training = 74
Model parameters
Number of trees = 50 Learning rate = .1

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 3 No. of bins cat. = 1,024
avg = 3.7 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training

Deviance 1692396
MSE 1692396

RMSE 1300.921
RMSLE .1739734

MAE 893.7925
R-squared .8027962

The header provides information about the model characteristics and data. Because we used h2oml
gbregress, the loss is Gaussian by default. The Frame section contains information about the

H2O training frame. In this example, our training frame is auto with 74 observations. The Model
parameters portion reports the information about hyperparameters. Multiple values are reported for

some hyperparameters. For example, there are two values for the number of trees. One reports the

number of trees as specified by the user. In our case, it is the default 50. The actual value shows the

number of trees actually used during training. These numbers may differ when an early stopping rule

is applied such as when the stop() option is specified. Similarly, for the Tree depth there are four

values. The Input max reports the user-specified value, and min and max report the actual minimum

and maximum depths achieved during training. The last two may be different from the default value of

5 because maxdepth() enforces a possible maximum depth the tree can achieve, but the method can

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesPrepareyourdataforH2OmachinelearninginStata
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2oml
https://www.stata.com/manuals/h2omlh2osetup.pdf#h2omlH2Osetup

h2oml gbm — Gradient boosting machine for regression and classification+ 15

stop splitting earlier. The Metric summary table reports the six regression performance metrics for the

training frame. In general, metrics values are used to compare different models. Depending on whether

the method implements regression, binary classification, or multiclass classification, the reported metrics

change. For the definition of metrics, see [H2OML] metric option.

Even though the above output is for regression, a similar interpretation applies to binary andmulticlass

classification using the h2oml gbbinclass and h2oml gbmulticlass commands, respectively.

Example 2: Using validation data and early stopping
Example 1 illustrates the simple use of the h2oml gbregress command. In practice, we want a model

that minimizes overfitting. As we discussed in Model selection in machine learning in [H2OML] In-

tro, there are two main approaches to check for overfitting: by using a validation dataset or by cross-

validation. The former is recommended when the number of observations is large and the latter otherwise

(see example 3).

Continuing with example 1, we use the h2oframe split command to randomly split the auto frame
into a training frame (80% of observations) and validation frame (20% of observations), which we name

train and valid, respectively. We also change the current frame to train.

. _h2oframe split auto, into(train valid) split(0.8 0.2) rseed(19)

. _h2oframe change train

We now use the validframe() option with h2oml gbregress to specify the validation frame:

. h2oml gbregress price weight length foreign, h2orseed(19) validframe(valid)
Progress (%): 0 100
Gradient boosting regression using H2O
Response: price
Loss: Gaussian
Frame: Number of observations:

Training: train Training = 63
Validation: valid Validation = 11

Model parameters
Number of trees = 50 Learning rate = .1

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 3 No. of bins cat. = 1,024
avg = 3.1 No. of bins root = 1,024
max = 4 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Deviance 2235364 2391512
MSE 2235364 2391512

RMSE 1495.114 1546.451
RMSLE .1954448 .2578085

MAE 1013.616 1058.391
R-squared .7634879 .2253408

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_option
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmdefault
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesModelselectioninmachinelearning
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntro
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntro
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmcv

16 h2oml gbm — Gradient boosting machine for regression and classification+

Compared with example 1, the output contains additional information about the validation frame.

There are 63 training and 11 validation observations. The important information here is the performance

metrics for the validation frame, the Validation column of the Metric summary table. The validation

frame is used during tuning to select the best model and control for overfitting. See example 5 for tuning.

In some cases, we can greatly improve the generalization of the model, that is, improve model predic-

tion on the new testing dataset, by using early stopping. Early stopping allows you to stop adding trees

when the metric computed on the validation sample (or on the cross-validation sample if the cv[()]
option was specified) does not improve after a prespecified number of iterations. This prevents overfit-

ting. In this example, we use stop(5) to halt the training of GBM when the stopping metric does not

improve after 5 iterations. By default, the stopping metric is Deviance. For reproducibility, we specify
the scoreevery() option together with the stop() option. The scoreevery() option controls how

frequently the metric score is updated. For example, scoreevery(1) means the score is updated after

adding each tree to the ensemble. For details, see [H2OML] H2O reproducibility.

. h2oml gbregress price weight length foreign, h2orseed(19) validframe(valid)
> stop(5) scoreevery(1)
Progress (%): 0 100
Gradient boosting regression using H2O
Response: price
Loss: Gaussian
Frame: Number of observations:

Training: train Training = 63
Validation: valid Validation = 11

Model parameters
Number of trees = 50 Learning rate = .1

actual = 26 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 3 No. of bins cat. = 1,024
avg = 3.1 No. of bins root = 1,024
max = 4 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Stopping criteria: No. of iterations = 5

Metric: Deviance Tolerance = .001
Metric summary

Metric Training Validation

Deviance 3094539 2288930
MSE 3094539 2288930

RMSE 1759.13 1512.921
RMSLE .2247564 .251828

MAE 1199.072 1044.42
R-squared .6725832 .2585691

Note: Metric is scored after every
tree.

We see several differences compared with the first output in this example. First, as expected, now

the actual number of trees is less than the specified number of trees (26 versus 50). In addition, the

RMSE for the training frame increased, and the RMSE for the validation frame decreased from 1546.451

to 1512.921, which means there is less overfitting.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmdefault
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmtune
https://www.stata.com/manuals/h2omlh2oreproducibility.pdf#h2omlH2Oreproducibility

h2oml gbm — Gradient boosting machine for regression and classification+ 17

Example 3: Using cross-validation
In this example, we illustrate the use of h2oml gbregress with the default parameters and cross-

validation.

Continuing with example 2, we keep the frame train as our current training data. In the h2oml
gbm commands, cross-validation is performed by specifying the cv() option. This option supports three

methods for folds assignment: random, modulo, and stratified. The random method is the default and

is preferred with large datasets. Here, to demonstrate, we use 5-fold cross-validation with modulo fold

assignment, which assigns each observation to a fold based on the modulo operation. We type

. h2oml gbregress price weight length foreign, h2orseed(19) cv(5, modulo)
Progress (%): 0 72.6 99.6 100
Gradient boosting regression using H2O
Response: price
Loss: Gaussian
Frame: Number of observations:

Training: train Training = 63
Cross-validation = 63

Cross-validation: Modulo Number of folds = 5
Model parameters
Number of trees = 50 Learning rate = .1

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 3 No. of bins cat. = 1,024
avg = 3.1 No. of bins root = 1,024
max = 4 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Deviance 2235364 3641968
MSE 2235364 3641968

RMSE 1495.114 1908.394
RMSLE .1954448 .2603751

MAE 1013.616 1391.129
R-squared .7634879 .6146625

The output now provides information about the cross-validation assignment method, the number of

folds, and, in the second column of the Metric summary table, the cross-validated metrics.

The three fold-assignment methods are useful when the data are i.i.d. If the dataset requires a spe-

cific grouping for cross-validation, then a new categorical variable can be created and specified in the

cv(colname) option. GBM then uses those variable values to split the data into folds. To demonstrate,

in our H2O frame, we generate a new column named foldvar, which contains a hypothetical grouping
for the fold assignment.

. _h2oframe generate foldvar = 1

. _h2oframe replace foldvar = 2 in 20/35

. _h2oframe replace foldvar = 3 in 36/63

. _h2oframe factor foldvar, replace

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesk-foldcross-validation
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesk-foldcross-validation
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmvalid

18 h2oml gbm — Gradient boosting machine for regression and classification+

The last command converts the type of foldvar into H2O’s enum type, which is required by the cv()
option. Now we can perform cross-validation with the fold assignment determined by foldvar.

. h2oml gbregress price weight length foreign, h2orseed(19) cv(foldvar)
Progress (%): 0 100
Gradient boosting regression using H2O
Response: price
Loss: Gaussian
Frame: Number of observations:

Training: train Training = 63
Cross-validation: foldvar Cross-validation = 63
Model parameters
Number of trees = 50 Learning rate = .1

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 3 No. of bins cat. = 1,024
avg = 3.1 No. of bins root = 1,024
max = 4 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Deviance 2235364 7785926
MSE 2235364 7785926

RMSE 1495.114 2790.327
RMSLE .1954448 .3791052

MAE 1013.616 1883.424
R-squared .7634879 .1762122

https://www.stata.com/manuals/u5.pdf#u5.1StataNow

h2oml gbm — Gradient boosting machine for regression and classification+ 19

Example 4: User-specified hyperparameters
In examples 2 and 3, we used validation and cross-validation with default values for all hyperparam-

eters. Continuing with example 3, suppose we now want to try some specific values of several hyperpa-

rameters (the number of trees, learning rate, and predictor sampling rate) by including the ntrees(50),
lrate(0.2), and predsamprate(0.7) options.

. h2oml gbregress price weight length foreign, h2orseed(19) cv(5, modulo)
> ntrees(50) lrate(0.2) predsamprate(0.7)
Progress (%): 0 100
Gradient boosting regression using H2O
Response: price
Loss: Gaussian
Frame: Number of observations:

Training: train Training = 63
Cross-validation = 63

Cross-validation: Modulo Number of folds = 5
Model parameters
Number of trees = 50 Learning rate = .2

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = .7

Input max = 5 Sampling rate = 1
min = 2 No. of bins cat. = 1,024
avg = 3.1 No. of bins root = 1,024
max = 4 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Deviance 1605800 3398097
MSE 1605800 3398097

RMSE 1267.202 1843.393
RMSLE .1736271 .2622264

MAE 863.7136 1357.606
R-squared .8300987 .6404653

The output is similar to previous examples, except that it now reports our specified values of 50 for

the number of trees, 0.2 for the learning rate, and 0.7 for the predictor sampling rate.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmvalid
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmcv

20 h2oml gbm — Gradient boosting machine for regression and classification+

Example 5: Binary classification and hyperparameter tuning
In example 1 of [H2OML] h2oml, we used the churn dataset to show steps for building a predictive

model to predict whether a customer will churn. In particular, we used a GBM binary classification model

with 3-fold stratified cross-validation and the following tuning specification as a baseline model:

. h2oml gbbinclass churn $predictors, h2orseed(19) cv(3, stratify)
> ntrees(100) lrate(0.05) predsamprate(0.15)
(output omitted)

In this example, we demonstrate a process of tuning model parameters to arrive to the model above.

As we discussed in Model selection in machine learning in [H2OML] Intro, the analysis should start

by defining the baseline or reference performance. The baseline model has been defined in exam-

ple 2 of [H2OML] h2oml. For simplicity and computational purposes, we will tune only hyperparame-

ters—number of trees and predictor sampling rate—on a small hyperparameter search space. Remember

that hyperparameter tuning is an iterative procedure and the considered examples are only for illustration

purposes. In practice, you should follow the steps in table 3 in [H2OML] Intro.

We read the churn dataset as an H2O frame and split it into train and test H2O frames.

. use https://www.stata-press.com/data/r18/churn
(Telco customer churn data)
. h2o init
(output omitted)

. _h2oframe put, into(churn)
Progress (%): 0 100
. _h2oframe change churn
. _h2oframe split churn, into(train test) split(0.8 0.2) rseed(19) replace
. _h2oframe change train

Next we create a global macro predictors in Stata to store the names of predictors.

. global predictors latitude longitude tenuremonths monthlycharges
> totalcharges gender seniorcitizen partner dependents phoneservice
> multiplelines internetserv onlinesecurity onlinebackup streamtv
> techsupport streammovie contract paperlessbill paymethod deviceprotect

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesmlexzero
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2oml
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesModelselectioninmachinelearning
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntro
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesmlexone
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesmlexone
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2oml
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexampleshyperparameter
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntro

h2oml gbm — Gradient boosting machine for regression and classification+ 21

In the h2oml gbm commands, the grid values of a hyperparameter are passed using numlist in a

hyperparameter option. For example, for the predsamprate() option, we pass a list of numbers

{0.05, 0.15, 0.25} as numlist specification 0.05(0.1)0.25. For the lrate() option, we pass a fixed

value of 0.05. As a grid search method for tuning, we use the Cartesian exhaustive search method. We

also use the AUCPR metric for tuning.

. h2oml gbbinclass churn $predictors, h2orseed(19) cv(3, stratify)
> lrate(0.05) ntrees(50(50)150) predsamprate(0.05(0.1)0.25)
> tune(metric(aucpr))
Progress (%): 0 100
Gradient boosting binary classification using H2O
Response: churn
Loss: Bernoulli
Frame: Number of observations:

Training: train Training = 5,643
Cross-validation = 5,643

Cross-validation: Stratify Number of folds = 3
Tuning information for hyperparameters
Method: Cartesian
Metric: AUCPR

Grid values
Hyperparameters Minimum Maximum Selected

Number of trees 50 150 100
Pred. sampling rate .05 .25 .15

Model parameters
Number of trees = 100 Learning rate = .05

actual = 100 Learning rate decay = 1
Tree depth: Pred. sampling rate = .15

Input max = 5 Sampling rate = 1
min = 5 No. of bins cat. = 1,024
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .3531063 .4026141
Mean class error .1784776 .2313897

AUC .8992847 .8565935
AUCPR .7610732 .673929

Gini coefficient .7985693 .7131869
MSE .1126847 .1314475

RMSE .3356854 .3625569

The output interpretation of h2oml gbbinclass is similar to that of h2oml gbregress. Because we
perform binary classification, the Bernoulli loss function is used. Also, the metrics specific to binary

classification are reported in the metrics table.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/h2omlintro.pdf#h2omlIntroRemarksandexamplesHyperparametertuning

22 h2oml gbm — Gradient boosting machine for regression and classification+

The tuning information is displayed in the header. It includes the tuning method and metric and grid

search ranges and the selected values for the hyperparameters. The grid search ranges are the speci-

fied minimum and maximum values for hyperparameters. The select values are optimal selected by the

algorithm. These are the values we used in our final GBM model in example 3 in [H2OML] h2oml.

In this example, we tuned only two hyperparameters and allowed only three possible values for each

one, so the grid search was limited to a small space. When the number of hyperparameters and the grid

space are large, the grid search can become computationally intensive. You can use the parallel() op-

tion to specify the number of models to build in parallel during the grid search, thereby improving com-

putational time. However, results for models built in parallel may not be reproducible; see [H2OML]H2O

reproducibility. By default, the models are built sequentially.

Example 6: Multiclass classification
In this example, we show how to implement multiclass classification and which performance metrics

to use to measure the performance of the model. For this example, we will use a well-known iris dataset,

where the goal is to predict a class of iris plant. This dataset was used in Fisher (1936) and originally col-

lected by Anderson (1935). We start by initializing a cluster, opening the dataset in Stata, and importing

the dataset as an H2O frame.

. h2o init
(output omitted)

. use https://www.stata-press.com/data/r18/iris
(Iris data)
. _h2oframe put, into(iris)
Progress (%): 0 100
. _h2oframe split iris, into(train valid) split(0.8 0.2) rseed(19)
. _h2oframe change train

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesmlextwo
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2oml
https://www.stata.com/manuals/h2omlh2oreproducibility.pdf#h2omlH2Oreproducibility
https://www.stata.com/manuals/h2omlh2oreproducibility.pdf#h2omlH2Oreproducibility
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_optionSyntaxmulticlass_metric

h2oml gbm — Gradient boosting machine for regression and classification+ 23

We use the h2oframe split command to split the dataset into training and validation frames. Next

we run gradient boosting multiclass classification using 500 trees and default values for other hyperpa-

rameters.

. h2oml gbmulticlass iris seplen sepwid petlen petwid, validframe(valid)
> ntrees(500) h2orseed(19)
Progress (%): 0 9.7 36.8 63.5 90.2 100
Gradient boosting multiclass classification using H2O
Response: iris Number of classes = 3
Loss: Multinomial
Frame: Number of observations:

Training: train Training = 125
Validation: valid Validation = 25

Model parameters
Number of trees = 500 Learning rate = .1

actual = 500 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 1 No. of bins cat. = 1,024
avg = 4.8 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Log loss 7.19e-08 1.277958
Mean class error 0 .0740741

MSE 7.52e-14 .0775579
RMSE 2.74e-07 .2784921

The output is almost identical to the output for regression we described in detail in examples 1 and 2,

except we have a multinomial loss and different performance metrics.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmdefault
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmvalid

24 h2oml gbm — Gradient boosting machine for regression and classification+

Two popular metrics to measure the performance after classification are AUC and AUCPR. Their com-

putation may be time consuming, so they are not reported by default. But we can specify the auc option

to request them.

. h2oml gbmulticlass iris seplen sepwid petlen petwid, validframe(valid)
> ntrees(500) h2orseed(19) auc
Progress (%): 0 34.2 43.3 44.6 56.5 100
Gradient boosting multiclass classification using H2O
Response: iris Number of classes = 3
Loss: Multinomial
Frame: Number of observations:

Training: train Training = 125
Validation: valid Validation = 25

Model parameters
Number of trees = 500 Learning rate = .1

actual = 500 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 1 No. of bins cat. = 1,024
avg = 4.8 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Log loss 7.19e-08 1.277958
Mean class error 0 .0740741

AUC 1 .9930556
AUCPR 1 .9890377

MSE 7.52e-14 .0775579
RMSE 2.74e-07 .2784921

Note: AUC and AUCPR computed using macro
average OVR.

The table now reports two additional metrics. From the note, h2oml gbmulticlass computes AUC

and AUCPR using macro average OVR, which is a uniform weighted average of all AUC scores calculated

for each class versus the rest of classes.

With more than two classes, as in this example, you need to decide whether to report AUC and

AUCPR based on pairwise combinations of classes or to compare one class with the rest of classes; see

[H2OML]metric option for definitions of allAUC-based metrics. If you wish to reportAUC-based metrics

other than the ones reported by h2oml gbmulticlass, you can use the h2omlestat aucmulticlass
postestimation command; see example 1 of [H2OML] h2omlestat aucmulticlass.

Example 7: Poisson regression
In example 1, we used the default Gaussian loss function for GBM regression. Depending on the type

of response and research problem, we may specify other loss functions. In this example, we consider the

data on running shoes for a sample of runners who registered an online running log (Simonoff 1996).

Suppose a running-shoe marketing executive is interested in knowing how predictors such as gender,

marital status, age, education, income, typical number of runs per week, average miles run per week, and

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_optionOptionsaucpr
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_option
https://www.stata.com/manuals/h2omlh2omlestataucmulticlass.pdf#h2omlh2omlestataucmulticlassRemarksandexamplesaucsummex
https://www.stata.com/manuals/h2omlh2omlestataucmulticlass.pdf#h2omlh2omlestataucmulticlass
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmdefault

h2oml gbm — Gradient boosting machine for regression and classification+ 25

the preferred type of running explain the number of pairs of running shoes purchased. For this task, we

use the GBM with Poisson regression. Because our goal is to simply demonstrate the use of the loss()
option, we do not tune our model.

We start by initializing the cluster, opening the dataset in Stata, and importing the dataset to an H2O

frame.

. use https://www.stata-press.com/data/r18/runshoes
(Running shoes)
. h2o init
. _h2oframe put, into(runshoes)
Progress (%): 0 100
. _h2oframe change runshoes

To perform a Poisson regression with h2oml gbregress, we specify the loss(poisson) option.

. h2oml gbregress shoes rpweek mpweek male age married trunning, h2orseed(19)
> loss(poisson)
Progress (%): 0 100
Gradient boosting regression using H2O
Response: shoes
Loss: Poisson
Frame: Number of observations:

Training: runshoes Training = 60
Model parameters
Number of trees = 50 Learning rate = .1

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 2 No. of bins cat. = 1,024
avg = 2.9 No. of bins root = 1,024
max = 4 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training

Deviance .3649675
MSE 1.064175

RMSE 1.031589
RMSLE .2691122

MAE .7149171
R-squared .4885824

The output is similar to that of h2oml gbregress from example 1, but the loss function is Poisson
here.

For prediction explainability of this model, see example 14 of [H2OML] h2oml.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/h2omlh2omlgbm.pdf#h2omlh2omlgbmRemarksandexamplesgbmdefault
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplespoissonreg
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2oml

26 h2oml gbm — Gradient boosting machine for regression and classification+

Example 8: Quantile regression and monotonicity constraint
In example 10 of [H2OML] h2oml, we used a random forest regression to estimate the conditional mean

of house prices. Sometimes, wemay be interested in estimating different characteristics of the conditional

distribution of house prices other than the mean. Quantile regression, introduced in Koenker and Bassett

(1978), predicts conditional quantiles of the response. For an introduction to quantile regression, see

Koenker (2005).

In this example, we use GBM quantile regression and the entire house dataset without splitting it

into training and validation frames. For simplicity, we do not tune hyperparameters and show the

model with predetermined values for hyperparameters. These values are borrowed from example 10 of

[H2OML] h2oml, which are not necessarily optimal for the quantile regression. Before putting the dataset

into an H2O frame, we perform some data manipulation in Stata. Because saleprice is right-skewed

(for example, type histogram saleprice), we use its log. We also generate a variable, houseage, that
calculates the age of the house at the time of a sales transaction.

. use https://www.stata-press.com/data/r18/ameshouses
(Ames house data)
. gen logsaleprice = log(saleprice)
. gen houseage = yrsold - yearbuilt
. drop saleprice yearbuilt yrsold

The dataset has a total of 46 predictors, but for simplicity we include only 10. We create a global

macro, predictors, that contains the names of our predictor variables.

. global predictors overallqual grlivarea exterqual houseage garagecars
> totalbsmtsf stflrsf garagearea kitchenqual bsmtqual

Next we initialize a cluster and put the data into an H2O frame.

. h2o init
(output omitted)

. _h2oframe _put, into(house)

. _h2oframe _change house

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2omlRemarksandexamplesmlexsix
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2oml
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2oml

h2oml gbm — Gradient boosting machine for regression and classification+ 27

To perform GBM quantile regression with h2oml gbmregress, we specify the loss(quantile) op-

tion with the alpha(0.25) suboption for the desired quantile. We also prespecify values for some

hyperparameters.

. h2oml gbregress logsaleprice $predictors, loss(quantile, alpha(0.25))
> h2orseed(19) ntrees(500) minobsleaf(1) binscat(115) samprate(0.8)
Progress (%): 0 2.4 14.5 34.0 55.1 78.2 100
Gradient boosting regression using H2O
Response: logsaleprice
Loss: Quantile .25
Frame: Number of observations:

Training: house Training = 1,460
Model parameters
Number of trees = 500 Learning rate = .1

actual = 500 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = .8
min = 5 No. of bins cat. = 115
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Deviance .0256034
MSE .0145046

RMSE .1204352
RMSLE .0092806

MAE .0773586
R-squared .9090348

Here, because we estimated the conditional 25th percentile (or 0.25 quantile) of the log price, the

header reports the loss as Quantile .25.

Sometimes, we may want to impose monotonicity constraints on predictors. For instance, let’s use

the h2omlgraph ice postestimation command to check for monotonicity of the overallqual predic-

tor. This command visualizes the relationship between a predictor, overallqual in our case, and the

predicted response for deciles of the data.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow

28 h2oml gbm — Gradient boosting machine for regression and classification+

. h2omlgraph ice overallqual

10

11

12

13

14

P
re

di
ct

io
n

0 2 4 6 8 10
overallqual

0th
10th
20th
30th
40th
50th
60th
70th
80th
90th
100th

Partial dependence

Percentiles

Training frame: house

Individual conditional expectation using H2O

The relationship between the response and predictor overallqual is monotonic for all deciles. Let’s

impose a monotonicity constraint on this predictor. To apply increasing or decreasing monotonicity

constraint, we can use the monotone() option.

. h2oml gbregress logsaleprice $predictors, loss(quantile, alpha(0.25))
> h2orseed(19) ntrees(500) minobsleaf(1) binscat(155) samprate(0.8)
> monotone(overallqual, increasing)
Gradient boosting regression using H2O
Response: logsaleprice
Loss: Quantile .25
Frame: Number of observations:

Training: house Training = 1,460
Model parameters
Number of trees = 500 Learning rate = .1

actual = 500 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = .8
min = 0 No. of bins cat. = 155
avg = 0.1 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Deviance 2.521312
MSE 108.0305

RMSE 10.39377
RMSLE .

MAE 10.08525
R-squared -676.5092

Monotone increasing: overallqual

The note at the bottom of the table describes specified monotonicity constraints.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow

h2oml gbm — Gradient boosting machine for regression and classification+ 29

The monotone() option is available only with h2oml gbregress with loss function Gaussian, quan-

tile, or Tweedie and with h2oml gbbinclass.

Example 9: Handling imbalanced data with binary and multiclass classification
In this example, we study how to handle imbalanced data in categorical responses such as those having

rare events or rare outcomes. We use a popular credit card dataset available in Kaggle (Pozzolo et al.

2015, 2018) to predict whether a given credit card transaction is fraudulent.

The dataset contains 28 predictors v1 through v28, which are obtained after a principal component

analysis transformation. Because of confidentiality issues, the original predictors are not available. The

response fraud is a binary variable that takes value 1 if the transaction is fraudulent and 0 otherwise.

. use https://www.stata-press.com/data/r18/creditcard
(Credit card data)
. tabulate fraud

Is
fraudulent Freq. Percent Cum.

No 284,315 99.83 99.83
Yes 492 0.17 100.00

Total 284,807 100.00

The data are highly imbalanced. We should practice caution when analyzing such data.

Similar to other examples, we start by converting the dataset in Stata’s memory to an H2O frame and

splitting it into training and validation frames.

. _h2oframe put, into(credit)
Progress (%): 0 2.5 100
. _h2oframe split credit, into(train valid) split(0.8 0.2) rseed(19)
. _h2oframe change train

https://www.stata.com/manuals/u5.pdf#u5.1StataNow

30 h2oml gbm — Gradient boosting machine for regression and classification+

For illustration purposes, we do not implement tuning in this example, but we use 500 trees instead

of the default 50. We also specify an H2O random-number seed for reproducibility.

. h2oml gbbinclass fraud v1-v28 amount, validframe(valid) h2orseed(19)
> ntrees(500)
Progress (%): 0 0.2 0.4 0.9 4.6 10.0 15.3 21.4 26.6 32.4 38.4 44.4 49.5 56.1
> 62.8 68.4 74.8 81.8 88.5 94.1 100
Gradient boosting binary classification using H2O
Response: fraud
Loss: Bernoulli
Frame: Number of observations:

Training: train Training = 228,083
Validation: valid Validation = 56,724

Model parameters
Number of trees = 500 Learning rate = .1

actual = 500 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 5 No. of bins cat. = 1,024
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Log loss .0148732 .0234753
Mean class error .1043567 .1406525

AUC .9053009 .8265031
AUCPR .6773611 .5326735

Gini coefficient .8106018 .6530063
MSE .0006575 .0010012

RMSE .0256412 .0316414

https://www.stata.com/manuals/u5.pdf#u5.1StataNow

h2oml gbm — Gradient boosting machine for regression and classification+ 31

For imbalanced data, the literature (Davis and Goadrich 2006) recommends using AUPCR as the per-

formancemetric. For more information aboutAUCPR and other metrics, see [H2OML]metric option. The

AUCPR on the validation dataset is 0.53. To account for the data imbalance, the h2oml gbbinclass and

h2oml gbmulticlass commands support the balanceclasses option, which oversamples the minor-

ity class to balance the class distribution. But oversampling may not always be a good solution and may

negatively affect machine learning models. You should use the balanceclasses option with caution

(van den Goorbergh et al. 2022; Sakho, Malherbe, and Scornet 2024).

. h2oml gbbinclass fraud v1-v28 amount, validframe(valid) h2orseed(19)
> ntrees(500) balanceclasses
note: balancing distribution of classes per option balanceclasses.
Progress (%): 0 0.4 1.7 2.9 4.8 7.1 9.7 12.2 14.3 16.7 19.4 21.9 23.9 26.6 29.1
> 31.6 33.5 36.1 38.8 41.2 43.2 45.6 48.1 50.5 52.6 55.0 57.5 60.0 62.1 64.6
> 67.1 69.5 72.0 74.4 76.9 79.1 81.5 83.9 86.5 88.8 91.2 93.8 96.2 98.1 100
Gradient boosting binary classification using H2O
Response: fraud
Loss: Bernoulli
Frame: Number of observations:

Training: train Training = 455,361
Validation: valid Validation = 56,724

Model parameters
Number of trees = 500 Learning rate = .1

actual = 500 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 5 No. of bins cat. = 1,024
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Log loss .0108671 .0055343
Mean class error 0 .1011677

AUC 1 .9716178
AUCPR 1 .8094138

Gini coefficient 1 .9432356
MSE .0010155 .0004613

RMSE .0318666 .0214785

In our case, the AUCPR score improves from 0.53 to 0.81.

Stored results
h2oml gbm stores the following in e():

Scalars

e(N train) number of observations in the training frame

e(N valid) number of observations in the validation frame (with option validframe())
e(N cv) number of observations in the cross-validation (with option cv())
e(n cvfolds) number of cross-validation folds (with option cv())
e(k predictors) number of predictors

e(n class) number of classes (with classification)

e(n trees) number of trees

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_optionOptionsaucpr
https://www.stata.com/manuals/h2omlmetric_option.pdf#h2omlmetric_option

32 h2oml gbm — Gradient boosting machine for regression and classification+

e(n trees a) actual number of trees used in GBM

e(maxdepth) maximum specified tree depth

e(depth min a) achieved minimum tree depth

e(depth avg a) achieved average depth among trees

e(depth max a) achieved maximum tree depth

e(minobsleaf) minimum specified number of observations for a child leaf

e(lrate) learning rate

e(lratedecay) learning rate decay

e(samprate) observation sampling rate

e(predsamprate) predictor sampling rate

e(minsplitthr) minimum split improvement threshold

e(binscat) number of bins for categorical predictors

e(binsroot) number of bins for root node

e(binscont) number of bins for continuous predictors

e(h2orseed) H2O random-number seed

e(alpha) top percentile of residuals if loss(huber); quantile if loss(quantile)
e(power) variance power if loss(tweedie)
e(auc) 1 if auc; 0 otherwise (with multiclass classification)

e(maxtime) maximum run time

e(balanceclass) 1 if classes are balanced; 0 otherwise (with classification)

e(stop iter) maximum iterations before stopping training without metric improvement

e(stop tol) tolerance for metric improvement before training stops

e(scoreevery) number of trees before scoring metrics during training

e(tune h2orseed) random-number seed for tuning (with option tune())
e(tune stop iter) maximum iterations before stopping tuning without metric improvement (with

option tune())
e(tune stop tol) tolerance for metric improvement before tuning stops (with option tune())
e(tune maxtime) maximum run time for tuning grid search (with option tune())
e(tune maxmodels) maximum number of models considered in tuning grid search (with option

tune())
Macros

e(cmd) h2oml gbregress, h2oml gbbinclass, or h2oml gbmulticlass
e(cmdline) command as typed

e(subcmd) gbregress, gbbinclass, or gbmulticlass
e(method) gbm
e(method type) regression or classification
e(class type) binary or multiclass (with classification)

e(method full name) full method name

e(response) name of response

e(predictors) names of predictors

e(title) title in estimation output

e(loss) name of the loss function

e(train frame) name of the training frame

e(valid frame) name of the validation frame (with option validframe())
e(cv method) fold assignment method (with option cv())
e(cv varname) name of variable identifying cross-validation folds (with option cv())
e(encode type) encoding type for categorical predictors

e(monotone inc) names of predictors with monotone increasing constraints

e(monotone dec) names of predictors with monotone decreasing constraints

e(stop metric) stopping metric for training

e(tune grid) grid search method used for tuning (with option tune())
e(tune metric) name of the tuning metric (with option tune())
e(tune stop metric) stopping metric for tuning (with option tune())
e(properties) nob noV
e(estat cmd) program used to implement h2omlestat
e(predict) program used to implement h2omlpredict
e(marginsnotok) predictions disallowed by margins

https://www.stata.com/manuals/u5.pdf#u5.1StataNow

h2oml gbm — Gradient boosting machine for regression and classification+ 33

Matrices

e(metrics) training, validation, and cross-validation metrics

e(hyperparam table) minimum, maximum, and selected hyperparameter values

Methods and formulas
For methods and formulas for GBM implementation, see https://docs.h2o.ai/h2o/latest-stable/h2o-

docs/data-science/gbm.html. For a mapping of h2oml gbm option names to the H2O options, see

[H2OML] H2O option mapping.

References
Anderson, E. 1935. The irises of the Gaspé Peninsula. Bulletin of the American Iris Society 59: 2–5.

Davis, J., and M. Goadrich. 2006. “The relationship between precision-recall and ROC curves”. In Proceedings of the

23rd International Conference onMachine Learning, 233–240. NewYork: Association for ComputingMachinery. https:

//doi.org/10.1145/1143844.1143874.

Fisher, R. A. 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics 7: 179–188. https:

//doi.org/10.1111/j.1469-1809.1936.tb02137.x.

Friedman, J. H. 2001. Greedy function approximation: A gradient boosting machine.Annals of Statistics 29: 1189–1232.

https://doi.org/10.1214/aos/1013203451.

Koenker, R. 2005. Quantile Regression. New York: Cambridge University Press. https://doi.org/10.1017/

CBO9780511754098.

Koenker, R., and G. Bassett, Jr. 1978. Regression quantiles. Econometrica 46: 33–50. https://doi.org/10.2307/1913643.

Pozzolo, A. D., G. Boracchi, O. Caelen, C. Alippi, and G. Bontempi. 2018. Credit card fraud detection: A realistic

modeling and a novel learning strategy. IEEE Transactions on Neural Networks and Learning Systems 29: 3784–3797.

https://doi.org/10.1109/tnnls.2017.2736643.

Pozzolo, A. D., O. Caelen, R. A. Johnson, and G. Bontempi. 2015. “Calibrating probability with undersampling for

unbalanced classification”. In Proceedings of the IEEE Symposium Series on Computational Intelligence, 159–166.

Piscataway, NJ: IEEE. https://doi.org/10.1109/SSCI.2015.33.

Sakho, A., E. Malherbe, and E. Scornet. 2024. Do we need rebalancing strategies? A theoretical and empirical study

around SMOTE and its variants. arXiv:2402.03819 [stat.ML], https://doi.org/10.48550/arXiv.2402.03819.

Simonoff, J. S. 1996. Smoothing Methods in Statistics. New York: Springer. https://doi.org/10.1007/978-1-4612-4026-6.

van den Goorbergh, R., M. van Smeden, D. Timmerman, and B. Van Calster. 2022. The harm of class imbalance correc-

tions for risk prediction models: Illustration and simulation using logistic regression. Journal of the American Medical

Informatics Association 29: 1525–1534. https://doi.org/10.1093/jamia/ocac093.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm.html
https://www.stata.com/manuals/h2omlh2ooptionmapping.pdf#h2omlH2Ooptionmapping
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1017/CBO9780511754098
https://doi.org/10.1017/CBO9780511754098
https://doi.org/10.2307/1913643
https://doi.org/10.1109/tnnls.2017.2736643
https://doi.org/10.1109/SSCI.2015.33
https://doi.org/10.48550/arXiv.2402.03819
https://doi.org/10.1007/978-1-4612-4026-6
https://doi.org/10.1093/jamia/ocac093

34 h2oml gbm — Gradient boosting machine for regression and classification+

Also see
[H2OML] h2oml postestimation — Postestimation tools for h2oml gbm and h2oml rf+

[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2oml gbbinclass — Gradient boosting binary classification+

[H2OML] h2oml gbmulticlass — Gradient boosting multiclass classification+

[H2OML] h2oml gbregress — Gradient boosting regression+

[H2OML] h2oml rf — Random forest for regression and classification+

[U] 20 Estimation and postestimation commands

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata
Press are registered trademarks with the World Intellectual Property Organization of the
United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other
brand and product names are registered trademarks or trademarks of their respective com-
panies. Copyright © 1985–2023 StataCorp LLC, College Station, TX, USA. All rights
reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/h2omlh2omlpostestimation.pdf#h2omlh2omlpostestimation
https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/h2omlh2oml.pdf#h2omlh2oml
https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/h2omlh2omlgbbinclass.pdf#h2omlh2omlgbbinclass
https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/h2omlh2omlgbmulticlass.pdf#h2omlh2omlgbmulticlass
https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/h2omlh2omlgbregress.pdf#h2omlh2omlgbregress
https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/h2omlh2omlrf.pdf#h2omlh2omlrf
https://www.stata.com/manuals/u5.pdf#u5.1StataNow
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

