
MACHINE LEARNING IN STATA USING
H2O: ENSEMBLE DECISION TREES

REFERENCE MANUAL
RELEASE 18

®

A Stata Press Publication

StataCorp LLC

College Station, Texas

® Copyright © 1985–2023 StataCorp LLC

All rights reserved

Version 18

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845

ISBN-10: 1-59718-452-7

ISBN-13: 978-1-59718-452-6

This manual is protected by copyright. All rights are reserved. No part of this manual may be reproduced, stored in a

retrieval system, or transcribed, in any form or by any means—electronic, mechanical, photocopy, recording, or other-

wise—without the prior written permission of StataCorp LLC unless permitted subject to the terms and conditions of

a license granted to you by StataCorp LLC to use the software and documentation. No license, express or implied, by

estoppel or otherwise, to any intellectual property rights is granted by this document.

StataCorp provides this manual “as is” without warranty of any kind, either expressed or implied, including, but not lim-

ited to, the implied warranties of merchantability and fitness for a particular purpose. StataCorp may make improvements

and/or changes in the product(s) and the program(s) described in this manual at any time and without notice.

The software described in this manual is furnished under a license agreement or nondisclosure agreement. The software

may be copied only in accordance with the terms of the agreement. It is against the law to copy the software onto DVD,

CD, disk, diskette, tape, or any other medium for any purpose other than backup or archival purposes.

The automobile dataset appearing on the accompanying media is Copyright © 1979 by Consumers Union of U.S., Inc.,

Yonkers, NY 10703-1057 and is reproduced by permission from CONSUMER REPORTS, April 1979.

Stata, , Stata Press, Mata, , and NetCourse are registered trademarks of StataCorp LLC.

Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations.

StataNow and NetCourseNow are trademarks of StataCorp LLC.

Other brand and product names are registered trademarks or trademarks of their respective companies.

For copyright information about the software, type help copyright within Stata.

The suggested citation for this software is

StataCorp. 2023. Stata 18. Statistical software. StataCorp LLC.

The suggested citation for this manual is

StataCorp. 2023. Stata 18 Machine Learning in Stata Using H2O: Ensemble Decision Trees Reference Manual .

College Station, TX: Stata Press.

www.stata.com

https://www.stata.com

Contents
+This manual includes features that are part of StataNow.

Intro . Introduction to machine learning and ensemble decision trees+ 1

h2oml Introduction to commands for Stata integration with H2O machine learning+ 31

H2O setup . Prepare data for H2O analysis in Stata+ 71

h2oml gbm Gradient boosting machine for regression and classification+ 76

h2oml gbbinclass . Gradient boosting binary classification+ 110

h2oml gbmulticlass . Gradient boosting multiclass classification+ 116

h2oml gbregress . Gradient boosting regression+ 122

h2oml rf . Random forest for regression and classification+ 129

h2oml rfbinclass . Random forest binary classification+ 149

h2oml rfmulticlass . Random forest multiclass classification+ 155

h2oml rfregress . Random forest regression+ 161

h2oml postestimation Postestimation tools for h2oml gbm and h2oml rf+ 167

h2omlest . Store and restore H2OML estimation results+ 176

h2omlestat aucmulticlass Display AUC and AUCPR after multiclass classification+ 179

h2omlestat confmatrix . Display confusion matrix+ 187

h2omlestat cvsummary . Display cross-validation summary+ 195

h2omlestat gridsummary . Display grid-search summary+ 201

h2omlestat hitratio . Display hit-ratio table+ 207

h2omlestat metrics . Display performance metrics+ 213

h2omlestat threshmetric Display threshold-based metrics for binary classification+ 217

h2omlexplore . Explore models after grid search+ 226

h2omlgof . Compare goodness of fit for machine learning models+ 231

h2omlgraph ice . Produce individual conditional expectation plot+ 238

h2omlgraph pdp . Produce partial dependence plot+ 246

h2omlgraph prcurve . Produce precision–recall curve plot+ 261

h2omlgraph roc . Produce ROC curve plot+ 269

h2omlgraph scorehistory . Produce score history plot+ 278

h2omlgraph shapsummary . Produce SHAP beeswarm plot+ 285

h2omlgraph shapvalues Produce SHAP values plot for individual observations+ 291

h2omlgraph varimp . Produce variable importance plot+ 302

h2omlpostestframe . Specify frame for postestimation analysis+ 309

h2omlselect . Select model after grid search+ 315

h2omltree . Save decision tree DOT file and display rule set+ 320

DOT extension . Handling DOT files+ 329

encode option . Encoding schemes for categorical predictors+ 334

metric option . Classification and regression metrics+ 337

H2O option mapping Mapping of H2OML estimation options to H2O+ 348

H2O reproducibility . Reproducibility in H2O+ 350

i

Contents ii

Glossary+ . 352

Subject and author index . 355

Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals, for example,

[U] 27 Overview of Stata estimation commands; [R] regress; and [D] reshape. The first example

is a reference to chapter 27, Overview of Stata estimation commands, in the User’s Guide; the second

is a reference to the regress entry in the Base Reference Manual; and the third is a reference to the

reshape entry in the Data Management Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM] Getting Started with Stata for Mac
[GSU] Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows

[U] Stata User’s Guide

[R] Stata Base Reference Manual

[ADAPT] Stata Adaptive Designs: Group Sequential Trials Reference Manual

[BAYES] Stata Bayesian Analysis Reference Manual

[BMA] Stata Bayesian Model Averaging Reference Manual

[CAUSAL] Stata Causal Inference and Treatment-Effects Estimation Reference Manual

[CM] Stata Choice Models Reference Manual

[D] Stata Data Management Reference Manual

[DSGE] Stata Dynamic Stochastic General Equilibrium Models Reference Manual

[ERM] Stata Extended Regression Models Reference Manual

[FMM] Stata Finite Mixture Models Reference Manual

[FN] Stata Functions Reference Manual

[G] Stata Graphics Reference Manual

[H2OML] Machine Learning in Stata Using H2O: Ensemble Decision Trees Reference Manual

[IRT] Stata Item Response Theory Reference Manual

[LASSO] Stata Lasso Reference Manual

[XT] Stata Longitudinal-Data/Panel-Data Reference Manual

[META] Stata Meta-Analysis Reference Manual

[ME] Stata Multilevel Mixed-Effects Reference Manual

[MI] Stata Multiple-Imputation Reference Manual

[MV] Stata Multivariate Statistics Reference Manual

[PSS] Stata Power, Precision, and Sample-Size Reference Manual

[P] Stata Programming Reference Manual

[RPT] Stata Reporting Reference Manual

[SP] Stata Spatial Autoregressive Models Reference Manual

[SEM] Stata Structural Equation Modeling Reference Manual

[SVY] Stata Survey Data Reference Manual

[ST] Stata Survival Analysis Reference Manual

[TABLES] Stata Customizable Tables and Collected Results Reference Manual

[TS] Stata Time-Series Reference Manual

[I] Stata Index

[M] Mata Reference Manual

iii

Intro — Introduction to machine learning and ensemble decision trees+

+These features are part of StataNow.

Description Remarks and examples References Also see

Description
Machine learningmethods are commonly used to solve various research and business problems. These

methods can be used to predict the probability of a patient having a disease based on their symptoms,

forecast customer churn for the coming year, determine whether a customer is likely to default on a loan

based on their background characteristics, predict changes in house prices in the coming month, and

identify important factors in predicting the outcome of an election. And these are just a few examples.

These types of problems often require more sophisticated modeling approaches than, for instance, a

linear regression or generalized linear models. Ensemble decision tree methods, which combine multiple

decision trees to improve model predictive performance, have emerged as some of the more popular

and more effective methods for solving such problems because they perform well in practice (Shmuel,

Glickman, and Lazebnik 2024; Shwartz-Ziv and Armon 2022; and Borisov et al. 2024).

This entry provides a software-free introduction to ensemble decision tree methods. In particular, we

focus on two popular methods: gradient boostingmachine (GBM) and random forest. See [H2OML] h2oml

for the Stata implementation.

Remarks and examples
Remarks are presented under the following headings:

Why machine learning?
Preliminaries
Fundamentals of machine learning
Decision trees

Classification trees
Regression trees
Pros and cons of decision trees

Ensemble methods
Bagging
Random forest
Boosting
GBM
Trees with monotonicity constraints

Model selection in machine learning
Three-way and two-way holdout methods
k-fold cross-validation
Hyperparameter tuning
Method comparison

Interpretation and explanation
Global surrogate models

1

Intro — Introduction to machine learning and ensemble decision trees+ 2

Why machine learning?
Linear and generalized linear models are among the most widely used models in various fields. How-

ever, they may not always capture more complex patterns in the data well and thus may lead to poor

prediction. As an example, consider a fictional dataset used to predict employee attrition based on salary

and performance. Figure 1 provides the scatterplot of the data, with blue dots representing employees

who stayed with the company and red dots representing those who left.

3

4

5

6

7

S
al

ar
y

0 1 2 3 4
Performance

Stayed
Left

Figure 1.

The data-generating mechanism is complex, and there is no one line that can separate the blue and

red dots. That is, the dataset is not linearly separable. To illustrate this point further, figure 2 shows

the decision surface, the predicted attrition based on performance and salary, for the logistic regression.

It predicts that an employee will leave (attrition = 1) for observations on the orange surface and

that an employee will stay for observations on the light-blue surface. As we can see, the linear decision

boundary misclassifies many blue dots as red and vice versa.

3

4

5

6

7

S
al

ar
y

-1 0 1 2 3 4
Performance

Stayed
Left

Figure 2. Logistic regression decision surface

Intro — Introduction to machine learning and ensemble decision trees+ 3

On the other hand, machine learning methods can capture the complex structure better. Figure 3 dis-

plays the decision surface for the random forest. Here we can easily see that the random forest performs

much better, with predictions more closely matching the observed attrition values.

3

4

5

6

7
S

al
ar

y

-1 0 1 2 3 4
Performance

Stayed
Left

Figure 3. Random forest decision surface

Preliminaries
Before describing ensemble decision trees, we introduce the machine learning terminology that we

will use throughout this manual.

Predictors. The inputs for a machine learning model. In classical statistics, these may be referred to

as independent variables, covariates, 𝑥 variables, or predictors. In the machine learning literature,

they are also referred to as features.

Responses. The outputs for a machine learning model. In classical statistics, these may be referred to

as dependent variables, 𝑦 variables, or outcomes. In the machine learning literature, they are also
referred to as targets.

Learning, training. In the machine learning context, learning refers to the process when a model

uses data to adjust its parameters to increase prediction accuracy.

Learner. A model that is used for learning.

Supervised learning. A type of machine learning in which a method is trained on data where there

is an associated response for each observation.

Unsupervised learning. A type of machine learning where there is no response variable.

Hyperparameter. A parameter whose value is adjusted to control and improve a training process.

Tuning. A process where the hyperparameters of a model are optimized to improve model perfor-

mance.

Training data. A subset of the data that a model uses to learn.

Validation data. A subset of the data used to evaluate model performance during training as hyper-

parameters change.

Testing data. A subset of the data that is used to evaluate the performance of a trained model.

Performance metric. A quantitative measure or metric used to evaluate model performance.

Intro — Introduction to machine learning and ensemble decision trees+ 4

Hyperparameter space. Possible values and ranges of the hyperparameters.

Grid search. A process of evaluating different hyperparameter configurations in the hyperparameter

space to find the best configuration that improves model performance.

Generalization. A concept that a model performs well not only on the training data but also on the

new (testing) data.

Generalization error, test error. A quantitative measure of how well a machine learning model can

predict responses for new (testing) data.

Overfitting. Fitting a model too well to the training data.

Metric scoring. A process of evaluating the performance of a machine learning method by using a

specified performance metric.

In a typical machine learning scenario, the goal is to predict a response based on a set of predictors. To

achieve this goal, a researcher uses training data to build (or train) a prediction model. A good model, or

learner, is one that accurately predicts the response for new or testing data and minimizes a generalization

error or test error. A generalization error of a learning model is a quantitative measure of how well a

machine learning model can predict responses for new data or, more formally, an expected error on any

testing data sampled from the data-generating distribution. In other words, the focus is on predictive

modeling, which is the process of “developing a mathematical tool or model that generates accurate

prediction” (Kuhn and Johnson 2013). Intuitively, success in predictive modeling depends on finding a

model that 1) has low generalization error, 2) is simple, and 3) can be used on a sufficiently large training

dataset.

Most machine learning problems can be divided into two categories: supervised learning and unsu-

pervised learning. In supervised learning, there is an associated response for each observation of the

predictors. Most types of regression and many tree-based methods are examples of supervised learning.

In contrast, in unsupervised learning, there is no response variable, and only the predictors are observed.

Cluster analysis is an example of unsupervised learning.

In what follows, we provide a more technical introduction to machine learning, including decision

trees and ensemble decision trees. For a brief and more gentle exposition of a machine learning workflow

by using the h2oml command, see h2oml in a nutshell in [H2OML] h2oml.

Fundamentals of machine learning
One of themain issues in machine learning, also known as a fundamental problem ofmachine learning

(Chollet 2021), is balancing learning and generalization. Recall that learning refers to the process of

adjusting a model to achieve the best performance on the training data, whereas generalization refers to

evaluating the performance of the model on the data it has never seen before such as the testing data.

Unfortunately, generalization cannot be fully controlled by a researcher because we observe only the

training data, and overfitting (fitting a model too well on the training data) can hurt the generalization of

the model. This is why it is important to “mimic” the presence of testing data by splitting the observed

training data, as we discuss in Three-way and two-way holdout methods.

Intro — Introduction to machine learning and ensemble decision trees+ 5

The tradeoff between learning and generalization is related to the well-known bias–variance tradeoff,

where the aim is to lower the generalization error by reducing the bias and variance of the proposed

method. Suppose we have a supervised learning problem, where the relationship between predictors and

the response is described by some unknown function 𝑓(⋅) plus an additive error,

𝑦𝑖 = 𝑓(x𝑖) + 𝜀𝑖 𝑖 = 1, 2, . . . , 𝑛

where 𝐸(𝜀𝑖) = 0 and Var(𝜀𝑖) = 𝜎2.

The goal is to estimate 𝑓(⋅) by ̂𝑓(⋅) using a specific machine learning method on training data. How-
ever, if we use different training data, the learned ̂𝑓(⋅) is likely to be different. The amount by which ̂𝑓(⋅)
changes as we use different training data is the variance. Machine learning methods, like other statistical

estimation methods, often introduce bias because they typically impose simplifying assumptions during

the estimation of 𝑓(⋅).
The generalization error for training data 𝐷 = {(x1, 𝑦1), (x2, 𝑦2), . . . , (x𝑛, 𝑦𝑛)} and test observation

(x, 𝑦), sampled from the data-generating distribution, can be written as the sum of the error variance and

the squared bias and the variance of the estimate:

𝐸(x,𝑦,𝐷) [{ ̂𝑓(x) − 𝑓(x)}
2
] = 𝜎2 + Bias2{ ̂𝑓(x)} + Var{ ̂𝑓(x)}

The error variance 𝜎2 is inherited from the data and cannot be reduced. However, the bias, which is the

average difference between ̂𝑓(⋅) and 𝑓(⋅), is a result of underfitting and can be reduced. And the variance,
which is inextricably linked to overfitting, where the model fits the training data too well and thus the

variance of the model increases for new data, can also be reduced. Thus, an ideal machine learning

method reduces the bias without increasing the variance or reduces the variance without increasing the

bias. In practice, decreasing one will necessarily increase the other, so the preferred method strives to

achieve the best tradeoff between the bias and the variance.

Consider a hypothetical example below that shows two methods, Method 1 and Method 2. The red
points correspond to the training data and blue points to the testing data. From the left graph, Method 2
predicts the training points very well with possibly small bias and mean squared error (MSE). However,

compared with Method 1, the prediction of Method 2 deteriorates on the testing data because of the high
variance. Method 2 predicts the testing data poorly because it overfits the training data.

-3.5

-2.5

-1.5

-.5

.5

1.5

2.5

3.5

4.5

5.5

6.5

7.5

y

0 .5 1 1.5
x

Training data

Method 1

Method 2

Training data prediction

-3.5

-2.5

-1.5

-.5

.5

1.5

2.5

3.5

4.5

5.5

6.5

7.5

y

1.3 1.5 1.7 1.9
x

Testing data

Method 1

Method 2

Testing data prediction

Figure 4.

Intro — Introduction to machine learning and ensemble decision trees+ 6

The above example demonstrated the generalization of machine learning methods in just one dimen-

sion. In general, the ability of these methods, such as ensemble decision trees, to generalize well to

high-dimensional data can be explained by the so-called manifold hypothesis (Chollet 2021; Wyner et al.

2017 ; and Belkin et al. 2019). According to this hypothesis, the observed high-dimensional data can be

approximated by a low-dimensional manifold, or subspace. Informally, this means that a complex struc-

ture of the high-dimensional data can be represented by a simpler, lower-dimensional structure, which

machine learning methods tend to capture well.

Decision trees
Decision trees are versatile and powerful supervised machine learning methods that can be used for

both regression and classification. Decision trees repeatedly partition the data based on values of the

predictors by asking a series of Boolean-type (“yes” or “no”) questions. For each question, the data are

partitioned into two branches such that the response observations in each branch are more homogeneous.

Then a simple regression model is fit to each partition. Such repeated partitioning creates a treelike

structure with the branches based on the values of the predictors. Some popular methods for building

decision trees are CART (Breiman et al. 1984) and C4.5 (Quinlan 1993).

The hierarchical structure of a tree is inherently designed to capture and represent the interactions

between predictors. Decision trees are insensitive to outliers and can easily handle missing data in pre-

dictors. In practice, decision trees are grown using greedy-type methods that make locally optimal splits

at each step, instead of finding the globally optimal tree. Even though this can potentially lead to subopti-

mal trees, decision trees are effective in many applications. Decision trees are fast to train and can handle

high-dimensional data with many predictors. They are also easy to interpret and visualize, making them

a popular choice for many machine learning tasks. Decision trees have been widely used in scientific

fields such as biomedicine, genetics, and marketing, among many other fields.

We first focus on introducing decision trees for classification, where the dependent variable is cate-

gorical. Then we describe decision trees for regression, where the dependent variable is continuous.

Intro — Introduction to machine learning and ensemble decision trees+ 7

Classification trees

To motivate the concept of a decision tree, we consider a toy dataset where the goal is to predict

whether a mushroom is edible or poisonous, coded as e and p, respectively, based on two predictors: cap
diameter and season. The cap diameter is a continuous variable and season is categorical, where s and w
denote summer and winter, respectively.

. list capdiam season class

capdiam season class

1. 7.3 s e
2. 7.68 s e
3. 8.4 s e
4. 8.86 w p
5. 9.03 s e

6. 9.1 s e
7. 9.59 w p
8. 9.59 s e
9. 10.42 w e

10. 10.5 s e

11. 12.85 s e
12. 13.55 w p
13. 14.07 w p
14. 14.17 s p
15. 14.64 s p

16. 14.85 s p
17. 14.86 s p
18. 15.26 w p
19. 15.34 s p
20. 16.6 w p

Based on the training data, a classification tree learns an ordered sequence of questions, where the

answer to each question in the sequence affects the type of question asked in the next step. The tree

diagram below shows the decision tree for our toy example. The method starts at the top of the tree,

called the root node, and uses the entire training dataset. In this example, the root node splits the dataset

into two parts based on the cap diameter predictor. By convention, the “yes” answer to the question at

the node splits to the left, and the “no” answer splits to the right. A node is a subset of predictors. It

can be classified as a terminal or nonterminal. A nonterminal node or parent node splits the data into

two regions using the predictor that results in the best fit. (We will describe later how such a predictor is

selected.) A terminal node or leaf node does not split the data further.

Intro — Introduction to machine learning and ensemble decision trees+ 8

capdiam <= 13.2

capdiam <= 10

yes

0e, 9p

no

winter == 1

yes

3e, 0p

no

0e, 2p

yes

6e, 0p

no

Figure 5.

For example, at the root node, the best split occurs for the predictor 𝑥𝑖 = capdiam at the split point

𝑡1 = 13.2. This split partitions the data into the {x|𝑥𝑖 ≤ 𝑡1} and {x|𝑥𝑖 > 𝑡1} regions. Throughout this
entry, we will denote the split points by 𝑡𝑠, where 𝑠 denotes the number of the split, counted from top to

bottom and left to right on the above tree. The partition of the predictor space continues recursively until

some stopping criterion is applied or there are no more splits. The set of all terminal nodes is called a

partition of the data. Each observation from the training data falls into one of the terminal nodes.

Below, we show the partition of the predictor space into the regions that correspond to the above

tree diagram. The red and yellow vertical lines correspond to the capdiam ≤ 13.2 and capdiam ≤ 10

conditions, and the horizontal line depicts the winter = 1 condition. The green and blue dots correspond

to the observations with classes p and e, respectively.

R1R2

R3

R4

s

w

se
as

on

5 10 13.2 15 20
capdiam

e
p

Figure 6.

We can now classify observations by first determining to which terminal node they belong based

on their predictor values and then finding the most common class in that terminal node. Thus, for an

observation in the terminal node 𝑗 with the corresponding region 𝑅𝑗, an observation is predicted to be

in the class with the largest proportion of observations from the training data, max𝑘𝑝𝑗𝑘, where 𝑝𝑗𝑘 is the

proportion of training observations in 𝑅𝑗 belonging to class 𝑘 and 𝑘 = 1, 2, . . . , 𝐾. Suppose we have

Intro — Introduction to machine learning and ensemble decision trees+ 9

a new observation for which capdiam = 8.32 and season = winter. If we “put” this observation in
the classification tree above, it will end up in the terminal node 4 in the region 𝑅4 with 0 edible and 2

poisonous mushrooms. Therefore, our tree will classify the new observation as a poisonous mushroom.

We now discuss how to choose which predictor to split on and how to determine the best split in

each nonterminal node in a decision tree. To choose the predictor and split point, we need to introduce

impurity measures that quantify the splitting criteria. One suchmeasure is the misclassification error rate.

For a terminal node 𝑗 with the corresponding region 𝑅𝑗, the misclassification error rate is the fraction of

training observations that do not belong to the most common class, that is, 1− max𝑘 ̂𝑝𝑗𝑘, where ̂𝑝𝑗𝑘 is an

estimate of 𝑝𝑗𝑘. Unfortunately, the misclassification error rate is not very sensitive to changes in the class

probabilities of each node, meaning that multiple splits may correspond to the same class probabilities,

making it difficult to select the best splits. Thus, the misclassification error rate is not recommended for

growing a classification tree.

Instead, the following measures are used: The Gini index,

𝐾
∑
𝑘=1

̂𝑝𝑗𝑘(1 − ̂𝑝𝑗𝑘)

and cross-entropy,

−
𝐾

∑
𝑘=1

̂𝑝𝑗𝑘 ln ̂𝑝𝑗𝑘

TheGini index and cross-entropy are close to zerowhen all proportions ̂𝑝𝑗𝑘’s are close to zero or one. This

explains the name “impurity measure”—a small value indicates that the node contains many observations

from the same class.

Here we focus on cross-entropy. When the number of groups 𝐾 = 2, cross-entropy is

𝚤𝑗 = − ̂𝑝𝑗1 ln ̂𝑝𝑗1 − (1 − ̂𝑝𝑗1) ln(1 − ̂𝑝𝑗1)

The goal of classification trees is to partition the predictor space into regions 𝑅1, 𝑅2, . . . , 𝑅𝐽 that

minimize cross-entropy. In practice, the consideration of every possible partition of the predictor space

into 𝐽 rectangles is computationally infeasible. A typical remedy for such problems is to use a greedy

approach and successively split the predictor space into two new regions through binary splitting. The

binary splitting is performed by first selecting the predictor 𝑥𝑖 and the split point 𝑡 such that it leads to
the greatest possible reduction in cross-entropy. In other words, the method examines all predictors 𝑥1
through 𝑥𝑝 and considers all possible values of the split point 𝑡 such that the selected predictor 𝑥𝑖 and

cutpoint 𝑡 result in the lowest cross-entropy. Once we have determined the best split point for a given
predictor, we can use this information to split the data into two sets and repeat the process for each of the

two new sets, continuing until we reach a terminal node or until a stopping criterion is reached.

Intro — Introduction to machine learning and ensemble decision trees+ 10

We start by considering a possible split for the root node. Because the variable season is binary, we
can tabulate it to determine the possible split point 𝑡.

. tabulate class season, column

Key

frequency
column percentage

season
class s w Total

e 8 1 9
61.54 14.29 45.00

p 5 6 11
38.46 85.71 55.00

Total 13 7 20
100.00 100.00 100.00

From the above table, season splits the dataset into two nodes: summer, s, and winter, w. The summer
node contains 8 edible and 5 poisonous mushrooms, and the winter node contains 1 edible and 6 poi-

sonous mushrooms, respectively. The cross-entropy for the summer and winter nodes can be computed

as

𝚤(summer) = − 8
13

ln
8
13

− 5
13

ln
5
13

≈ 0.666

and

𝚤(winter) = −1
7
ln

1
7

− 6
7
ln

6
7

≈ 0.410

The summer and winter nodes contain different numbers of observations. Thus, to find the cross-entropy

for the split, we take the weighted average of the entropies in each region:

𝚤(season) = −13
20

0.666 − 7
20

0.410 ≈ 0.576

We can also find the importance or the goodness of fit of the split by measuring the improvement of the

impurity measure gained from splitting the parent node into the summer and winter children nodes,

𝚤(summer,winter) = 𝚤(season𝑏) − 𝚤(season) (1)

where season𝑏 indicates the cross-entropy before the split. Here

𝚤(season𝑏) = − 9
20

ln
9
20

− 11
20

ln
11
20

≈ 0.688

Therefore, 𝚤(summer,winter) = 0.112. This value indicates the improvement attributed to this split and

can be used as a measure of the predictor’s importance.

Next we consider splits for the cap diameter predictor. Conventionally, to estimate the cross-entropy

for a continuous variable, we first need to sort the data and consider all possible cutpoints (Breiman

et al. 1984). For example, for the cap diameter, a possible cutpoint 𝑡 between the respective 1st and 2nd
values of 7.3 and 7.68 is selected as 𝑡 = (7.3+ 7.68)/2, between the 2nd and 3rd values of 7.68 and 8.4,
𝑡 = (7.68+8.4)/2, and so on. However, for high-dimensional data such an approach is computationally

Intro — Introduction to machine learning and ensemble decision trees+ 11

expensive. To overcome this, some software packages, such as H2O, divide the data into discrete equal-

size sections by using histogram bins and then estimate the best split among those sections (Ben-Haim

and Tom-Tov 2010; Chen and Guestrin 2016; and Ke et al. 2017).

0

2

4

6
F

re
qu

en
cy

8 10 12 14 16
Cap diamater

Figure 7.

For illustration purposes, we considered five bins for the histogram of capdiam. The number of splits
to be evaluated is then determined by the number of bins in the histogram. In practice, the number

of bins is a hyperparameter, that is, a parameter that we learn or tune using the training data such that

the tuned parameters minimize the generalization error; see Hyperparameter tuning. After binning, the

number of possible split points reduces to five. For example, because the 1st bin contains 6 observa-

tions, a potential split point can be computed by averaging the 6th and 7th observations for capdiam
in the dataset: 𝑡 = (9.1 + 9.59)/2 = 9.345. Similarly, we can compute all 5 split points, which are

{9.345, 11.68, 13.2, 14.75, 16.6}.
We show the calculation of the cross-entropy only for the split point 𝑡 = 13.2, which is the best split

point. You can calculate the cross-entropy for the other split points similarly. The criterion (capdiam ≤
13.2) splits the data into two regions, where the left region contains 9 edible and 2 poisonous mushrooms

and the right region contains 0 edible and 9 poisonous mushrooms. The right region, which contains

observations for which (capdiam > 13.2), is called pure because it is homogeneous and is a terminal

node. Analogously to the splits for the season predictor, we can compute the cross-entropy for the left

and right regions as

𝚤(left) = − 9
11

ln
9
11

− 2
11

ln
2
11

≈ 0.474

and

𝚤(right) = 0

Therefore, the cross-entropy for the split is equal to

𝚤(capdiam ≤ 13.2) = 11
20

0.474 + 9
20

0 ≈ 0.261

The cross-entropy before the split can be computed by using the actual class distribution of class:

𝚤(capdiam𝑏) = −11
20

ln
11
20

− 9
20

ln
9
20

≈ 0.688

Intro — Introduction to machine learning and ensemble decision trees+ 12

From the above, the importance of the capdiam split is

𝚤(capdiam ≤ 13.2, capdiam > 13.2) ≈ 0.688 − 0.261 = 0.427

Thus, in the root node we select the cap diameter with the best split 𝑡 = 13.2, because the gain from

the cap diameter split (0.427) is larger than the gain from the season split (0.112). The next best split is

found following the same steps but by considering only the subset of the dataset that satisfies the criterion

(capdiam ≤ 13.2). The tree grows recursively until all observations are classified.

In the last recursive split (winter = 1), the left region contains only two observations. Splits with few

observations may lead to overfitting. To avoid overfitting, we recommend to limit the minimum number

of observations that a leaf node may have for the node to be considered for splitting. For example, if we

limit the minimum number of observations in the leaf nodes to three, then the last split (winter = 1)

will not occur because this criterion requires that both branches have at least three observations.

In general, each split increases the depth of the decision tree, and large trees usually overfit the data.

On the other hand, small trees may not capture a complex structure hidden in the data. Thus, the tree size

is treated as a hyperparameter, and its optimal value is chosen from the data.

For the multiclass classification with𝐾 classes, the preferred approach is to compare each class 𝑘with
the rest (Rifkin and Klautau 2004). That is, we grow 𝐾 different trees and for each 𝑘 find the probability
of class 𝑘, 𝑝𝑘. Then the final class prediction is computed as max𝑘𝑝𝑘.

Regression trees

The general idea for growing a regression tree is similar to a classification tree. The main goal

is to partition the predictor space into distinct and nonoverlapping regions by using binary splits.

However, because in regression trees the response is continuous, we use the residual sum of squares

RSS = ∑𝑁
𝑖=1(𝑦𝑖 − ̂𝑦𝑖)2 as an impurity measure instead of the cross-entropy to determine the best split at

each node. Then, for each terminal node, the prediction is computed as the mean of the response values

y in the region corresponding to the terminal node. For example, if the mean response of the training

observations in the first region 𝑅1 is ̂𝑐1 = 5, then for a given observation x𝑖 ∈ 𝑅1, the regression tree

will predict a value of ̂𝑐1 = 5. Thus, the regression model prediction for 𝐽 distinct and nonoverlapping

regions, which correspond to 𝐽 terminal nodes, can be represented as

̂𝑓(x) =
𝐽

∑
𝑗=1

̂𝑐𝑗𝐼{x ∈ 𝑅𝑗}

where ̂𝑐𝑗 = Mean(𝑦𝑖|x𝑖 ∈ 𝑅𝑗).
In general, growing a regression tree can be summarized by the following two steps (James et al.

2021):

1. Partition the predictor space into 𝐽 distinct and nonoverlapping regions 𝑅1, 𝑅2, . . . , 𝑅𝐽.

2. For each observation that belongs to the region𝑅𝑗, predict the response as themean of the response

values for the training observations in 𝑅𝑗.

Therefore, the goal of a regression tree is to partition the predictor space into rectangles

𝑅1, 𝑅2, . . . , 𝑅𝐽 that minimize the RSS:

𝐽
∑
𝑗=1

∑
𝑖∈𝑅𝑗

(𝑦𝑖 − ̂𝑐𝑗)2

Intro — Introduction to machine learning and ensemble decision trees+ 13

Similar to a classification tree, the binary splitting is performed by first selecting the predictor 𝑥𝑖
and the cutpoint 𝑡 such that it leads to the greatest possible reduction in RSS. Mathematically, in each

nonterminal node, a regression tree tries to select the predictor 𝑥𝑖 and cutpoint 𝑡 such that the following
expression is minimized,

min𝑖,𝑡 { ∑
x𝑖∈𝑅1(𝑖,𝑡)

(𝑦𝑖 − ̂𝑐1)2 + ∑
x𝑖∈𝑅2(𝑖,𝑡)

(𝑦𝑖 − ̂𝑐2)2}

where 𝑅1(𝑖, 𝑡) = {x|𝑥𝑖 ≤ 𝑡} and 𝑅2(𝑖, 𝑡) = {x|𝑥𝑖 > 𝑡}. Then the above process is repeated recursively
to minimize the RSS within each region. As for a classification tree, the importance of the split 𝚤(⋅) is
defined as the difference between the RSS before and after the split.

It is recommended to apply a stopping criterion to avoid overfitting. For example, the node splitting

may be terminated if the method reaches some predetermined tree depth or the terminal regions contain

no more than a prespecified number of observations.

After the terminal nodes and the corresponding regions are determined, we obtain predictions for the

test observations by first identifying to which terminal nodes the test observations belong. Then the

predicted response is computed as the mean of the training observations in the corresponding terminal

node. This is in contrast with classification trees, where the predicted response is determined by the most

common class among the training observations in the terminal node.

One issue with decision trees is that the partitioning of a categorical predictor can take different but

equally justifiable paths. For example, we can decompose categories into binary predictors and include

them individually in the model (also known as one-hot encoding) or implement more dynamic splits,

such as groups of two or more categories. The best approach depends on the specific data and model.

In general, the partitioning algorithm tends to favor categorical predictors with many levels, leading

to severe overfitting when the number of categories is large; see, for instance, Effect of categorical

predictors in [H2OML] h2oml. Therefore, it is recommended to avoid such predictors.

Pros and cons of decision trees

One of the key advantages of decision trees is that they represent information in an intuitive and easy-

to-visualize way. In a decision tree, predictors can be of any type: numeric, binary, categorical, etc. A

monotone transformation or different scales of measurements among predictors do not change the model

outcome.

Another advantage of decision trees is that they can handle missing data. For instance, missing val-

ues are often treated as containing information, which does not require the common missing-at-random

assumption. For categorical predictors, missing values are treated as a separate category that can split

left or right; for other types of predictors, the missing values split to the left. Then, for the testing or val-

idation data, the missing values follow the path on the tree that was determined during training. If there

are no missing values in the training data, then missing values in the testing or validation data follow the

path of the most training observations. Missing values in the response are also allowed, but nothing will

be learned from observations containing those missing values.

Despite their advantages, decision trees are notoriously unstable and have a high variance. Even

though a deep tree (with many terminal nodes) has a small bias, a small change in the data can lead to a

completely different set of splits and obscure its interpretation. Moreover, decision trees have difficulties

with modeling simple smooth functions; see, for instance, Introduction in [H2OML] h2oml gbm.

One solution is to use ensemble methods, which we introduce next.

Intro — Introduction to machine learning and ensemble decision trees+ 14

Ensemble methods
The basis for ensemble methods can be summarized as a mechanism that forms a smart committee

of incompetent but carefully selected members to solve a machine learning problem. As we discussed

in the previous section, despite their advantages such as efficiency and interpretability, decision trees

suffer from high variance and instability. Specifically, if we slightly modify the data by splitting them

or introducing nuisance predictors, the new results may differ substantially from the original results. In

contrast, the low-variance methods are more robust to small changes and tend to yield similar results.

Bagging and boosting are two methods used to improve the accuracy of a machine learning method

by combining unstable learners. Using unstable learners is important because they provide more variable

outcomes than stable learners and thus aid in generalization. Both methods perturb the original dataset

to generate an ensemble of various base learners and combine them into one method. The usefulness of

ensemble methods is established for unstable base learners, but these methods may produce contradictory

results for stable base learners such as a linear regression.

Both bagging and boostingmethods are general-purpose procedures and are not tied to a specific learn-

ing estimation method, but in this entry, our main focus is on bagging and boosting for decision trees.

The main difference between bagging and boosting is in how they perturb and generate new datasets.

Bagging, which was first introduced in Breiman (1996), generates the perturbations by random and inde-

pendent drawings (bootstrap samples) from the training data. In contrast, boosting, introduced by Freund

and Schapire (1997) to solve classification problems, has a deterministic approach and generates pertur-

bations by sequentially reweighting the dataset. In particular, at any step, the weights of the observations

that were misclassified in the previous step increase, whereas the weights for the correctly classified

observations decrease. Thus, boosting forces each successive classifier to focus on those observations

that were missed by the previous ones in the sequence. By design, bagging reduces variance, whereas

boosting tends to control the generalization error by reducing bias. The difference is summarized in the

figure below.

Training sample

Bootstrap sampleBootstrap sampleBootstrap sample

Bagging

𝑓3(𝑥)𝑓2(𝑥)𝑓1(𝑥)

Training sample

Boosting

Weighted sample Weighted sample Weighted sample

𝑓3(𝑥)𝑓2(𝑥)𝑓1(𝑥)

Figure 8.

Bagging

Bagging or bootstrap aggregation relies on a bootstrap procedure (Efron 1979) that combines an en-

semble of learners to improve the performance of the prediction. The main idea of bagging can be

motivated by the fact that the variance of the mean of 𝑛 independent observations x1, x2, . . . , x𝑛 with

Intro — Introduction to machine learning and ensemble decision trees+ 15

variance 𝜎2 is 𝜎2/𝑛. Consequently, averaging a set of independent observations reduces the variance. A
natural extension of this idea to the machine learning is to independently sample many training datasets

from the population, build a separate prediction model ̂𝑓𝑏(x) for each sample, and take the average.

Unfortunately, this approach is not viable because, in practice, we observe only one training dataset.

However, we can use bootstrap to generate samples from the training dataset. Thus, after building the

{ ̂𝑓𝑏(x) , 𝑏 = 1, 2, . . . , 𝐵} learners from the bootstrap samples, for the observation x, the bagging proce-

dure returns

̂𝑓bag(x) = 1
𝐵

𝐵
∑
𝑏=1

̂𝑓𝑏(x)

The bias of a bagged tree is the same as that of a single tree, because each tree generated from the

bootstrapped data is identically distributed and has the same expected value.

To apply bagging to regression trees, we grow 𝐵 deep regression trees using 𝐵 bootstrap samples

and take the average of the resulting predictions. Each deep regression tree has a high variance and low

bias. Therefore, averaging these 𝐵 trees substantially reduces the variance and improves the prediction

accuracy; see Fundamentals of machine learning for details about the bias–variance tradeoff.

There are several approaches for extending bagging to classification trees. The most common one is

the majority-vote rule. For the 𝑖th observation of the testing data, we can record the predicted class for
each of the 𝐵 classification trees. The majority-vote rule returns the most frequent class among these 𝐵
predictions.

A salient feature of bagging is its ability to estimate the test error of a bagged model. This feature

helps avoid arduous computations and is especially useful for large datasets. Bagging repeatedly builds

trees on bootstrap samples, and about 37% of the observations in the training data will not be selected

for each bootstrap sample (Izenman 2008, chap. 5). Therefore, each bagged tree is grown only on the

remaining two-thirds of observations. The 37% of observations that are not used to grow the tree serve

as an independent testing set. Such observations are called out-of-bag observations. Now, to predict the

response for the 𝑖th observation, we use each of the trees for which the 𝑖th observation was out of bag.
The average (or the majority vote in the case of classification) of those predicted responses yields a single

prediction for the 𝑖th observation. The estimated generalization error from the out-of-bag approach is a

valid estimate of the test error and is equivalent to using an independent testing set of the same size.

Random forest

Recall that bagging averages an ensemble of unstable decision trees to reduce the variance, which

leads to the improvement of the generalization error. However, this reduction may not be sufficient if the

trees in the ensemble are correlated with each other. For example, if the training data have one strong

and several moderately strong predictors, then in the ensemble of bagged decision trees, the majority of

the trees will have this strong predictor as the top split. Therefore, most of the bagged trees will have a

similar structure, resulting in predictors that are highly correlated.

Although historically a variety of tree ensembles have been referred to as a random forest (Lin and

Jeon 2006), nowadays, a random forest is associated with the random forest proposed in Breiman (2001),

which is a tree ensemble that uses both bagging and subsampling of predictors. It is a modification of the

bagging procedure that generates an ensemble of decorrelated trees and then averages them. To overcome

the shortcomings of the bagging procedure and achieve decorrelation, for each split in the tree, instead

of the full set of 𝑝 predictors, random forest selects a random sample of 𝑚 predictors as potential split

candidates. With this strategy, the strong predictors, on average, (𝑝 − 𝑚)/𝑝 times are not considered

Intro — Introduction to machine learning and ensemble decision trees+ 16

as potentially the best predictors to split on, which increases the chance that other predictors can be

considered for splitting. Below, we summarize the main steps of a random forest. For 𝑏 = 1, 2, . . . , 𝐵,
do the following:

1. Generate a bootstrap sample 𝐷𝑏 from the training data.

2. Until the stopping criterion is reached, recursively grow a tree 𝑇𝑏 by implementing the following

steps:

i. Randomly choose 𝑚 ≤ 𝑝 predictors.
ii. Select the predictor with the best split point from 𝑚 potential predictors.

iii. Split the selected node.

Similar to bagging, to make a prediction for a new test point x, random forest estimates ̂𝑓rf(𝑥) =
(1/𝐵) ∑𝐵

𝑏=1
̂𝑓𝑏(𝑥) for regression, where ̂𝑓𝑏(⋅) is a prediction model from the tree 𝑇𝑏, and uses the

majority-vote rule for classification. In practice, it is recommended to select 𝑚 = ⌊√𝑝⌋ for classifi-
cation and 𝑚 = ⌊𝑝/3⌋ for regression, where ⌊⋅⌋ is a floor function. The size of the bootstrap sample 𝐷𝑏

controls the bias–variance tradeoff of the random forest.

A smaller bootstrap sample size lowers the probability of a particular training observation to be in-

cluded in the bootstrap sample, which decreases similarity among the individual trees. The latter helps

reduce overfitting. Analogously, a larger bootstrap sample size increases the degree of overfitting.

The above approach describes a random forest as a complex black-box model. We find it helpful to

also describe a random forest from a different perspective that connects it to the existing well-understood

statistical methods. Specifically, the prediction from a random forest can be viewed as an adaptive neigh-

borhood classification or regression procedure (Lin and Jeon 2006). Recall from decision trees that every

terminal node 𝑗 = 1, 2, . . . , 𝐽 of a tree corresponds to a rectangular subspace 𝑅𝑗 of a predictor space

such that for every observation x𝑖, there is only one terminal node 𝑗 such that x𝑖 ∈ 𝑅𝑗. Let’s focus on

a prediction from a single tree 𝑇𝑏 at a new data point x0. Suppose that in the tree 𝑇𝑏, x0 belongs to the

terminal node 𝑗 with the corresponding region 𝑅𝑗(x0, 𝑏), where we make the dependence of the region
on x0 and tree 𝑇𝑏 explicit. Then the prediction is obtained by averaging the observed values 𝑦𝑖’s in the

region 𝑅𝑗(x0, 𝑏). Let’s assign the weight 𝑤𝑖(x0, 𝑏) a positive constant if the observation x𝑖 is in the

region 𝑅𝑗(x0, 𝑏) and 0 otherwise, such that

𝑤𝑖(x0, 𝑏) =
1{x𝑖 ∈ 𝑅𝑗(x0, 𝑏)}

|{𝑘∶ x𝑘 ∈ 𝑅𝑗(x0, 𝑏)}|

where | ⋅ | denotes the number of observations in the region 𝑅𝑗(x0, 𝑏) and 1(𝐴) is the identity func-
tion, which is equal to 1 if the condition 𝐴 holds and 0 otherwise. Note that the weights sum to one:

∑𝑛
𝑖=1 𝑤𝑖(x0, 𝑏) = 1. Thus, the prediction from a single tree given a new point x0 is the weighted aver-

age of the original observations 𝑦𝑖’s for 𝑖 = 1, 2, . . . , 𝑛:

̂𝑓𝑏(x0) =
𝑛

∑
𝑖=1

𝑤𝑖(x0, 𝑏)𝑦𝑖

Intro — Introduction to machine learning and ensemble decision trees+ 17

For a random forest, where 𝐵 trees are ensembled, the prediction at observation x0 can be written as

̂𝑓rf(x0) = 1
𝐵

𝐵
∑
𝑏=1

̂𝑓𝑏(x0) = 1
𝐵

𝐵
∑
𝑏=1

𝑛
∑
𝑖=1

𝑤𝑖(x0, 𝑏)𝑦𝑖 =
𝑛

∑
𝑖=1

𝑊𝑖(x0)𝑦𝑖

where 𝑊𝑖(x0) is the average of the weights 𝑤𝑖’s over 𝐵 trees:

𝑊𝑖(x0) = 1
𝐵

𝐵
∑
𝑏=1

𝑤𝑖(x0, 𝑏)

Consequently, a random forest prediction can be viewed as a weighted average of the observations

𝑦𝑖’s because ∑𝑛
𝑖=1 𝑊𝑖(x0) = 1, which makes a random forest an adaptive smoother (Curth, Jeffares,

and van der Schaar 2024). For most observations, the weight 𝑊𝑖 will be zero; see Lin and Jeon (2006),

Meinshausen (2006), and Biau and Scornet (2016).

Wager and Athey (2018) rely on the above approach to prove the consistency of the random forest

estimator. In figure 9, we use a toy example to visualize this approach. Here, for a new data point x0
(denoted by+), each tree assigns a positive weight to the observations in the same terminal node (denoted

in red) and zero weight to the rest of the observations. The random forest prediction averages the weights

from the three trees and measures how frequent each observation falls into the same terminal node as x0.

Tree 1 prediction Tree 2 prediction

Tree 3 prediction Random forest prediction

Figure 9.

Intro — Introduction to machine learning and ensemble decision trees+ 18

Boosting

Boosting is a powerful idea that can be applied to any regression or classification problem. In contrast

to bagging, where each tree in an ensemble is built on a bootstrap training dataset and independent of the

other trees, boosting grows trees sequentially. One of the first boosting methods, AdaBoost (Freund and

Schapire 1997), was introduced to solve classification problems. AdaBoost repeatedly applies weights

to the observations to produce a sequence of classifiers. The observations that are poorly modeled get

higher weights and vice versa. This way, each successive classifier is focused on those observations that

received higher weights in the previous iteration. The figure below summarizes the steps of AdaBoost.

Training data ƒ1(x)

ƒ2(x) ƒ 3(x)

Figure 10.

Here we have three classifiers or base learners, 𝑓1(x), 𝑓2(x), and 𝑓3(x), which can be classification
trees. The observations are classified based on +’s and 𝑜’s. AdaBoost starts by assigning the same

weight 1/𝑛 to all observations, where 𝑛 is the number of observations. 𝑓1(x) incorrectly classified three
+ observations, which are displayed in red. In the next iteration, those three observations were assigned

higher weights, and 𝑓2(x) classified those observations correctly. Similarly, 𝑓3(x) assigned more weight
to the three previously misclassified 𝑜 observations and classified them correctly. The final ensemble or

boosted classifier is obtained based on those three classifiers as 𝐹(x) = ∑𝑀
𝑚=1 𝛼𝑚𝑓𝑚(x), where 𝛼𝑚

measures the importance of the classifier 𝑓𝑚(⋅) and 𝑀 is the number of classifiers.

This approach tends to explain boosting in terms of updating weights, which makes it difficult to eval-

uate its performance (Schapire 2003). To establish a connection with the statistical framework, in their

seminal paper, Friedman, Hastie, and Tibshirani (2000) propose a different view of AdaBoost. In partic-

ular, the authors use a gradient-descent-based formulation to reformulate AdaBoost as an optimization

problem and show that it is a greedy procedure that minimizes the exponential loss,

𝐿{𝑦𝑖, 𝐹 (x𝑖)} = 1
𝑛

𝑛
∑
𝑖=1

𝑒−𝑦𝑖𝐹(x𝑖)

where𝐹(x𝑖) = ∑𝑀
𝑚=1 𝛼𝑚𝑓𝑚(x𝑖). They proposed the following coordinate descent algorithm to achieve

the minimization.

Intro — Introduction to machine learning and ensemble decision trees+ 19

1. Initialize: 𝐹0(x) = 0.

2. For 𝑚 = 1, 2, . . . , 𝑀:

i. Choose a classifier 𝑓𝑚(⋅) and 𝛼𝑚 to minimize

1
𝑛

𝑛
∑
𝑖=1

exp[−𝑦𝑖{𝐹𝑚−1(x𝑖) + 𝛼𝑚𝑓𝑚(x𝑖)}]

ii. Update: 𝐹𝑚(x) = 𝐹𝑚−1(x) + 𝛼𝑚𝑓𝑚(x).

3. Output: 𝐹𝑀(x).

Thus,AdaBoost minimizes its loss function by iteratively descending toward one coordinate direction

at each iteration.

The important feature of this loss-function formulation is that, instead of the exponential loss, one

can use any other loss function and extend AdaBoost from solving a classification problem to solving

a regression problem. For details, see Friedman, Hastie, and Tibshirani (2000), Schapire and Freund

(2012), and Hastie, Tibshirani, and Friedman (2009).

GBM

The formulation discussed in the previous section and the corresponding models are called GBMs.

GBM is one of the popular methods to implement boosting. Although the original method, proposed in

Friedman, Hastie, and Tibshirani (2000), can work with any base learner, in practice, decision trees are

some of the main choices.

In the previous section, we viewed AdaBoost as an optimization problem with some loss function

𝐿(𝐹). In Decision trees, we parameterized a decision tree as a model 𝑓(x) = ∑𝐽
𝑗=1 𝑐𝑗𝐼{x ∈ 𝑅𝑗}, where

𝐽 is the number of terminal nodes, 𝑅𝑗’s are nonoverlapping regions of the predictor space, and 𝑐𝑗 is the

prediction (the mean for regression and the most probable class for classification) in the terminal node 𝑗.
The main idea behind GBM is to parameterize the estimate of the ensemble function 𝐹(x) as

̂𝐹 (x) =
𝑀

∑
𝑖=0

̂𝐹𝑚(x)

where 𝑀 is the number of iterations, ̂𝐹0(⋅) is an initial guess, and { ̂𝐹𝑚(⋅)}𝑀
𝑚=1 are the function incre-

ments, also known as boosts.

Parameterizing the tree by Θ = {𝑅𝑗, 𝑐𝑗}𝐽
𝑗=1 and following the coordinatewise approach presented in

the previous section, for some loss function 𝐿(⋅), in the stage 𝑚, we can write the minimization of the

tree-boosting method as

(𝛼𝑚, Θ𝑚) = argmin𝛼,Θ

𝑛
∑
𝑖=1

𝐿{𝑦𝑖, ̂𝐹𝑚−1(x𝑖) + 𝛼𝑓(x𝑖, Θ)}

where 𝑛 is the number of observations in the training dataset, 𝛼 is a learning rate, and

̂𝐹𝑚(x) = ̂𝐹𝑚−1(x) + 𝛼𝑓(x, Θ𝑚)

Intro — Introduction to machine learning and ensemble decision trees+ 20

Unfortunately, such minimization is practically infeasible to solve. To alleviate the issue, it was pro-

posed, at stage 𝑚, to choose a new function 𝑓(x, 𝜃) to be the most correlated with the negative gradient

𝑔𝑚(x𝑖) = [𝜕𝐿{𝑦𝑖, 𝐹 (x𝑖)}
𝜕𝐹(x𝑖)

]
𝐹(x𝑖)=𝐹𝑚−1(x𝑖)

by solving a classical least-squares minimization problem:

(𝛼𝑚, Θ𝑚) = argmin𝛼,Θ

𝑛
∑
𝑖=1

{−𝑔𝑚(x𝑖) + 𝛼𝑓(x𝑖, Θ)}

For example, if the loss function is the squared error loss 𝐿{𝑦𝑖, 𝐹 (x𝑖)} = (1/2){𝑦𝑖 − 𝐹(x𝑖)}2, then

the gradient 𝑔𝑚(x𝑖) = −{𝑦𝑖 − 𝐹(x𝑖)}.
Below, we summarize the gradient-tree boosting method for the squared error loss 𝐿(⋅) and fixed

learning rate 𝛼, with the number of iterations, that is, the number of trees in this context, equal to 𝑀.

1. Initialize: 𝐹0(x) and 𝑔𝑖 = 𝑦𝑖 for all 1 ≤ 𝑖 ≤ 𝑛.

2. For 𝑚 = 1, 2, . . . , 𝑀:

i. Compute 𝑔𝑚(x𝑖) = −{𝑦𝑖 − 𝐹𝑚−1(x𝑖)} for all 1 ≤ 𝑖 ≤ 𝑛.

ii. Fit a tree ̂𝑓𝑚(⋅) with 𝐽 splits to the training data {x𝑖, −𝑔𝑚(x𝑖)} for 𝑖 = 1, 2, . . . , 𝑛.

iii. Update ̂𝐹: ̂𝐹𝑚(x) = ̂𝐹𝑡−1(x) + 𝛼 ̂𝑓𝑚(x).

3. Output: ̂𝐹 (x) = ∑𝑀
𝑚=1

̂𝐹𝑚(x) = ∑𝑀
𝑚=1 𝛼𝑓𝑚(x).

The learning rate 𝛼 reduces the contribution of each tree as it is added to the model, which prevents

overfitting. The simulation studies indicate that a smaller 𝛼 reduces overfitting and provides a lower

generalization error. The relationship between the learning rate and the number of trees 𝑀 is reciprocal.

That is, decreasing the learning rate increases the required number of trees.

Historically, researchers suggested using a stump (decision tree with depth equal to one) as a base

learner in each iteration. However, current research on ensemble methods suggests that if the noise in

the data is small, it is preferable to use deeper trees as base learners to improve generalization (Wyner

et al. 2017). This is related to the idea that the ensemble methods are local interpolators. The depth of a

tree affects the selection of the optimal number of trees. For a given learning rate, fitting more complex

(deeper) trees results in a fewer number of trees being selected. Typically, the learning rate and tree

complexity are inversely related: doubling the tree depth should be matched with halving the learning

rate to provide roughly the same number of trees (Elith, Leathwick, and Hastie 2008).

Trees with monotonicity constraints

In some applications, it is reasonable to assume that the response is a monotone function of the predic-

tors. For example, in economic theory the price elasticity of the normal good is assumed to be positive, or

in hedonic price analysis, in which price is a function of the characteristics of the product, it is expected

that some of the characteristics will always have a positive or negative effect on the price. The original

decision trees and ensemble decision tree methods, described above, do not support such a constraint and

may violate the monotonicity assumption. However, there are modifications to the above methods that

incorporate the monotonicity constraints (Potharst and Feelders 2002).

Intro — Introduction to machine learning and ensemble decision trees+ 21

Model selection in machine learning
Most machine learning models are defined by a set of model parameters and hyperparameters. A

model parameter is initialized and computed during the learning process. A hyperparameter cannot be

directly estimated from the learning process and must be prespecified before training a machine learning

model (Kuhn and Johnson 2013). For example, in decision trees, the parameters correspond to the split

decisions and regions, and the hyperparameters include the tree depth, impurity measures, the minimum

number of observations in each terminal node, and more. The goal of machine learning models is to

make accurate predictions on future data. To build an optimal model, we need to explore a wide range

of values for hyperparameters and select the ones that improve the model performance the most. This

process is also known as model selection. So we are interested in selecting the best-performing model

from the set of potential models. That is, we want to evaluate the performances of the models and

compare them with each other. The process of designing an effective machine learning model with

an optimal hyperparameter configuration is called hyperparameter tuning. The material in this section

closely follows Raschka (2020) and Yang and Shami (2020).

The steps for selecting the best-performing model are summarized in table 1 below.

Table 1. Steps for selecting the best-performing model

To minimize the generalization error, which measures the predictive model performance on

new data, do the following:

1. Split the data for training and evaluating a model; see Three-way and two-way holdout

methods.

2. Optimize hyperparameters to select the best-performing model; see Hyperparameter tun-

ing.

3. Compare different machine learning methods and select the one that performs the best;

see Method comparison.

In the rest of this section, we will discuss different approaches to accomplish the above steps.

Three-way and two-way holdout methods

The simplest approach to evaluating a model is the two-way holdout method, in which we take the

observed data and split them into two parts: training data and testing data. A model is fit to the training

data, and the prediction is obtained on the testing data. It is important to perform the training and eval-

uation steps using different data. Otherwise, if a sufficiently complex model fits the training data too

well, it will be difficult to distinguish whether the model is memorizing the training data or generalizing

well to the “new” data. Thus, the model performance will suffer from the optimism bias. Even after we

randomly sample and split the data, it is essential to prevent the leakage of information from the testing

data into the training process (Raschka 2020 and Lones 2021). Common, seemingly innocuous mistakes

include using the information about the means and ranges of the predictors from the entire dataset to scale

the predictors or performing predictor selection before partitioning the data and using the same data as

testing data to evaluate the generality of multiple models. The best practical way to prevent informa-

tion leakage is to partition the data at the beginning of the analysis and use the testing data only once to

measure the generality of a final model at the end of the analysis (Cawley and Talbot 2010).

Intro — Introduction to machine learning and ensemble decision trees+ 22

The two-way holdout method addresses only the first generalization step from table 1 and cannot be

used to sequentially train multiple models for hyperparameter optimization, which we discuss later. In

contrast, the three-way holdout method partitions the dataset into training, validation, and testing data.

Model selection and hyperparameter tuning are performed on training and validation data and model

evaluation on testing data. This procedure avoids repeated use of the testing data and prevents informa-

tion leakage. Another advantage of including validation data is that we can impose early stopping rules,

in which the model performance is measured against validation data at each iteration, and stop training

when the performance score starts deteriorating or does not change over a sequence of iterations. In

general, to obtain a generalization error, which is independent from how we split the data into train-

ing, validation, and testing, we recommend to repeat the holdout method multiple times with different

random-number seeds and report the average performance over these repetitions. Alternatively, one can

use the leave-one-out bootstrap technique and evaluate the generalization error by using the out-of-bag

samples instead of the training data (Efron and Tibshirani 1993).

The steps for selecting the best-performing model with the three-way holdout method are summarized

in table 2.

Table 2. Steps for selecting the best-performing model with the three-way holdout method

1. Randomly partition the data into three parts: training for model fitting, validation for

model selection, and testing for the final evaluation of the selected model.

2. Hyperparameter tuning: define a grid of various hyperparameter configurations to fit

models to the training data; see Hyperparameter tuning.

3. Model selection: evaluate and compare the estimated performance metrics on the vali-

dation data, and choose hyperparameter values that provide the best-performing metrics.

4. Use independent testing data to estimate the generalization error by comparing various

metrics of the best-performing model.

In step 2, tuning can be performed by using either a Cartesian grid search (as described in table 4) or a

random grid search. We treat the splitting of a dataset into training, validation, and testing data as random

subsampling and assume that each observation has been drawn from the same probability distribution.

However, when the dataset is imbalanced, random subsampling is not recommended. A better approach

is to divide the dataset in a way that preserves the original class proportions in the resulting subsets

(training, validation, and testing). This approach is called stratification.

k-fold cross-validation

For small datasets, the three-way holdout method of splitting the data is not recommended because the

validation and testing data may not be representative. In such cases, 𝑘-fold cross-validation is the most
common model evaluation and selection technique. It starts by splitting the data into training and testing

data. For the training data, 𝑘-fold cross-validation splits them into 𝑘 parts or folds. In each 𝑘th iteration,
it uses one part for validation and the remaining 𝑘 − 1 parts as a training subset for model fitting. The

figure below illustrates 3-fold cross-validation for a toy example. The dataset is randomly split into three

folds, and red, blue, and green observations correspond to observations in folds 1, 2, and 3, respectively.

In the first cross-validation iteration, the method uses observations in folds 2 and 3 as a training set and

Intro — Introduction to machine learning and ensemble decision trees+ 23

observations in fold 1 as a validation set. The next two iterations follow a similar procedure but use

observations from folds 2 and 3, respectively, as validation sets. For example, for 𝑘 = 3, four models

are fit. The first three cross-validation models are fit using 2/3 of the training data, as described above,

and a different 1/3 of the training data is held out for validation for each of the three models. Then the

main fourth model is fit using the entire training data, and the cross-validation metrics are reported. Also

see [H2OML] h2omlestat cvsummary.

4,000

6,000

8,000

10,000

Pr
ic

e

2,000 2,500 3,000 3,500 4,000
Weight (lbs.)

Fold 1
Fold 2
Fold 3

Figure 11.

Hyperparameter tuning

A typical process to build an effective machine learning model is complicated and time consuming.

It involves choosing an appropriate method and selecting a model by tuning hyperparameters (see step 2

in table 1). The choice of optimal hyperparameters directly affects the model performance on the testing

data. The hyperparameter tuning depends on a machine learning method and the type of hyperparam-

eter, such as continuous, discrete, or categorical. Setting and testing hyperparameters manually is time

consuming and inefficient. Therefore, there exist automatic optimization techniques for hyperparameter

tuning.

Intro — Introduction to machine learning and ensemble decision trees+ 24

Themain goal of hyperparameter optimization is to achieve optimalmodel performancewithin a given

budget, where budget refers to computational resources or the time allocated to tuning. We summarize

the hyperparameter optimization process following Yang and Shami (2020) in table 3.

Table 3. Steps for hyperparameter optimization

1. Select the machine learning method and the performance metrics.

2. Select the hyperparameters that require tuning.

3. Determine the baseline or referencemodel by training themachine learningmethod using

the default hyperparameter configuration.

4. Start with a large search space such as the hyperparameter feasible domain.

5. Refine the search space using well-performing hyperparameter values, or explore new

areas if needed.

6. Select the best-performing hyperparameter configuration as the final result.

Some researchers often neglect the baseline determination step 3 and spend most of their time devel-

oping complex models, which may not outperform the simplest model. For example, if the task is binary

classification or regression, then the baseline method can be the simplest known method such as logistic

or linear regression. Or if our data are highly imbalanced with one of the classes containing 95% of

observations, then this 95% can serve as our baseline, because the method that always predicts this class

already has 95% accuracy and the preferred machine learning model should outperform this baseline.

The simplest hyperparameter tuning method is a so-called babysitting or trial and error approach,

where a researchermanually experiments with various hyperparameter values using experience, intuition,

or prior knowledge (Abreu 2019 and Elsken, Metzen, and Hutter 2019). Manual tuning is infeasible

for most machine learning methods because they are complex and require many hyperparameters. The

methods we describe next are more suitable for complex machine learning methods.

Decision-theoretical methods are one of the common techniques for hyperparameter optimization.

The most popular ones are a Cartesian grid search (Bergstra et al. 2011) and a random grid search

(Bergstra and Bengio 2012). A Cartesian grid search performs an exhaustive grid search of hyperpa-

rameter configurations and evaluates the Cartesian product of possible hyperparameter combinations.

Its search is limited to the grid specified by the user and cannot explore other regions. To achieve good

results, Yang and Shami (2020) suggest the steps that we summarize in table 4.

Table 4. Steps for Cartesian grid search

1. Choose a broad search space and a large step size.

2. Based on the results from step 1, refine the search space and step size using well-

performing hyperparameter configurations.

3. Repeat step 2 until there is no substantive improvement in the performance metric.

Intro — Introduction to machine learning and ensemble decision trees+ 25

ACartesian grid search is exhaustive, which makes it infeasible for a high-dimensional hyperparam-

eter configuration space. A random grid search overcomes this drawback by randomly choosing a set

number of samples within the upper and lower bounds as candidate hyperparameter values. Those values

are used to evaluate the model. The rest of the steps are the same as in table 4. Moreover, if the configu-

ration space is large enough, then the global optimum of the tuning metric can be achieved. On a limited

budget, a random grid search explores a larger search space than a Cartesian grid search. However, both

Cartesian and random grid search methods share the same drawback: each hyperparameter evaluation

is independent of the others, leading to wasted computational time and resources on poorly performing

areas of the search space. For a review of hyperparameter optimization techniques, see Yang and Shami

(2020).

Method comparison

Comparing evaluation results for different machine learning methods is fundamental to model selec-

tion (step 3 in table 1). This process typically includes a comparison of different performance metrics,

visualization, and statistical analysis. The performance metrics of various machine learning methods are

compared using testing data, and the best method is chosen based on the results. Visualization, such as

receiver operating characteristics curves and precision–recall curves, are commonly used for compari-

son during binary classification. For details, see [H2OML] h2omlgraph roc and [H2OML] h2omlgraph

prcurve and, more generally, [H2OML] h2oml postestimation. Depending on the research question, in

addition to performance metrics, it may be important to also explore the explainability of the method.

See the next section for details.

Interpretation and explanation
Machine learning models are ubiquitous in many fields. Despite their widespread use, they are often

treated as black boxes that do not explain their predictions in a way that practitioners can understand.

The misuse of black-box predictive models can lead to serious consequences, for instance, incorrectly

denying parole, releasing dangerous criminals because of inadequate bail decisions, mispredicting air

pollution level, and more (Rudin 2019). One of the concerns with deploying machine learning methods

is whether their models and predictions can be trusted. And it is difficult to trust something that cannot

be interpreted or explained. Traditionally, machine learning models are evaluated by comparing perfor-

mance metrics using validation data. This may be unreliable because validation data may not always be

fully representative of real-world data.

The use of interpretable models and explainable methods sheds light on model performance and en-

courages a transparent usage of black-box models. In machine learning, an interpretable model has

the ability to explain its results in an understandable and transparent way without the need for addi-

tional methods (Doshi-Velez and Kim 2017). Commonly used interpretable models are linear and logis-

tic regressions, decision trees, decision-set and rule-based methods and their extensions (Friedman and

Popescu 2008; Letham et al. 2015 ; Lakkaraju, Bach, and Leskovec 2016; Rudin and Ustun 2018; and

Chen et al. 2018). An interpretable model is judged based on several criteria, including interpretability

and accuracy (Guidotti et al. 2018).

In contrast with interpretable models, explainable methods rely on external models and methods to

make their predictions presentable and understandable to a human. In general, they do not create models

that are inherently interpretable, but provide post hoc models that explain the prediction of the original

black-box models (Goldstein et al. 2015 ; Ribeiro, Singh, and Guestrin 2016; Bastani, Kim, and Bastani

2017; and Lundberg and Lee 2017). It is not recommended to heavily rely on explainable models for

high-stake decisions, such as in medicine, criminal justice, social bias, and other fields (Rudin 2019

Intro — Introduction to machine learning and ensemble decision trees+ 26

and Ghassemi, Oakden-Rayner, and Beam 2021), but to use those techniques as a tool for analysis and

algorithmic audit (Raji et al. 2020). For more information, see Slack et al. (2020), Lakkaraju and Bastani

(2020), and Krishna et al. (2022).

In machine learning literature, explainable methods are divided into model specific and model agnos-

tic. A model-specific explainable method is inherently connected to the used machine learning model

such as a random forest or a deep neural network and cannot be used for other models. With a model-

agnostic explainable method, a user is free to use any black-box model for data analysis, and the explain-

able method can be applied to that model. There are two types of model-agnostic methods: local and

global. Local methods explain individual predictions and approximate a black-box model in the vicinity

of an individual observation. The popular methods include local surrogate models (Ribeiro, Singh, and

Guestrin 2016), individual conditional expectation curves (Goldstein et al. 2015), and Shapley values

(Lundberg and Lee 2017). A global method describes the average behavior of a black-box model. Partial

dependence plots (Friedman 2001), variable importance plots (Breiman 2001; Fisher, Rudin, and Do-

minici 2019), and global surrogate models (Bastani, Kim, and Bastani 2017) are some of the popular

choices.

See [H2OML] h2omlgraph ice, [H2OML] h2omlgraph shapvalues, and [H2OML] h2omlgraph shap-

summary for a few local model-agnostic methods and [H2OML] h2omlgraph pdp and [H2OML] h2oml-

graph varimp for global model-agnostic methods. We also describe the global surrogate models in the

next section.

Global surrogate models

Global surrogate models (Bastani, Kim, and Bastani 2017 and Craven and Shavlik 1995) are explain-

able models that approximate the predictions of a black-box model. In other words, a surrogate model

uses an interpretable model to explain a black-box model. The steps for obtaining a global surrogate

model are straightforward:

1. Obtain predictions from a well-tuned black-box model fit to the testing data.

2. Select and train an interpretable model (for example, a decision tree) for predictions on the testing

data.

3. Measure the goodness of fit of the surrogate model for the predictions, and interpret the model.

One way to measure the goodness of fit of a surrogate model for predictions is by using the 𝑅2 for

regression and accuracy or log loss for classification,

𝑅2 = 1 −
∑𝑛

𝑖=1{ ̂𝑔(x𝑖) − ̂𝑓(x𝑖)}2

∑𝑛
𝑖=1{ ̂𝑓(x𝑖) − 𝑓}2

where ̂𝑔(⋅) and ̂𝑓(⋅) are the respective predictions from the surrogate and black-box models and 𝑓 is

the mean of the black-box predictions. The larger the 𝑅2, the better the surrogate model replicates the

black-box model.

For example, suppose we used a GBM to obtain predictions of housing prices. We could then apply

the above method to explain its predictions by using a decision tree as a surrogate model. We show one

such tree below. We can easily see how the predictors explain the predicted log sales prices. The terminal

nodes of the tree show the predicted logarithm of the sales prices. For example, the houses with overall

quality (overallqual) greater than 7.5 and with the lot area (lotarea) greater than 12,332.5 square
feet have the highest predicted price of 12.74.

Intro — Introduction to machine learning and ensemble decision trees+ 27

overallqual

grlivarea

[NA]
< 6.5

overallqual

>= 6.5

stflrsf

< 1049.5

overallqual

[NA]
>= 1049.5

grlivarea

< 7.5

lotarea

>= 7.5

11.209

< 725.5

11.648

[NA]
>= 725.5

11.818

< 5.5

12.004

[NA]
>= 5.5

12.141

[NA]
< 1889.5

12.373

>= 1889.5

12.483

[NA]
< 12332.5

12.74

>= 12332.5

Figure 12.

References
Abreu, S. 2019. Automated architecture design for deep neural networks. arXiv:1908.10714 [cs.LG], https://doi.org/10.

48550/arXiv.1908.10714.

Bastani, O., C. Kim, andH. Bastani. 2017. Interpreting blackboxmodels viamodel extraction. arXiv:1705.08504 [cs.LG],

https://doi.org/10.48550/arXiv.1705.08504.

Belkin, M., D. Hsu, S. Ma, and S. Mandal. 2019. Reconciling modern machine-learning practice and the classical bias–

variance trade-off. Proceedings of the National Academy of Sciences 116: 15849–15854. https://doi.org/10.1073/pnas.

1903070116.

Ben-Haim, Y., and E. Tom-Tov. 2010.A streaming parallel decision tree algorithm. Journal of Machine Learning Research

11: 849–872.

Bergstra, J., R. Bardenet, Y. Bengio, and B. Kégl. 2011. “Algorithms for hyper-parameter optimization”. In Proceedings

of the 25th International Conference on Neural Information Processing Systems, edited by J. Shawe-Taylor, R. Zemel,

P. Bartlett, F. Pereira, and K. Weinberger, vol. 24: 2546–2554. Red Hook, NY: Curran Associates.

Bergstra, J., andY. Bengio. 2012. Random search for hyper-parameter optimization. Journal ofMachine Learning Research

13: 281–305.

Biau, G., and E. Scornet. 2016. A random forest guided tour. TEST 25: 197–227. https://doi.org/10.1007/s11749-016-

0481-7.

Borisov, V., T. Leemann, K. Seßler, J. Haug, M. Pawelczyk, and G. Kasneci. 2024. Deep neural networks and tabular

data: A survey. IEEE Transactions on Neural Networks and Learning Systems 35: 7499–7519. https://doi.org/10.1109/

tnnls.2022.3229161.

Breiman, L. 1996. Bagging predictors.Machine Learning 24: 123–140. https://doi.org/10.1007/BF00058655.

———. 2001. Random forests.Machine Learning 45: 5–32. https://doi.org/10.1023/A:1010933404324.

Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classification and Regression Trees. Boca Raton, FL:

Chapman and Hall/CRC.

Cawley, G. C., and N. L. C. Talbot. 2010. On over-fitting in model selection and subsequent selection bias in performance

evaluation. Journal of Machine Learning Research 11: 2079–2107.

Chen, C., K. Lin, C. Rudin, Y. Shaposhnik, S. Wang, and T. Wang. 2018. An interpretable model with globally consistent

explanations for credit risk. arXiv:1811.12615 [cs.LG], https://doi.org/10.48550/arXiv.1811.12615.

Chen, T., and C. Guestrin. 2016. “XGBoost: A scalable tree boosting system”. In Proceedings of the 22ndACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, 785–794. New York: Association for Computing

Machinery. https://doi.org/10.1145/2939672.2939785.

Chollet, F. 2021. Deep Learning with Python. 2nd ed. Shelter Island, NY: Manning Publications.

https://doi.org/10.48550/arXiv.1908.10714
https://doi.org/10.48550/arXiv.1908.10714
https://doi.org/10.48550/arXiv.1705.08504
https://doi.org/10.1073/pnas.1903070116
https://doi.org/10.1073/pnas.1903070116
https://doi.org/10.1007/s11749-016-0481-7
https://doi.org/10.1007/s11749-016-0481-7
https://doi.org/10.1109/tnnls.2022.3229161
https://doi.org/10.1109/tnnls.2022.3229161
https://doi.org/10.1007/BF00058655
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.48550/arXiv.1811.12615
https://doi.org/10.1145/2939672.2939785

Intro — Introduction to machine learning and ensemble decision trees+ 28

Craven, M. W., and J. W. Shavlik. 1995. “Extracting tree-structured representations of trained networks”. In Proceedings

of the 9th International Conference on Neural Information Processing Systems, edited by D. Touretzky, M. C. Mozer,

and M. Hasselmo, 24–30. Cambridge, MA: MIT Press.

Curth, A., A. Jeffares, and M. van der Schaar. 2024. Why do random forests work? Understanding tree ensembles as

self-regularizing adaptive smoothers. arXiv:2402.01502 [stat.ML], https://doi.org/10.48550/arXiv.2402.01502.

Doshi-Velez, F., and B. Kim. 2017. Towards a rigorous science of interpretable machine learning. arXiv:1702.08608

[stat.ML], https://doi.org/10.48550/arXiv.1702.08608.

Efron, B. 1979. Bootstrap methods: Another look at the jackknife. Annals of Statistics 7: 1–26. https://doi.org/10.1214/

aos/1176344552.

Efron, B., and R. J. Tibshirani. 1993. An Introduction to the Bootstrap. New York: Chapman and Hall/CRC. https:

//doi.org/10.1201/9780429246593.

Elith, J., J. R. Leathwick, and T. J. Hastie. 2008. Aworking guide to boosted regression trees. Journal of Animal Ecology

77: 802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x.

Elsken, T., J. H. Metzen, and F. Hutter. 2019. Neural architecture search: A survey. Journal of Machine Learning Research

20: 1–21.

Fisher,A., C. Rudin, and F. Dominici. 2019.All models are wrong, but many are useful: Learning a variable’s importance

by studying an entire class of prediction models simultaneously. Journal of Machine Learning Research 20: 1–81.

Freund, Y., and R. E. Schapire. 1997. A decision-theoretic generalization of on-line learning and an application to boost-

ing. Journal of Computer and System Sciences 55: 119–139. https://doi.org/10.1006/jcss.1997.1504.

Friedman, J. H. 2001. Greedy function approximation: A gradient boosting machine.Annals of Statistics 29: 1189–1232.

https://doi.org/10.1214/aos/1013203451.

Friedman, J. H., T. J. Hastie, and R. J. Tibshirani. 2000.Additive logistic regression: A statistical view of boosting.Annals

of Statistics 28: 337–407. https://doi.org/10.1214/aos/1016218223.

Friedman, J. H., and B. E. Popescu. 2008. Predictive learning via rule ensembles.Annals ofApplied Statistics 2: 916–954.

https://doi.org/10.1214/07-AOAS148.

Ghassemi, M., L. Oakden-Rayner, and A. L. Beam. 2021. The false hope of current approaches to explainable artificial

intelligence in health care. Lancet 3: E745–E750.

Goldstein, A., A. Kapelner, J. Bleich, and E. Pitkin. 2015. Peeking inside the black box: Visualizing statistical learning

with plots of individual conditional expectation. Journal of Computational and Graphical Statistics 24: 44–65. https:

//doi.org/10.1080/10618600.2014.907095.

Guidotti, R.,A. Monreale, S. Ruggieri, F. Turini, D. Pedreschi, and F. Giannotti. 2018.Asurvey of methods for explaining

black box models. arXiv:1802.01933 [cs.CY], https://doi.org/10.48550/arXiv.1802.01933.

Hastie, T. J., R. J. Tibshirani, and J. H. Friedman. 2009. The Elements of Statistical Learning: Data Mining, Inference, and

Prediction. 2nd ed. New York: Springer. https://doi.org/10.1007/978-0-387-84858-7.

Izenman, A. J. 2008. Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning. New

York: Springer. https://doi.org/10.1007/978-0-387-78189-1.

James, G., D. Witten, T. J. Hastie, and R. J. Tibshirani. 2021.An Introduction to Statistical Learning: With Applications in

R. 2nd ed. New York: Springer. https://doi.org/10.1007/978-1-0716-1418-1.

Ke, G., Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu. 2017. “LightGBM: A Highly Efficient

Gradient Boosting Decision Tree”. In Proceedings of the 31st International Conference on Neural Information Processing

Systems, vol. 30: 3149–3157. Red Hook, NY: Curran Associates.

Krishna, S., T. Han,A. Gu, S.Wu, S. Jabbari, and H. Lakkaraju. 2022. The disagreement problem in explainable machine

learning: A practitioner’s perspective. arXiv:2202.01602 [cs.LG], https://doi.org/10.48550/arXiv.2202.01602.

Kuhn, M., and K. Johnson. 2013.Applied Predictive Modeling. NewYork: Springer. https://doi.org/10.1007/978-1-4614-

6849-3.

Lakkaraju, H., S. H. Bach, and J. Leskovec. 2016. “Interpretable decision sets: A joint framework for description and

prediction”. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, 1675–1684. New York: Association for Computing Machinery. https://doi.org/10.1145/2939672.2939874.

https://doi.org/10.48550/arXiv.2402.01502
https://doi.org/10.48550/arXiv.1702.08608
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1201/9780429246593
https://doi.org/10.1201/9780429246593
https://doi.org/10.1111/j.1365-2656.2008.01390.x
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1016218223
https://doi.org/10.1214/07-AOAS148
https://doi.org/10.1080/10618600.2014.907095
https://doi.org/10.1080/10618600.2014.907095
https://doi.org/10.48550/arXiv.1802.01933
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-78189-1
https://doi.org/10.1007/978-1-0716-1418-1
https://doi.org/10.48550/arXiv.2202.01602
https://doi.org/10.1007/978-1-4614-6849-3
https://doi.org/10.1007/978-1-4614-6849-3
https://doi.org/10.1145/2939672.2939874

Intro — Introduction to machine learning and ensemble decision trees+ 29

Lakkaraju, H., and O. Bastani. 2020. ““How do I fool you?”: Manipulating user trust via misleading black box expla-

nations”. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 79–85. New York: Association for

Computing Machinery. https://doi.org/10.1145/3375627.3375833.

Letham, B., C. Rudin, T. H. McCormick, and D. Madigan. 2015. Interpretable classifiers using rules and Bayesian anal-

ysis: Building a better stroke prediction model.Annals of Applied Statistics 9: 1350–1371. http://doi.org/10.1214/15-

AOAS848.

Lin, Y., and Y. Jeon. 2006. Random forests and adaptive nearest neighbors. Journal of theAmerican Statistical Association

101: 578–590. https://doi.org/10.1198/016214505000001230.

Lones, M.A. 2021. How to avoid machine learning pitfalls: Aguide for academic researchers. arXiv:2108.02497 [cs.LG],

https://doi.org/10.48550/arXiv.2108.02497.

Lundberg, S. M., and S. Lee. 2017. “A unified approach to interpreting model predictions”. In Proceedings of the 31st

International Conference on Neural Information Processing Systems, vol. 30: 4768–4777. Red Hook, NY: CurranAsso-

ciates.

Meinshausen, N. 2006. Quantile regression forests. Journal of Machine Learning Research 7: 983–999.

Potharst, R., and A. J. Feelders. 2002. Classification trees for problems with monotonicity constraints. ACM SIGKDD

Explorations Newsletter 4: 1–10. https://doi.org/10.1145/568574.568577.

Quinlan, J. R. 1993. C4.5: Programs for Machine Learning. San Mateo: Morgan Kaufmann.

Raji, I. D., A. Smart, R. N. White, M. Mitchell, T. Gebru, B. Hutchinson, J. Smith-Loud, D. Theron, and P. Barnes.

2020. “Closing the AI accountability gap: Defining an end-to-end framework for internal algorithmic auditing”. In

Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, 33–44. New York: Association for

Computing Machinery. https://doi.org/10.1145/3351095.3372873.

Raschka, S. 2020. Model evaluation, model selection, and algorithm selection in machine learning. arXiv:1811.12808

[cs.LG], https://doi.org/10.48550/arXiv.1811.12808.

Ribeiro, M. T., S. Singh, and C. Guestrin. 2016. ““Why should I trust you?”: Explaining the predictions of any classi-

fier”. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

1135–1144. New York: Association for Computing Machinery. https://doi.org/10.1145/2939672.2939778.

Rifkin, R., andA. Klautau. 2004. In defense of one-vs-all classification. Journal ofMachine Learning Research 5: 101–141.

Rudin, C. 2019. Stop explaining black box machine learning models for high stakes decisions and use interpretable

models instead. Nature Machine Intelligence 1: 206–215. https://doi.org/10.1038/s42256-019-0048-x.

Rudin, C., and B. Ustun. 2018. Optimized scoring systems: Toward trust in machine learning for healthcare and criminal

justice. INFORMS Journal on Applied Analytics 48: 399–486. https://doi.org/10.1287/inte.2018.0957.

Schapire, R. E. 2003. “The boosting approach to machine learning: An overview”. In Nonlinear Estimation and Classifi-

cation. Lecture Notes in Statistics, edited by D. D. Denison, M. H. Hansen, C. C. Holmes, B. Mallick, and B. Yu, vol.

171: 149–171. New York: Springer. https://doi.org/10.1007/978-0-387-21579-2_9.

Schapire, R. E., and Y. Freund. 2012. Boosting: Foundations and Algorithms. Cambridge, MA: MIT Press.

Shmuel, A., O. Glickman, and T. Lazebnik. 2024. A comprehensive benchmark of machine and deep learning across

diverse tabular datasets. arXiv:2408.14817 [cs.LG], https://doi.org/10.48550/arXiv.2408.14817.

Shwartz-Ziv, R., and A. Armon. 2022. Tabular data: Deep learning is not all you need. Information Fusion 81: 84–90.

https://doi.org/10.1016/j.inffus.2021.11.011.

Slack, D., S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju. 2020. “Fooling LIME and SHAP: Adversarial attacks on post

hoc explanation methods”. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 180–186. New

York: Association for Computing Machinery. https://doi.org/10.1145/3375627.3375830.

Wager, S., and S.Athey. 2018. Estimation and inference of heterogeneous treatment effects using random forests. Journal

of the American Statistical Association 113: 1228–1242. https://doi.org/10.1080/01621459.2017.1319839.

Wyner, A. J., M. Olson, J. Bleich, and D. Mease. 2017. Explaining the success of AdaBoost and random forests as

interpolating classifiers. Journal of Machine Learning Research 18: 1–33.

Yang, L., and A. Shami. 2020. On hyperparameter optimization of machine learning algorithms: Theory and practice.

Neurocomputing 415: 295–316. https://doi.org/10.1016/j.neucom.2020.07.061.

https://doi.org/10.1145/3375627.3375833
http://doi.org/10.1214/15-AOAS848
http://doi.org/10.1214/15-AOAS848
https://doi.org/10.1198/016214505000001230
https://doi.org/10.48550/arXiv.2108.02497
https://doi.org/10.1145/568574.568577
https://doi.org/10.1145/3351095.3372873
https://doi.org/10.48550/arXiv.1811.12808
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1287/inte.2018.0957
https://doi.org/10.1007/978-0-387-21579-2_9
https://doi.org/10.48550/arXiv.2408.14817
https://doi.org/10.1016/j.inffus.2021.11.011
https://doi.org/10.1145/3375627.3375830
https://doi.org/10.1080/01621459.2017.1319839
https://doi.org/10.1016/j.neucom.2020.07.061

Intro — Introduction to machine learning and ensemble decision trees+ 30

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

!! reference not found

h2oml — Introduction to commands for Stata integration with H2O machine learning+

+These features are part of StataNow.

Description Remarks and examples References Also see

Description
This entry describes commands for performing predictive analysis using H2Omachine learning meth-

ods, specifically ensemble decision tree methods, in Stata. H2O is a scalable and distributed ma-

chine learning and predictive analytics platform that allows you to perform data analysis and ma-

chine learning. It provides parallelized implementations of many widely used supervised and unsu-

pervised machine learning methods. For more details, see [H2OML] H2O setup, [P] H2O intro, and

https://www.stata.com/h2o/h2o18/h2o_intro.html#what-is-h2o. For a software-free introduction to ma-

chine learning, see [H2OML] Intro.

Supervised learning

h2oml gbm gradient boosting machine

h2oml gbregress gradient boosting regression

h2oml gbbinclass gradient boosting binary classification

h2oml gbmulticlass gradient boosting multiclass classification

h2oml rf random forest

h2oml rfregress random forest regression

h2oml rfbinclass random forest binary classification

h2oml rfmulticlass random forest multiclass classification

Estimation results and postestimation frame

h2omlest store catalog H2O estimation results

h2omlpostestframe specify frame for postestimation analysis

Tuning and estimation summaries

h2omlestat metrics display performance metrics

h2omlgof goodness of fit for machine learning methods

h2omlestat cvsummary display cross-validation summary

h2omlestat gridsummary display grid-search summary

h2omlexplore explore models after grid search

h2omlselect select model after grid search

h2omlgraph scorehistory produce score history plot

31

https://www.stata.com/h2o/h2o18/h2o_intro.html#what-is-h2o

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 32

Performance after binary classification

h2omlestat threshmetric display threshold-based metrics

h2omlestat confmatrix display confusion matrix

h2omlgraph prcurve produce precision–recall curve plot

h2omlgraph roc produce ROC curve plot

Performance after multiclass classification

h2omlestat aucmulticlass display AUC and AUCPR summary

h2omlestat confmatrix display confusion matrix

h2omlestat hitratio display hit-ratio table

Prediction

h2omlpredict prediction of continuous responses, probabilities,
and classes

Machine learning explainability

h2omlgraph varimp produce variable importance plot

h2omlgraph pdp produce partial dependence plot

h2omlgraph ice produce individual conditional expectation plot

h2omlgraph shapvalues produce SHAP values plot for individual observations
after regression and binary classification

h2omlgraph shapsummary produce SHAP beeswarm plot after regression and
binary classification

Save decision tree

h2omltree save decision tree DOT file and display rule set

Remarks and examples
This entry describes Stata commands to perform predictive analysis using H2O machine learning en-

semble decision tree methods.

Remarks and examples are presented under the following headings:

Brief overview
h2oml in a nutshell
Tour of machine learning commands

Prepare your data for H2O machine learning in Stata
End-to-end binary classification analysis
Regression analysis
Effect of categorical predictors
Detecting nuisance predictors
Gradient boosting Poisson regression

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 33

Brief overview
The h2oml suite of Stata commands provides end-to-end support for H2O machine learning analysis

using ensemble decision tree methods. In addition to h2oml, the h2oframe command provides several
key subcommands that connect Stata to an H2O cluster, import a Stata dataset into an H2O frame, and

provide various H2O data management; see [H2OML] H2O setup.

h2oml gbm and h2oml rf provide the suite of estimation commands that implement gradient boosting

and random forest regression, binary classification, and multiclass classification. h2oml gbregress and
h2oml rfregress perform respective gradient boosting and random forest regressions for continuous

and count responses, h2oml gbbinclass and h2oml rfbinclass perform gradient boosting and ran-

dom forest classifications for binary responses, and h2oml gbmulticlass and h2oml rfmulticlass
perform gradient boosting and random forest classifications for categorical responses (with more than

two categories).

All commands provide the validframe() and cv() options to specify a validation frame and to per-
form cross-validation to control for overfitting, the tune() and stop() options to tune hyperparameters
and stop early for better model performance, the h2orseed() option to reproduce results, and many

more. Many commands also offer specialized options such as the loss() option of h2oml gbregress,
which specifies various loss functions, including quantile, Huber, and Tweedie. See [H2OML] h2oml

gbm and [H2OML] h2oml rf for details.

After estimation, the h2omlest suite of commands can be used to manage estimation results. For

instance, h2omlest store can be used to store the current estimation results for later use.

Several postestimation commands are available to obtain tuning and estimation summaries. For in-

stance, h2omlestat gridsummary is useful to view the results after tuning and select an alternative

model that is more parsimonious. And h2omlgraph scorehistory can be used to display various val-
idation curves to help monitor overfitting.

For binary and multiclass classifications, several commands can be used to explore model perfor-

mance such as the h2omlestat confmatrix command, which displays the confusion matrix. Addi-

tionally, h2omlgraph prcurve and h2omlgraph roc can be used to plot precision–recall and receiver

operating characteristic (ROC) curves after binary classification, and h2omlestat hitratio can be used
to produce a hit-ratio table after multiclass classification.

The ultimate goal of machine learning is to obtain accurate prediction of the response on the new data.

To achieve this goal, the model predictive performance is often evaluated by using an external, testing

dataset. The h2omlpostestframe command provides a convenient way to specify the desired testing

frame to be used in all subsequent postestimation analyses.

Depending on the estimation method, regression or classification, the h2omlpredict command pro-
duces predictions of continuous and count responses or class probabilities and classes.

Machine learning methods are often treated as a black box, meaning that little attempt is made to

understand the obtained predictions. To rectify this, h2oml provides several postestimation commands

to help explain predictions. The h2omlgraph varimp command can be used to assess the overall impor-
tance of predictors in the model, whereas the h2omlgraph shapvalues and h2omlgraph shapsummary
commands can be used to explore the impact of predictors on individual predictions.

Finally, the h2omltree command can be used to save a specific decision tree in a DOT file and plot it
by using the open source software Graphviz; see [H2OML] DOT extension.

For more details about postestimation commands, see [H2OML] h2oml postestimation.

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 34

h2oml in a nutshell
In the previous section, we briefly described the functionality of the h2oml command. Here we will

provide a quick overview of some of the more common usages of this command in practice.

As we mentioned earlier, machine learning is primarily used to develop a model that accurately pre-

dicts a response of interest on the new data. In practice, several general steps are often performed to

build such a model.

At the beginning of the analysis, the data are often split into training data used for estimation and

validation data used for evaluating the model performance. Additionally, external testing data are also

available for assessing the model final predictive performance and comparing it with other models that

use a different machine learning method such as gradient boosting machine (GBM) or random forest. For

each method, models with different sets of hyperparameters are evaluated using a validation dataset (or

cross-validation), and the best model is chosen. The chosen models are further evaluated based on their

predictive performance on the testing data, and the final model is selected for later prediction on the

future new data.

Below, we describe several h2oml commands that can be used to perform the above steps.

Setup. To use the h2oml command, we must first initialize an H2O cluster and import our data to an H2O

frame; see Prepare your data for H2O machine learning in Stata and [H2OML] H2O setup. Here we load

the current Stata dataset into the H2O data frame and make it the current H2O frame.

. h2o init

. _h2oframe put, into(data)

. _h2oframe change data

Alternatively, we could replace the last two commands with h2oframe put, into(data) current
to put the dataset into an H2O frame and make this frame current in a single step.

Next we split the data frame into training and validation with, say, 80% of observations in the training

sample. We also specify the random-number seed for reproducibility and make the train frame be the

current H2O frame for estimation.

. _h2oframe split data, into(train valid) split(0.8 0.2) rseed(19)

. _h2oframe change train

Depending on the type of a response and the desired machine learning method, we can choose one

of the six h2oml commands to perform estimation: h2oml gbregress, h2oml gbbinclass, h2oml
gbmulticlass, h2oml rfregress, h2oml rfbinclass, and h2oml rfmulticlass.

Reference or baseline model. Suppose we have a binary response and we want to use GBM. We can

start with a simple reference model with default hyperparameters:

. h2oml gbbinclass response predictors, h2orseed(19) validframe(valid)

We specified the h2orseed(19) option to ensure H2O reproducibility; see [H2OML] H2O repro-

ducibility.

If we do not have sufficient observations to split the data into training and validation, we can use

cross-validation instead such as a 3-fold cross-validation with the default random splitting of the data

below:

. h2oml gbbinclass response predictors, h2orseed(19) cv(3)

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 35

We store the current estimation results to use as a benchmark later.

. h2omlest store gbm_ref

User-specified hyperparameters and tuning. Next we can explore models with values of hyperparam-

eters other than the default ones. For instance, we can specify 200 trees instead of the default 50 and a

0.2 learning rate instead of the default 0.1. And we can specify different values for any of the other nine

hyperparameters; see Options in [H2OML] h2oml gbm.

. h2oml gbbinclass response predictors, h2orseed(19) cv(3)
> ntrees(200) lrate(0.2) ...

We store this model as

. h2omlest store gbm_user

In practice, it is difficult to know the actual hyperparameter values that provide the best model per-

formance, so an iterative procedure known as hyperparameter tuning is used to explore different ranges

of various hyperparameters to select the best set of values. To incorporate tuning, the h2oml estima-

tion commands allow you to specify the ranges (numlist) in options for hyperparameters and provide the

tune() option to control the tuning procedure.

Which hyperparameters should be tuned and what ranges should be explored will be specific to each

application. Here, for illustration purposes and continuing with our example, we will tune the number of

trees and the learning rate:

. h2oml gbbinclass response predictors, h2omlrseed(19) cv(3)
> ntrees(20(10)200) lrate(0.1(0.1)1)

We store this tuned model as

. h2omlest store gbm_tuned

If desired, we can change the default tuning metric (from log loss to, say, accuracy) and grid-search

method (from Cartesian to random) as well as specify other suboptions in the tune() option:

. h2oml gbbinclass response predictors, h2omlrseed(19) cv(3)
> ntrees(20(10)200) lrate(0.1(0.1)1)
> tune(metric(accuracy) grid(random) ...)

Checking for overfitting or underfitting. Before we proceed with model selection, we can check

for model overfitting or underfitting. We can use the h2omlgraph scorehistory command to plot

the metric values against the number of trees to compare the training and validation or cross-validation

curves:

. h2omlgraph scorehistory

The number of trees at which the two curves start noticeably diverging provides a tradeoff between

underfitting and overfitting.

Because we performed cross-validation, it is also useful to evaluate its performance. We can check

the variability of the metric values across the folds with

. h2omlestat cvsummary

High variation may indicate overfitting.

Our current model is gbm tuned, but we can repeat the above steps for the other two models by first
using the h2omlest restore command to restore their estimation results.

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 36

Selecting the “best” model. Our current gbm tunedmodel uses the hyperparameter values that resulted
in the smallest value of the default log loss metric. We can evaluate alternative models that may be more

parsimonious and thus may run faster:

. h2omlestat gridsummary

We can also explore the performance of additional metrics for different models before deciding on a

model. For instance, we can explore the top 10 models:

. h2omlexplore id = 1(1)10

If we find an alternative model that we think is best, we can switch to it by using

. h2omlselect id = #

where # is an index of the corresponding model from h2omlestat gridsummary.

To select between all the considered models with different hyperparameters such as gbm tuned and

gbm user, we select the one with the most optimal metric value, which is reported in the output of the
h2oml estimation commands. We can also use

. h2omlestat metrics

to report the performance metrics for the current estimation model.

And we can compare different metrics side by side for all models more easily by using

. h2omlgof gbm_tuned gbm_user gbm_ref

Evaluate predictive performance and compare differentmethods. Predictive performance of amodel

is typically evaluated on an external testing dataset. The h2omlpostestframe command provides a

convenient way of specifying a testing frame for all postestimation analyses:

. h2omlpostestframe test

Here test is our H2O testing frame. This command does not physically change the current frame

from train to test. It instead specifies that all relevant postestimation commands use the test frame

in the computations instead of their specific default frames, which may be training, validation, or cross-

validation depending on the estimation.

After binary or multiclass classification, we can evaluate model predictive performance by using the

confusion matrix:

. h2omlestat confmatrix

After binary classification, we can also explore thresholds that are optimal for various metrics

. h2omlestat threshmetric

Here we chose to use a GBM method. We can also consider using a random forest method. We would

repeat all the above steps but now using the rfbinclass command for estimation to select the best

random forest model, say rf tuned. We would then use the above commands to compare the predictive

performances of the two models or use

. h2omlgof gbm_tuned rf_tuned

to compare different performance metrics side by side. We can compare different methods using

precision–recall and ROC curves:

. h2omlgraph prcurve, models(gbm_tuned rf_tuned)

. h2omlgraph roc, models(gbm_tuned rf_tuned)

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 37

Obtain predictions. Once the best model is chosen, we can use it to compute predictions. Depending on

the research question, we can compute predictions for an entirely new dataset, or we can use the original

data. Here we obtain predictions for our original data frame.

. _h2oframe change data

. h2omlpredict

Explain predictions. The h2oml suite provides several commands for explaining predictions. We can

evaluate overall predictors’ importance that quantifies the effect of each predictor on the model’s predic-

tions:

. h2omlgraph varimp

We can also use the partial dependence plot (PDP) and the individual conditional expectation (ICE)

plot to visually explore predictor dependence on the response:

. h2omlgraph pdp predictors

. h2omlgraph ice predictor

And, after regression and binary classification, we can use Shapley additive explanations (SHAP)

values to explore predictor contributions to the prediction of the response:

. h2omlgraph shapvalues

. h2omlgraph shapsummary

Tour of machine learning commands
In this section, we illustrate the usage of the h2oml command with applications to several real-world

datasets. We start by showing how to start an H2O cluster and convert your Stata dataset into an H2O

frame. We then illustrate the basic steps for training machine learning methods and provide predictions

for binary classification and for regression. We also explore the effect of categorical predictors on the

performance of ensemble decision tree methods and demonstrate how to use these methods to detect

important predictors. We also show a quick analysis of a count response by using a gradient boosting

Poisson regression.

Examples are presented under the following headings:

Prepare your data for H2O machine learning in Stata
End-to-end binary classification analysis

Example 1: Data setup
Example 2: Reference binary classification using GBM
Example 3: Model selection and hyperparameter tuning
Example 4: Method selection and prediction
Example 5: Classification prediction on new data
Example 6: Explaining classification prediction
Example 7: Shutting down the H2O cluster

Regression analysis
Example 8: Data setup
Example 9: Regression using random forest
Example 10: Hyperparameter tuning using random forest

Effect of categorical predictors
Example 11: Data setup
Example 12: Effect of categorical predictors on ensemble decision tree methods

Detecting nuisance predictors
Example 13: Detecting nuisance predictors with ensemble decision tree methods

Gradient boosting Poisson regression
Example 14: Explaining Poisson regression predictions

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 38

Prepare your data for H2O machine learning in Stata

Before using any of the H2O machine learning methods in Stata, you need to connect to or initialize

an H2O server by using the h2o init command. The command first checks whether an H2O cluster is

already running on the local machine and uses that cluster if so; otherwise, it attempts to start a new

cluster. For details, see [H2OML] H2O setup.

We first use the h2o init command to start an H2O cluster.

. h2o init

Suppose we have an external data.csv file saved in Stata’s current directory. We can import it as an

H2O frame by typing

. _h2oframe import data.csv, into(data)

or if we already have our data loaded into Stata, we can store it as an H2O frame by typing

. _h2oframe put, into(data)

In the above, we put our data into the H2O cluster as an H2O frame and called it data. To be able to
work with the data frame, we need to change it to be the current working frame:

. _h2oframe change data

Before starting any H2O analysis, we recommend that you describe the data to ensure that the H2O

variable types are as expected. This is important because the implementation of H2O machine learning

methods can vary depending on the types of the response and predictors.

. _h2oframe describe

Suppose our data have two variables: y and x. To run a regression for y on x using GBM with default

settings, we can now type

. h2oml gbregress y x

Or we can use random forest with default settings by typing

. h2oml rfregress y x

After estimation, we can use any postestimation command from [H2OML] h2oml postestimation.

End-to-end binary classification analysis

In this section, we provide an end-to-end analysis for a binary classification problem using gradient

boosting binary classification. The examples comprise tuning, performance analysis, and prediction

explainability.

Example 1: Data setup
Consider data from a fictional company, Telco, that provides home phone and Internet services in

California. The data have been made available by IBM. We want to build a predictive model to predict

the behavior of a customer who is more likely to churn. churn.dta contains 7,043 observations and 26
variables. The binary response churn indicates whether a customer left within the last month or is still

using Telco’s services. The predictors include customers’ demographic information such as gender and

age, customers’ account information such as payment period and duration of services, customers’ service

types such as whether a customer signed up for Internet, phone, device protection, etc.

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 39

The goal of this example is to build a predictive model that will predict the behavior of a customer

who is more likely to churn or retain the company’s services.

As we described in Prepare your data for H2O machine learning in Stata, we start by reading the

dataset as an H2O frame. We then describe the frame to make sure that variables (H2O columns) have

the intended data types by using the h2oframe describe command. Recall that h2o init initiates

an H2O cluster and h2oframe put loads the current Stata dataset into an H2O frame. For details, see

[H2OML] H2O setup.

. use https://www.stata-press.com/data/r18/churn
(Telco customer churn data)
. h2o init
(output omitted)

. _h2oframe put, into(churn)
Progress (%): 0 100
. _h2oframe change churn
. _h2oframe describe

Rows: 7043
Cols: 26

Column Type Missing Zeros +Inf -Inf Cardinality

zipcode int 0 0 0 0
latitude real 0 0 0 0
longitude real 0 0 0 0
tenuremonths int 0 11 0 0
monthlycharges real 0 0 0 0
totalcharges real 11 0 0 0
country enum 0 7043 0 0 1
state enum 0 7043 0 0 1
city enum 0 4 0 0 1129
gender enum 0 3488 0 0 2
seniorcitizen enum 0 5901 0 0 2
partner enum 0 3641 0 0 2
dependents enum 0 5416 0 0 2
phoneservice enum 0 682 0 0 2
multiplelines enum 0 3390 0 0 3
internetserv enum 0 2421 0 0 3
onlinesecurity enum 0 3498 0 0 3
onlinebackup enum 0 3088 0 0 3
deviceprotect enum 0 3095 0 0 3
techsupport enum 0 3473 0 0 3
streamtv enum 0 2810 0 0 3
streammovie enum 0 2785 0 0 3
contract enum 0 3875 0 0 3
paperlessbill enum 0 2872 0 0 2
paymethod enum 0 1544 0 0 4
churn enum 0 5174 0 0 2

For definitions of data types in H2O, see https:/www.stata.com/h2o/h2oframe_intro.html. Specifi-

cally, enum refers to categorical or factor columns in an H2O frame, real to numeric columns with

float or double values, and int to numeric columns with integer values. For example, here churn
has the expected type enum. If the data types are incorrect, h2oframe provides commands to convert

an H2O frame column to the desired data type; see https://www.stata.com/h2o/h2oframe.html. You may

notice that the predictor totalcharges has 11 missing values. As we discussed in Decision trees of

[H2OML] Intro, tree-based methods naturally handle missing values.

https:/www.stata.com/h2o/h2oframe_intro.html
https://www.stata.com/h2o/h2oframe.html

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 40

Next we split our data into training and testing frames with 80% of observations in the training sample.

We will use cross-validation on training data during estimation to control for overfitting.

. _h2oframe split churn, into(train test) split(0.8 0.2) rseed(19)

. _h2oframe change train

Example 2: Reference binary classification using GBM
As we discussed in Model selection in machine learning of [H2OML] Intro, the analysis should start

by defining a baseline or reference performance.

For classification problems, it is recommended to first check whether the dataset is imbalanced.

. tabulate churn
Churning

status Freq. Percent Cum.

No 5,174 73.46 73.46
Yes 1,869 26.54 100.00

Total 7,043 100.00

Our dataset suffers from imbalance. Therefore, we will use the stratification method for cross-

validation to ensure that the cross-validation samples maintain the same data imbalance. Following the

literature on measuring performance for imbalanced data (Davis and Goadrich 2006), we will use area

under the precision–recall curve (AUCPR) as a performance metric in our analysis.

Next, for convenience, let’s create a global macro, predictors, in Stata to store the names of pre-
dictors.

. global predictors latitude longitude tenuremonths monthlycharges totalcharges
> gender seniorcitizen partner dependents phoneservice multiplelines
> internetserv onlinesecurity onlinebackup streamtv techsupport streammovie
> contract paperlessbill paymethod deviceprotect

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 41

As a reference model, we fit a GBM model with a 3-fold stratified cross-validation and default values

for other settings. We specify the h2orseed(19) option for reproducibility; see [H2OML] H2O repro-

ducibility.

. h2oml gbbinclass churn $predictors, h2orseed(19) cv(3, stratify)
Progress (%): 0 10.4 48.5 82.4 100
Gradient boosting binary classification using H2O
Response: churn
Loss: Bernoulli
Frame: Number of observations:

Training: train Training = 5,643
Cross-validation = 5,643

Cross-validation: Stratify Number of folds = 3
Model parameters
Number of trees = 50 Learning rate = .1

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 5 No. of bins cat. = 1,024
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .3293387 .411338
Mean class error .1603572 .2338787

AUC .9163226 .8500772
AUCPR .8023966 .6584908

Gini coefficient .8326452 .7001545
MSE .1034999 .1350446

RMSE .321714 .3674841

For detailed interpretation of the output, see example 1 of [H2OML] h2oml gbm.

Although we are mainly interested in cross-validation metrics, we still need to examine the training

metrics to make sure that we slightly overfit the training data to avoid underfitting. The latter can be

checked by exploring the difference between training and cross-validation metrics, which should be

positive for the AUCPR metric. However, if the difference between the validation and training metrics is

large, it indicates that the model is too tailored to the training data and may not generalize well to new

data. In the literature, there is no clear recommendation on how large the difference between training and

validation metrics should be to indicate severe overfitting. Each case should be evaluated individually

and with caution. For details, see Valdenegro-Toro and Sabatelli (2023). In our example, the positive

difference between the training and cross-validation AUCPR values suggests that our model does overfit

the training data. The cross-validation AUCPR for the reference model is approximately 0.658.

We store the reference estimation results for later comparison using the h2omlest store command.

. h2omlest store gbm_default

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 42

It is helpful to assess the variance of each metric over the folds to ensure that the model performance

does not depend on the specific split of the data. Large variation of the cross-validation metrics over the

folds may lead to poor generalization of the model to new data. In such cases, it is recommended to adjust

the number of folds or examine the data to identify the sources of variability. We can use h2omlestat
cvsummary to display cross-validation summary.

. h2omlestat cvsummary
Cross-validation summary using H2O

Metric Mean Std. dev. Fold 1 Fold 2

Log loss .4113427 .0038855 .4085804 .4157856
F1 .6401071 .0044256 .6358885 .6397188
F2 .6954293 .0055981 .6891994 .6970509

F0.5 .5929428 .0039657 .5902329 .591101
Accuracy .7806169 .0012531 .7793031 .7817988

Precision .5651822 .0039084 .5632716 .5625966
Recall .7379531 .0069124 .73 .7413442

Specificity .7959458 .0011321 .7969871 .7961095
Misclassification .2193831 .0012531 .2206969 .2182012
Mean class error .2330506 .0029933 .2365065 .2312731
Max. class error .2620469 .0069124 .27 .2586558

Mean class accuracy .7669494 .0029933 .7634935 .7687268
Misclassification count 412.6667 4.618802 418 410

AUC .8505131 .0040418 .8526636 .8458507
AUCPR .6597555 .0045358 .6628664 .654551

MSE .1350454 .0017733 .1340862 .1370917
RMSE .3674799 .0024083 .3661779 .370259

Metric Fold 3

Log loss .4096621
F1 .6447141
F2 .7000377

F0.5 .5974944
Accuracy .7807487

Precision .5696784
Recall .742515

Specificity .7947407
Misclassification .2192513
Mean class error .2313722
Max. class error .257485

Mean class accuracy .7686278
Misclassification count 410

AUC .8530251
AUCPR .6618491

MSE .1339582
RMSE .3660029

In our example, the variation of the cross-validation metrics across folds, that is,AUCPR, is small. The

mean value of the cross-validation AUCPR is around 0.660, which is slightly different from the cross-

validation AUCPR of 0.658 reported by h2oml gbbinclass. This difference is expected because of how

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 43

the two commands compute cross-validation metrics. h2omlestat cvsummary computes metrics sepa-
rately for each fold and reports their average value, whereas h2oml gbbinclass combines all folds into
one and computes a single AUCPR value.

Example 3: Model selection and hyperparameter tuning
Hyperparameters, such as the number of trees and learning rate, control the performance of a ma-

chine learning model. Choosing the “right” hyperparameters can substantively improve both the model

performance and its ability to be generalized to new data. Poorly selected hyperparameters, on the other

hand, can lead to underfitting or overfitting. The process of selecting hyperparameters to achieve optimal

model performance is known as hyperparameter tuning.

In example 5 of [H2OML] h2oml gbm, we demonstrated the detailed steps of hyperparameter tuning

for this example. Here we use the final selected model:

. h2oml gbbinclass churn $predictors, h2orseed(19) cv(3, stratify)
> ntrees(100) lrate(0.05) predsamprate(0.15)
Progress (%): 0 28.7 57.2 78.7 96.4 100
Gradient boosting binary classification using H2O
Response: churn
Loss: Bernoulli
Frame: Number of observations:

Training: train Training = 5,643
Cross-validation = 5,643

Cross-validation: Stratify Number of folds = 3
Model parameters
Number of trees = 100 Learning rate = .05

actual = 100 Learning rate decay = 1
Tree depth: Pred. sampling rate = .15

Input max = 5 Sampling rate = 1
min = 5 No. of bins cat. = 1,024
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .3531063 .4026141
Mean class error .1784776 .2313897

AUC .8992847 .8565935
AUCPR .7610732 .673929

Gini coefficient .7985693 .7131869
MSE .1126847 .1314475

RMSE .3356854 .3625569

By tuning, we increased the cross-validation AUCPR from 0.658 to 0.674. The improvement is small,

because we explored only a small portion of the hyperparameter space in this example. Hyperparameter

tuning is an iterative process that requires many iterations to sufficiently explore the hyperparameter

space.

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 44

Let’s compare the best model, which we store as gbm tuned, with the reference model from the

previous example based on other metrics by using the h2omlgof command.

. h2omlest store gbm_tuned

. h2omlgof gbm_default gbm_tuned
Performance metrics for model comparison using H2O
Training frame: train

gbm_def~t gbm_tuned

Training
No. of observations 5,643 5,643

Log loss .3293387 .3531063
Mean class error .1603572 .1784776

AUC .9163226 .8992847
AUCPR .8023966 .7610732

Gini coefficient .8326452 .7985693
MSE .1034999 .1126847

RMSE .321714 .3356854

Cross-validation
No. of observations 5,643 5,643

Log loss .411338 .4026141
Mean class error .2338787 .2313897

AUC .8500772 .8565935
AUCPR .6584908 .673929

Gini coefficient .7001545 .7131869
MSE .1350446 .1314475

RMSE .3674841 .3625569

In the output, the first section reports the training results, and the second section reports the cross-

validation results. Looking at the cross-validation results, we see that tuning improved the model per-

formance for all metrics. The log loss, mean of per-class error rates, mean squared error (MSE), and root

mean squared error (RMSE) are all smaller for the tuned model, whereas area under the curve (AUC),

AUCPR, and the Gini coefficient are larger for the tuned model, all of which indicate better performance.

In addition to tuning, we may also refine the list of predictors based on variable importance.

. h2omlgraph varimp

onlinebackup

monthlycharges

techsupport

paymethod

dependents

internetserv

onlinesecurity

totalcharges

contract

tenuremonths

.05 .1 .15
Proportion importance

Variable importance plot using H2O

Based on the above graph, we may decide to drop the predictor onlinebackup.

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 45

Variable selection with cross-validation requires careful implementation to avoid so-called data leak-

age, where the training data contain information that would not be available during prediction on the

testing data; see Raschka (2020) for details.

Example 4: Method selection and prediction
In example 5 of [H2OML] h2oml gbm, we used hyperparameter tuning to select the best GBM model.

Instead of GBM, we may consider other methods such as random forest or logistic regression. In this

example, we compare GBM and random forest.

Instead of tuning the random forest model following similar steps from example 5 of [H2OML] h2oml

gbm, for simplicity, we pretend that the following model is our tuned model for random forest. We also

store the working model as rf tuned by using the h2omlest store command.

. h2oml rfbinclass churn $predictors, h2orseed(19) cv(3, stratify)
> ntrees(200) minobsleaf(2)
Progress (%): 0 3.5 10.2 15.1 20.0 36.5 52.9 70.1 75.0 78.6 82.4 86.5 90.4 96.2
> 100
Random forest binary classification using H2O
Response: churn
Frame: Number of observations:

Training: train Training = 5,643
Cross-validation = 5,643

Cross-validation: Stratify Number of folds = 3
Model parameters
Number of trees = 200

actual = 200
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 16 No. of bins cat. = 1,024
avg = 19.6 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 2 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .4153088 .416142
Mean class error .2396365 .230295

AUC .8507327 .8453018
AUCPR .6526923 .6452846

Gini coefficient .7014654 .6906036
MSE .1335578 .1358418

RMSE .3654556 .3685673

. h2omlest store rf_tuned

To choose the best method, we compute performance metrics using the testing frame. To compute

AUCPR for the testing frame, we use the h2omlpostestframe command to specify the name of the

frame, test in our case, to be used by a subset of postestimation commands for computations.

. h2omlpostestframe test
(testing frame test is now active for h2oml postestimation)

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 46

By default, the specified frame is considered to be a testing frame and is labeled as “Testing” in the

output, but you can specify your own label by using the framelabel() option. To report the metrics for
the selected testing frame, we use the h2omlestat metrics command.

. h2omlestat metrics
Performance metrics using H2O
Random forest binary classification
Response: churn
Testing frame: test
Number of observations = 1,400

Metric Testing

Log loss .4101135
Mean class error .2241742

AUC .85292
AUCPR .6847162

Gini coefficient .70584
MSE .1328891

RMSE .3645396

We next compute the metrics for the testing frame for the GBM model after restoring its estimation

results.

. h2omlest restore gbm_tuned
(results gbm_tuned are active now)
. h2omlpostestframe test
(testing frame test is now active for h2oml postestimation)
. h2omlestat metrics
Performance metrics using H2O
Gradient boosting binary classification
Response: churn
Loss: Bernoulli
Testing frame: test
Number of observations = 1,400

Metric Testing

Log loss .3964014
Mean class error .2030941

AUC .8649185
AUCPR .6963289

Gini coefficient .7298371
MSE .1284349

RMSE .3583782

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 47

We can compare the results side by side more easily by using the h2omlgof command.

. h2omlgof rf_tuned gbm_tuned
Performance metrics for model comparison using H2O
Testing frame: test

rf_tuned gbm_tuned

Testing
No. of observations 1,400 1,400

Log loss .4101135 .3964014
Mean class error .2241742 .2030941

AUC .85292 .8649185
AUCPR .6847162 .6963289

Gini coefficient .70584 .7298371
MSE .1328891 .1284349

RMSE .3645396 .3583782

Based on this example, GBM outperforms random forest because AUCPR for GBM is higher. Thus,

we choose GBM as our selected best method. We can also compare methods (or models) based on ROC

curves, which plots the true-positive rate versus false-positive rate for different thresholds. The closer

the curve to the upper left corner, the better the model fit. Because the test frame has been set for both
models, the reported results correspond to the testing frame. For details, see [H2OML] h2omlgraph roc.

. h2omlgraph roc, models(gbm_tuned rf_tuned)

0

.2

.4

.6

.8

1

T
ru

e-
po

si
tiv

e
ra

te

0 .2 .4 .6 .8 1
False-positive rate

gbm_tuned
rf_tuned
Reference

gbm_tuned AUC = .8649; rf_tuned AUC = .8529
Testing frame: test

ROC curves using H2O

Based on the ROC results, as we expected, the GBM method slightly outperforms the random forest

method.

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 48

Another popular approach to compare classification predictions between different methods and mod-

els is by using a confusion matrix, which reports the numbers of correctly and incorrectly predicted

outcomes. Below, we use h2omlestat confmatrix to produce the confusion matrix after the GBM

estimation for the testing frame we selected earlier with h2omlpostestframe.

. h2omlestat confmatrix
Confusion matrix using H2O
Testing frame: test

Predicted
churn No Yes Total Error Rate

No 754 269 1,023 269 .263
Yes 54 323 377 54 .143

Total 808 592 1,400 323 .231
Note: Probability threshold .2378 that maximizes F1

metric used for classification.

In H2O, the “positive” class corresponds to the second label in lexicographical order, which in our

case is Yes. To see the levels of the categorical variable, type

. _h2oframe levelsof churn
‘”No”’ ‘”Yes”’

From the output, 323 and 754 correspond to true-positive and true-negative responses, respectively,

and the misclassification error rate is 0.231. By default, the threshold for binary classification of 0.2378

is selected based on maximizing the F1 metric. Observations with predicted values above this threshold

will be classified as “Yes”, and the remaining observations will be classified as “No”. You may want

to see the results based on a different metric. For instance, consider a scenario where a company uses

predictions to offer additional discounts or free services to customers who are likely to churn. If these

benefits are costly, the company would prioritize predictions that maximize precision. To report the

confusion matrix using a different metric, use the metric() option.

We encourage you to perform the same analysis for the rf tuned model to verify that GBM indeed

outperforms random forest on the testing frame.

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 49

Example 5: Classification prediction on new data
Continuing with example 4, suppose the company collected new data stored in newchurn.dta. It

wants to predict the probability of churn for these new customers based on the GBM model gbm tuned.

Let’s read the new dataset as an H2O frame and list the first two observations to see some of the new

data by using the h2oframe list command.

. use https://www.stata-press.com/data/r18/newchurn
(Telco customer churn new data)
. _h2oframe put, into(newchurn) replace
Progress (%): 0 100
. _h2oframe change newchurn
. _h2oframe list in 1/2

zipcode latitude longitude tenure~s monthlyc~s totalcharges
1 95670 38.6027222 -121.2799149 49 75.1999969 3678.3000488
2 91737 34.2452888 -117.6425018 4 88.8499985 372.4500122

country state city gender senior~n partner
1 United States California Rancho Cordova Male No No
2 United States California Rancho Cucamonga Female Yes No

depend~s phones~e multip~s internets~v online~y online~p device~t
1 No Yes Yes Fiber optic No No No
2 No Yes Yes Fiber optic No No Yes

techsu~t streamtv stream~e contract paperl~l paymethod
1 No No No Month to month No Credit card
2 No No Yes Month to month Yes Electronic check
[2 rows x 25 columns]

The probabilities of churning and the corresponding classes can be predicted by using the

h2omlpredict command. By default, this command predicts classes after classification. To predict

probabilities instead, we need to specify the pr option with h2omlpredict. In example 4, we used

h2omlpostestframe to set the postestimation frame to test for the gbm tuned model. To obtain pre-

dictions for the new dataset, specify the frame(newchurn) option with h2omlpredict. Below, we

predict both classes and probabilities for the new dataset using the gbm tuned model.

. h2omlest restore gbm_tuned
(results gbm_tuned are active now)
. h2omlpredict churnhat, frame(newchurn)
(option class assumed; predicted class)
Progress (%): 0 100
. h2omlpredict churnprob*, frame(newchurn) pr
Progress (%): 0 100

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 50

By default, the threshold that maximizes the F1metric is used to predict classes based on the predicted

probabilities. You can specify a different value for the threshold using the threshold() option. To

display the threshold values that maximize or minimize different classification metrics, we type

. h2omlestat threshmetric
Maximum or minimum metrics using H2O
Testing frame: test

Metric Max/Min Threshold

F1 .6667 .2378
F2 .7816 .1496

F0.5 .6659 .5142
Accuracy .8171 .5142

Precision 1 .9081
Recall 1 .0236

Specificity 1 .9081
Min. class accuracy .7849 .2905
Mean class accuracy .7969 .2378

True negatives 1023 .9081
False negatives 0 .0236 +
True positives 377 .0236

False positives 0 .9081 +
True-negative rate 1 .9081

False-negative rate 0 .0236 +
True-positive rate 1 .0236

False-positive rate 0 .9081 +
MCC .5332 .2378

+ identifies minimum metrics.

The table above displays the set of classification metrics with the corresponding best thresholds; see

[H2OML] h2omlestat threshmetric. In the reported table, the thresholds provide the best cutpoints for

the classification based on the predicted probabilities such that the corresponding metric is optimal. For

example, for Precision, the best threshold is 0.9081. For the definition of metrics, see [H2OML] met-

ric option.

The generated variables for the classes and class probabilities are available in the newchurn frame,

because we specified frame(newchurn). Let’s list a few values for the predicted classes and probabili-

ties.

. _h2oframe list churnhat churnprob*
churnhat churnp~1 churnp~2

1 No .7780746 .2219254
2 Yes .2161581 .7838419
3 No .9001728 .0998272
4 No .8937768 .1062232
5 No .8101463 .1898537
6 Yes .2203342 .7796658
7 No .8987335 .1012665
8 Yes .4977883 .5022117
[8 rows x 3 columns]

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 51

The variables (H2O columns) churnhat, churnprob1, and churnprob2 contain the predicted classes
and the corresponding predicted probabilities of not churning or churning. In our example, for instance,

there is only a 22% chance that the first customer will churn compared with a 78% chance of churning

for the second customer.

Example 6: Explaining classification prediction
In this example, we try to answer one of the fundamental questions of machine learning: Why does

my model predict what it predicts? In machine learning, explainability refers to the ability of the method

to describe how a model arrives at a specific prediction in a way that is understandable to humans.

This is important to ensure that, under certain conditions, predictions are not only accurate but also

understandable and justifiable.

From Interpretation and explanation in [H2OML] Intro, there are two types of explainability methods:

local and global. Local models explain individual predictions and approximate the machine learning

model in the vicinity of one observation. The popular methods include ICE curves and SHAP values,

which can be obtained by using the h2omlgraph ice and h2omlgraph shapvalues commands. A

global model describes an average behavior of a machine learning model. PDPs, variable importance,

and global surrogate models are some of the popular choices.

We start with global methods and then switch to local methods. In example 4, we selected gbm tuned
as the best model. In this example, we want to explore predictions for the original churn dataset (without
splitting it into training and testing frames). We start by restoring the gbm tuned model:

. h2omlest restore gbm_tuned
(results gbm_tuned are active now)

Now we use h2omlpredict to predict classes for the entire churn dataset. We specify the

frame() option to obtain predictions for the churn frame instead of the test frame we selected with

h2omlpostestframe earlier in example 4.

. h2omlpredict churnhat, frame(churn)
(option class assumed; predicted class)

We use these predictions to build global surrogate models, which are some of the simplest global

explainable methods. They approximate the prediction of a machine learning model, churnhat in our

case, using a model that is easier to interpret such as a decision tree. See Global surrogate models in

[H2OML] Intro.

To demonstrate, we use a classification tree with maximum depth equal to, say, 3 and other parameters

at their default values as a global surrogate model. In practice, the depth of the tree and other parameters

should be treated as hyperparameters and learned from data. To obtain one classification tree, we use the

ntrees(1) option with h2oml rfbinclass.

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 52

In example 1, we set our working frame as train. Thus, before running the estimation command
h2oml rfbinclass on the churn dataset, we need to physically change the working frame to churn by
using the h2oframe change command.

. _h2oframe change churn

. h2oml rfbinclass churnhat $predictors, h2orseed(19) ntrees(1) maxdepth(3)
Progress (%): 0 100
Random forest binary classification using H2O
Response: churnhat
Frame: Number of observations:

Training: churn Training = 2,523
Model parameters
Number of trees = 1

actual = 1
Tree depth: Pred. sampling value = -1

Input max = 3 Sampling rate = .632
min = 3 No. of bins cat. = 1,024
avg = 3.0 No. of bins root = 1,024
max = 3 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Log loss .4182261
Mean class error .1828537

AUC .8678704
AUCPR .727738

Gini coefficient .7357409
MSE .1378874

RMSE .3713319

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 53

It is easier to interpret the results from a classification tree visually. The steps on how to obtain an

image from the DOT file are provided in [H2OML] DOT extension. We follow those steps to display

the classification tree below; see [H2OML] h2omltree. The dotsaving() option of the h2omltree
command generates and saves a DOT file, which can be used to plot the classification tree using the

Graphviz software, see https://graphviz.org.

. h2omltree, dotsaving(churntree.dot, replace
> title(Surrogate tree for class ”No”))

Surrogate tree for class "No"
onlinebackup

onlinesecurity

No

onlinesecurity

[NA]
No Internet service

Yes

paperlessbill

[NA]
No

No Internet service

tenuremonths

Yes

tenuremonths

No

contract

[NA]
No Internet service

Yes

0.23

[NA]
Yes

0.364

No

0.541

< 21.5

0.88

[NA]
>= 21.5

0.357

[NA]
< 43.5

0.798

>= 43.5

0.798

Month to month

0.997

[NA]
One year
Two year

The NA’s on the tree indicate the split for the missing values, if any. The values of the terminal nodes

can be interpreted as probabilities of class No. For example, the highest-predicted probability of not

churning (0.997) or the lowest probability of churning (1−0.997 = 0.003) occurs for the customers who

have a one- or two-year contract with the company and are either not subscribed to any Internet services

or use online backup and online security services.

In example 3, we used h2omlgraph varimp to display important predictors for the gbm tunedmodel.
We use some of these important predictors to produce PDP. PDP is a global explainable method that shows

the marginal effect that the specified predictors have on the predicted outcome of a machine learning

model (gbm tuned here); see [H2OML] h2omlgraph pdp.

https://graphviz.org

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 54

Our current estimation results are from the h2oml rfbinclass command, so we first use h2omlest
restore to restore the gbm tuned estimation results. Next we use h2omlpostestframe with the

notest option to specify that the churn frame be used by the subsequent postestimation commands

but not considered a testing frame.

. h2omlest restore gbm_tuned
(results gbm_tuned are active now)
. h2omlpostestframe churn, notest
(frame churn is now active for h2oml postestimation)
. h2omlgraph pdp contract tenuremonths onlinesecurity techsupport, combine
Progress (%): 0 75.0 100

.1

.15

.2

.25

.3

P
ar

tia
l d

ep
en

de
nc

e

Month to month One year Two year
contract

.15

.2

.25

.3

.35

P
ar

tia
l d

ep
en

de
nc

e
0 20 40 60 80

tenuremonths

.23

.24

.25

.26

.27

.28

P
ar

tia
l d

ep
en

de
nc

e

No No Internet service Yes
onlinesecurity

.24

.25

.26

.27

.28

P
ar

tia
l d

ep
en

de
nc

e

No No Internet service Yes
techsupport

Frame: churn

Partial dependence plot using H2O

The PDP pattern (red line in the plot) agrees with the results from the surrogate tree. For instance, the

probability of churning (shown on the 𝑦 axis) decreases for customers with a one- or two-year contract
(contract) and for customers who use the company’s services longer (tenuremonths).

For local explainability, we can use SHAP values. A SHAP value estimates the contribution of each

predictor to the prediction for an individual observation. Let’s consider observation 19 and explain its

prediction from the gbm tuned model. Below, we list some of the predictors for this observation, which
corresponds to a female customer who used a month-to-month contract service for 9 months and has both

the observed churn and predicted churnhat values of Yes.

. _h2oframe list churn churnhat contract totalcharges onlinesecurity
> tenuremonths gender in 19

churn churnhat contract totalc~s online~y tenure~s gender
1 Yes Yes Month to month 857.25 No 9 Female
[1 row x 7 columns]

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 55

We now use h2omlgraph shapvalues to produce SHAP values for observation 19 for the top 10

SHAP-important predictors.

. h2omlgraph shapvalues, obs(19) top(10) xlabel(-2.5(0.5)2)

+.7785

-.1307

+.1485

+.1646

+.1755

+.1796

+.228

+.3337

+.3859

+.4896

-.9538

ƒ(x) = .2063

E[ƒ(x)] = -1.593
Remaining predictors

paperlessbill = No

streamtv = Yes

onlinesecurity = No

latitude = 34.06395

paymethod = Electronic check

partner = No

tenuremonths = 9

internetserv = Fiber optic

contract = Month to month

dependents = Yes

P
re

di
ct

or

-2.5 -2 -1.5 -1 -.5 0 .5 1 1.5 2
SHAP contribution

Obs. = 19; prediction = Yes
Frame: churn

SHAP values using H2O

The blue bars show predictors that increase probability of churn, and red bars indicate the opposite.

The SHAP values agree with previous findings. Month-to-month contract, small tenuremonths, and
not using online security services contribute positively to this particular customers’ churning. On the

other hand, having a dependent contributes to retaining this particular customer to continue using the

company’s services.

We can also display the SHAP summary plot, also known as a beeswarm plot, for all observations and

predictors. The beeswarm plot shows both the magnitudes of SHAP values, which represent the contribu-

tion of a predictor to a particular prediction, and the SHAP-value distribution across many observations.

This allows you to quickly see which predictors are most important and how they influence the response.

For illustration purposes, we plot SHAP values for the top 4 SHAP-important predictors.

. h2omlgraph shapsummary, top(4) rseed(19)

internetserv

tenuremonths

dependents

contract

P
re

di
ct

or

-1.5 -1 -.5 0 .5 1
SHAP contribution

0

1

N
or

m
al

iz
ed

 p
re

di
ct

or
 v

al
ue

Frame: churn

SHAP summary using H2O

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 56

In the figure, the color map, titled as “Normalized predictor value”, indicates colors of the normalized

values of the predictors. For example, if a variable is not of the data type enum, such as tenuremonths,
then the smallest normalized variable value will be given a lighter blue color, and, as the values increase,

the color gradient will change from blue to red for the largest value of 1. Similarly, for a categorical

variable (enum), such as contract, the base level of the predictor will be given a lighter blue color,
and the color will change from blue to red according to the categories. Within each level, the observa-

tions are jittered for presentational purposes. To check the levels of a categorical variable (for example,

contract), type

. _h2oframe levelsof contract
‘”Month to month”’ ‘”One year”’ ‘”Two year”’

The predictors displayed on the 𝑦 axis are ranked based on SHAP predictor importance: predictors

with large absolute SHAP values are listed in descending order. From the SHAP summary plot, for the

contract predictor, a smaller value, which corresponds to the month-to-month option, increases the

probability of churn, and this probability decreases for the other contract options. Similarly, smaller

values of tenuremonths increase the probability of churn and vice versa.

Example 7: Shutting down the H2O cluster
Once you are finished with your analysis, you can disconnect from the H2O cluster by using

. h2o disconnect

This command closes the H2O session between Stata and the cluster. However, the H2O cluster con-

tinues running in the background. Later in the same Stata session, you can type h2o connect to rebuild
the connection to it and reaccess the resources it contains. If you want to force shutting down the cluster,

you can type

. h2o shutdown, force

The above completely shuts down the cluster, and all resources within the cluster are lost, including

any data (H2O frames) it contained.

If you want the H2O cluster to remain connected but would like to clear everything in memory, in-

cluding all data in H2O frames, you can type

. h2o clear

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 57

Regression analysis

In this section, we demonstrate analysis for the regression problem using random forest.

Example 8: Data setup
Consider the Ames housing dataset (De Cock 2011), ameshouses.dta, also used in a Kaggle com-

petition, which describes residential houses sold in Ames, Iowa, between 2006 and 2010. It contains

about 80 housing (and related) characteristics such as home size, amenities, and location. This dataset is

often used for building predictive models for home sale price, saleprice. We will use random forest to

model home sale price and evaluate its predictive performance. Here we will use just a few predictors to

demonstrate some of the h2oml features.

Before putting the dataset into an H2O frame, we do several data transformations in Stata. In particular,

because saleprice is right-skewed (type histogram saleprice), we perform logarithmic transforma-

tion. We also generate the houseage variable, which records the age of the house at the time of a sales

transaction.

. use https://www.stata-press.com/data/r18/ameshouses
(Ames house data)
. generate logsaleprice = log(saleprice)
. generate houseage = yrsold - yearbuilt
. drop saleprice yearbuilt yrsold

We put the dataset into an H2O frame by using the h2oframe put command. We split the data into

training and validation frames (without a testing frame) with 75% of observations in the training frame.

. h2o init
(output omitted)

. _h2oframe put, into(house)
Progress (%): 0 100
. _h2oframe change house

. _h2oframe split house, into(train valid) split(0.75 0.25) rseed(19)

. _h2oframe change train

The steps of method selection and prediction for the regression are the same as for binary classifica-

tion, discussed in example 3 and example 4. Therefore, in this example, we focus only on tuning.

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 58

Example 9: Regression using random forest
As we discussed in Model selection in machine learning of [H2OML] Intro, we start by defining a

reference model, which in our case is a random forest with default parameters. We use the MSE metric,

computed on validation frame, to evaluate the performance of the model.

The dataset has a total of 46 predictors, but for simplicity, we include only 10 and create a global

macro, predictors, in Stata to store the names of these predictors.

. global predictors overallqual grlivarea exterqual houseage garagecars
> totalbsmtsf stflrsf garagearea kitchenqual bsmtqual
. h2oml rfregress logsaleprice $predictors, h2orseed(19) validframe(valid)
Progress (%): 0 21.9 100
Random forest regression using H2O
Response: logsaleprice
Frame: Number of observations:

Training: train Training = 1,099
Validation: valid Validation = 361

Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 18 No. of bins cat. = 1,024
avg = 19.9 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Deviance .0283991 .0218303
MSE .0283991 .0218303

RMSE .1685202 .1477508
RMSLE .0130751 .0114914

MAE .1163998 .1042066
R-squared .8240197 .8577693

The description and interpretation of the output of random forest is provided in example 1 of

[H2OML] h2oml rf. The definitions of metrics can be found in [H2OML] metric option.

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 59

The MSE for the validation frame is 0.022, which is our reference value for later. We also need to

make sure that we are slightly overfitting the training dataset. The above model does not overfit the

training dataset, because the training MSE is larger than the validation MSE. To visualize this, we plot the

validation curve using the h2omlgraph scorehistory command.

. h2omlgraph scorehistory
Training frame: train
Validation frame: valid

.02

.03

.04

.05

.06

D
ev

ia
nc

e

0 10 20 30 40 50
Number of trees

Training
Validation

Score history using H2O

We observe that the training error is higher than the validation error. This means that either the default

model is not complex enough to overfit the training dataset or we need more training data. In our case,

the former reason is more likely, because we used a simpler model with default hyperparameters, which

is sufficient for a reference model.

Example 10: Hyperparameter tuning using random forest
In this example, we explore different configurations of the hyperparameters to tune the random forest

model. In general, a well-tuned model substantially improves the model performance and generalizes

well to new data.

To demonstrate, we tune only two hyperparameters, the number of trees, ntrees(), and the minimum
number of observations required for splitting a leaf node, minobsleaf(), and use a small grid space with
a random grid search. In practice, hyperparameter tuning is an iterative process and often requires tuning

many more hyperparameters; see table 3 in [H2OML] Intro. When the number of hyperparameters and

the grid space are large, you can use the parallel() option to specify the number of models to build in
parallel during the grid search. Beware that the H2O results for models built in parallel may not always

be reproducible; see [H2OML]H2O reproducibility. By default, the models are built sequentially, which

may take some time for complicated tuning models.

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 60

. h2oml rfregress logsaleprice $predictors, h2orseed(19) validframe(valid)
> ntrees(400(50)500) minobsleaf(3(2)7)
> tune(grid(random, h2orseed(19)) metric(mse))
Progress (%): 0 100
Random forest regression using H2O
Response: logsaleprice
Frame: Number of observations:

Training: train Training = 1,099
Validation: valid Validation = 361

Tuning information for hyperparameters
Method: Random
Metric: MSE

Grid values
Hyperparameters Minimum Maximum Selected

Number of trees 400 500 450
Min. obs. leaf split 3 7 3

Model parameters
Number of trees = 450

actual = 450
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 12 No. of bins cat. = 1,024
avg = 15.1 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 3 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Deviance .0269402 .0208756
MSE .0269402 .0208756

RMSE .1641346 .144484
RMSLE .0127415 .0112297

MAE .1113531 .0995714
R-squared .83306 .8639893

To ensure H2O reproducibility, we specified h2orseed(19) for both the random forest model and

grid search. Despite tuning only a couple hyperparameters, we were able to reduce the validation MSE

metric from 0.022 to 0.021. To explore tuning further, you may try to include more hyperparameters and

consider a larger grid space.

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 61

To compare different configurations of hyperparameters with their respective metric values sorted

from the most to least optimal, we can use the h2omlestat gridsummary command.

. h2omlestat gridsummary
Grid summary using H2O

Min. obs.
Number of leaf

ID trees split MSE

1 450 3 .0208756
2 500 3 .0209012
3 400 3 .020924
4 400 5 .021525
5 450 5 .0215336
6 500 5 .0215765
7 500 7 .0221419
8 400 7 .022142
9 450 7 .0221425

Here the hyperparameter values are listed from the smallest to largest MSE. If you want to reduce

execution time in favor of a slightly lower model performance, you may select the third model instead

of the first (top) model. For this model, the number of trees is 400 compared with 450 for the top model,

but the MSE value is only slightly higher. We can select the third model for further analysis by typing

. h2omlselect id = 3

Effect of categorical predictors

As we discussed in Decision trees of [H2OML] Intro, the ensemble decision tree methods are biased

toward categorical predictors with many levels. In this example, we explore the effect of a categorical

predictor with many levels on performance of tree-based methods. Even though we focus on a GBM here,

similar results should also hold for a random forest.

Example 11: Data setup
We use a subset of the Lending Club dataset available in Kaggle to explore this phenomenon. Kaggle

is a platform for the machine learning community that provides datasets and other resources; see https:

//kaggle.com.

We start by initializing an H2O cluster and importing the dataset as an H2O frame by using the h2o
init and h2oframe put commands.

. h2o init

. use https://www.stata-press.com/data/r18/loan
(Lending club data)
. _h2oframe put, into(loan)
Progress (%): 0 100

Next we use the h2oframe split command to split the dataset into training and validation frames

with 80% of observations in the training frame.

. _h2oframe split loan, into(train valid) split(0.8 0.2) rseed(19)

. _h2oframe change train

https://kaggle.com
https://kaggle.com

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 62

Example 12: Effect of categorical predictors on ensemble decision tree methods
Consider the categorical predictor addr state with 50 levels that records the state where the loan

applicant lives. To show the importance of carefully treating categorical variables when performing

ensemble decision tree methods, we first run a GBM without paying special attention to categorical pre-

dictors.

Let’s define a global macro, predictors, to store the names of the predictors.

. global predictors loan_amnt int_rate emp_length annual_inc dti delinq_2yrs
> revol_util total_acc credit_lngth term home_owner purpose addr_state
> verification

Next we use h2oml gbbinclass to perform gradient boosting binary classification. We perform

validation using the valid frame and specify the h2orseed() option for H2O reproducibility. We use

200 trees, and, to avoid overfitting, we request an early stopping based on the AUC metric. We also

specify scoreevery(1) to score the AUC metric after each tree is added to the model to ensure H2O

reproducibility in the presence of early stopping.

. h2oml gbbinclass bad_loan $predictors, h2orseed(19) validframe(valid)
> ntrees(200) stop(5, metric(auc)) scoreevery(1)
Progress (%): 0 0.4 1.4 3.9 8.5 14.0 100
Gradient boosting binary classification using H2O
Response: bad_loan
Loss: Bernoulli
Frame: Number of observations:

Training: train Training = 131,294
Validation: valid Validation = 32,693

Model parameters
Number of trees = 200 Learning rate = .1

actual = 39 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 5 No. of bins cat. = 1,024
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Stopping criteria: No. of iterations = 5

Metric: AUC Tolerance = .001
Metric summary

Metric Training Validation

Log loss .4256225 .4381805
Mean class error .3405512 .3471389

AUC .7264524 .7081155
AUCPR .3827862 .3495525

Gini coefficient .4529049 .4162309
MSE .1337261 .1384392

RMSE .3656858 .3720742

Note: Metric is scored after every tree.

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 63

Let’s plot the variable importance by using the h2omlgraph varimp command.

. h2omlgraph varimp

total_acc

emp_length

revol_util

loan_amnt

dti

purpose

term

annual_inc

addr_state

int_rate

0 .1 .2 .3 .4 .5
Proportion importance

Variable importance plot using H2O

The variable addr state is one of the important variables.

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 64

Now to account for the many categories in addr state, we tune the hyperparameter binscat() on
a grid of values [16, 50].

. h2oml gbbinclass bad_loan $predictors, h2orseed(19) validframe(valid)
> ntrees(200) binscat(16(5)50) stop(5, metric(auc)) scoreevery(1)
> tune(grid(cartesian) metric(auc))
Progress (%): 0 100
Gradient boosting binary classification using H2O
Response: bad_loan
Loss: Bernoulli
Frame: Number of observations:

Training: train Training = 131,294
Validation: valid Validation = 32,693

Tuning information for hyperparameters
Method: Cartesian
Metric: AUC

Grid values
Hyperparameters Minimum Maximum Selected

No. of bins cat. 16 46 46

Model parameters
Number of trees = 200 Learning rate = .1

actual = 46 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 5 No. of bins cat. = 46
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Stopping criteria: No. of iterations = 5

Metric: AUC Tolerance = .001
Metric summary

Metric Training Validation

Log loss .4274797 .4368557
Mean class error .3422759 .3435895

AUC .7210886 .7100941
AUCPR .3725785 .3557051

Gini coefficient .4421772 .4201882
MSE .1344013 .1379741

RMSE .3666078 .3714487

Note: Metric is scored after every tree.

Based on the tuning information, the value of 46 for binscat() provides the highest AUC value.

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 65

The variable importance graph for the selected best model, displayed below, shows that after account-

ing for the many levels of the categorical variable addr state, its importance has decreased substan-
tially.

. h2omlgraph varimp

total_acc

emp_length

addr_state

revol_util

loan_amnt

term

dti

purpose

annual_inc

int_rate

0 .2 .4 .6
Proportion importance

Variable importance plot using H2O

Detecting nuisance predictors

Example 13: Detecting nuisance predictors with ensemble decision tree methods
Let’s use ensemble decision trees to detect important and nuisance predictors in the dataset. Here we

use a random forest, but the results should be similar for a GBM as well. We use a simulated dataset,

in which predictors important1 through important5 are important and noise1 through noise5 are

nuisance (random noise). For the data-generation details, see Wright, Ziegler, and König (2016).

We start by initializing an H2O cluster and importing the dataset as an h2oframe.
. use https://www.stata-press.com/data/r18/effect
(Simulated data with many nuisance predictors)
. h2o init
(output omitted)

. _h2oframe put, into(sim)
Progress (%): 0 100
. _h2oframe change sim

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 66

Next we run a random forest binary classification with default hyperparameter values and plot the

variable importance.

. h2oml rfbinclass y important1-important5 noise1-noise45, h2orseed(19)
Progress (%): 0 23.9 100
Random forest binary classification using H2O
Response: y
Frame: Number of observations:

Training: sim Training = 1,000
Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 15 No. of bins cat. = 1,024
avg = 18.6 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Log loss .6693054
Mean class error .3711672

AUC .689691
AUCPR .6739805

Gini coefficient .3793821
MSE .2227112

RMSE .4719228

. h2omlgraph varimp

noise30

noise23

noise7

noise1

noise45

important3

important5

important1

important2

important4

.02 .04 .06 .08
Proportion importance

Variable importance plot using H2O

All important predictors are in the top five, but the separation between the important and nuisance

predictors is not drastic. We can improve this by tuning the model.

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 67

We use a 3-fold modulo cross-validation and 500 trees. For illustration purposes, we train only hy-

perparameters that control the depth or complexity of the tree, maxdepth(), and the number of training
samples used to build a tree, samprate(). We use the AUC metric for training.

. h2oml rfbinclass y important1-important5 noise1-noise45, h2orseed(19)
> cv(3,modulo) ntrees(500) maxdepth(5(1)7) samprate(0.4(0.1)0.6)
> tune(metric(auc))
Progress (%): 0 100
Random forest binary classification using H2O
Response: y
Frame: Number of observations:

Training: sim Training = 1,000
Cross-validation = 1,000

Cross-validation: Modulo Number of folds = 3
Tuning information for hyperparameters
Method: Cartesian
Metric: AUC

Grid values
Hyperparameters Minimum Maximum Selected

Max. tree depth 5 7 6
Sampling rate .4 .6 .5

Model parameters
Number of trees = 500

actual = 500
Tree depth: Pred. sampling value = -1

Input max = 6 Sampling rate = .5
min = 6 No. of bins cat. = 1,024
avg = 6.0 No. of bins root = 1,024
max = 6 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .6169953 .6233988
Mean class error .3141157 .340729

AUC .7528826 .7385296
AUCPR .7392935 .7251183

Gini coefficient .5057653 .4770591
MSE .2130054 .2160959

RMSE .4615251 .4648612

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 68

From the tuning output, the respective selected best values for maxdepth() and samprate() are 6

and 0.5. Let’s plot the variable importance again.

noise10

noise23

noise7

noise45

noise1

important3

important5

important1

important2

important4

0 .05 .1 .15 .2
Proportion importance

Variable importance plot using H2O

Now there is a clearer separation between the important and nuisance predictors.

Gradient boosting Poisson regression

Example 14: Explaining Poisson regression predictions
In example 7 of [H2OML] h2oml gbm, we demonstrated how to perform a gradient boosting Poisson

regression. In this example, we want to explain the Poisson regression predictions using that model. We

repeat some of the steps from that example below and fit the final model.

We start by initializing an H2O cluster, opening the dataset in Stata, and importing the dataset to an

H2O frame.

. h2o init
(output omitted)

. use https://www.stata-press.com/data/r18/runshoes
(Running shoes)
. _h2oframe put, into(runshoes)
Progress (%): 0 100
. _h2oframe change runshoes

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 69

To perform a Poisson regression with h2oml gbregress, we specify the loss(poisson) option.

. h2oml gbregress shoes rpweek mpweek male age married trunning, h2orseed(19)
> loss(poisson)
Progress (%): 0 100
Gradient boosting regression using H2O
Response: shoes
Loss: Poisson
Frame: Number of observations:

Training: runshoes Training = 60
Model parameters
Number of trees = 50 Learning rate = .1

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 2 No. of bins cat. = 1,024
avg = 2.9 No. of bins root = 1,024
max = 4 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training

Deviance .3649675
MSE 1.064175

RMSE 1.031589
RMSLE .2691122

MAE .7149171
R-squared .4885824

Next we explain the prediction for the first observation in the runshoes frame by using the

h2omlgraph shapvalues command; see [H2OML] h2omlgraph shapvalues. You can follow the same

steps to explain predictions for other observations.

. h2omlgraph shapvalues, obs(1) xlabel(0.6(0.1)1.5)

+.0023

+.0076

-.0391

+.1935

+.3456

ƒ(x) = 1.339

E[ƒ(x)] = .8293

married = 0

male = 1

age = 29.5

rpweek = 6

mpweek = 42.5

P
re

di
ct

or

.6 .7 .8 .9 1 1.1 1.2 1.3 1.4 1.5
SHAP contribution

Obs. = 1; prediction = 3.816408
Training frame: runshoes

SHAP values using H2O

The blue bars represent predictors that increase the probability of purchasing running shoes, whereas

the red bars represent predictors that decrease it. For this observation, running 42.5 miles per week has

a positive effect on the number of shoes purchased, whereas an age of 29.5 has a negative effect.

h2oml — Introduction to commands for Stata integration with H2O machine learning+ 70

We continue our analysis and produce a PDP for the predictors mpweek and age by using the

h2omlgraph pdp command.

. h2omlgraph pdp mpweek age, combineopts(cols(2))

1.5

2

2.5

3

P
ar

tia
l d

ep
en

de
nc

e

0 20 40 60
mpweek

2.3

2.4

2.5

2.6

2.7

P
ar

tia
l d

ep
en

de
nc

e
20 30 40 50 60

age

Training frame: runshoes

Partial dependence plot using H2O

The PDP (red line) supports the previous result. Specifically, in the graph for age on the right, we

observe a noticeable decrease in PDP roughly between ages 25 and 30, which implies a negative effect of

age on buying running shoes. But after age 30, the effect is positive.

References
Davis, J., and M. Goadrich. 2006. “The relationship between precision-recall and ROC curves”. In Proceedings of the

23rd International Conference onMachine Learning, 233–240. NewYork: Association for ComputingMachinery. https:

//doi.org/10.1145/1143844.1143874.

De Cock, D. 2011. Ames, Iowa: Alternative to the Boston housing data as an end of semester regression project. Journal

of Statistics Education 19(3). https://doi.org/10.1080/10691898.2011.11889627.

Raschka, S. 2020. Model evaluation, model selection, and algorithm selection in machine learning. arXiv:1811.12808

[cs.LG], https://doi.org/10.48550/arXiv.1811.12808.

Valdenegro-Toro, M., and M. Sabatelli. 2023. “Machine learning students overfit to overfitting”. In Proceedings of the

Third Teaching Machine Learning and Artificial Intelligence Workshop, edited by K. M. Kinnaird, P. Steinbach, and

O. Guhr, vol. 207: 46–51. Clearwater Beach, FL: Proceedings of Machine Learning Research.

Wright, M. N., A. Ziegler, and I. R. König. 2016. Do little interactions get lost in dark random forests? BMC Bioinfor-

matics 17: art. 145. https://doi.org/10.1186/s12859-016-0995-8.

Also see
[H2OML] Intro — Introduction to machine learning and ensemble decision trees+

!! reference not found

https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1080/10691898.2011.11889627
https://doi.org/10.48550/arXiv.1811.12808
https://doi.org/10.1186/s12859-016-0995-8

H2O setup — Prepare data for H2O analysis in Stata+

+These features are part of StataNow.

Description Remarks and examples Also see

Description
In this entry, we provide an introduction to the H2O integration with Stata. We introduce commands

for initiating H2O and working with data frames in H2O, both of which are necessary before you can use

h2oml commands described in [H2OML] h2oml and throughout this manual.

Remarks and examples
Remarks are presented under the following headings:

What is H2O?
How does H2O work from Stata?

Start a local H2O cluster
Connect to an existing H2O cluster

Interact with the H2O cluster
Close and disconnect the H2O cluster

What is H2O?
H2O is a scalable and distributed machine learning and predictive platform. It is an open-source

platform, and its core code is written in Java. Stata uses H2O’s REST API to connect to H2O. You can

perform in-memory data analysis and machine learning using this framework. More information about

the H2O framework can be found on the H2O website at https://docs.h2o.ai/. We also refer you to H2O’s

User Guide.

We separate H2O related commands in Stata into two categories:

1. Commands to establish connection with H2O and work with H2O frames. For details, see [P] H2O

intro and https://www.stata.com/h2o/.

2. Commands for machine learning (h2oml). For the Stata examples, see [H2OML] h2oml.

How does H2O work from Stata?
You can either start a new H2O cluster or connect to an existing H2O cluster from within Stata. Then

you use the suite of Stata commands (h2o, h2oframe, and h2oml) to interact with the H2O cluster.

Start a local H2O cluster

You can start a local H2O cluster by typing in Stata

. h2o init

h2o init will look for the existence of an h2o.jar file, a Java Archive (JAR) file that is used to start
H2O. This file is distributed by H2O. Stata does not distribute h2o.jar with its installation.

71

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/additional-resources.html#api-reference
https://docs.h2o.ai/
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/index.html
https://www.stata.com/h2o/

H2O setup — Prepare data for H2O analysis in Stata+ 72

Downloading and placing an h2o.jar

To download the h2o.jar file and place it in the local directory so that Stata can locate it, you can

follow the steps below. Note that these steps need to be completed only once.

You can obtain the h2o.jar file from H2O’s download page.

1. Go to https://h2o.ai/resources/download/.

2. Click on the tab H2O Open Source Platform.

3. Go to Latest Stable Release or Prior Releases. Stata’s H2OML documentation is written using

Version 3.46.0.6.

4. Click on Download H2O.

5. After downloading the file (for example, h2o-3.46.0.6.zip), unzip it and look for the h2o.jar
file. This is the only file from within the zip file that you will need.

After downloading the h2o.jar file, place the file in a directory included in Stata’s system directories

(ado-path). To view directories on the ado-path, you can use the adopath command. For details, see

[P] sysdir. For example, the following is a typical Stata output on a Windows computer:

. adopath
[1] (BASE) ”C:\Program Files\Stata18\ado\base”
[2] (SITE) ”C:\Program Files\Stata18\ado\site”
[3] ”.”
[4] (PERSONAL) ”C:\ado\personal”
[5] (PLUS) ”C:\ado\plus”
[6] (OLDPLACE) ”C:\ado”

We recommend using the SITE, PERSONAL, or PLUS directory. When h2o.jar is placed along the

ado-path, h2o init will use it directly to start a new local H2O cluster. If multiple copies of h2o.jar
exist along the ado-path, Stata will prioritize based on the order that the adopath command presents

and will use the first h2o.jar it locates. Because we are looking for a .jar file, h2o init can locate

h2o.jar if it is placed in a jar/ subdirectory. Please create the jar/ subdirectory if it does not exist in
any of the defined ado-path locations. If h2o.jar cannot be located, h2o init will produce an error.

After h2o.jar is located, h2o init will determine whether a cluster is already running on your local
machine.

https://h2o.ai/resources/download/

H2O setup — Prepare data for H2O analysis in Stata+ 73

When the cluster has been successfully initialized, Stata will automatically connect to this cluster, and

a summary of the H2O cluster status similar to the following will be displayed:

. h2o init
Connecting to the H2O cluster running at http://127.0.0.1:54321.....not found.
Starting a new cluster running at http://127.0.0.1:54321.
Connecting to the H2O cluster running at http://127.0.0.1:54321..... Successful.

H2O cluster uptime: 1 sec
H2O cluster timezone: America/Chicago
H2O data parsing timezone: UTC
H2O cluster version: 3.46.0.6
H2O cluster version age: 3 months and 7 days
H2O cluster total nodes: 1
H2O cluster free memory: 15.73 Gb
H2O cluster total cores: 32
H2O cluster allowed cores: 32
H2O cluster status: accepting new members, healthy
H2O connection url: http://127.0.0.1:54321

h2o init allows some options for customizing the initialization of the H2O cluster. For example, we

can specify the nthreads() option to set the maximum number of parallel threads to use when launching

the H2O cluster. For details, see https://www.stata.com/h2o/h2o18/h2o.html.

Technical note
h2o init uses the address of localhost:54321, where the IP of localhost is 127.0.0.1 and the port is

54321. If a cluster is not already running, h2o init will attempt to create one at this location, and by

default, the new cluster will allow connections only from the local machine.

Connect to an existing H2O cluster

Another way to interact with H2O is to connect to an existing H2O cluster by using the h2o connect
command. For example, an existing H2O cluster can be a cluster previously started by h2o init. For
details, see https://www.stata.com/h2o/h2o18/h2o.html.

To connect to an existing H2O cluster, we can type h2o connect in Stata. If the connection is built

successfully, Stata will report a summary of the cluster status similar to the following:

. h2o connect
Connecting to the H2O cluster running at http://localhost:54321. Successful.

H2O cluster uptime: 29 mins 58 secs
H2O cluster timezone: America/Chicago
H2O data parsing timezone: UTC
H2O cluster version: 3.46.0.6
H2O cluster version age: 3 months and 7 days
H2O cluster total nodes: 1
H2O cluster free memory: 15.70 Gb
H2O cluster total cores: 32
H2O cluster allowed cores: 32
H2O cluster status: locked, healthy
H2O connection url: http://localhost:54321

You can also connect to an H2O cluster running on a remote machine by specifying its IP and port in

the ip() and port() options in the h2o connect command. For details, see Options for h2o connect.

https://www.stata.com/h2o/h2o18/h2o.html
https://www.stata.com/h2o/h2o18/h2o.html
https://www.stata.com/h2o/h2o18/h2o.html#ref-h2o-connect-options

H2O setup — Prepare data for H2O analysis in Stata+ 74

Technical note
By default, h2o connectwill attempt to connect to a cluster running at localhost:54321 on your local

machine; if you started a local cluster with h2o init, then credentials will automatically be used.

When you connect to an existing H2O cluster, a new Stata H2O session is created between Stata (the

client) and the H2O cluster. Multiple clients can be connecting to the H2O cluster at the same time, and

they will all share its resources, such as the data and models within the cluster.

Interact with the H2O cluster
Once a connection with an H2O cluster has been established, you can interact with it directly from

within Stata.

For example, you can import data from the local drive to the cluster as an H2O frame or put data

currently in Stata into an H2O frame. The following code will load the iris dataset to the cluster into an
H2O frame h2oiris. For details, see https://www.stata.com/h2o/h2o18/.

. use https://www.stata-press.com/data/r18/iris
(Iris data)
. _h2oframe put, into(h2oiris)

To load a subset of the data, you can specify varlist and the if and in qualifiers. For more details,

see https://www.stata.com/h2o/h2o18/h2oframe_put.html.

You can type h2oframe dir to list all H2O frames in the cluster, along with the dimensions of the

data and the amount of memory the data consume in the cluster.

. _h2oframe dir
Name Rows Cols Size

h2oiris 150 5 1.773 Kb
Total: 1

For more information about H2O frames, see https://www.stata.com/h2o/h2o18/h2oframe.html.

You can set or change to the h2oiris frame as the current workingH2O frame by using the h2oframe
change command. Then to perform, for instance, gradient boosting multiclass classification using the

dataset on this frame, type

. _h2oframe change h2oiris

. h2oml gbmulticlass iris seplen sepwid petlen petwid
(output omitted)

Instead of separate h2oframe put and h2oframe change commands, it is often convenient to put
data into an H2O frame and make that frame current in a single step by typing, for instance,

h2oframe put, into(h2oiris) current

https://www.stata.com/h2o/h2o18/
https://www.stata.com/h2o/h2o18/h2oframe_put.html
https://www.stata.com/h2o/h2o18/h2oframe.html

H2O setup — Prepare data for H2O analysis in Stata+ 75

Close and disconnect the H2O cluster
Once you have finished the analysis on the H2O cluster, you can type

. h2o disconnect

to close the connection from the H2O session between Stata and the cluster or

. h2o shutdown

to shut down the cluster.

The h2o disconnect command will close the H2O connection between Stata and the cluster, leaving

the H2O cluster running. Later in the same Stata session, you can type h2o connect to rebuild the

connection to it and reaccess the resources it contains.

The h2o shutdown command will destroy the cluster you are currently connected to along with all

its resources. By default, h2o shutdown will exit with an error and give a warning about its destructive
nature. To override this warning and actually shut down the cluster, use the force option. This will force
the cluster to shut down, and everything in the cluster will be destroyed regardless of whether the cluster

was created from Stata or outside of Stata.

Note that if the cluster was created by Stata using the h2o init command, then by exiting a Stata

session, it will be automatically shut down. We recommend to ensure that all the necessary resources

within the cluster are saved before exiting. To prevent a cluster that Stata created from automatically

getting shut down, use h2o disconnect before closing Stata. If the cluster was created outside of Stata
and a connection was made using h2o connect, then exiting Stata will close only the connection, leaving
all resources within the cluster intact.

The table below summarizes the alternatives to close or disconnect an H2O frame.

Option Cluster created by Stata Cluster created outside of Stata

h2o disconnect close H2O session without close H2O session without

loss of information loss of information

h2o shutdown, force close H2O session and discard close H2O session and discard

information in the cluster information in the cluster

Exit Stata session same as h2o shutdown, force same as h2o disconnect

In practice, if you are certain that all necessary results have been saved, it is preferable to use h2o
shutdown to shut down the H2O cluster. Putting all H2O-related commands between h2o init and h2o
shutdown, force is the recommended practice.

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[P] H2O intro — Introduction to integration with H2O

h2oml gbm — Gradient boosting machine for regression and classification+

+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
The h2oml gbm commands implement the gradient boosting machine (GBM) method for regression,

binary classification, and multiclass classification. h2oml gbregress implements gradient boosting re-
gression for continuous and count responses; h2oml gbbinclass implements gradient boosting classi-

fication for binary responses; and h2oml gbmulticlass implements gradient boosting classification for
multiclass responses (categorical responses with more than two categories).

The h2oml gbm commands provide only measures of performance. See [H2OML] h2oml postestima-

tion for commands to compute and explain predictions, examine variable importance, and perform other

postestimation analyses.

For an introduction to decision trees and GBM, see [H2OML] Intro.

Quick start
Before running the h2oml gbm commands, an H2O cluster must be initialized and data must be im-

ported to an H2O frame; see [H2OML] H2O setup and Prepare your data for H2O machine learning in

Stata in [H2OML] h2oml.

Perform gradient boosting regression of response y1 on predictors x1 through x100
h2oml gbregress y1 x1-x100

As above, but perform classification for binary response y2, report measures of fit for the validation
frame named valid, and set an H2O random-number seed for reproducibility

h2oml gbbinclass y2 x1-x100, validframe(valid) h2orseed(123)

As above, but for categorical response y3 and instead of a validation frame, use 3-fold cross-validation
h2oml gbmulticlass y3 x1-x100, cv(3) h2orseed(123)

As above, but set the number of trees to 30, the maximum tree depth to 10, the learning rate to 0.01, and

the predictor sampling rate to 0.6

h2oml gbmulticlass y3 x1-x100, cv(3) h2orseed(123) ntrees(30) ///
maxdepth(10) lrate(0.01) predsamprate(0.6)

As above, but for binary response y2, and use the default exhaustive grid search to select the optimal
number of trees and the maximum tree depth that minimize the log-loss metric

h2oml gbbinclass y2 x1-x100, cv(3) h2orseed(123) lrate(0.01) ///
predsamprate(0.6) ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss))

76

h2oml gbm — Gradient boosting machine for regression and classification+ 77

As above, but use a random grid search, set an H2O random-number seed for this search, and limit the

maximum search time to 200 seconds

h2oml gbbinclass y2 x1-x100, cv(3) h2orseed(123) lrate(0.01) ///
predsamprate(0.6) ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss) grid(random, h2orseed(456)) maxtime(200))

As above, but specify a learning-rate decay of 0.9, and tune the number of bins for the categorical and

continuous predictors

h2oml gbbinclass y2 x1-x100, cv(3) h2orseed(123) lrate(0.01) ///
lratedecay(0.9) predsamprate(0.6) ntrees(10(5)100) ///
maxdepth(3(1)10) binscont(15(5)50) binscat(500(50)1100) ///
tune(metric(logloss) grid(random, h2orseed(456)) maxtime(200))

As above, but for continuous response y1, and use the mean squared error (MSE) as the metric for early

stopping and grid search

h2oml gbregress y1 x1-x100, cv(3) h2orseed(123) lrate(0.01) ///
lratedecay(0.9) predsamprate(0.6) ntrees(10(5)100) ///
maxdepth(3(1)10) binscont(15(5)50) binscat(500(50)1100) ///
tune(metric(mse) grid(random, h2orseed(456)) maxtime(200)) ///
stop(metric(mse))

Menu
Statistics > H2O machine learning

Syntax
Gradient boosting regression

h2oml gbregress response reg predictors [, gbmopts]

Gradient boosting binary classification for binary response

h2oml gbbinclass response bin predictors [, gbmopts]

Gradient boosting multiclass classification for categorical response

h2oml gbmulticlass response mult predictors [, gbmopts]

response reg, response bin, response mult, and predictors correspond to column names of the current

H2O frame.

h2oml gbm — Gradient boosting machine for regression and classification+ 78

gbmopts Description

Model

loss(losstype) specify the loss function with h2oml gbregress; default is
loss(gaussian)

validframe(framename) specify the name of the H2O frame containing the validation
dataset that will be used to evaluate the performance
of the model

cv[(# [, cvmethod])] specify the number of folds and method for cross-validation

cv(colname) specify the name of the variable (H2O column) for
cross-validation that identifies the fold to which each
observation is assigned

balanceclasses balance the distribution of classes (categories of
the response variable) by oversampling minority classes
with h2oml gbbinclass or h2oml gbmulticlass

h2orseed(#) set H2O random-number seed for GBM

encode(encode type) specify H2O encoding type for categorical predictors; default
is encode(enum)

auc enable potentially time-consuming calculation of the area
under the curve (AUC) and area under the precision–recall
curve (AUCPR) and metrics for multiclass classification with
h2oml gbmulticlass

stop[(# [, stop opts])] specify the number of training iterations and other criteria
for stopping GBM training if the stopping metric does
not improve

maxtime(#) specify the maximum run time in seconds for GBM;
by default, no time restriction is imposed

scoreevery(#) specify that metrics be scored after every # trees during training

monotone(predictors[, mon opts]) specify monotonicity constraints on the relationship between
the response and the specified predictors with h2oml
gbregress or h2oml gbbinclass

Hyperparameter

ntrees(# | numlist) specify the number of trees to build the GBM model; default
is ntrees(50)

lrate(# | numlist) specify the learning rate of each tree; default is lrate(0.1)
lratedecay(# | numlist) specify the rate by which the learning rate specified in

lrate() is decaying after adding each tree to the GBM;
default is lratedecay(1)

maxdepth(# | numlist) specify the maximum depth of each tree; default is
maxdepth(5)

minobsleaf(# | numlist) specify the minimum number of observations per child for
splitting a leaf node; default is minobsleaf(10)

predsamprate(# | numlist) specify the sampling rate for randomly selecting a fraction of
predictors to build a tree; default is predsamprate(1)

samprate(# | numlist) specify the sampling rate for randomly selecting a fraction of
observations to build a tree; default is samprate(1)

h2oml gbm — Gradient boosting machine for regression and classification+ 79

minsplitthreshold(# | numlist) specify the threshold for the minimum relative improvement
needed for a node split; default is
minsplitthreshold(1e-05)

binscat(# | numlist) specify the number of bins to build the histogram for node
splits for categorical predictors (enum columns in H2O);
default is binscat(1024)

binsroot(# | numlist) specify the number of bins to build the histogram for root
node splits for continuous predictors (real and int
columns in H2O); default is binsroot(1024)

binscont(# | numlist) specify the number of bins to build the histogram for node
splits for continuous predictors (real and int columns
in H2O); default is binscont(20)

Tuning

tune(tune opts) specify hyperparameter tuning options for selecting the
best-performing model

Only one of validframe() or cv[()] is allowed.
If neither validframe() nor cv[()] is specified, the performance metrics are reported for the training dataset.
monotone() can be specified with h2oml gbregress only with loss(gaussian), loss(tweedie), or loss(quantile)

and with h2oml gbbinclass.
When numlist is specified in one or more hyperparameter options, tuning is performed for those hyperparameters.

collect is allowed; see [U] 11.1.10 Prefix commands.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

losstype Description

gaussian Gaussian loss; the default

tweedie[, power(#)] Tweedie loss; response must be nonnegative

poisson Poisson loss; response must be nonnegative

laplace Laplace loss

huber[, alpha(#)] Huber loss

quantile[, alpha(#)] quantile loss

cvmethod Description

random randomly split the training dataset into folds; the default

modulo evenly split the training dataset into folds using the modulo
operation

stratify evenly distribute observations from the different classes of
the response to all folds

stop opts Description

metric(metric option) specify stopping metric for training or grid search

tolerance(#) specify the tolerance value by which a model must improve
before the training or grid search stops; default is
tolerance(1e-3)

h2oml gbm — Gradient boosting machine for regression and classification+ 80

tune opts Description

metric(metric option) specify metric for selecting the best-performing model

grid(gridspec) specify whether to perform an exhaustive or random search
for all hyperparameter combinations

maxmodels(#) specify the maximum number of models considered in the
grid search; default is all configurations

maxtime(#) specify the maximum run time for the grid search in seconds;
default is no time limit

stop[(#[, stop opts])] specify the number of iterations and other criteria for
stopping GBM training if the stopping metric does not
improve in the grid search

parallel(#) specify the number of models to build in parallel during
the grid search; default is parallel(1), sequential
model building

nooutput suppress the table summarizing hyperparameter tuning

If any of maxmodels(), maxtime(), or stop[()] is specified, then grid(random) is implied.

Options

� � �
Model �

loss(losstype) specifies the loss function for h2oml gbregress; see Introduction. For h2oml
gbbinclass, the Bernoulli loss function is used, and for h2oml gbmulticlass the multinomial loss
function is used.

loss(gaussian) specifies the Gaussian loss function. This is the default with h2oml gbregress.

loss(tweedie[, power(#)]) specifies the Tweedie loss function. This function is useful for mod-
eling a nonnegative response that has exact zeros. The Tweedie loss function is parameterized

by the variance power, specified via option power(#). power() is a number between 1 and 2,

exclusive. The default is power(1.5).

loss(poisson) specifies the Poisson loss function for a nonnegative response.

loss(laplace) specifies the Laplace loss function, which is an absolute loss function. It is useful

for predicting the median percentile.

loss(huber[, alpha(#)]) specifies the Huber loss function, which is useful when the response

has outliers. For the Huber loss function, alpha() is a number between 0 and 1, exclusive,

and indicates the top percentiles of residuals that should be considered as outliers. The default

is alpha(0.9).

loss(quantile[, alpha(#)]) specifies the quantile loss function, which is useful for predicting a
specified percentile. For the quantile loss function, alpha() is a number between 0 and 1, exclu-
sive, that specifies the desired quantile for quantile regression. For example, to predict the 60th

percentile of the response conditional on predictors, use alpha(0.6). The default is alpha(0.5),
which corresponds to the median.

validframe(framename) specifies the H2O frame name of the validation dataset used to evaluate the

performance of the model. This option is often used when the number of observations is large and the

data-splitting approach is the three-way (training-validation-testing) or two-way (training-validation)

h2oml gbm — Gradient boosting machine for regression and classification+ 81

holdout method. For definitions of different data-splitting approaches, see The three-way holdout

method in [H2OML] Intro. If neither validframe() nor cv[()] is specified, the model is evaluated
using the training dataset. Only one of validframe() or cv[()] may be specified.

cv(cvspec) and cv use cross-validation to evaluate model performance. cvspec is one of # [, cvmethod]
or colname. Only one of cv() or validframe() may be specified.

cv[(# [, cvmethod])] specifies the number of folds for cross-validation and, optionally, the cross-
validation method. This option is preferred when the number of observations is small for the training-

validation-testing split method.

cv is a synonym for cv(10).

cvmethod specifies the cross-validationmethod andmay be one of random, modulo, or stratify.

random specifies that training data be randomly split into the specified number of folds. It is

recommended for large datasets and may lead to imbalanced folds. This is the default.

modulo specifies that a deterministic assignment approach that evenly splits data into the spec-
ified number of folds be used. For example, if cv(3, modulo) is specified, then training

observations 1, 4, 7, . . . are assigned to fold 1; observations 2, 5, 8, . . . to fold 2, etc.

stratify specifies to try to evenly distribute observations from the different classes of the

response across all folds. This approach is useful when the number of classes is large and

the available dataset is small. stratify is not allowed when the response is H2O type real.

cv(colname) specifies the name of the variable (H2O column) that is used to split the data into subsets
according to colname. It provides a custom grouping index for the cross-validation split. This option

is suitable when the data are non-i.i.d. or for comparing different models using cross-validation. The

variable should be categorical (H2O data type enum).

balanceclasses is used with h2oml gbbinclass and h2oml gbmulticlass. It specifies to oversam-
ple the minority classes of the response to balance the class distribution. The imbalanced data can lead

to wrong performance evaluation, and oversampling tries to balance data by increasing the minority

classes. This can increase the size of the dataset. Minority classes are not oversampled by default.

h2orseed(#) sets the H2O random-number seed for H2O model reproducibility of the GBM estimation.

This option is not equivalent to the rseed() option available with other commands or the set seed
command. For reproducibility in H2O, see [H2OML] H2O reproducibility and H2O’s reproducibility

page.

encode(encode type) specifies the H2O encoding type to handle categorical variables, which in H2O are
supported as the data type enum. See https://www.stata.com/h2o/h2o18/h2oframe_describe.html for
information on the H2O data types. encode type may be one of enum, enumfreq, onehotexplicit,
binary, eigen, label, or sortbyresponse. For details, see [H2OML] encode option. The default

is encode(enum).

auc is used with h2oml gbmulticlass. It enables calculation of AUC and AUCPR metrics. Because

the computation of these metrics requires a large amount of memory and computational cost, by

default, H2O does not calculate these metrics. This option must be specified if you plan to use the

postestimation command h2omlestat aucmulticlass or to use one of these metrics for the early

stopping. When the number of classes in the response variable is greater than 50, H2O disables this

option.

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm-faq/reproducibility.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm-faq/reproducibility.html
https://www.stata.com/h2o/h2o18/h2oframe_describe.html

h2oml gbm — Gradient boosting machine for regression and classification+ 82

stop and stop(# [, metric(metric option) tolerance(#)]) specify the rules for early stopping for
GBM. Early-stopping rules help prevent the overfitting of machine learning methods and may reduce

the generalization error, which measures how well a model predicts outcome for new data; see Pre-

liminaries in [H2OML] Intro. stop(#) specifies the number of stopping rounds or training iterations
needed to stop model training when the selected stopping metric does not improve by tolerance().
For example, if metric(logloss) is used and the specified number of training iterations is 3, the

model will stop training after the performance has been scored three consecutive times without any

improvement in logloss by the specified tolerance(). For reproducibility, it is recommended to
use stop() with option scoreevery(#).

stop is a synonym for stop(5).

metric(metric option) specifies the metric used for early stopping. The list of allowed metrics

is provided in [H2OML] metric option. The default is metric(deviance) for regression and

metric(logloss) for binary and multiclass classification.

tolerance(#) specifies the tolerance value by which metric() must improve during training. If

the metric() does not improve by # after the number of consecutive training iterations specified

in stop(#), the training stops. The default is tolerance(1e-3).

maxtime(#) specifies the maximum run time in seconds for the GBM. No time limitation is imposed by

default.

scoreevery(#) specifies that metrics be scored after every # trees during model training. This option is

useful in combination with stop() for reproducibility. When used with early stopping, the specified

number of iterations needed to stop applies to the number of scoring iterations that H2O has performed.

The default is to use H2O’s assessment of a reasonable ratio of training iterations to scoring time,

which may not always guarantee reproducibility. For details on reproducibility, see [H2OML] H2O

reproducibility.

monotone(predictors[, mon opts]) imposes a monotonicity constraint on the specified predictors.

The data type of predictors should be continuous (H2O type int or real). mon opts can be

one of increasing or decreasing. The default is increasing. monotone() may be repeated

to specify both increasing constraints for some predictors and decreasing constraints for others.

For example, h2oml gbregress ..., monotone(predlist1, increasing) monotone(predlist2,
decreasing) would specify an increasing constraint for the first list of predictors and a decreasing

constraint for the second list. The option can be used with h2oml gbbinclass and h2oml gbregress
when the loss function is loss(gaussian), loss(tweedie), or loss(quantile). By default, no
constraint is imposed.

� � �
Hyperparameter �

When numlist is specified in one or more hyperparameter options below, tuning is performed for those

hyperparameters.

ntrees(# | numlist) specifies the number of trees to build the model. The default is ntrees(50). The
specified number of trees and the actual number of trees used during estimation can differ. This can

happen if the early-stopping rules have been specified or the performance of the model is not changing

after adding an additional tree.

lrate(# | numlist) specifies the learning rate of the GBM. The specified number must be in the range

(0, 1]. The relationship between the learning rate and the number of trees is reciprocal: a lower rate
requires a larger number of trees and vice versa. A well-tuned learning rate helps avoid overfitting.

The default is lrate(0.1).

h2oml gbm — Gradient boosting machine for regression and classification+ 83

lratedecay(# | numlist) specifies the factor by which the learning rate will be reduced after adding

each tree. The specified number must be in (0, 1]. The default is lratedecay(1). For example,
with 10 trees, the GBM starts with the learning rate lrate(), and the final 10th tree has a learning
rate equal to lrate() × lratedecay()10. Iteratively decreasing the learning rate implies that trees

contain more information (that is, have higher weights) at the beginning than at the end. When the

specified number is less than 1, it is recommended to initialize lrate() to a larger value, which leads
to faster convergence.

maxdepth(# | numlist) specifies the maximum depth of each tree. The default is maxdepth(5). The
splitting is stopped when the tree’s depth reaches the specified number. A deeper tree provides a

better training accuracy but may overfit the data.

minobsleaf(# | numlist) specifies the minimum number of observations required for splitting a leaf

node. The default is minobsleaf(10). For example, if we specify minobsleaf(50), then the node
will split if the training samples in each of the left and right children are at least 50.

predsamprate(# | numlist) specifies the sampling rate for the predictors. The sampling is without re-

placement. The sampling rate must be in the range (0, 1]. The default is predsamprate(1). The
predictor sampling rate reduces the correlation among trees and introduces an additional randomness

that might improve generalization of the model to the new data.

samprate(# | numlist) specifies the sampling rate for the observations. The sampling is without replace-
ment. The sampling rate must be in the range (0, 1]. The default is samprate(1). The observation
sampling introduces an additional randomization to the estimation method that might improve gener-

alization of the model to the new data.

minsplitthreshold(# | numlist) specifies the threshold for the required minimum relative improve-

ment in the impurity measure in order for a split to occur. The default is minsplitthreshold(1e-
05). A well-tuned minsplitthreshold() increases generalization because it precludes splits that

lead to overfitting.

binscat(# | numlist) specifies the number of bins to be included in the histogram for each categor-

ical (H2O type enum) predictor. The specified number should be greater than 1. The default is

binscat(1024). The histogram is used to split the tree node at the optimal point. Categorical

predictors are split by first assigning an integer to each distinct level. Then the method bins the

ordered integers according to the specified number of bins. Finally, the optimal split point is selected

among the bins. For details, see https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-

params/nbins_cats.html. For categorical predictors with many levels, a larger value of binscat()
leads to overfitting, and a smaller value adds randomness to the split decisions. Therefore, binscat()
is an important tuning parameter for datasets that contain categorical variables with many levels.

binsroot(# | numlist) specifies the number of bins to use at the root node of each tree for splitting

continuous (H2O type real or int) predictors. For the subsequent nodes, the specified # is divided

by 2, and the resulting number is used for splitting. The default is binsroot(1024). This option is
used in combination with binscont(), which controls the point when the method stops dividing by
2. The histogram is used to split the node at the optimal point. As the tree gets deeper, each subsequent

node includes predictors with a smaller range, and the bins are uniformly spread over this range. If the

number of observations in a node is smaller than the specified value, then the method creates empty

bins. If the number of bins is large, the method evaluates each individual observation as a potential

split point, which may increase the computation time. The number specified in binscont() must be
smaller than the number specified in binsroot().

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-params/nbins_cats.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-params/nbins_cats.html

h2oml gbm — Gradient boosting machine for regression and classification+ 84

binscont(# | numlist) specifies the minimum number of bins in the histogram for the continuous (H2O

type real or int) predictors. The default is binscont(20). This option is used in combination with
binsroot(). The number specified in binsroot() must be greater than the number specified in

binscont().

In practice, a model is more generalizable to other datasets if binsroot() and binscat() are small and
tends to overfit for large values of binscont(), binsroot(), and binscat().

� � �
Tuning �

tune(tune opts) specifies options for the grid search method for tuning hyperparameters. In machine

learning, hyperparameter tuning is an important step in selecting a model that can be generalized

to other datasets. Because of the high dimensionality of hyperparameters and their types (continu-

ous, discrete, and categorical), manually setting and testing hyperparameters is time consuming and

inefficient. Grid search methods are designed to achieve optimal model performance within spec-

ified constraints such as time allocated for tuning or computational resources. Tuning begins with

the selection of the predetermined hyperparameters that you want to tune. Below, we describe the

available suboptions for controlling the tuning procedure. tune opts may be metric(), grid(),
maxmodels(), maxtime(), stop[()], or nooutput.

metric(metric option) specifies the metric for tuning. Allowed metrics are provided in

[H2OML] metric option. The default is metric(deviance) for regression and metric(log-
loss) for classification.

grid(gridspec) specifies whether to implement an exhaustive search or a random search for all hy-

perparameter combinations. gridspec is one of cartesian or random[, h2orseed(#)].
grid(cartesian) implements an exhaustive search for every possible combination in the search
space. This approach is recommended if the number of hyperparameters or the search space is

small. The default is grid(cartesian).

grid(random[, h2orseed(#)]) implements a random search for all hyperparameter combi-

nations. It is recommended to use grid(random) with maxmodels() and maxtime() to

reduce the computation time. If maxtime(), maxmodels(), or stop() is specified, then

grid(random) is implied.

h2orseed(#) sets an H2O random-number seed for the random grid search for reproducibility.

See [H2OML]H2O reproducibility and H2O’s reproducibility page for details. The behavior

of h2orseed() is different from the rseed() option allowed by many commands and the

set seed command.

maxmodels(#) specifies the maximum number of models to be considered in a grid search. By

default, all possible configurations are considered. If this option is specified, grid(random) is

implied.

maxtime(#) specifies the maximum run time for the grid search in seconds. By default, there is no

time limitation. If this option is specified, grid(random) is implied. This option can be specified
with option maxmodels() during the grid search. If maxtime() is also specified for the model

training, then each model building starts with a limit equal to the minimum of the maxtime() for
the model training, and the remaining time is used for the grid search.

stop and stop(# [, metric(metric option) tolerance(#)]) specify the rules for early stopping
for the grid search. This option implies grid(random). stop(#) specifies the number of grid

value configurations needed to stop the grid search when the selected metric does not improve

by tolerance(). For example, if the selected metric is the default for the binary and multiclass

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm-faq/reproducibility.html

h2oml gbm — Gradient boosting machine for regression and classification+ 85

classification (metric(logloss)) and we specify stop(3), the grid search will stop after three
consecutive grid values chosen by the grid search do not lead to the improvement of the logloss
by the specified tolerance().

stop is a synonym for stop(5).

metric(metric option) specifies the metric used for early stopping. Allowed metrics are pro-

vided in [H2OML] metric option. The default is metric(deviance) for regression and

metric(logloss) for classification.

tolerance(#) specifies the tolerance value by which metric() must improve during the grid

search. If the metric() does not improve by # after the number of consecutive grid value

configurations specified in stop(#), the grid search stops. The default is tolerance(1e-3).

parallel(#) specifies the number of models to build in parallel during the grid search. This option
enables parallel model building, which reduces computational time. The default, parallel(1),
specifies sequential model building. parallel(0) enables adaptive parallelism, in which the

number of models to be built in parallel is automatically determined by H2O. Any integer greater

than 1 specifies the exact number of models to be built in parallel. This option is particularly

useful for improving speed when tuning many hyperparameters. However, results for models built

in parallel may not be reproducible; see [H2OML] H2O reproducibility for details.

nooutput suppresses the table summarizing hyperparameter tuning.

Remarks and examples
We assume you have read the introduction to decision trees and ensemble methods in [H2OML] Intro.

Remarks are presented under the following headings:

Introduction
Tuning hyperparameters
Examples of using GBM

Example 1: Gradient boosting linear regression using default settings
Example 2: Using validation data and early stopping
Example 3: Using cross-validation
Example 4: User-specified hyperparameters
Example 5: Binary classification and hyperparameter tuning
Example 6: Multiclass classification
Example 7: Poisson regression
Example 8: Quantile regression and monotonicity constraint
Example 9: Handling imbalanced data with binary and multiclass classification

Introduction
The GBM (Friedman 2001) is a machine learning method that is useful for prediction, model selection,

and explaining the impact of predictors. Even though GBM works with any learner, in H2O it is based

on decision trees. A single decision tree is an easily interpretable method for predicting a response;

it repeatedly partitions the data into branches based on values of predictors so that responses within

each branch are as homogeneous as possible. Despite the advantages, such as interpretability and easy

implementation, single decision trees are prone to instability and can struggle to model some types of

functions. For example, in the figure below, a single decision tree fails to model simple data generated

from the sin(𝑥) function, where 𝑥 is generated from a uniform distribution. GBM (Friedman 2001) uses

boosting, which fits a series of decision trees that build on each other and gradually increase focus on

h2oml gbm — Gradient boosting machine for regression and classification+ 86

observations that are not predicted well by the existing ensemble of decision trees. This boosting process

leads to a more stable and better predictive model than a single decision tree. From the figure below,

GBM accurately recovers the true data-generation process.

-1.5

-1

-.5

0

.5

1

-4 -2 0 2 4
x

Data
Decision tree
GBM

In GBM, boosting can be thought of as a numerical optimization technique that minimizes a given loss

function by adding a tree in each stage that best reduces the loss function. The list of loss functions for

regression and classification in the h2oml gbm commands is provided below, where 𝑦 denotes response
and 𝑓 is a link function.

Loss 𝐿(𝑦, 𝑓)

Gaussian 1
2 (𝑦 − 𝑓)2

Tweedie(𝜃) 2𝑦
(2−𝜃)

(1−𝜃)(2−𝜃) − 𝑦𝑒𝑓(1−𝜃)

1−𝜃 + 𝑒𝑓(2−𝜃)

2−𝜃 , for 1 < 𝜃 < 2

Poisson −2(𝑦𝑓 − 𝑒𝑓)

Laplace |𝑦 − 𝑓|

Huber(𝛼) (𝑦 − 𝑓)2, for |𝑦 − 𝑓| < 𝛼 and (2|𝑦 − 𝑓| − 𝛼)𝛼 otherwise

Quantile(𝛼) 𝛼(𝑦 − 𝑓), for 𝑦 > 𝑓 and (1 − 𝛼)(𝑓 − 𝑦) otherwise

Bernoulli −2(𝑦𝑓 − ln(1 + 𝑒𝑓)

Multinomial − ∑𝐾
𝑘=1 𝐼(𝑦 = 𝐶𝑘)𝑓𝑘 + ln(∑𝐾

𝑗=1 𝑒𝑓𝑗), where 𝐶𝑘 is the 𝑘th class

Gaussian, Laplace, Huber, and quantile loss functions use the identity link 𝐸[𝑦|𝑥] = 𝑓(𝑥). Tweedie,
Poisson, and multinomial use the log link function log(𝐸[𝑦|𝑥]) = 𝑓(𝑥). Finally, Bernoulli uses the logit
link function log(𝐸[𝑦|𝑥]/{1 − 𝐸[𝑦|𝑥]}) = 𝑓(𝑥). For details about GBM, see GBM in [H2OML] Intro.

Depending on the type of response, you can use one of the h2oml gbregress, h2oml gbbinclass,
or h2oml gbmulticlass commands to perform GBM. h2oml gbregress performs gradient boosting

regression for continuous and count responses. h2oml gbbinclass performs gradient boosting binary

classification for binary responses. h2oml gbmulticlass performs gradient boosting multiclass clas-

sification for categorical responses. In h2oml gbbinclass and h2oml gbmulticlass, the loss is set
to Bernoulli and multinomial, respectively. In h2oml gbregress, the loss() option is used to spec-

ify the loss, which can be one of Gaussian (the default), Tweedie, Poisson, Laplace, Huber, or quantile.

h2oml gbm — Gradient boosting machine for regression and classification+ 87

The commands have many common options. To perform GBM using a validation dataset, you can use the

validframe() option to specify the name of a validation frame. To perform GBM using cross-validation,

you can use the cv() option. You can choose between three cross-validation methods for splitting data

among folds by specifying the random, modulo, or stratify suboption within the cv() option. Al-

ternatively, you can specify a variable in the cv() option that defines how observations are split into

different folds.

For reproducibility, you can use the h2orseed() option to specify a random-number seed for H2O.

This option is different from Stata’s rseed() option and the set seed command. For early stopping,

you can use the stop[()] option. We highly recommend that you always specify the scoreevery()
option with early stopping to ensure reproducibility. For details, see [H2OML] H2O reproducibility and

H2O’s reproducibility page.

Tuning hyperparameters
All h2oml gbm commands provide default values for hyperparameters, but you can also specify your

own in the corresponding options. For instance, you can specify the number of trees for GBM in the

ntrees() option or the learning rate of a tree in the lrate() option. In practice, however, you would

want to tune your GBM model, that is, let the GBM method select the values of the model parameters that

correspond to the best-fitting model according to some metric. You can do this by specifying a possible

range of grid values for each hyperparameter you intend to tune and controlling the grid search by using

the tune() option. Currently, h2oml gbm provides two grid search strategies: an exhaustive (Cartesian)

grid search with tune(grid(cartesian)) and a random grid search with tune(grid(random)). And
several performance metrics are available in tune(metric()).

Tuning hyperparameters of the machine learning method is a complex and iterative procedure. Under-

standing the steps is important for the correct specification of the options provided. A brief overview

of these steps is provided below, and a deeper treatment can be found in Hyperparameter tuning in

[H2OML] Intro.

Step 1: Choose the data-splitting approach

Use either a three-way holdout method in which data are separated into training, validation, and testing

datasets or, if the number of observations is low, a two-way holdout method (training and testing) with

𝑘-fold cross-validation. Recall that the optimal hyperparameters are selected using the results of the
metric on the validation set (validframe()) or cross-validation (cv()), not on the training set.

Step 2: Select the hyperparameters and performance metric

From the list of hyperparameters such as ntrees() or maxdepth(), select the ones that require tuning
for your application. When numlist is specified in one or more of the hyperparameter options, tuning

is implemented based on the specified grid search suboptions in the tune() option. For instance,

you can specify the desired performance metric in the tune(metric()) option; see [H2OML] met-

ric option for supported metrics. The default metric is specific to each command. There is no sys-

tematic guidance on how many and which hyperparameters to choose: the inclusion of tuning hyper-

parameters depends on the data, machine learning method, and prior knowledge of the researcher.

The performance metric should be selected carefully because it may affect the estimation results. For

example, for the classification problem, if the data are imbalanced, metric accuracy is not recom-

mended and a more appropriate metric, such as aucpr, is preferred. For more details, see metric

options.

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm-faq/reproducibility.html

h2oml gbm — Gradient boosting machine for regression and classification+ 88

Step 3: Select the grid search strategy and search space

If the number of hyperparameters is large, then a random grid search specified via the

tune(grid(random)) option is a better choice than an exhaustive grid search that is performed

by default or when the tune(grid(cartesian)) option is specified. For the first run, it is recom-

mended that you specify a large search space and try to overfit the model. Then, on subsequent runs,

you should narrow the search space on high-performance hyperparameters and apply early-stopping

rules by specifying the tune(stop()) option to avoid overfitting.

Step 4: Use the best-performing hyperparameter configuration

Depending on your research problem, use the best-performing hyperparameter configuration to fit the

final model on the testing dataset.

Below, we demonstrate the use of options in various applications. In this entry, we focus on the syntax

and output of commands. For a more research-focused exposition, see [H2OML] h2oml.

Examples of using GBM
In this section, we demonstrate some of the uses of h2oml gbm. The examples are presented under

the following headings.

Example 1: Gradient boosting linear regression using default settings
Example 2: Using validation data and early stopping
Example 3: Using cross-validation
Example 4: User-specified hyperparameters
Example 5: Binary classification and hyperparameter tuning
Example 6: Multiclass classification
Example 7: Poisson regression
Example 8: Quantile regression and monotonicity constraint
Example 9: Handling imbalanced data with binary and multiclass classification

Examples 1 through 4 demonstrate gradient boosting regression, but their discussion applies to all

h2oml gbm commands. Similarly, example 5 demonstrates binary classification, but the steps for tuning

hyperparameters are applicable to all commands. Example 6 demonstrates multiclass classification. Ex-

amples 7 and 8 show how to specify a different loss function with h2oml gbregress to perform Poisson

and quantile gradient boosting. Example 8 also shows monotonicity constraints, which can also be ac-

commodated with binary classification. Finally, example 9 shows how to handle imbalanced data during

binary classification but is equally applicable to multiclass classification.

Example 1: Gradient boosting linear regression using default settings
For demonstration purposes, we start with gradient boosting linear regression using the default set-

tings. In practice, however, you would rarely use the default settings because the performance of the

model is improved during training by specifying options that allow optimization or tuning of hyperpa-

rameters.

h2oml gbm — Gradient boosting machine for regression and classification+ 89

We start by opening the 1978 automobile data (auto.dta) in Stata and then putting the data into an
H2O frame. Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset
into an H2O frame, and h2oframe changemakes the specified frame the current H2O frame. For details,
see Prepare your data for H2O machine learning in Stata in [H2OML] h2oml and [H2OML] H2O setup.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
(output omitted)

. _h2oframe put, into(auto)
Progress (%): 0 100
. _h2oframe change auto

We use gradient boosting linear regression of the response price on just a few predictors—weight,
length, and foreign—and we specify the h2orseed(19) option for reproducibility.

. h2oml gbregress price weight length foreign, h2orseed(19)
Progress (%): 0 100
Gradient boosting regression using H2O
Response: price
Loss: Gaussian
Frame: Number of observations:

Training: auto Training = 74
Model parameters
Number of trees = 50 Learning rate = .1

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 3 No. of bins cat. = 1,024
avg = 3.7 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training

Deviance 1692396
MSE 1692396

RMSE 1300.921
RMSLE .1739734

MAE 893.7925
R-squared .8027962

The header provides information about the model characteristics and data. Because we used h2oml
gbregress, the loss is Gaussian by default. The Frame section contains information about the

H2O training frame. In this example, our training frame is auto with 74 observations. The Model
parameters portion reports the information about hyperparameters. Multiple values are reported for

some hyperparameters. For example, there are two values for the number of trees. One reports the

number of trees as specified by the user. In our case, it is the default 50. The actual value shows the

number of trees actually used during training. These numbers may differ when an early stopping rule

is applied such as when the stop() option is specified. Similarly, for the Tree depth there are four

values. The Input max reports the user-specified value, and min and max report the actual minimum

and maximum depths achieved during training. The last two may be different from the default value of

5 because maxdepth() enforces a possible maximum depth the tree can achieve, but the method can

h2oml gbm — Gradient boosting machine for regression and classification+ 90

stop splitting earlier. The Metric summary table reports the six regression performance metrics for the

training frame. In general, metrics values are used to compare different models. Depending on whether

the method implements regression, binary classification, or multiclass classification, the reported metrics

change. For the definition of metrics, see [H2OML] metric option.

Even though the above output is for regression, a similar interpretation applies to binary andmulticlass

classification using the h2oml gbbinclass and h2oml gbmulticlass commands, respectively.

Example 2: Using validation data and early stopping
Example 1 illustrates the simple use of the h2oml gbregress command. In practice, we want a model

that minimizes overfitting. As we discussed in Model selection in machine learning in [H2OML] In-

tro, there are two main approaches to check for overfitting: by using a validation dataset or by cross-

validation. The former is recommended when the number of observations is large and the latter otherwise

(see example 3).

Continuing with example 1, we use the h2oframe split command to randomly split the auto frame
into a training frame (80% of observations) and validation frame (20% of observations), which we name

train and valid, respectively. We also change the current frame to train.

. _h2oframe split auto, into(train valid) split(0.8 0.2) rseed(19)

. _h2oframe change train

We now use the validframe() option with h2oml gbregress to specify the validation frame:

. h2oml gbregress price weight length foreign, h2orseed(19) validframe(valid)
Progress (%): 0 100
Gradient boosting regression using H2O
Response: price
Loss: Gaussian
Frame: Number of observations:

Training: train Training = 63
Validation: valid Validation = 11

Model parameters
Number of trees = 50 Learning rate = .1

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 3 No. of bins cat. = 1,024
avg = 3.1 No. of bins root = 1,024
max = 4 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Deviance 2235364 2391512
MSE 2235364 2391512

RMSE 1495.114 1546.451
RMSLE .1954448 .2578085

MAE 1013.616 1058.391
R-squared .7634879 .2253408

h2oml gbm — Gradient boosting machine for regression and classification+ 91

Compared with example 1, the output contains additional information about the validation frame.

There are 63 training and 11 validation observations. The important information here is the performance

metrics for the validation frame, the Validation column of the Metric summary table. The validation
frame is used during tuning to select the best model and control for overfitting. See example 5 for tuning.

In some cases, we can greatly improve the generalization of the model, that is, improve model predic-

tion on the new testing dataset, by using early stopping. Early stopping allows you to stop adding trees

when the metric computed on the validation sample (or on the cross-validation sample if the cv[()]
option was specified) does not improve after a prespecified number of iterations. This prevents overfit-

ting. In this example, we use stop(5) to halt the training of GBM when the stopping metric does not

improve after 5 iterations. By default, the stopping metric is Deviance. For reproducibility, we specify
the scoreevery() option together with the stop() option. The scoreevery() option controls how

frequently the metric score is updated. For example, scoreevery(1) means the score is updated after

adding each tree to the ensemble. For details, see [H2OML] H2O reproducibility.

. h2oml gbregress price weight length foreign, h2orseed(19) validframe(valid)
> stop(5) scoreevery(1)
Progress (%): 0 100
Gradient boosting regression using H2O
Response: price
Loss: Gaussian
Frame: Number of observations:

Training: train Training = 63
Validation: valid Validation = 11

Model parameters
Number of trees = 50 Learning rate = .1

actual = 26 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 3 No. of bins cat. = 1,024
avg = 3.1 No. of bins root = 1,024
max = 4 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Stopping criteria: No. of iterations = 5

Metric: Deviance Tolerance = .001
Metric summary

Metric Training Validation

Deviance 3094539 2288930
MSE 3094539 2288930

RMSE 1759.13 1512.921
RMSLE .2247564 .251828

MAE 1199.072 1044.42
R-squared .6725832 .2585691

Note: Metric is scored after every
tree.

We see several differences compared with the first output in this example. First, as expected, now

the actual number of trees is less than the specified number of trees (26 versus 50). In addition, the

RMSE for the training frame increased, and the RMSE for the validation frame decreased from 1546.451

to 1512.921, which means there is less overfitting.

h2oml gbm — Gradient boosting machine for regression and classification+ 92

Example 3: Using cross-validation
In this example, we illustrate the use of h2oml gbregress with the default parameters and cross-

validation.

Continuing with example 2, we keep the frame train as our current training data. In the h2oml
gbm commands, cross-validation is performed by specifying the cv() option. This option supports three
methods for folds assignment: random, modulo, and stratified. The random method is the default and

is preferred with large datasets. Here, to demonstrate, we use 5-fold cross-validation with modulo fold

assignment, which assigns each observation to a fold based on the modulo operation. We type

. h2oml gbregress price weight length foreign, h2orseed(19) cv(5, modulo)
Progress (%): 0 72.6 99.6 100
Gradient boosting regression using H2O
Response: price
Loss: Gaussian
Frame: Number of observations:

Training: train Training = 63
Cross-validation = 63

Cross-validation: Modulo Number of folds = 5
Model parameters
Number of trees = 50 Learning rate = .1

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 3 No. of bins cat. = 1,024
avg = 3.1 No. of bins root = 1,024
max = 4 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Deviance 2235364 3641968
MSE 2235364 3641968

RMSE 1495.114 1908.394
RMSLE .1954448 .2603751

MAE 1013.616 1391.129
R-squared .7634879 .6146625

The output now provides information about the cross-validation assignment method, the number of

folds, and, in the second column of the Metric summary table, the cross-validated metrics.

The three fold-assignment methods are useful when the data are i.i.d. If the dataset requires a spe-

cific grouping for cross-validation, then a new categorical variable can be created and specified in the

cv(colname) option. GBM then uses those variable values to split the data into folds. To demonstrate,

in our H2O frame, we generate a new column named foldvar, which contains a hypothetical grouping
for the fold assignment.

. _h2oframe generate foldvar = 1

. _h2oframe replace foldvar = 2 in 20/35

. _h2oframe replace foldvar = 3 in 36/63

. _h2oframe factor foldvar, replace

h2oml gbm — Gradient boosting machine for regression and classification+ 93

The last command converts the type of foldvar into H2O’s enum type, which is required by the cv()
option. Now we can perform cross-validation with the fold assignment determined by foldvar.

. h2oml gbregress price weight length foreign, h2orseed(19) cv(foldvar)
Progress (%): 0 100
Gradient boosting regression using H2O
Response: price
Loss: Gaussian
Frame: Number of observations:

Training: train Training = 63
Cross-validation: foldvar Cross-validation = 63
Model parameters
Number of trees = 50 Learning rate = .1

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 3 No. of bins cat. = 1,024
avg = 3.1 No. of bins root = 1,024
max = 4 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Deviance 2235364 7785926
MSE 2235364 7785926

RMSE 1495.114 2790.327
RMSLE .1954448 .3791052

MAE 1013.616 1883.424
R-squared .7634879 .1762122

h2oml gbm — Gradient boosting machine for regression and classification+ 94

Example 4: User-specified hyperparameters
In examples 2 and 3, we used validation and cross-validation with default values for all hyperparam-

eters. Continuing with example 3, suppose we now want to try some specific values of several hyperpa-

rameters (the number of trees, learning rate, and predictor sampling rate) by including the ntrees(50),
lrate(0.2), and predsamprate(0.7) options.

. h2oml gbregress price weight length foreign, h2orseed(19) cv(5, modulo)
> ntrees(50) lrate(0.2) predsamprate(0.7)
Progress (%): 0 100
Gradient boosting regression using H2O
Response: price
Loss: Gaussian
Frame: Number of observations:

Training: train Training = 63
Cross-validation = 63

Cross-validation: Modulo Number of folds = 5
Model parameters
Number of trees = 50 Learning rate = .2

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = .7

Input max = 5 Sampling rate = 1
min = 2 No. of bins cat. = 1,024
avg = 3.1 No. of bins root = 1,024
max = 4 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Deviance 1605800 3398097
MSE 1605800 3398097

RMSE 1267.202 1843.393
RMSLE .1736271 .2622264

MAE 863.7136 1357.606
R-squared .8300987 .6404653

The output is similar to previous examples, except that it now reports our specified values of 50 for

the number of trees, 0.2 for the learning rate, and 0.7 for the predictor sampling rate.

h2oml gbm — Gradient boosting machine for regression and classification+ 95

Example 5: Binary classification and hyperparameter tuning
In example 1 of [H2OML] h2oml, we used the churn dataset to show steps for building a predictive

model to predict whether a customer will churn. In particular, we used a GBM binary classification model

with 3-fold stratified cross-validation and the following tuning specification as a baseline model:

. h2oml gbbinclass churn $predictors, h2orseed(19) cv(3, stratify)
> ntrees(100) lrate(0.05) predsamprate(0.15)
(output omitted)

In this example, we demonstrate a process of tuning model parameters to arrive to the model above.

As we discussed in Model selection in machine learning in [H2OML] Intro, the analysis should start

by defining the baseline or reference performance. The baseline model has been defined in exam-

ple 2 of [H2OML] h2oml. For simplicity and computational purposes, we will tune only hyperparame-

ters—number of trees and predictor sampling rate—on a small hyperparameter search space. Remember

that hyperparameter tuning is an iterative procedure and the considered examples are only for illustration

purposes. In practice, you should follow the steps in table 3 in [H2OML] Intro.

We read the churn dataset as an H2O frame and split it into train and test H2O frames.

. use https://www.stata-press.com/data/r18/churn
(Telco customer churn data)
. h2o init
(output omitted)

. _h2oframe put, into(churn)
Progress (%): 0 100
. _h2oframe change churn
. _h2oframe split churn, into(train test) split(0.8 0.2) rseed(19) replace
. _h2oframe change train

Next we create a global macro predictors in Stata to store the names of predictors.

. global predictors latitude longitude tenuremonths monthlycharges
> totalcharges gender seniorcitizen partner dependents phoneservice
> multiplelines internetserv onlinesecurity onlinebackup streamtv
> techsupport streammovie contract paperlessbill paymethod deviceprotect

h2oml gbm — Gradient boosting machine for regression and classification+ 96

In the h2oml gbm commands, the grid values of a hyperparameter are passed using numlist in a

hyperparameter option. For example, for the predsamprate() option, we pass a list of numbers

{0.05, 0.15, 0.25} as numlist specification 0.05(0.1)0.25. For the lrate() option, we pass a fixed

value of 0.05. As a grid search method for tuning, we use the Cartesian exhaustive search method. We

also use the AUCPR metric for tuning.

. h2oml gbbinclass churn $predictors, h2orseed(19) cv(3, stratify)
> lrate(0.05) ntrees(50(50)150) predsamprate(0.05(0.1)0.25)
> tune(metric(aucpr))
Progress (%): 0 100
Gradient boosting binary classification using H2O
Response: churn
Loss: Bernoulli
Frame: Number of observations:

Training: train Training = 5,643
Cross-validation = 5,643

Cross-validation: Stratify Number of folds = 3
Tuning information for hyperparameters
Method: Cartesian
Metric: AUCPR

Grid values
Hyperparameters Minimum Maximum Selected

Number of trees 50 150 100
Pred. sampling rate .05 .25 .15

Model parameters
Number of trees = 100 Learning rate = .05

actual = 100 Learning rate decay = 1
Tree depth: Pred. sampling rate = .15

Input max = 5 Sampling rate = 1
min = 5 No. of bins cat. = 1,024
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .3531063 .4026141
Mean class error .1784776 .2313897

AUC .8992847 .8565935
AUCPR .7610732 .673929

Gini coefficient .7985693 .7131869
MSE .1126847 .1314475

RMSE .3356854 .3625569

The output interpretation of h2oml gbbinclass is similar to that of h2oml gbregress. Because we
perform binary classification, the Bernoulli loss function is used. Also, the metrics specific to binary

classification are reported in the metrics table.

h2oml gbm — Gradient boosting machine for regression and classification+ 97

The tuning information is displayed in the header. It includes the tuning method and metric and grid

search ranges and the selected values for the hyperparameters. The grid search ranges are the speci-

fied minimum and maximum values for hyperparameters. The select values are optimal selected by the

algorithm. These are the values we used in our final GBM model in example 3 in [H2OML] h2oml.

In this example, we tuned only two hyperparameters and allowed only three possible values for each

one, so the grid search was limited to a small space. When the number of hyperparameters and the grid

space are large, the grid search can become computationally intensive. You can use the parallel() op-
tion to specify the number of models to build in parallel during the grid search, thereby improving com-

putational time. However, results for models built in parallel may not be reproducible; see [H2OML]H2O

reproducibility. By default, the models are built sequentially.

Example 6: Multiclass classification
In this example, we show how to implement multiclass classification and which performance metrics

to use to measure the performance of the model. For this example, we will use a well-known iris dataset,

where the goal is to predict a class of iris plant. This dataset was used in Fisher (1936) and originally col-

lected by Anderson (1935). We start by initializing a cluster, opening the dataset in Stata, and importing

the dataset as an H2O frame.

. h2o init
(output omitted)

. use https://www.stata-press.com/data/r18/iris
(Iris data)
. _h2oframe put, into(iris)
Progress (%): 0 100
. _h2oframe split iris, into(train valid) split(0.8 0.2) rseed(19)
. _h2oframe change train

h2oml gbm — Gradient boosting machine for regression and classification+ 98

We use the h2oframe split command to split the dataset into training and validation frames. Next
we run gradient boosting multiclass classification using 500 trees and default values for other hyperpa-

rameters.

. h2oml gbmulticlass iris seplen sepwid petlen petwid, validframe(valid)
> ntrees(500) h2orseed(19)
Progress (%): 0 9.7 36.8 63.5 90.2 100
Gradient boosting multiclass classification using H2O
Response: iris Number of classes = 3
Loss: Multinomial
Frame: Number of observations:

Training: train Training = 125
Validation: valid Validation = 25

Model parameters
Number of trees = 500 Learning rate = .1

actual = 500 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 1 No. of bins cat. = 1,024
avg = 4.8 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Log loss 7.19e-08 1.277958
Mean class error 0 .0740741

MSE 7.52e-14 .0775579
RMSE 2.74e-07 .2784921

The output is almost identical to the output for regression we described in detail in examples 1 and 2,

except we have a multinomial loss and different performance metrics.

h2oml gbm — Gradient boosting machine for regression and classification+ 99

Two popular metrics to measure the performance after classification are AUC and AUCPR. Their com-

putation may be time consuming, so they are not reported by default. But we can specify the auc option
to request them.

. h2oml gbmulticlass iris seplen sepwid petlen petwid, validframe(valid)
> ntrees(500) h2orseed(19) auc
Progress (%): 0 34.2 43.3 44.6 56.5 100
Gradient boosting multiclass classification using H2O
Response: iris Number of classes = 3
Loss: Multinomial
Frame: Number of observations:

Training: train Training = 125
Validation: valid Validation = 25

Model parameters
Number of trees = 500 Learning rate = .1

actual = 500 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 1 No. of bins cat. = 1,024
avg = 4.8 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Log loss 7.19e-08 1.277958
Mean class error 0 .0740741

AUC 1 .9930556
AUCPR 1 .9890377

MSE 7.52e-14 .0775579
RMSE 2.74e-07 .2784921

Note: AUC and AUCPR computed using macro
average OVR.

The table now reports two additional metrics. From the note, h2oml gbmulticlass computes AUC

and AUCPR using macro average OVR, which is a uniform weighted average of all AUC scores calculated

for each class versus the rest of classes.

With more than two classes, as in this example, you need to decide whether to report AUC and

AUCPR based on pairwise combinations of classes or to compare one class with the rest of classes; see

[H2OML]metric option for definitions of allAUC-based metrics. If you wish to reportAUC-based metrics

other than the ones reported by h2oml gbmulticlass, you can use the h2omlestat aucmulticlass
postestimation command; see example 1 of [H2OML] h2omlestat aucmulticlass.

Example 7: Poisson regression
In example 1, we used the default Gaussian loss function for GBM regression. Depending on the type

of response and research problem, we may specify other loss functions. In this example, we consider the

data on running shoes for a sample of runners who registered an online running log (Simonoff 1996).

Suppose a running-shoe marketing executive is interested in knowing how predictors such as gender,

marital status, age, education, income, typical number of runs per week, average miles run per week, and

h2oml gbm — Gradient boosting machine for regression and classification+ 100

the preferred type of running explain the number of pairs of running shoes purchased. For this task, we

use the GBM with Poisson regression. Because our goal is to simply demonstrate the use of the loss()
option, we do not tune our model.

We start by initializing the cluster, opening the dataset in Stata, and importing the dataset to an H2O

frame.

. use https://www.stata-press.com/data/r18/runshoes
(Running shoes)
. h2o init
. _h2oframe put, into(runshoes)
Progress (%): 0 100
. _h2oframe change runshoes

To perform a Poisson regression with h2oml gbregress, we specify the loss(poisson) option.

. h2oml gbregress shoes rpweek mpweek male age married trunning, h2orseed(19)
> loss(poisson)
Progress (%): 0 100
Gradient boosting regression using H2O
Response: shoes
Loss: Poisson
Frame: Number of observations:

Training: runshoes Training = 60
Model parameters
Number of trees = 50 Learning rate = .1

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 2 No. of bins cat. = 1,024
avg = 2.9 No. of bins root = 1,024
max = 4 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training

Deviance .3649675
MSE 1.064175

RMSE 1.031589
RMSLE .2691122

MAE .7149171
R-squared .4885824

The output is similar to that of h2oml gbregress from example 1, but the loss function is Poisson
here.

For prediction explainability of this model, see example 14 of [H2OML] h2oml.

h2oml gbm — Gradient boosting machine for regression and classification+ 101

Example 8: Quantile regression and monotonicity constraint
In example 10 of [H2OML] h2oml, we used a random forest regression to estimate the conditional mean

of house prices. Sometimes, wemay be interested in estimating different characteristics of the conditional

distribution of house prices other than the mean. Quantile regression, introduced in Koenker and Bassett

(1978), predicts conditional quantiles of the response. For an introduction to quantile regression, see

Koenker (2005).

In this example, we use GBM quantile regression and the entire house dataset without splitting it

into training and validation frames. For simplicity, we do not tune hyperparameters and show the

model with predetermined values for hyperparameters. These values are borrowed from example 10 of

[H2OML] h2oml, which are not necessarily optimal for the quantile regression. Before putting the dataset

into an H2O frame, we perform some data manipulation in Stata. Because saleprice is right-skewed

(for example, type histogram saleprice), we use its log. We also generate a variable, houseage, that
calculates the age of the house at the time of a sales transaction.

. use https://www.stata-press.com/data/r18/ameshouses
(Ames house data)
. gen logsaleprice = log(saleprice)
. gen houseage = yrsold - yearbuilt
. drop saleprice yearbuilt yrsold

The dataset has a total of 46 predictors, but for simplicity we include only 10. We create a global

macro, predictors, that contains the names of our predictor variables.

. global predictors overallqual grlivarea exterqual houseage garagecars
> totalbsmtsf stflrsf garagearea kitchenqual bsmtqual

Next we initialize a cluster and put the data into an H2O frame.

. h2o init
(output omitted)

. _h2oframe _put, into(house)

. _h2oframe _change house

h2oml gbm — Gradient boosting machine for regression and classification+ 102

To perform GBM quantile regression with h2oml gbmregress, we specify the loss(quantile) op-
tion with the alpha(0.25) suboption for the desired quantile. We also prespecify values for some

hyperparameters.

. h2oml gbregress logsaleprice $predictors, loss(quantile, alpha(0.25))
> h2orseed(19) ntrees(500) minobsleaf(1) binscat(115) samprate(0.8)
Progress (%): 0 2.4 14.5 34.0 55.1 78.2 100
Gradient boosting regression using H2O
Response: logsaleprice
Loss: Quantile .25
Frame: Number of observations:

Training: house Training = 1,460
Model parameters
Number of trees = 500 Learning rate = .1

actual = 500 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = .8
min = 5 No. of bins cat. = 115
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Deviance .0256034
MSE .0145046

RMSE .1204352
RMSLE .0092806

MAE .0773586
R-squared .9090348

Here, because we estimated the conditional 25th percentile (or 0.25 quantile) of the log price, the

header reports the loss as Quantile .25.

Sometimes, we may want to impose monotonicity constraints on predictors. For instance, let’s use

the h2omlgraph ice postestimation command to check for monotonicity of the overallqual predic-

tor. This command visualizes the relationship between a predictor, overallqual in our case, and the

predicted response for deciles of the data.

h2oml gbm — Gradient boosting machine for regression and classification+ 103

. h2omlgraph ice overallqual

10

11

12

13

14

P
re

di
ct

io
n

0 2 4 6 8 10
overallqual

0th
10th
20th
30th
40th
50th
60th
70th
80th
90th
100th

Partial dependence

Percentiles

Training frame: house

Individual conditional expectation using H2O

The relationship between the response and predictor overallqual is monotonic for all deciles. Let’s
impose a monotonicity constraint on this predictor. To apply increasing or decreasing monotonicity

constraint, we can use the monotone() option.

. h2oml gbregress logsaleprice $predictors, loss(quantile, alpha(0.25))
> h2orseed(19) ntrees(500) minobsleaf(1) binscat(155) samprate(0.8)
> monotone(overallqual, increasing)
Gradient boosting regression using H2O
Response: logsaleprice
Loss: Quantile .25
Frame: Number of observations:

Training: house Training = 1,460
Model parameters
Number of trees = 500 Learning rate = .1

actual = 500 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = .8
min = 0 No. of bins cat. = 155
avg = 0.1 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Deviance 2.521312
MSE 108.0305

RMSE 10.39377
RMSLE .

MAE 10.08525
R-squared -676.5092

Monotone increasing: overallqual

The note at the bottom of the table describes specified monotonicity constraints.

h2oml gbm — Gradient boosting machine for regression and classification+ 104

The monotone() option is available only with h2oml gbregress with loss function Gaussian, quan-
tile, or Tweedie and with h2oml gbbinclass.

Example 9: Handling imbalanced data with binary and multiclass classification
In this example, we study how to handle imbalanced data in categorical responses such as those having

rare events or rare outcomes. We use a popular credit card dataset available in Kaggle (Pozzolo et al.

2015, 2018) to predict whether a given credit card transaction is fraudulent.

The dataset contains 28 predictors v1 through v28, which are obtained after a principal component
analysis transformation. Because of confidentiality issues, the original predictors are not available. The

response fraud is a binary variable that takes value 1 if the transaction is fraudulent and 0 otherwise.

. use https://www.stata-press.com/data/r18/creditcard
(Credit card data)
. tabulate fraud

Is
fraudulent Freq. Percent Cum.

No 284,315 99.83 99.83
Yes 492 0.17 100.00

Total 284,807 100.00

The data are highly imbalanced. We should practice caution when analyzing such data.

Similar to other examples, we start by converting the dataset in Stata’s memory to an H2O frame and

splitting it into training and validation frames.

. _h2oframe put, into(credit)
Progress (%): 0 2.5 100
. _h2oframe split credit, into(train valid) split(0.8 0.2) rseed(19)
. _h2oframe change train

h2oml gbm — Gradient boosting machine for regression and classification+ 105

For illustration purposes, we do not implement tuning in this example, but we use 500 trees instead

of the default 50. We also specify an H2O random-number seed for reproducibility.

. h2oml gbbinclass fraud v1-v28 amount, validframe(valid) h2orseed(19)
> ntrees(500)
Progress (%): 0 0.2 0.4 0.9 4.6 10.0 15.3 21.4 26.6 32.4 38.4 44.4 49.5 56.1
> 62.8 68.4 74.8 81.8 88.5 94.1 100
Gradient boosting binary classification using H2O
Response: fraud
Loss: Bernoulli
Frame: Number of observations:

Training: train Training = 228,083
Validation: valid Validation = 56,724

Model parameters
Number of trees = 500 Learning rate = .1

actual = 500 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 5 No. of bins cat. = 1,024
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Log loss .0148732 .0234753
Mean class error .1043567 .1406525

AUC .9053009 .8265031
AUCPR .6773611 .5326735

Gini coefficient .8106018 .6530063
MSE .0006575 .0010012

RMSE .0256412 .0316414

h2oml gbm — Gradient boosting machine for regression and classification+ 106

For imbalanced data, the literature (Davis and Goadrich 2006) recommends using AUPCR as the per-

formancemetric. For more information aboutAUCPR and other metrics, see [H2OML]metric option. The

AUCPR on the validation dataset is 0.53. To account for the data imbalance, the h2oml gbbinclass and
h2oml gbmulticlass commands support the balanceclasses option, which oversamples the minor-

ity class to balance the class distribution. But oversampling may not always be a good solution and may

negatively affect machine learning models. You should use the balanceclasses option with caution

(van den Goorbergh et al. 2022; Sakho, Malherbe, and Scornet 2024).

. h2oml gbbinclass fraud v1-v28 amount, validframe(valid) h2orseed(19)
> ntrees(500) balanceclasses
note: balancing distribution of classes per option balanceclasses.
Progress (%): 0 0.4 1.7 2.9 4.8 7.1 9.7 12.2 14.3 16.7 19.4 21.9 23.9 26.6 29.1
> 31.6 33.5 36.1 38.8 41.2 43.2 45.6 48.1 50.5 52.6 55.0 57.5 60.0 62.1 64.6
> 67.1 69.5 72.0 74.4 76.9 79.1 81.5 83.9 86.5 88.8 91.2 93.8 96.2 98.1 100
Gradient boosting binary classification using H2O
Response: fraud
Loss: Bernoulli
Frame: Number of observations:

Training: train Training = 455,361
Validation: valid Validation = 56,724

Model parameters
Number of trees = 500 Learning rate = .1

actual = 500 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 5 No. of bins cat. = 1,024
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Log loss .0108671 .0055343
Mean class error 0 .1011677

AUC 1 .9716178
AUCPR 1 .8094138

Gini coefficient 1 .9432356
MSE .0010155 .0004613

RMSE .0318666 .0214785

In our case, the AUCPR score improves from 0.53 to 0.81.

Stored results
h2oml gbm stores the following in e():

Scalars

e(N train) number of observations in the training frame

e(N valid) number of observations in the validation frame (with option validframe())
e(N cv) number of observations in the cross-validation (with option cv())
e(n cvfolds) number of cross-validation folds (with option cv())
e(k predictors) number of predictors

e(n class) number of classes (with classification)

e(n trees) number of trees

h2oml gbm — Gradient boosting machine for regression and classification+ 107

e(n trees a) actual number of trees used in GBM

e(maxdepth) maximum specified tree depth

e(depth min a) achieved minimum tree depth

e(depth avg a) achieved average depth among trees

e(depth max a) achieved maximum tree depth

e(minobsleaf) minimum specified number of observations for a child leaf

e(lrate) learning rate

e(lratedecay) learning rate decay

e(samprate) observation sampling rate

e(predsamprate) predictor sampling rate

e(minsplitthr) minimum split improvement threshold

e(binscat) number of bins for categorical predictors

e(binsroot) number of bins for root node

e(binscont) number of bins for continuous predictors

e(h2orseed) H2O random-number seed

e(alpha) top percentile of residuals if loss(huber); quantile if loss(quantile)
e(power) variance power if loss(tweedie)
e(auc) 1 if auc; 0 otherwise (with multiclass classification)
e(maxtime) maximum run time

e(balanceclass) 1 if classes are balanced; 0 otherwise (with classification)
e(stop iter) maximum iterations before stopping training without metric improvement

e(stop tol) tolerance for metric improvement before training stops

e(scoreevery) number of trees before scoring metrics during training

e(tune h2orseed) random-number seed for tuning (with option tune())
e(tune stop iter) maximum iterations before stopping tuning without metric improvement (with

option tune())
e(tune stop tol) tolerance for metric improvement before tuning stops (with option tune())
e(tune maxtime) maximum run time for tuning grid search (with option tune())
e(tune maxmodels) maximum number of models considered in tuning grid search (with option

tune())
Macros

e(cmd) h2oml gbregress, h2oml gbbinclass, or h2oml gbmulticlass
e(cmdline) command as typed

e(subcmd) gbregress, gbbinclass, or gbmulticlass
e(method) gbm
e(method type) regression or classification
e(class type) binary or multiclass (with classification)
e(method full name) full method name

e(response) name of response

e(predictors) names of predictors

e(title) title in estimation output

e(loss) name of the loss function

e(train frame) name of the training frame

e(valid frame) name of the validation frame (with option validframe())
e(cv method) fold assignment method (with option cv())
e(cv varname) name of variable identifying cross-validation folds (with option cv())
e(encode type) encoding type for categorical predictors

e(monotone inc) names of predictors with monotone increasing constraints

e(monotone dec) names of predictors with monotone decreasing constraints

e(stop metric) stopping metric for training

e(tune grid) grid search method used for tuning (with option tune())
e(tune metric) name of the tuning metric (with option tune())
e(tune stop metric) stopping metric for tuning (with option tune())
e(properties) nob noV
e(estat cmd) program used to implement h2omlestat
e(predict) program used to implement h2omlpredict
e(marginsnotok) predictions disallowed by margins

h2oml gbm — Gradient boosting machine for regression and classification+ 108

Matrices

e(metrics) training, validation, and cross-validation metrics

e(hyperparam table) minimum, maximum, and selected hyperparameter values

Methods and formulas
For methods and formulas for GBM implementation, see https://docs.h2o.ai/h2o/latest-stable/h2o-

docs/data-science/gbm.html. For a mapping of h2oml gbm option names to the H2O options, see

[H2OML] H2O option mapping.

References
Anderson, E. 1935. The irises of the Gaspé Peninsula. Bulletin of the American Iris Society 59: 2–5.

Davis, J., and M. Goadrich. 2006. “The relationship between precision-recall and ROC curves”. In Proceedings of the

23rd International Conference onMachine Learning, 233–240. NewYork: Association for ComputingMachinery. https:

//doi.org/10.1145/1143844.1143874.

Fisher, R. A. 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics 7: 179–188. https:

//doi.org/10.1111/j.1469-1809.1936.tb02137.x.

Friedman, J. H. 2001. Greedy function approximation: A gradient boosting machine.Annals of Statistics 29: 1189–1232.

https://doi.org/10.1214/aos/1013203451.

Koenker, R. 2005. Quantile Regression. New York: Cambridge University Press. https://doi.org/10.1017/

CBO9780511754098.

Koenker, R., and G. Bassett, Jr. 1978. Regression quantiles. Econometrica 46: 33–50. https://doi.org/10.2307/1913643.

Pozzolo, A. D., G. Boracchi, O. Caelen, C. Alippi, and G. Bontempi. 2018. Credit card fraud detection: A realistic

modeling and a novel learning strategy. IEEE Transactions on Neural Networks and Learning Systems 29: 3784–3797.

https://doi.org/10.1109/tnnls.2017.2736643.

Pozzolo, A. D., O. Caelen, R. A. Johnson, and G. Bontempi. 2015. “Calibrating probability with undersampling for

unbalanced classification”. In Proceedings of the IEEE Symposium Series on Computational Intelligence, 159–166.

Piscataway, NJ: IEEE. https://doi.org/10.1109/SSCI.2015.33.

Sakho, A., E. Malherbe, and E. Scornet. 2024. Do we need rebalancing strategies? A theoretical and empirical study

around SMOTE and its variants. arXiv:2402.03819 [stat.ML], https://doi.org/10.48550/arXiv.2402.03819.

Simonoff, J. S. 1996. Smoothing Methods in Statistics. New York: Springer. https://doi.org/10.1007/978-1-4612-4026-6.

van den Goorbergh, R., M. van Smeden, D. Timmerman, and B. Van Calster. 2022. The harm of class imbalance correc-

tions for risk prediction models: Illustration and simulation using logistic regression. Journal of the American Medical

Informatics Association 29: 1525–1534. https://doi.org/10.1093/jamia/ocac093.

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm.html
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1017/CBO9780511754098
https://doi.org/10.1017/CBO9780511754098
https://doi.org/10.2307/1913643
https://doi.org/10.1109/tnnls.2017.2736643
https://doi.org/10.1109/SSCI.2015.33
https://doi.org/10.48550/arXiv.2402.03819
https://doi.org/10.1007/978-1-4612-4026-6
https://doi.org/10.1093/jamia/ocac093

h2oml gbm — Gradient boosting machine for regression and classification+ 109

Also see
[H2OML] h2oml postestimation — Postestimation tools for h2oml gbm and h2oml rf+

[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2oml gbbinclass — Gradient boosting binary classification+

[H2OML] h2oml gbmulticlass — Gradient boosting multiclass classification+

[H2OML] h2oml gbregress — Gradient boosting regression+

[H2OML] h2oml rf — Random forest for regression and classification+

[U] 20 Estimation and postestimation commands

h2oml gbbinclass — Gradient boosting binary classification+

+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
h2oml gbbinclass implements gradient boosting classification for binary responses. You can val-

idate your model by using validation data or cross-validation, and you can tune hyperparameters and

stop early to improve model performance on new data. This command provides only measures of perfor-

mance. See [H2OML] h2oml postestimation for commands to compute and explain predictions, examine

variable importance, and perform other postestimation analyses.

For an introduction to decision trees and the gradient boosting machine (GBM) method, see

[H2OML] Intro.

Quick start
Before running the h2oml gbbinclass command, an H2O cluster must be initialized and data must

be imported to an H2O frame; see [H2OML] H2O setup and Prepare your data for H2O machine learning

in Stata in [H2OML] h2oml.

Perform gradient boosting binary classification of binary response y1 on predictors x1 through x100
h2oml gbbinclass y1 x1-x100

As above, but also report measures of fit for the validation frame named valid, and set an H2O random-

number seed for reproducibility

h2oml gbbinclass y1 x1-x100, validframe(valid) h2orseed(123)

As above, but instead of a validation frame, use 3-fold cross-validation

h2oml gbbinclass y1 x1-x100, cv(3) h2orseed(123)

As above, but set the number of trees to 30, the maximum tree depth to 10, the learning rate to 0.01, and

the predictor sampling rate to 0.6

h2oml gbbinclass y1 x1-x100, cv(3) h2orseed(123) ntrees(30) ///
maxdepth(10) lrate(0.01) predsamprate(0.6)

As above, but use the default exhaustive grid search to select the optimal number of trees and the maxi-

mum tree depth that minimize the log-loss metric

h2oml gbbinclass y1 x1-x100, cv(3) h2orseed(123) lrate(0.01) ///
predsamprate(0.6) ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss))

As above, but use a random grid search, set an H2O random-number seed for this search, and limit the

maximum search time to 200 seconds

h2oml gbbinclass y1 x1-x100, cv(3) h2orseed(123) lrate(0.01) ///
predsamprate(0.6) ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss) grid(random, h2orseed(456)) maxtime(200))

110

h2oml gbbinclass — Gradient boosting binary classification+ 111

As above, but specify a learning-rate decay of 0.9, and tune the number of bins for the categorical and

continuous predictors

h2oml gbbinclass y1 x1-x100, cv(3) h2orseed(123) lrate(0.01) ///
lratedecay(0.9) predsamprate(0.6) ntrees(10(5)100) ///
maxdepth(3(1)10) binscont(15(5)50) binscat(500(50)1100) ///
tune(metric(logloss) grid(random, h2orseed(456)) maxtime(200))

Menu
Statistics > H2O machine learning

h2oml gbbinclass — Gradient boosting binary classification+ 112

Syntax
h2oml gbbinclass response bin predictors [, options]

response bin and predictors correspond to column names of the current H2O frame.

options Description

Model

validframe(framename) specify the name of the H2O frame containing the validation
dataset that will be used to evaluate the performance
of the model

cv[(# [, cvmethod])] specify the number of folds and method for cross-validation

cv(colname) specify the name of the variable (H2O column) for
cross-validation that identifies the fold to which each
observation is assigned

balanceclasses balance the distribution of classes (categories of the response
variable) by oversampling the minority class

h2orseed(#) set H2O random-number seed for GBM

encode(encode type) specify H2O encoding type for categorical predictors; default
is encode(enum)

stop[(# [, stop opts])] specify the number of training iterations and other criteria
for stopping GBM training if the stopping metric does
not improve

maxtime(#) specify the maximum run time in seconds for GBM;
by default, no time restriction is imposed

scoreevery(#) specify that metrics be scored after every # trees during training

monotone(predictors[, mon opts]) specify monotonicity constraints on the relationship between
the response and the specified predictors

Hyperparameter

ntrees(# | numlist) specify the number of trees to build the GBM model; default
is ntrees(50)

lrate(# | numlist) specify the learning rate of each tree; default is lrate(0.1)
lratedecay(# | numlist) specify the rate by which the learning rate specified in

lrate() is decaying after adding each tree to the GBM;
default is lratedecay(1)

maxdepth(# | numlist) specify the maximum depth of each tree; default is
maxdepth(5)

minobsleaf(# | numlist) specify the minimum number of observations per child for
splitting a leaf node; default is minobsleaf(10)

predsamprate(# | numlist) specify the sampling rate for randomly selecting a fraction of
predictors to build a tree; default is predsamprate(1)

samprate(# | numlist) specify the sampling rate for randomly selecting a fraction of
observations to build a tree; default is samprate(1)

minsplitthreshold(# | numlist) specify the threshold for the minimum relative improvement
needed for a node split; default is
minsplitthreshold(1e-05)

binscat(# | numlist) specify the number of bins to build the histogram for node
splits for categorical predictors (enum columns in H2O);
default is binscat(1024)

h2oml gbbinclass — Gradient boosting binary classification+ 113

binsroot(# | numlist) specify the number of bins to build the histogram for root
node splits for continuous predictors (real and int
columns in H2O); default is binsroot(1024)

binscont(# | numlist) specify the number of bins to build the histogram for node
splits for continuous predictors (real and int columns
in H2O); default is binscont(20)

Tuning

tune(tune opts) specify hyperparameter tuning options for selecting the
best-performing model

Only one of validframe() or cv[()] is allowed.
If neither validframe() nor cv[()] is specified, the evaluation metrics are reported for the training dataset.
When numlist is specified in one or more hyperparameter options, tuning is performed for those hyperparameters.

collect is allowed; see [U] 11.1.10 Prefix commands.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

cvmethod Description

random randomly split the training dataset into folds; the default

modulo evenly split the training dataset into folds using the modulo
operation

stratify evenly distribute observations from the different classes of
the response to all folds

stop opts Description

metric(metric option) specify the stopping metric for training or grid search

tolerance(#) specify the tolerance value by which a model must improve
before the training or grid search stops; default is
tolerance(1e-3)

tune opts Description

metric(metric option) specify the metric for selecting the best-performing model

grid(gridspec) specify whether to perform an exhaustive or random search
for all hyperparameter combinations

maxmodels(#) specify the maximum number of models considered in the
grid search; default is all configurations

maxtime(#) specify the maximum run time for the grid search in seconds;
default is no time limit

stop[(# [, stop opts])] specify the number of iterations and other criteria for
stopping GBM training if the stopping metric does not
improve in the grid search

parallel(#) specify the number of models to build in parallel during
the grid search; default is parallel(1), sequential
model building

nooutput suppress the table summarizing hyperparameter tuning

If any of maxmodels(), maxtime(), or stop[()] is specified, then grid(random) is implied.

h2oml gbbinclass — Gradient boosting binary classification+ 114

Options

� � �
Model �

validframe(), cv[()], balanceclasses, h2orseed(), encode(), stop[()], maxtime(),
scoreevery(), and monotone(); see [H2OML] h2oml gbm.

� � �
Hyperparameter �

ntrees(), lrate(), lratedecay(), maxdepth(), minobsleaf(), predsamprate(), samprate(),
minsplitthreshold(), binscat(), binsroot(), and binscont(); see [H2OML] h2oml gbm.

� � �
Tuning �

tune(); see [H2OML] h2oml gbm.

Remarks and examples
For examples, see Remarks and examples in [H2OML] h2oml gbm.

Stored results
h2oml gbbinclass stores the following in e():

Scalars

e(N train) number of observations in the training frame

e(N valid) number of observations in the validation frame (with option validframe()
e(N cv) number of observations in the cross-validation (with option cv())
e(n cvfolds) number of cross-validation folds (with option cv())
e(k predictors) number of predictors

e(n trees) number of trees

e(n trees a) actual number of trees used in GBM

e(maxdepth) maximum specified tree depth

e(depth min a) achieved minimum tree depth

e(depth avg a) achieved average depth among trees

e(depth max a) achieved maximum tree depth

e(minobsleaf) minimum specified number of observations for a child leaf

e(lrate) learning rate

e(lratedecay) learning rate decay

e(samprate) observation sampling rate

e(predsamprate) predictor sampling rate

e(minsplitthr) minimum split improvement threshold

e(binscat) number of bins for categorical predictors

e(binsroot) number of bins for root node

e(binscont) number of bins for continuous predictors

e(h2orseed) H2O random-number seed

e(maxtime) maximum run time

e(balanceclass) 1 if classes are balanced; 0 otherwise
e(stop iter) maximum iterations before stopping training without metric improvement

e(stop tol) tolerance for metric improvement before training stops

e(scoreevery) number of trees before scoring metrics during training

e(tune h2orseed) random-number seed for tuning (with option tune())
e(tune stop iter) maximum iterations before stopping tuning without metric improvement (with

option tune())
e(tune stop tol) tolerance for metric improvement before tuning stops (with option tune())

h2oml gbbinclass — Gradient boosting binary classification+ 115

e(tune maxtime) maximum run time for tuning grid search (with option tune())
e(tune maxmodels) maximum number of models considered in tuning grid search (with option

tune())
Macros

e(cmd) h2oml gbbinclass
e(cmdline) command as typed

e(subcmd) gbbinclass
e(method) gbm
e(method type) classification
e(class type) binary
e(method full name) Gradient boosting binary classification
e(response) name of response

e(predictors) names of predictors

e(title) title in estimation output

e(loss) name of the loss function

e(train frame) name of the training frame (with option validframe())
e(valid frame) name of the validation frame (with option cv())
e(cv method) fold assignment method (with option cv())
e(cv varname) name of variable identifying cross-validation folds

e(encode type) encoding type for categorical predictors

e(monotone inc) names of predictors with monotone increasing constraints

e(monotone dec) names of predictors with monotone decreasing constraints

e(stop metric) stopping metric for training

e(tune grid) grid search method used for tuning (with option tune())
e(tune metric) name of the tuning metric (with option tune())
e(tune stop metric) stopping metric for tuning (with option tune())
e(properties) nob noV
e(estat cmd) program used to implement h2omlestat
e(predict) program used to implement h2omlpredict
e(marginsnotok) predictions disallowed by margins

Matrices

e(metrics) training, validation, and cross-validation metrics

e(hyperparam table) minimum, maximum, and selected hyperparameter values

Also see
[H2OML] h2oml postestimation — Postestimation tools for h2oml gbm and h2oml rf+

[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2oml gbm — Gradient boosting machine for regression and classification+

[H2OML] h2oml gbmulticlass — Gradient boosting multiclass classification+

[H2OML] h2oml gbregress — Gradient boosting regression+

[H2OML] h2oml rfbinclass — Random forest binary classification+

[U] 20 Estimation and postestimation commands

h2oml gbmulticlass — Gradient boosting multiclass classification+

+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
h2oml gbmulticlass implements gradient boosting multiclass classification for categorical re-

sponses. You can validate your model by using validation data or cross-validation, and you can tune

hyperparameters and stop early to improve model performance on new data. This command provides

only measures of performance. See [H2OML] h2oml postestimation for commands to compute and ex-

plain predictions, examine variable importance, and perform other postestimation analyses.

For an introduction to decision trees and the gradient boosting machine (GBM) method, see

[H2OML] Intro.

Quick start
Before running the h2oml gbmulticlass command, an H2O cluster must be initialized and data must

be imported to an H2O frame; see [H2OML] H2O setup and Prepare your data for H2O machine learning

in Stata in [H2OML] h2oml.

Perform gradient boosting multiclass classification of categorical response y1 on predictors x1 through

x100
h2oml gbmulticlass y1 x1-x100

As above, but also report measures of fit for the validation frame named valid, and set an H2O random-

number seed for reproducibility

h2oml gbmulticlass y1 x1-x100, validframe(valid) h2orseed(123)

As above, but instead of a validation frame, use 3-fold cross-validation

h2oml gbmulticlass y1 x1-x100, cv(3) h2orseed(123)

As above, but set the number of trees to 30, the maximum tree depth to 10, the learning rate to 0.01, and

the predictor sampling rate to 0.6

h2oml gbmulticlass y1 x1-x100, cv(3) h2orseed(123) ntrees(30) ///
maxdepth(10) lrate(0.01) predsamprate(0.6)

As above, but use the default exhaustive grid search to select the optimal number of trees and the maxi-

mum tree depth that minimize the log-loss metric

h2oml gbmulticlass y1 x1-x100, cv(3) h2orseed(123) lrate(0.01) ///
predsamprate(0.6) ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss))

116

h2oml gbmulticlass — Gradient boosting multiclass classification+ 117

As above, but use a random grid search, set an H2O random-number seed for this search, and limit the

maximum search time to 200 seconds

h2oml gbmulticlass y1 x1-x100, cv(3) h2orseed(123) lrate(0.01) ///
predsamprate(0.6) ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss) grid(random, h2orseed(456)) maxtime(200))

As above, but specify a learning-rate decay of 0.9, and tune the number of bins for the categorical and

continuous predictors

h2oml gbmulticlass y1 x1-x100, cv(3) h2orseed(123) lrate(0.01) ///
lratedecay(0.9) predsamprate(0.6) ntrees(10(5)100) ///
maxdepth(3(1)10) binscont(15(5)50) binscat(500(50)1100) ///
tune(metric(logloss) grid(random, h2orseed(456)) maxtime(200))

Menu
Statistics > H2O machine learning

h2oml gbmulticlass — Gradient boosting multiclass classification+ 118

Syntax
h2oml gbmulticlass response mult predictors [, options]

response mult and predictors correspond to column names of the current H2O frame.

options Description

Model

validframe(framename) specify the name of the H2O frame containing the validation
dataset that will be used to evaluate the performance
of the model

cv[(# [, cvmethod])] specify the number of folds and method for cross-validation

cv(colname) specify the name of the variable (H2O column) for
cross-validation that identifies the fold to which each
observation is assigned

balanceclasses balance the distribution of classes (categories of the response
variable) by oversampling minority classes

h2orseed(#) set H2O random-number seed for GBM

encode(encode type) specify H2O encoding type for categorical predictors; default
is encode(enum)

auc enable potentially time-consuming calculation of the area
under the curve and area under the precision–recall curve
metrics

stop[(# [, stop opts])] specify the number of training iterations and other criteria
for stopping GBM training if the stopping metric does
not improve

maxtime(#) specify the maximum run time in seconds for GBM;
by default, no time restriction is imposed

scoreevery(#) specify that metrics be scored after every # trees during training

Hyperparameter

ntrees(# | numlist) specify the number of trees to build the GBM model; default
is ntrees(50)

lrate(# | numlist) specify the learning rate of each tree; default is lrate(0.1)
lratedecay(# | numlist) specify the rate by which the learning rate specified in

lrate() is decaying after adding each tree to the GBM;
default is lratedecay(1)

maxdepth(# | numlist) specify the maximum depth of each tree; default is
maxdepth(5)

minobsleaf(# | numlist) specify the minimum number of observations per child for
splitting a leaf node; default is minobsleaf(10)

predsamprate(# | numlist) specify the sampling rate for randomly selecting a fraction of
predictors to build a tree; default is predsamprate(1)

samprate(# | numlist) specify the sampling rate for randomly selecting a fraction of
observations to build a tree; default is samprate(1)

minsplitthreshold(# | numlist) specify the threshold for the minimum relative improvement
needed for a node split; default is
minsplitthreshold(1e-05)

h2oml gbmulticlass — Gradient boosting multiclass classification+ 119

binscat(# | numlist) specify the number of bins to build the histogram for node
splits for categorical predictors (enum columns in H2O);
default is binscat(1024)

binsroot(# | numlist) specify the number of bins to build the histogram for root
node splits for continuous predictors (real and int
columns in H2O); default is binsroot(1024)

binscont(# | numlist) specify the number of bins to build the histogram for node
splits for continuous predictors (real and int columns
in H2O); default is binscont(20)

Tuning

tune(tune opts) specify hyperparameter tuning options for selecting the
best-performing model

Only one of validframe() or cv[()] is allowed.
If neither validframe() nor cv[()] is specified, the evaluation metrics are reported for the training dataset.
When numlist is specified in one or more hyperparameter options, tuning is performed for those hyperparameters.

collect is allowed; see [U] 11.1.10 Prefix commands.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

cvmethod Description

random randomly split the training dataset into folds; the default

modulo evenly split the training dataset into folds using the modulo
operation

stratify evenly distribute observations from the different classes of
the response to all folds

stop opts Description

metric(metric option) specify the stopping metric for training or grid search

tolerance(#) specify the tolerance value by which a model must improve
before the training or grid search stops; default is
tolerance(1e-3)

tune opts Description

metric(metric option) specify the metric for selecting the best-performing model

grid(gridspec) specify whether to perform an exhaustive or random search
for all hyperparameter combinations

maxmodels(#) specify the maximum number of models considered in the
grid search; default is all configurations

maxtime(#) specify the maximum run time for the grid search in seconds;
default is no time limit

stop[(# [, stop opts])] specify the number of iterations and other criteria for
stopping GBM training if the stopping metric does not
improve in the grid search

parallel(#) specify the number of models to build in parallel during
the grid search; default is parallel(1), sequential
model building

nooutput suppress the table summarizing hyperparameter tuning

h2oml gbmulticlass — Gradient boosting multiclass classification+ 120

If any of maxmodels(), maxtime(), or stop[()] is specified, then grid(random) is implied.

Options

� � �
Model �

validframe(), cv[()], balanceclasses, h2orseed(), encode(), auc, stop[()], maxtime(), and
scoreevery(); see [H2OML] h2oml gbm.

� � �
Hyperparameter �

ntrees(), lrate(), lratedecay(), maxdepth(), minobsleaf(), predsamprate(), samprate(),
minsplitthreshold(), binscat(), binsroot(), and binscont(); see [H2OML] h2oml gbm.

� � �
Tuning �

tune(); see [H2OML] h2oml gbm.

Remarks and examples
For examples, see Remarks and examples in [H2OML] h2oml gbm.

Stored results
h2oml gbmulticlass stores the following in e():

Scalars

e(N train) number of observations in the training frame

e(N valid) number of observations in the validation frame (with option validframe())
e(N cv) number of observations in the cross-validation (with option cv())
e(n cvfolds) number of cross-validation folds (with option cv())
e(k predictors) number of predictors

e(n class) number of classes

e(n trees) number of trees

e(n trees a) actual number of trees used in GBM

e(maxdepth) maximum specified tree depth

e(depth min a) achieved minimum tree depth

e(depth avg a) achieved average depth among trees

e(depth max a) achieved maximum tree depth

e(minobsleaf) minimum specified number of observations for a child leaf

e(lrate) learning rate

e(lratedecay) learning rate decay

e(samprate) observation sampling rate

e(predsamprate) predictor sampling rate

e(minsplitthr) minimum split improvement threshold

e(binscat) number of bins for categorical predictors

e(binsroot) number of bins for root node

e(binscont) number of bins for continuous predictors

e(h2orseed) H2O random-number seed

e(auc) 1 if auc; 0 otherwise
e(maxtime) maximum run time

e(balanceclass) 1 if classes are balanced; 0 otherwise
e(stop iter) maximum iterations before stopping training without metric improvement

e(stop tol) tolerance for metric improvement before training stops

e(scoreevery) number of trees before scoring metrics during training

h2oml gbmulticlass — Gradient boosting multiclass classification+ 121

e(tune h2orseed) random-number seed for tuning (with option tune())
e(tune stop iter) maximum iterations before stopping tuning without metric improvement (with

option tune())
e(tune stop tol) tolerance for metric improvement before tuning stops (with option tune())
e(tune maxtime) maximum run time for tuning grid search (with option tune())
e(tune maxmodels) maximum number of models considered in tuning grid search (with option

tune())
Macros

e(cmd) h2oml gbmulticlass
e(cmdline) command as typed

e(subcmd) gbmulticlass
e(method) gbm
e(method type) classification
e(class type) multiclass
e(method full name) Gradient boosting multiclass classification
e(response) name of response

e(predictors) names of predictors

e(title) title in estimation output

e(loss) name of the loss function

e(train frame) name of the training frame

e(valid frame) name of the validation frame (with option validframe())
e(cv method) fold assignment method (with option cv())
e(cv varname) name of variable identifying cross-validation folds (with option cv())
e(encode type) encoding type for categorical predictors

e(stop metric) stopping metric for training

e(tune grid) grid search method used for tuning (with option tune())
e(tune metric) name of the tuning metric (with option tune())
e(tune stop metric) stopping metric for tuning (with option tune())
e(properties) nob noV
e(estat cmd) program used to implement h2omlestat
e(predict) program used to implement h2omlpredict
e(marginsnotok) predictions disallowed by margins

Matrices

e(metrics) training, validation, and cross-validation metrics

e(hyperparam table) minimum, maximum, and selected hyperparameter values

Also see
[H2OML] h2oml postestimation — Postestimation tools for h2oml gbm and h2oml rf+

[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2oml gbm — Gradient boosting machine for regression and classification+

[H2OML] h2oml gbbinclass — Gradient boosting binary classification+

[H2OML] h2oml gbregress — Gradient boosting regression+

[H2OML] h2oml rfmulticlass — Random forest multiclass classification+

[U] 20 Estimation and postestimation commands

h2oml gbregress — Gradient boosting regression+

+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
h2oml gbregress implements gradient boosting regression for continuous and count responses. You

can choose from six loss functions, validate your model by using validation data or cross-validation,

and tune hyperparameters and stop early to improve model performance on new data. This command

provides only measures of performance. See [H2OML] h2oml postestimation for commands to compute

and explain predictions, examine variable importance, and perform other postestimation analyses.

For an introduction to decision trees and the gradient boosting machine (GBM) method, see

[H2OML] Intro.

Quick start
Before running the h2oml gbregress command, an H2O cluster must be initialized and data must be

imported to an H2O frame; see [H2OML] H2O setup and Prepare your data for H2O machine learning in

Stata in [H2OML] h2oml.

Perform gradient boosting regression of response y1 on predictors x1 through x100
h2oml gbregress y1 x1-x100

As above, but also report measures of fit for the validation frame named valid, and set an H2O random-

number seed for reproducibility

h2oml gbregress y1 x1-x100, validframe(valid) h2orseed(123)

As above, but instead of a validation frame, use 3-fold cross-validation

h2oml gbregress y1 x1-x100, cv(3) h2orseed(123)

As above, but set the number of trees to 30, the maximum tree depth to 10, the learning rate to 0.01, and

the predictor sampling rate to 0.6

h2oml gbregress y1 x1-x100, cv(3) h2orseed(123) ntrees(30) ///
maxdepth(10) lrate(0.01) predsamprate(0.6)

As above, but use the default exhaustive grid search to select the optimal number of trees and the maxi-

mum tree depth that minimize the mean squared error (MSE) metric

h2oml gbregress y1 x1-x100, cv(3) h2orseed(123) lrate(0.01) ///
predsamprate(0.6) ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(mse))

As above, but use a random grid search, set an H2O random-number seed for this search, and limit the

maximum search time to 200 seconds

h2oml gbregress y1 x1-x100, cv(3) h2orseed(123) lrate(0.01) ///
predsamprate(0.6) ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(mse) grid(random, h2orseed(456)) maxtime(200))

122

h2oml gbregress — Gradient boosting regression+ 123

As above, but specify a learning-rate decay of 0.9, and tune the number of bins for the categorical and

continuous predictors

h2oml gbregress y1 x1-x100, cv(3) h2orseed(123) lrate(0.01) ///
lratedecay(0.9) predsamprate(0.6) ntrees(10(5)100) ///
maxdepth(3(1)10) binscont(15(5)50) binscat(500(50)1100) ///
tune(metric(mse) grid(random, h2orseed(456)) maxtime(200))

Run gradient boosting quantile regression by specifying the quantile loss function

h2oml gbregress y1 x1-x100, loss(quantile)

Menu
Statistics > H2O machine learning

h2oml gbregress — Gradient boosting regression+ 124

Syntax
h2oml gbregress response reg predictors [, options]

response reg and predictors correspond to column names of the current H2O frame.

options Description

Model

loss(losstype) specify the loss function; default is loss(gaussian)
validframe(framename) specify the name of the H2O frame containing the validation

dataset that will be used to evaluate the performance
of the model

cv[(# [, cvmethod])] specify the number of folds and method for cross-validation

cv(colname) specify the name of the variable (H2O column) for
cross-validation that identifies the fold to which each
observation is assigned

h2orseed(#) set H2O random-number seed for GBM

encode(encode type) specify H2O encoding type for categorical predictors; default
is encode(enum)

stop[(# [, stop opts])] specify the number of training iterations and other criteria
for stopping GBM training if the stopping metric does
not improve

maxtime(#) specify the maximum run time in seconds for GBM;
by default, no time restriction is imposed

scoreevery(#) specify that metrics be scored after every # trees during training

monotone(predictors [, mon opts]) specify monotonicity constraints on the relationship between
the response and the specified predictors

Hyperparameter

ntrees(# | numlist) specify the number of trees to build the GBM model; default
is ntrees(50)

lrate(# | numlist) specify the learning rate of each tree; default is lrate(0.1)
lratedecay(# | numlist) specify the rate by which the learning rate specified in

lrate() is decaying after adding each tree to the GBM;
default is lratedecay(1)

maxdepth(# | numlist) specify the maximum depth of each tree; default is
maxdepth(5)

minobsleaf(# | numlist) specify the minimum number of observations per child for
splitting a leaf node; default is minobsleaf(10)

predsamprate(# | numlist) specify the sampling rate for randomly selecting a fraction of
predictors to build a tree; default is predsamprate(1)

samprate(# | numlist) specify the sampling rate for randomly selecting a fraction of
observations to build a tree; default is samprate(1)

minsplitthreshold(# | numlist) specify the threshold for the minimum relative improvement
needed for a node split; default is
minsplitthreshold(1e-05)

binscat(# | numlist) specify the number of bins to build the histogram for node
splits for categorical predictors (enum columns in H2O);
default is binscat(1024)

h2oml gbregress — Gradient boosting regression+ 125

binsroot(# | numlist) specify the number of bins to build the histogram for root
node splits for continuous predictors (real and int
columns in H2O); default is binsroot(1024)

binscont(# | numlist) specify the number of bins to build the histogram for node
splits for continuous predictors (real and int columns
in H2O); default is binscont(20)

Tuning

tune(tune opts) specify hyperparameter tuning options for selecting the
best-performing model

Only one of validframe() or cv[()] is allowed.
If neither validframe() nor cv[()] is specified, the evaluation metrics are reported for the training dataset.
monotone() can be specified only with loss(gaussian), loss(tweedie), or loss(quantile).
When numlist is specified in one or more hyperparameter options, tuning is performed for those hyperparameters.

collect is allowed; see [U] 11.1.10 Prefix commands.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

losstype Description

gaussian Gaussian loss; the default

tweedie[, power(#)] Tweedie loss; response must be nonnegative

poisson Poisson loss; response must be nonnegative

laplace Laplace loss

huber[, alpha(#)] Huber loss

quantile[, alpha(#)] quantile loss

cvmethod Description

random randomly split the training dataset into folds; the default

modulo evenly split the training dataset into folds using the modulo
operation

stratify evenly distribute observations from the different classes of
the response to all folds

stop opts Description

metric(metric option) specify the stopping metric for training or grid search

tolerance(#) specify the tolerance value by which a model must improve
before the training or grid search stops; default is
tolerance(1e-3)

h2oml gbregress — Gradient boosting regression+ 126

tune opts Description

metric(metric option) specify the metric for selecting the best-performing model

grid(gridspec) specify whether to perform an exhaustive or random search
for all hyperparameter combinations

maxmodels(#) specify the maximum number of models considered in the
grid search; default is all configurations

maxtime(#) specify the maximum run time for the grid search in seconds;
default is no time limit

stop[(# [, stop opts])] specify the number of iterations and other criteria for
stopping GBM training if the stopping metric does not
improve in the grid search

parallel(#) specify the number of models to build in parallel during
the grid search; default is parallel(1), sequential
model building

nooutput suppress the table summarizing hyperparameter tuning

If any of maxmodels(), maxtime(), or stop[()] is specified, then grid(random) is implied.

Options

� � �
Model �

loss(), validframe(), cv[()], h2orseed(), encode(), stop[()], maxtime(), scoreevery(),
and monotone(); see [H2OML] h2oml gbm.

� � �
Hyperparameter �

ntrees(), lrate(), lratedecay(), maxdepth(), minobsleaf(), predsamprate(), samprate(),
minsplitthreshold(), binscat(), binsroot(), and binscont(); see [H2OML] h2oml gbm.

� � �
Tuning �

tune(); see [H2OML] h2oml gbm.

Remarks and examples
For examples, see Remarks and examples in [H2OML] h2oml gbm.

Stored results
h2oml gbregress stores the following in e():

Scalars

e(N train) number of observations in the training frame

e(N valid) number of observations in the validation frame (with option validframe())
e(N cv) number of observations in the cross-validation (with option cv())
e(n cvfolds) number of cross-validation folds (with option cv())
e(k predictors) number of predictors

e(n trees) number of trees

e(n trees a) actual number of trees used in GBM

e(maxdepth) maximum specified tree depth

e(depth min a) achieved minimum tree depth

h2oml gbregress — Gradient boosting regression+ 127

e(depth avg a) achieved average depth among trees

e(depth max a) achieved maximum tree depth

e(minobsleaf) minimum specified number of observations for a child leaf

e(lrate) learning rate

e(lratedecay) learning rate decay

e(samprate) observation sampling rate

e(predsamprate) predictor sampling rate

e(minsplitthr) minimum split improvement threshold

e(binscat) number of bins for categorical predictors

e(binsroot) number of bins for root node

e(binscont) number of bins for continuous predictors

e(h2orseed) H2O random-number seed

e(alpha) top percentile of residuals if loss(huber); quantile if loss(quantile)
e(power) variance power if loss(tweedie)
e(maxtime) maximum run time

e(stop iter) maximum iterations before stopping training without metric improvement

e(stop tol) tolerance for metric improvement before training stops

e(scoreevery) number of trees before scoring metrics during training

e(tune h2orseed) random-number seed for tuning (with option tune())
e(tune stop iter) maximum iterations before stopping tuning without metric improvement (with

option tune())
e(tune stop tol) tolerance for metric improvement before tuning stops (with option tune())
e(tune maxtime) maximum run time for tuning grid search (with option tune())
e(tune maxmodels) maximum number of models considered in tuning grid search (with option

tune())
Macros

e(cmd) h2oml gbregress
e(cmdline) command as typed

e(subcmd) gbregress
e(method) gbm
e(method type) regression
e(method full name) Gradient boosting regression
e(response) name of response

e(predictors) names of predictors

e(title) title in estimation output

e(loss) name of the loss function

e(train frame) name of the training frame

e(valid frame) name of the validation frame (with option validframe())
e(cv method) fold assignment method (with option cv())
e(cv varname) name of variable identifying cross-validation folds (with option cv())
e(encode type) encoding type for categorical predictors

e(monotone inc) names of predictors with monotone increasing constraints

e(monotone dec) names of predictors with monotone decreasing constraints

e(stop metric) stopping metric for training

e(tune grid) grid search method used for tuning (with option tune())
e(tune metric) name of the tuning metric (with option tune())
e(tune stop metric) stopping metric for tuning (with option tune())
e(properties) nob noV
e(estat cmd) program used to implement h2omlestat
e(predict) program used to implement h2omlpredict
e(marginsnotok) predictions disallowed by margins

Matrices

e(metrics) training, validation, and cross-validation metrics

e(hyperparam table) minimum, maximum, and selected hyperparameter values

h2oml gbregress — Gradient boosting regression+ 128

Also see
[H2OML] h2oml postestimation — Postestimation tools for h2oml gbm and h2oml rf+

[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2oml gbm — Gradient boosting machine for regression and classification+

[H2OML] h2oml gbbinclass — Gradient boosting binary classification+

[H2OML] h2oml gbmulticlass — Gradient boosting multiclass classification+

[H2OML] h2oml rfregress — Random forest regression+

[U] 20 Estimation and postestimation commands

h2oml rf — Random forest for regression and classification+

+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
The h2oml rf commands implement the random forest method for regression, binary classification,

and multiclass classification. h2oml rfregress implements random forest regression for continuous

responses; h2oml rfbinclass implements random forest classification for binary responses; and h2oml
rfmulticlass implements random forest classification for multiclass responses (categorical responses

with more than two categories).

The h2oml rf commands provide only measures of performance. See [H2OML] h2oml postestimation

for commands to compute and explain predictions, examine variable importance, and perform other

postestimation analyses.

For an introduction to decision trees and random forest, see [H2OML] Intro.

Quick start
Before running the h2oml rf commands, an H2O cluster must be initialized and data must be imported

to an H2O frame; see [H2OML] H2O setup and Prepare your data for H2O machine learning in Stata in

[H2OML] h2oml.

Perform random forest regression of response y1 on predictors x1 through x100
h2oml rfregress y1 x1-x100

As above, but perform classification for binary response y2, report measures of fit for the validation
frame named valid, and set an H2O random-number seed for reproducibility

h2oml rfbinclass y2 x1-x100, validframe(valid) h2orseed(123)

As above, but for categorical response y3 and instead of a validation frame, use 3-fold cross-validation
h2oml rfmulticlass y3 x1-x100, cv(3) h2orseed(123)

As above, but set the number of trees to 30, the maximum tree depth to 10, and the number of predictors

to sample to 6

h2oml rfmulticlass y3 x1-x100, cv(3) h2orseed(123) ntrees(30) ///
maxdepth(10) predsampvalue(6)

As above, but use the default exhaustive grid search to select the optimal number of trees and the maxi-

mum tree depth that minimize the log-loss metric

h2oml rfmulticlass y3 x1-x100, cv(3) h2orseed(123) predsampvalue(6) ///
ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss))

129

h2oml rf — Random forest for regression and classification+ 130

As above, but use a random grid search, set an H2O random-number seed for this search, and limit the

maximum search time to 200 seconds

h2oml rfmulticlass y3 x1-x100, cv(3) h2orseed(123) predsampvalue(6) ///
ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss) grid(random, h2orseed(456)) maxtime(200))

As above, but use early stopping for the grid search with the default stopping log-loss metric

h2oml rfmulticlass y3 x1-x100, cv(3) h2orseed(123) predsampvalue(6) ///
ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss) grid(random, h2orseed(456)) maxtime(200) ///
stop(5))

Menu
Statistics > H2O machine learning

Syntax
Random forest regression

h2oml rfregress response reg predictors [, rfopts]

Random forest binary classification for binary response

h2oml rfbinclass response bin predictors [, rfopts]

Random forest multiclass classification for categorical response

h2oml rfmulticlass response mult predictors [, rfopts]

response reg, response bin, response mult, and predictors correspond to column names of the current

H2O frame.

h2oml rf — Random forest for regression and classification+ 131

rfopts Description

Model

validframe(framename) specify the name of the H2O frame containing the validation
dataset that will be used to evaluate the performance
of the model

cv[(# [, cvmethod])] specify the number of folds and method for cross-validation

cv(colname) specify the name of the variable (H2O column) for
cross-validation that identifies the fold to which each
observation is assigned

balanceclasses balance the distribution of classes (categories of
the response variable) by oversampling minority classes
with h2oml rfbinclass or h2oml rfmulticlass

h2orseed(#) set H2O random-number seed for random forest

encode(encode type) specify H2O encoding type for categorical predictors; default
is encode(enum)

auc enable potentially time-consuming calculation of the area
under the curve (AUC) and area under the precision–recall
curve (AUCPR) and metrics for multiclass classification with
h2oml rfmulticlass

stop[(# [, stop opts])] specify the number of training iterations and other criteria
for stopping random forest training if the stopping metric
does not improve

maxtime(#) specify the maximum run time in seconds for random forest;
by default, no time restriction is imposed

scoreevery(#) specify that metrics be scored after every # trees during training

Hyperparameter

ntrees(# | numlist) specify the number of trees to build the random forest model;
default is ntrees(50)

maxdepth(# | numlist) specify the maximum depth of each tree; default is
maxdepth(20)

minobsleaf(# | numlist) specify the minimum number of observations per child for
splitting a leaf node; default is minobsleaf(1)

predsampvalue(# | numlist) specify rules for how to sample predictors; default is
predsampvalue(-1)

samprate(# | numlist) specify the sampling rate for randomly selecting a fraction of
observations to build a tree; default is samprate(0.632)

minsplitthreshold(# | numlist) specify the threshold for the minimum relative improvement
needed for a node split; default is
minsplitthreshold(1e-05)

binscat(# | numlist) specify the number of bins to build the histogram for node
splits for categorical predictors (enum columns in H2O);
default is binscat(1024)

binsroot(# | numlist) specify the number of bins to build the histogram for root
node splits for continuous predictors (real and int
columns in H2O); default is binsroot(1024)

binscont(# | numlist) specify the number of bins to build the histogram for node
splits for continuous predictors (real and int columns
in H2O); default is binscont(20)

h2oml rf — Random forest for regression and classification+ 132

Tuning

tune(tune opts) specify hyperparameter tuning options for selecting the
best-performing model

Only one of validframe() or cv[()] is allowed.
If neither validframe() nor cv[()] is specified, the performance metrics are reported for the training dataset.
When numlist is specified in one or more hyperparameter options, tuning is performed for those hyperparameters.

collect is allowed; see [U] 11.1.10 Prefix commands.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

cvmethod Description

random randomly split the training dataset into folds; the default

modulo evenly split the training dataset into folds using the modulo
operation

stratify evenly distribute observations from the different classes of
the response to all folds

stop opts Description

metric(metric option) specify the stopping metric for training or grid search

tolerance(#) specify the tolerance value by which a model must improve
before the training or grid search stops; default is
tolerance(1e-3)

tune opts Description

metric(metric option) specify the metric for selecting the best-performing model

grid(gridspec) specify whether to perform an exhaustive or random search
for all hyperparameter combinations

maxmodels(#) specify the maximum number of models considered in the
grid search; default is all configurations

maxtime(#) specify the maximum run time for the grid search in seconds;
default is no time limit

stop[(# [, stop opts])] specify the number of iterations and other criteria for
stopping random forest training if the stopping metric does
not improve in the grid search

parallel(#) specify the number of models to build in parallel during
the grid search; default is parallel(1), sequential
model building

nooutput suppress the table summarizing hyperparameter tuning

If any of maxmodels(), maxtime(), or stop[()] is specified, then grid(random) is implied.

Options

� � �
Model �

validframe(framename) specifies the H2O frame name of the validation dataset used to evaluate the

performance of the model. This option is often used when the number of observations is large and the

data-splitting approach is the three-way (training-validation-testing) or two-way (training-validation)

h2oml rf — Random forest for regression and classification+ 133

holdout method. For definitions of different data-splitting approaches, see Three-way and two-way

holdout method in [H2OML] Intro. If neither validframe() nor cv[()] is specified, the model is
evaluated using the training dataset. Only one of validframe() or cv[()] may be specified.

cv(cvspec) and cv use cross-validation to evaluate model performance. cvspec is one of # [, cvmethod]
or colname. Only one of cv() or validframe() may be specified.

cv[(# [, cvmethod])] specifies the number of folds for cross-validation and, optionally, the cross-
validation method. This option is preferred when the number of observations is small for the training-

validation-testing split method.

cv is a synonym for cv(10).

cvmethod specifies the cross-validationmethod andmay be one of random, modulo, or stratify.

random specifies that training data be randomly split into the specified number of folds. It is

recommended for large datasets and may lead to imbalanced folds. This is the default.

modulo specifies that a deterministic assignment approach that evenly splits data into the spec-
ified number of folds be used. For example, if cv(3, modulo) is specified, then training ob-

servations 1, 4, 7, . . . are assigned to fold 1; observations 2, 5, 8, . . . to fold 2, etc.

stratify specifies to try to evenly distribute observations from the different classes of the

response across all folds. This approach is useful when the number of classes is large and the

available dataset is small. stratify is not allowed when the response is H2O type real.

cv(colname) specifies the name of the variable (H2O column) that is used to split the data into subsets
according to colname. It provides a custom grouping index for the cross-validation split. This option

is suitable when the data are non-i.i.d. or for comparing different models using cross-validation. The

variable should be categorical (H2O data type enum).

balanceclasses is used with h2oml rfbinclass and h2oml rfmulticlass. It specifies to oversam-
ple the minority classes of the response to balance the class distribution. The imbalanced data can lead

to wrong performance evaluation, and oversampling tries to balance data by increasing the minority

classes. This can increase the size of the dataset. Minority classes are not oversampled by default.

h2orseed(#) sets the H2O random-number seed for H2O model reproducibility of the random forest

estimation. This option is not equivalent to the rseed() option available with other commands or

the set seed command. For reproducibility in H2O, see [H2OML] H2O reproducibility and H2O’s

reproducibility page.

encode(encode type) specifies the H2O encoding type to handle categorical variables, which in H2O are
supported as the data type enum. See https://www.stata.com/h2o/h2o18/h2oframe_describe.html for
information on the H2O data types. encode type may be one of enum, enumfreq, onehotexplicit,
binary, eigen, label, or sortbyresponse. For details, see [H2OML] encode option. The default

is encode(enum).

auc is used with h2oml rfmulticlass. It enables calculation of AUC and AUCPR metrics. Because

the computation of these metrics requires a large amount of memory and computational cost, by

default, H2O does not calculate these metrics. This option must be specified if you plan to use the

postestimation command h2omlestat aucmulticlass or to use one of these metrics for the early

stopping. When the number of classes in the response variable is greater than 50, H2O disables this

option.

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm-faq/reproducibility.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm-faq/reproducibility.html
https://www.stata.com/h2o/h2o18/h2oframe_describe.html

h2oml rf — Random forest for regression and classification+ 134

stop and stop(# [, metric(metric option) tolerance(#)]) specify the rules for early stopping

for random forest. Early-stopping rules help prevent the overfitting of machine learning methods

and may reduce the generalization error, which measures how well a model predicts outcome for

new data; see Preliminaries in [H2OML] Intro. stop(#) specifies the number of stopping rounds or

training iterations needed to stop model training when the selected stopping metric does not improve

by tolerance(). For example, if metric(logloss) is used and the specified number of training

iterations is 3, the model will stop training after the performance has been scored three consecutive

times without any improvement in logloss by the specified tolerance(). For reproducibility, it is
recommended to use stop() with option scoreevery(#).

stop is a synonym for stop(5).

metric(metric option) specifies the metric used for early stopping. The list of allowed metrics

is provided in [H2OML] metric option. The default is metric(deviance) for regression and

metric(logloss) for binary and multiclass classification.

tolerance(#) specifies the tolerance value by which metric() must improve during training. If

the metric() does not improve by # after the number of consecutive grid value configurations

specified in stop(#), the training stops. The default is tolerance(1e-3).

maxtime(#) specifies the maximum run time in seconds for the random forest. No time limitation is

imposed by default.

scoreevery(#) specifies that metrics be scored after every # trees during model training. This option is

useful in combination with stop() for reproducibility. When used with early stopping, the specified

number of iterations needed to stop applies to the number of scoring iterations that H2O has performed.

The default is to use H2O’s assessment of a reasonable ratio of training iterations to scoring time,

which may not always guarantee reproducibility. For details on reproducibility, see [H2OML] H2O

reproducibility.

� � �
Hyperparameter �

When numlist is specified in one or more hyperparameter options below, tuning is performed for those

hyperparameters.

ntrees(# | numlist) specifies the number of trees to build the model. The default is ntrees(50). The
specified number of trees and the actual number of trees used during estimation can differ. This can

happen if the early-stopping rules have been specified or the performance of the model is not changing

after adding an additional tree.

maxdepth(# | numlist) specifies the maximum depth of each tree. The default is maxdepth(20). The
splitting is stopped when the tree’s depth reaches the specified number. Adeeper tree provides a better

training accuracy but may overfit the data.

minobsleaf(# | numlist) specifies the minimum number of observations required for splitting a leaf

node. The default is minobsleaf(1). For example, if we specify minobsleaf(50), then the node
will split if the training samples in each of the left and right children are at least 50.

predsampvalue(# | numlist) specifies rules for how to sample predictors. The sampling is without

replacement. The accepted values are {−2, −1} and any integer greater than 1 and less than the

number of predictors 𝑝. If the default predsampvalue(-1) is selected, then in each split, the

square root of the number of predictors are sampled for classification and ⌊𝑝/3⌋ are sampled for

regression. predsampvalue(-2) specifies that all predictors will be used. Finally, for 𝑑 > 0,

h2oml rf — Random forest for regression and classification+ 135

predsampvalue(d) indicates that from the total number of predictors, 𝑑 ≤ 𝑝 will be sampled.

predsampvalue() reduces the correlation among trees and introduces additional randomness to the
estimation method that might improve generalization of the model to new data.

samprate(# | numlist) specifies the sampling rate for the observations. The sampling is without re-

placement. The sampling rate must be in the range (0, 1]. The default is samprate(0.632). The
observation sampling introduces an additional randomization to the estimation method that might

improve generalization of the model to the new data.

minsplitthreshold(# | numlist) specifies the threshold for the required minimum relative improve-

ment in the impurity measure in order for a split to occur. The default is minsplitthreshold(1e-
05). A well-tuned minsplitthreshold() increases generalization because it precludes splits that

lead to overfitting.

binscat(# | numlist) specifies the number of bins to be included in the histogram for each categor-

ical (H2O type enum) predictor. The specified number should be greater than 1. The default is

binscat(1024). The histogram is used to split the tree node at the optimal point. Categorical

predictors are split by first assigning an integer to each distinct level. Then the method bins the

ordered integers according to the specified number of bins. Finally, the optimal split point is selected

among the bins. For details, see https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-

params/nbins_cats.html. For categorical predictors with many levels, a larger value of binscat()
leads to overfitting, and a smaller value adds randomness to the split decisions. Therefore, binscat()
is an important tuning parameter for datasets that contain categorical variables with many levels.

binsroot(# | numlist) specifies the number of bins to use at the root node of each tree for splitting

continuous (H2O type real or int) predictors. For the subsequent nodes, the specified # is divided

by 2, and the resulting number is used for splitting. The default is binsroot(1024). This option is
used in combination with binscont(), which controls the point when the method stops dividing by
2. The histogram is used to split the node at the optimal point. As the tree gets deeper, each subsequent

node includes predictors with a smaller range, and the bins are uniformly spread over this range. If the

number of observations in a node is smaller than the specified value, then the method creates empty

bins. If the number of bins is large, the method evaluates each individual observation as a potential

split point, which may increase the computation time. The number specified in binscont() must be
smaller than the number specified in binsroot().

binscont(# | numlist) specifies the minimum number of bins in the histogram for the continuous (H2O

type real or int) predictors. The default is binscont(20). This option is used in combination with
binsroot(). The number specified in binsroot() must be greater than the number specified in

binscont().

In practice, a model is more generalizable to other datasets if binsroot() and binscat() are small and
tends to overfit for large values of binscont(), binsroot(), and binscat().

� � �
Tuning �

tune(tune opts) specifies options for the grid search method for tuning hyperparameters. In machine

learning, hyperparameter tuning is an important step in selecting a model that can be generalized

to other datasets. Because of the high dimensionality of hyperparameters and their types (continu-

ous, discrete, and categorical), manually setting and testing hyperparameters is time consuming and

inefficient. Grid search methods are designed to achieve optimal model performance within spec-

ified constraints such as time allocated for tuning or computational resources. Tuning begins with

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-params/nbins_cats.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-params/nbins_cats.html

h2oml rf — Random forest for regression and classification+ 136

the selection of the predetermined hyperparameters that you want to tune. Below, we describe the

available suboptions for controlling the tuning procedure. tune opts may be metric(), grid(),
maxmodels(), maxtime(), stop[()], or nooutput.

metric(metric option) specifies the metric for tuning. Allowed metrics are provided in

[H2OML] metric option. The default is metric(deviance) for regression and metric(log-
loss) for classification.

grid(gridspec) specifies whether to implement an exhaustive search or a random search for all hy-

perparameter combinations. gridspec is one of cartesian or random[, h2orseed(#)].
grid(cartesian) implements an exhaustive search for every possible combination in the search
space. This approach is recommended if the number of hyperparameters or the search space is

small. The default is grid(cartesian).

grid(random[, h2orseed(#)]) implements a random search for all hyperparameter combi-

nations. It is recommended to use grid(random) with maxmodels() and maxtime() to

reduce the computation time. If maxtime(), maxmodels(), or stop() is specified, then

grid(random) is implied.

h2orseed(#) sets an H2O random-number seed for the random grid search for reproducibility.

See [H2OML]H2O reproducibility and H2O’s reproducibility page for details. The behavior

of h2orseed() is different from the rseed() option allowed by many commands and the

set seed command.

maxmodels(#) specifies the maximum number of models to be considered in a grid search. By

default, all possible configurations are considered. If this option is specified, grid(random) is

implied.

maxtime(#) specifies the maximum run time for the grid search in seconds. By default, there is no

time limitation. If this option is specified, grid(random) is implied. This option can be specified
with option maxmodels() during the grid search. If maxtime() is also specified for the model

training, then each model building starts with a limit equal to the minimum of the maxtime() for
the model training, and the remaining time is used for the grid search.

stop and stop(# [, metric(metric option) tolerance(#)]) specify the rules for early stopping
for the grid search. This option implies grid(random). stop(#) specifies the number of grid

value configurations needed to stop the grid search when the selected metric does not improve

by tolerance(). For example, if the selected metric is the default for the binary and multiclass
classification (metric(logloss)) and we specify stop(3), the grid search will stop after three
consecutive grid values chosen by the grid search do not lead to the improvement of the logloss
by the specified tolerance().

stop is a synonym for stop(5).

metric(metric option) specifies the metric used for early stopping. Allowed metrics are pro-

vided in [H2OML] metric option. The default is metric(deviance) for regression and

metric(logloss) for classification.

tolerance(#) specifies the tolerance value by which metric() must improve during the grid

search. If the metric() does not improve by # after the number of consecutive grid value

configurations specified in stop(#), the grid search stops. The default is tolerance(1e-3).

parallel(#) specifies the number of models to build in parallel during the grid search. This option
enables parallel model building, which reduces computational time. The default, parallel(1),
specifies sequential model building. parallel(0) enables adaptive parallelism, in which the

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm-faq/reproducibility.html

h2oml rf — Random forest for regression and classification+ 137

number of models to be built in parallel is automatically determined by H2O. Any integer greater

than 1 specifies the exact number of models to be built in parallel. This option is particularly

useful for improving speed when tuning many hyperparameters. However, results for models built

in parallel may not be reproducible; see [H2OML] H2O reproducibility for details.

nooutput suppresses the table summarizing hyperparameter tuning.

Remarks and examples
We assume you have read the introduction to decision trees and ensemble methods in [H2OML] Intro.

Remarks are presented under the following headings:

Introduction
Tuning hyperparameters
Examples of using random forest

Example 1: Random forest binary classification using default settings
Example 2: Using validation data and early stopping
Example 3: Using cross-validation
Example 4: User-specified hyperparameters
Example 5: Multiclass classification and model performance

Introduction
Like gradient boosting machine (GBM, see Introduction in [H2OML] h2oml gbm), random forest is

a machine learning method used for prediction, model selection, and exploring predictor importance.

And just like GBM, random forest uses an ensemble of decision trees to alleviate the pitfalls of using a

single decision tree. Whereas GBM uses boosting, random forest uses a variation of the so-called bagging

procedure.

The bagging procedure, introduced in [H2OML] Intro, averages an ensemble of unstable decision trees

to reduce the variance in the predictions. Thus, bagging leads to the improvement of the generalization

error (a measure of error in using the model to predict in new data) over using a single decision tree.

However, this reduction in variance is not substantial if the trees in the ensemble are correlated with each

other. For example, if the training data have one strong and several moderately strong predictors, then in

the ensemble of bagged decision trees, the majority of the trees will have this strong predictor as one of

the first splits. Therefore, most of the bagged trees will have a similar structure, resulting in predictors

that are highly correlated.

Random forest (Breiman 2001) is a modification of the bagging procedure that generates an ensemble

of decorrelated trees and then averages them. It generates 𝐵 bootstrap samples of predictors 𝑋𝑏, where

𝑏 = 1, 2, . . . , 𝐵, from the training data. Random forest recursively grows a tree in which, instead of

the full set of 𝑝 predictors, a random sample of 𝑚 predictors is selected as potential split candidates to

generate decorrelated trees. In h2oml rf, the value of 𝐵 can be specified by using the ntrees() option,
and the value of 𝑚 can be specified by using the predsampvalue() option. In practice, 𝑚 = ⌊√𝑝⌋
is recommended for classification and 𝑚 = ⌊𝑝/3⌋ is recommended for regression, where ⌊⋅⌋ is a floor
function that rounds a given number down to the nearest integer. These are the default values of 𝑚 used

by h2oml rf when the predsamplevalue() option is not specified. The size of the bootstrap sample

𝑋𝑏 controls the bias-variance tradeoff of the random forest. The size can be controlled by using the

samprate() option to specify the sampling rate (the fraction of observations to be sampled). By default,
samprate() is set to 0.632.

h2oml rf — Random forest for regression and classification+ 138

Depending on the type of response, you can use one of the h2oml rfregress, h2oml rfbinclass,
or h2oml rfmulticlass commands to perform random forest. h2oml rfregress performs random

forest regression for continuous responses. h2oml rfbinclass performs random forest binary classi-

fication for binary responses. h2oml rfmulticlass performs random forest multiclass classification

for categorical responses. The commands have many common options. To perform random forest using

a validation dataset, you can use the validframe() option to specify the name of a validation frame.

To perform random forest using cross-validation, you can use the cv() option. You can choose be-

tween three cross-validation methods for splitting data among folds by specifying the random, modulo,
or stratify suboption within the cv() option. Alternatively, you can specify a variable in the cv()
option that defines how observations are split into different folds.

For reproducibility, you can use the h2orseed() option to specify a random-number seed for H2O.

This option is different from the rseed() option available with other commands and the set seed
command. For early stopping, you can use the stop[()] option. We highly recommend that you al-

ways specify the scoreevery() option with early stopping to ensure reproducibility. For details, see

[H2OML] H2O reproducibility and H2O’s reproducibility page.

Tuning hyperparameters
All h2oml rf commands provide default values for hyperparameters, but you can also specify your

own in the corresponding options. For instance, you can specify the number of trees for random forest

in the ntrees() option or the predictor sampling value in the predsampvalue() option. In practice,

however, you would want to tune your random forest model, that is, let the random forest method select

the values of the model parameters that correspond to the best-fitting model according to some metric.

You can do this by specifying a possible range of grid values for each hyperparameter you intend to tune

and controlling the grid search by using the tune() option. Currently, h2oml rf provides two grid search

strategies: an exhaustive (Cartesian) grid search with tune(grid(cartesian)) and a random grid

searchwith tune(grid(random)). And several performancemetrics are available in tune(metric()).

Tuning hyperparameters of the machine learning method is a complex and iterative procedure. Under-

standing the steps is important for the correct specification of the options provided. A brief overview

of these steps is provided below, and a deeper treatment can be found in Hyperparameter tuning in

[H2OML] Intro.

Step 1: Choose the data-splitting approach

Use either a three-way holdout method in which data are separated into training, validation, and testing

datasets or, if the number of observations is low, a two-way holdout method (training and testing) with

𝑘-fold cross-validation. Recall that the optimal hyperparameters are selected using the results of the
metric on the validation set (validframe()) or cross-validation (cv()), not on the training set.

Step 2: Select the hyperparameters and performance metric

From the list of hyperparameters such as ntrees() or maxdepth(), select the ones that require tuning
for your application. When numlist is specified in one or more of the hyperparameter options, tuning

is implemented based on the specified grid search suboptions in the tune() option. For instance,

you can specify the desired performance metric in the tune(metric()) option; see [H2OML] met-

ric option for supported metrics. The default metric is specific to each command. There is no sys-

tematic guidance on how many and which hyperparameters to choose: the inclusion of tuning hyper-

parameters depends on the data, machine learning method, and prior knowledge of the researcher.

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm-faq/reproducibility.html

h2oml rf — Random forest for regression and classification+ 139

The performance metric should be selected carefully because it may affect the estimation results. For

example, for the classification problem, if the data are imbalanced, metric accuracy is not recom-

mended and a more appropriate metric, such as aucpr, is preferred. For more details, see metric

options.

Step 3: Select the grid search strategy and search space

If the number of hyperparameters is large, then a random grid search specified via the

tune(grid(random)) option is a better choice than an exhaustive grid search that is performed

by default or when the tune(grid(cartesian)) option is specified. For the first run, it is recom-

mended that you specify a large search space and try to overfit the model. Then, on subsequent runs,

you should narrow the search space on high-performance hyperparameters and apply early-stopping

rules by specifying the tune(stop()) option to avoid overfitting.

Step 4: Use the best-performing hyperparameter configuration

Depending on your research problem, use the best-performing hyperparameter configuration to fit the

final model on the testing dataset.

Below, we demonstrate the use of options in various applications. In this entry, we focus on the syntax

and output of commands. For a more research-focused exposition, see [H2OML] h2oml.

Examples of using random forest
In this section, we demonstrate some of the uses of h2oml rf. Most of the options available in h2oml rf

are also supported in h2oml gbm. Currently, the only option that h2oml rf supports but h2oml gbm does

not is predsampvalue(). Conversely, the options loss(), monotone(), lrate(), lratedecay(),
and predsamprate() are supported by h2oml gbm but not by h2oml rf. If you have already read the

examples presented in [H2OML] h2oml gbm, then the discussions of command syntax in the examples

below might seem repetitive because the two commands are similar, but we use h2oml rf instead of the

corresponding h2oml gbm commands in this entry.

The examples are presented under the following headings.

Example 1: Random forest binary classification using default settings
Example 2: Using validation data and early stopping
Example 3: Using cross-validation
Example 4: User-specified hyperparameters
Example 5: Multiclass classification and model performance

Examples 1 through 4 demonstrate random forest binary classification, but their discussion applies to

all h2oml rf commands. Example 5 demonstrates random forest multiclass classification. Detailed steps

for tuning a random forest model are provided in example 10 in [H2OML] h2oml.

Example 1: Random forest binary classification using default settings
For demonstration purposes, we start with random forest binary classification using the default set-

tings. In practice, however, you would rarely use the default settings because the performance of the

model is improved during training by specifying options that allow optimization or tuning of hyperpa-

rameters.

Consider the social pressure dataset, socialpressure, borrowed from Gerber, Green, and Larimer

(2008), which examines whether social pressure can be used to increase voter turnout in elections in

the United States. The data on voting behavior were gathered from Michigan before the August 2006

primary election using a large mailing campaign.

h2oml rf — Random forest for regression and classification+ 140

We start by opening the dataset and then putting the data into an H2O frame, Recall that h2o init ini-
tiates an H2O cluster, h2oframe put loads the current Stata dataset into an H2O frame, and h2oframe
change makes the specified frame the current H2O frame. For details, see Prepare your data for H2O

machine learning in Stata in [H2OML] h2oml and [H2OML] H2O setup.

. use https://www.stata-press.com/data/r18/socialpressure
(Social pressure data)
. h2o init
(output omitted)

. _h2oframe put, into(social)
Progress (%): 0 100
. _h2oframe change social

We use random forest binary classification of the response voted on predictors gender, g2000,
g2002, p2000, p2004, treatment, and age, and we specify the h2orseed(19) option for reproducibil-
ity. For convenience, we introduce a global macro predictors that stores the predictors.

. global predictors gender g2000 g2002 p2000 p2002 p2004 treatment age

. h2oml rfbinclass voted $predictors, h2orseed(19)
Progress (%): 0 1.9 3.9 10.0 31.9 63.9 92.0 100
Random forest binary classification using H2O
Response: voted
Frame: Number of observations:

Training: social Training = 229,461
Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 12 No. of bins cat. = 1,024
avg = 18.2 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Log loss .5740521
Mean class error .3958885

AUC .6704081
AUCPR .4669581

Gini coefficient .3408163
MSE .1952073

RMSE .4418227

The header provides information about themodel characteristics and data. The Frame section contains
information about the H2O training frame. In this example, our training frame is social with 229,461

observations. The Model parameters portion reports the information about hyperparameters. Multiple

values are reported for some hyperparameters. For example, there are two values for the number of trees.

One reports the number of trees as specified by the user. In our case, it is the default 50. The actual
value shows the number of trees actually used during training. These numbers may differ when an early

stopping rule is applied such as when the stop() option is specified. Similarly, for Tree depth, there
are four values. Input max reports the user-specified value, and min and max report the actual minimum
andmaximum depths achieved during training. The last twomay be different from the default value of 20

h2oml rf — Random forest for regression and classification+ 141

because maxdepth() enforces a possible maximum depth the tree can achieve, but the method can stop

splitting earlier. The Metric summary table reports the seven classification performance metrics for the
training frame. In general, metrics values are used to compare different models. Depending on whether

the method implements regression, binary classification, or multiclass classification, the reported metrics

change. For the definition of metrics, see [H2OML] metric option.

Even though the above output is for binary classification, a similar interpretation applies for regres-

sion and multiclass classification using the h2oml rfregress and h2oml rfmulticlass commands,

respectively.

Example 2: Using validation data and early stopping
Example 1 illustrates the simple use of the h2oml rfbinclass command. In practice, we want a

model that minimizes overfitting. Aswe discussed inModel selection inmachine learning in [H2OML] In-

tro, there are two main approaches to check for overfitting: by using a validation dataset or by cross-

validation. The former is recommended when the number of observations is large and the latter otherwise

(see example 3).

Continuing with example 1, we use the h2oframe split command to randomly split the social
frame into a training frame (80% of observations) and validation frame (20% of observations), which we

named train and valid, respectively. We also change the current frame to train.

. _h2oframe split social, into(train valid) split(0.8 0.2) rseed(19)

. _h2oframe change train

We now use the validframe() option with h2oml rfbinclass to specify the validation frame:

. h2oml rfbinclass voted $predictors, validframe(valid) h2orseed(19)
Progress (%): 0 11.9 21.9 31.9 40.0 77.9 100
Random forest binary classification using H2O
Response: voted
Frame: Number of observations:

Training: train Training = 183,607
Validation: valid Validation = 45,854

Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 13 No. of bins cat. = 1,024
avg = 18.0 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Log loss .5744728 .5723461
Mean class error .3955656 .3970816

AUC .6696099 .6725455
AUCPR .4661055 .4700511

Gini coefficient .3392199 .345091
MSE .1954345 .1943139

RMSE .4420798 .4408105

h2oml rf — Random forest for regression and classification+ 142

Compared with example 1, the output contains additional information about the validation frame.

There are 183,607 training and 45,854 validation observations. The important information here is the

performance metrics for the validation frame, the Validation column of the Metric summary table.

The validation frame is used during tuning to select the best model and control for overfitting. See

example 10 in [H2OML] h2oml and example 5 in [H2OML] h2oml gbm for tuning.

In some cases, we can greatly improve the generalization of the model, that is, improve model predic-

tion on the new testing dataset, by using early stopping. Early stopping allows you to stop adding trees

when the metric computed on the validation sample (or on the cross-validation sample if the cv[()] op-
tion was specified) does not improve after a prespecified number of iterations. This prevents overfitting.

In this example, we use stop(5) to halt the training of random forest when the stopping metric does not

improve after 5 iterations. By default, the stopping metric is Log loss. For reproducibility, we specify
the scoreevery() option together with the stop() option. The scoreevery() option controls how

frequently the metric score is updated. For example, scoreevery(1) means the score is updated after

adding each tree to the ensemble. For details, see [H2OML] H2O reproducibility.

. h2oml rfbinclass voted $predictors, validframe(valid) h2orseed(19)
> stop(5) scoreevery(1)
Progress (%): 0 14.0 100
Random forest binary classification using H2O
Response: voted
Frame: Number of observations:

Training: train Training = 182,945
Validation: valid Validation = 45,854

Model parameters
Number of trees = 50

actual = 12
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 13 No. of bins cat. = 1,024
avg = 16.8 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Stopping criteria: No. of iterations = 5

Metric: Log loss Tolerance = .001
Metric summary

Metric Training Validation

Log loss .5771652 .5735485
Mean class error .4003924 .398497

AUC .6640448 .6712069
AUCPR .4583645 .468647

Gini coefficient .3280896 .3424138
MSE .1964515 .1948558

RMSE .4432285 .4414248

Note: Metric is scored after every tree.

We see several differences compared with the first output in this example. First, as expected, now the

actual number of trees is less than the specified number of trees (12 versus 50). In addition, the log-loss

metric for both the training frame and validation frame slightly increased, which means early stopping

might not be beneficial for the current model.

h2oml rf — Random forest for regression and classification+ 143

Example 3: Using cross-validation
In this example, we illustrate the use of h2oml rfbinclass with the default parameters and cross-

validation.

Continuing with example 2, we keep the frame train as our current training data. In the h2oml
rf commands, cross-validation is performed by specifying the cv() option. This option supports three

methods for folds assignment: random, modulo, and stratified. The random method is the default and

is preferred with large datasets. Here, to demonstrate, we use 5-fold cross-validation with modulo fold

assignment, which assigns each observation to a fold based on the modulo operation. We type

. h2oml rfbinclass voted $predictors, cv(5, modulo) h2orseed(19)
Progress (%): 0 5.6 13.3 19.6 25.6 38.9 56.9 75.0 83.3 83.3 86.6 92.0 96.6 100
Random forest binary classification using H2O
Response: voted
Frame: Number of observations:

Training: train Training = 183,607
Cross-validation = 183,607

Cross-validation: Modulo Number of folds = 5
Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 13 No. of bins cat. = 1,024
avg = 18.0 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .5744728 .5741153
Mean class error .3955656 .396895

AUC .6696099 .6706381
AUCPR .4661055 .4675035

Gini coefficient .3392199 .3412763
MSE .1954345 .1953061

RMSE .4420798 .4419344

The output now provides information about the cross-validation assignment method, the number of

folds, and, in the second column of the Metric summary table, the cross-validated metrics.

The three fold-assignment methods are useful when the data are i.i.d. If the dataset requires a specific

grouping for cross-validation, then a new categorical variable can be created and specified in the cv(col-
name) option. Random forest then uses those variable values to split the data into folds. To demonstrate,

in our H2O frame, we generate a new column named foldvar, which contains a hypothetical grouping
for the fold assignment.

. _h2oframe generate foldvar = 1

. _h2oframe replace foldvar = 2 in 20/35

. _h2oframe replace foldvar = 3 in 36/63

. _h2oframe factor foldvar, replace

h2oml rf — Random forest for regression and classification+ 144

The last command converts the type of foldvar into H2O’s enum type, which is required by the cv()
option. Now we can perform cross-validation with the fold assignment determined by foldvar.

. h2oml rfbinclass voted $predictors, cv(foldvar) h2orseed(19)
Progress (%): 0 0.4 10.9 21.5 31.4 61.0 75.0 75.0 76.4 85.0 93.0 100
Random forest binary classification using H2O
Response: voted
Frame: Number of observations:

Training: train Training = 183,607
Cross-validation: foldvar Cross-validation = 183,607
Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 13 No. of bins cat. = 1,024
avg = 18.0 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .5744728 .6689446
Mean class error .3955656 .4134973

AUC .6696099 .6015317
AUCPR .4661055 .3785627

Gini coefficient .3392199 .2030635
MSE .1954345 .2243841

RMSE .4420798 .473692

h2oml rf — Random forest for regression and classification+ 145

Example 4: User-specified hyperparameters
In examples 2 and 3, we used, respectively, validation and cross-validation with default values for

all hyperparameters. Continuing with example 2, suppose we now want to try some specific values of

several hyperparameters (the number of trees, predictor sampling value, and predictor sampling rate) by

including, respectively, the ntrees(50), predsampvalue(3), and samprate(0.7) options.

. h2oml rfbinclass voted $predictors, cv(5, modulo) h2orseed(19)
> ntrees(50) predsampvalue(3) samprate(0.7)
Progress (%): 0 6.3 11.9 17.0 22.3 33.0 44.3 56.0 67.0 75.3 83.3 83.3 84.3 88.3
> 92.6 96.6 100
Random forest binary classification using H2O
Response: voted
Frame: Number of observations:

Training: train Training = 183,607
Cross-validation = 183,607

Cross-validation: Modulo Number of folds = 5
Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = 3

Input max = 20 Sampling rate = .7
min = 20 No. of bins cat. = 1,024
avg = 20.0 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .5763545 .57595
Mean class error .3967958 .3973574

AUC .6651064 .6650558
AUCPR .4577942 .4583547

Gini coefficient .3302127 .3301117
MSE .1961533 .1961127

RMSE .442892 .4428462

The output is similar to previous examples, except that it now reports our specified values of 50

for the number of trees, 3 for the predictor sampling value, and 0.7 for the observation sampling rate.

Compared with example 3, all validation metrics improved. Although we specified our own parameter

values, in practice, these values are typically chosen by performing tuning. For example, see example 10

in [H2OML] h2oml.

h2oml rf — Random forest for regression and classification+ 146

Example 5: Multiclass classification and model performance
In this example, we show how to implement multiclass classification and which performance metrics

to use to measure the performance of the model. For this example, we will use a well-known iris dataset,

where the goal is to predict a class of iris plant. This dataset was used in Fisher (1936) and originally col-

lected by Anderson (1935). We start by initializing a cluster, opening the dataset in Stata, and importing

the dataset as an H2O frame.

. h2o init
(output omitted)

. use https://www.stata-press.com/data/r18/iris
(Iris data)
. _h2oframe put, into(iris)

We then split the data into training and validation frames, with 80% of observations in the training

frame, and use the training frame as our current frame.

. _h2oframe split iris, into(train valid) split(0.8 0.2) rseed(19)

. _h2oframe change train

For convenience, we define a global macro predictors to store the names of the predictors. Next we
run random forest multiclass classification using 500 trees and default values for other hyperparameters.

. global predictors seplen sepwid petlen petwid

. h2oml rfmulticlass iris $predictors, validframe(valid) h2orseed(19)
> ntrees(500)
Progress (%): 0 10.8 37.5 58.7 84.6 100
Random forest multiclass classification using H2O
Response: iris Number of classes = 3
Frame: Number of observations:

Training: train Training = 125
Validation: valid Validation = 25

Model parameters
Number of trees = 500

actual = 500
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 1 No. of bins cat. = 1,024
avg = 3.4 No. of bins root = 1,024
max = 9 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Log loss .1128858 .0952996
Mean class error .0487805 .037037

MSE .0356783 .0307455
RMSE .1888871 .1753439

The output is almost identical to the output for the regression we described in detail in examples 1

and 2, except we have different performance metrics.

h2oml rf — Random forest for regression and classification+ 147

For computing and reportingAUC andAUCPRmetrics after themulticlass classification, see example 6.

Even though the example is for the GBM, similar steps apply for the random forest.

Stored results
h2oml rf stores the following in e():
Scalars

e(N train) number of observations in the training frame

e(N valid) number of observations in the validation frame (with option validframe())
e(N cv) number of observations in the cross-validation (with option cv())
e(n cvfolds) number of cross-validation folds (with option cv())
e(k predictors) number of predictors

e(n class) number of classes (with classification)

e(n trees) number of trees

e(n trees a) actual number of trees used in random forest

e(maxdepth) maximum specified tree depth

e(depth min a) achieved minimum tree depth

e(depth avg a) achieved average depth among trees

e(depth max a) achieved maximum tree depth

e(minobsleaf) minimum specified number of observations for a child leaf

e(samprate) observation sampling rate

e(predsampvalue) predictor sampling value

e(minsplitthr) minimum split improvement threshold

e(binscat) number of bins for categorical predictors

e(binsroot) number of bins for root node

e(binscont) number of bins for continuous predictors

e(h2orseed) H2O random-number seed

e(auc) 1 if auc; 0 otherwise (with multiclass classification)
e(maxtime) maximum run time

e(balanceclass) 1 if classes are balanced; 0 otherwise (with classification)
e(stop iter) maximum iterations before stopping training without metric improvement

e(stop tol) tolerance for metric improvement before training stops

e(scoreevery) number of trees before scoring metrics during training

e(tune h2orseed) random-number seed for tuning (with option tune())
e(tune stop iter) maximum iterations before stopping tuning without metric improvement (with

option tune())
e(tune stop tol) tolerance for metric improvement before tuning stops (with option tune())
e(tune maxtime) maximum run time for tuning grid search (with option tune())
e(tune maxmodels) maximum number of models considered in tuning grid search (with option

tune())
Macros

e(cmd) h2oml rfregress, h2oml rfbinclass, or h2oml rfmulticlass
e(cmdline) command as typed

e(subcmd) rfregress, rfbinclass, or rfmulticlass
e(method) randomforest
e(method type) regression or classification
e(class type) binary or multiclass (with classification)
e(method full name) full method name

e(response) name of response

e(predictors) names of predictors

e(title) title in estimation output

e(train frame) name of the training frame

e(valid frame) name of the validation frame (with option validframe())
e(cv method) fold assignment method (with option cv())
e(cv varname) name of variable identifying cross-validation folds (with option cv())
e(encode type) encoding type for categorical predictors

h2oml rf — Random forest for regression and classification+ 148

e(stop metric) stopping metric for training

e(tune grid) grid search method used for tuning (with option tune())
e(tune metric) name of the tuning metric (with option tune())
e(tune stop metric) stopping metric for tuning (with option tune())
e(properties) nob noV
e(estat cmd) program used to implement h2omlestat
e(predict) program used to implement h2omlpredict
e(marginsnotok) predictions disallowed by margins

Matrices

e(metrics) training, validation, and cross-validation metrics

e(hyperparam table) minimum, maximum, and selected hyperparameter values

Methods and formulas
For methods and formulas for random forest implementation, see https://docs.h2o.ai/h2o/latest-

stable/h2o-docs/data-science/drf.html. For a mapping of h2oml rf option names to the H2O options, see

[H2OML] H2O option mapping.

References
Anderson, E. 1935. The irises of the Gaspé Peninsula. Bulletin of the American Iris Society 59: 2–5.

Breiman, L. 2001. Random forests.Machine Learning 45: 5–32. https://doi.org/10.1023/A:1010933404324.

Fisher, R. A. 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics 7: 179–188. https:

//doi.org/10.1111/j.1469-1809.1936.tb02137.x.

Gerber, A. S., D. P. Green, and C. W. Larimer. 2008. Social pressure and voter turnout: Evidence from a large-scale field

experiment.American Political Science Review 102: 33–48. https://doi.org/10.1017/S000305540808009X.

Also see
[H2OML] h2oml postestimation — Postestimation tools for h2oml gbm and h2oml rf+

[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2oml rfbinclass — Random forest binary classification+

[H2OML] h2oml rfmulticlass — Random forest multiclass classification+

[H2OML] h2oml rfregress — Random forest regression+

[H2OML] h2oml gbm — Gradient boosting machine for regression and classification+

[U] 20 Estimation and postestimation commands

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/drf.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/drf.html
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1017/S000305540808009X

h2oml rfbinclass — Random forest binary classification+

+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
h2oml rfbinclass implements random forest classification for binary responses. You can validate

your model by using validation data or cross-validation, and you can tune hyperparameters and stop early

to improve model performance on new data. This command provides only measures of performance. See

[H2OML] h2oml postestimation for commands to compute and explain predictions, examine variable

importance, and perform other postestimation analyses.

For an introduction to decision trees and the random forest method, see [H2OML] Intro.

Quick start
Before running the h2oml rfbinclass command, an H2O cluster must be initialized and data must

be imported to an H2O frame; see [H2OML] H2O setup and Prepare your data for H2O machine learning

in Stata in [H2OML] h2oml.

Perform random forest binary classification of binary response y1 on predictors x1 through x100
h2oml rfbinclass y1 x1-x100

As above, but also report measures of fit for the validation frame named valid, and set an H2O random-

number seed for reproducibility

h2oml rfbinclass y1 x1-x100, validframe(valid) h2orseed(123)

As above, but instead of a validation frame, use 3-fold cross-validation

h2oml rfbinclass y1 x1-x100, cv(3) h2orseed(123)

As above, but set the number of trees to 30, the maximum tree depth to 10, and the number of predictors

to sample to 15

h2oml rfbinclass y1 x1-x100, cv(3) h2orseed(123) ntrees(30) ///
maxdepth(10) predsampvalue(15)

As above, but the default exhaustive grid search to select the optimal number of trees and the maximum

tree depth that minimize the log-loss metric

h2oml rfbinclass y1 x1-x100, cv(3) h2orseed(123) predsampvalue(15) ///
ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss))

As above, but use a random grid search, set an H2O random-number seed, and limit the maximum search

time to 200 seconds

h2oml rfbinclass y1 x1-x100, cv(3) h2orseed(123) predsampvalue(15) ///
ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss) grid(random, h2orseed(456)) maxtime(200))

149

h2oml rfbinclass — Random forest binary classification+ 150

As above, but use early stopping with the default stopping log-loss metric and 5 iterations of tuning

h2oml rfbinclass y1 x1-x100, cv(3) h2orseed(123) predsampvalue(15) ///
ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss) grid(random, h2orseed(456)) maxtime(200) ///
stop(5))

As above, but tune the number of bins for the categorical and continuous predictors

h2oml rfbinclass y1 x1-x100, cv(3) h2orseed(123) predsampvalue(15) ///
ntrees(10(5)100) maxdepth(3(1)10) binscont(15(5)50) ///
binscat(500(50)1100) tune(metric(logloss) ///
grid(random, h2orseed(456)) maxtime(200) stop(5))

Menu
Statistics > H2O machine learning

Syntax
h2oml rfbinclass response bin predictors [, options]

response bin and predictors correspond to column names of the current H2O frame.

h2oml rfbinclass — Random forest binary classification+ 151

options Description

Model

validframe(framename) specify the name of the H2O frame containing the validation
dataset that will be used to evaluate the performance
of the model

cv[(# [, cvmethod])] specify the number of folds and method for cross-validation

cv(colname) specify the name of the variable (H2O column) for
cross-validation that identifies the fold to which each
observation is assigned

balanceclasses balance the distribution of classes (categories of the response
variable) by oversampling the minority class

h2orseed(#) set H2O random-number seed for random forest

encode(encode type) specify H2O encoding type for categorical predictors; default
is encode(enum)

stop[(# [, stop opts])] specify the number of training iterations and other criteria
for stopping random forest training if the stopping metric
does not improve

maxtime(#) specify the maximum run time in seconds for random forest;
by default, no time restriction is imposed

scoreevery(#) specify that metrics be scored after every # trees during training

Hyperparameter

ntrees(# | numlist) specify the number of trees to build the random forest model;
default is ntrees(50)

maxdepth(# | numlist) specify the maximum depth of each tree; default is
maxdepth(20)

minobsleaf(# | numlist) specify the minimum number of observations per child for
splitting a leaf node; default is minobsleaf(1)

predsampvalue(# | numlist) specify rules for how to sample predictors; default is
predsampvalue(-1)

samprate(# | numlist) specify the sampling rate for randomly selecting a fraction of
observations to build a tree; default is samprate(0.632)

minsplitthreshold(# | numlist) specify the threshold for the minimum relative improvement
needed for a node split; default is
minsplitthreshold(1e-05)

binscat(# | numlist) specify the number of bins to build the histogram for node
splits for categorical predictors (enum columns in H2O);
default is binscat(1024)

binsroot(# | numlist) specify the number of bins to build the histogram for root
node splits for continuous predictors (real and int
columns in H2O); default is binsroot(1024)

binscont(# | numlist) specify the number of bins to build the histogram for node
splits for continuous predictors (real and int columns
in H2O); default is binscont(20)

Tuning

tune(tune opts) specify hyperparameter tuning options for selecting the
best-performing model

h2oml rfbinclass — Random forest binary classification+ 152

Only one of validframe() or cv[()] is allowed.
If neither validframe() nor cv[()] is specified, the evaluation metrics are reported for the training dataset.
When numlist is specified in one or more hyperparameter options, tuning is performed for those hyperparameters.

collect is allowed; see [U] 11.1.10 Prefix commands.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

cvmethod Description

random randomly split the training dataset into folds; the default

modulo evenly split the training dataset into folds using the modulo
operation

stratify evenly distribute observations from the different classes of
the response to all folds

stop opts Description

metric(metric option) specify the stopping metric for training or grid search

tolerance(#) specify the tolerance value by which a model must improve
before the training or grid search stops; default is
tolerance(1e-3)

tune opts Description

metric(metric option) specify the metric for selecting the best-performing model

grid(gridspec) specify whether to perform an exhaustive or random search
for all hyperparameter combinations

maxmodels(#) specify the maximum number of models considered in the
grid search; default is all configurations

maxtime(#) specify the maximum run time for the grid search in seconds;
default is no time limit

stop[(# [, stop opts])] specify the number of iterations and other criteria for
stopping random forest training if the stopping metric does
not improve in the grid search

parallel(#) specify the number of models to build in parallel during
the grid search; default is parallel(1), sequential
model building

nooutput suppress the table summarizing hyperparameter tuning

If any of maxmodels(), maxtime(), or stop[()] is specified, then grid(random) is implied.

Options

� � �
Model �

validframe(), cv[()], balanceclasses, h2orseed(), encode(), stop[()], maxtime(), and
scoreevery(); see [H2OML] h2oml rf.

� � �
Hyperparameter �

ntrees(), maxdepth(), minobsleaf(), predsampvalue(), samprate(), minsplitthreshold(),
binscat(), binsroot(), and binscont(); see [H2OML] h2oml rf.

h2oml rfbinclass — Random forest binary classification+ 153

� � �
Tuning �

tune(); see [H2OML] h2oml rf.

Remarks and examples
For examples, see Remarks and examples in [H2OML] h2oml rf.

Stored results
h2oml rfbinclass stores the following in e():

Scalars

e(N train) number of observations in the training frame

e(N valid) number of observations in the validation frame (with option validframe())
e(N cv) number of observations in the cross-validation (with option cv())
e(n cvfolds) number of cross-validation folds (with option cv())
e(k predictors) number of predictors

e(n trees) number of trees

e(n trees a) actual number of trees used in random forest

e(maxdepth) maximum specified tree depth

e(depth min a) achieved minimum tree depth

e(depth avg a) achieved average depth among trees

e(depth max a) achieved maximum tree depth

e(minobsleaf) minimum specified number of observations for a child leaf

e(samprate) observation sampling rate

e(predsampvalue) predictor sampling value

e(minsplitthr) minimum split improvement threshold

e(binscat) number of bins for categorical predictors

e(binsroot) number of bins for root node

e(binscont) number of bins for continuous predictors

e(binsroot) number of bins for root node

e(h2orseed) H2O random-number seed

e(maxtime) maximum run time

e(balanceclass) 1 if classes are balanced; 0 otherwise
e(stop iter) maximum iterations before stopping training without metric improvement

e(stop tol) tolerance for metric improvement before training stops

e(scoreevery) number of trees before scoring metrics during training

e(tune h2orseed) random-number seed for tuning (with option tune())
e(tune stop iter) maximum iterations before stopping tuning without metric improvement (with

option tune())
e(tune stop tol) tolerance for metric improvement before tuning stops (with option tune())
e(tune maxtime) maximum run time for tuning grid search (with option tune())
e(tune maxmodels) maximum number of models considered in tuning grid search (with option

tune())
Macros

e(cmd) h2oml rfbinclass
e(cmdline) command as typed

e(subcmd) rfbinclass
e(method) randomforest
e(method type) classification
e(class type) binary
e(method full name) Random forest binary classification
e(response) name of response

e(predictors) names of predictors

e(title) title in estimation output

e(train frame) name of the training frame

h2oml rfbinclass — Random forest binary classification+ 154

e(valid frame) name of the validation frame (with option validframe())
e(cv method) fold assignment method (with option cv())
e(cv varname) name of variable identifying cross-validation folds (with option cv())
e(encode type) encoding type for categorical predictors

e(stop metric) stopping metric for training

e(tune grid) grid search method used for tuning (with option tune())
e(tune metric) name of the tuning metric (with option tune())
e(tune stop metric) stopping metric for tuning (with option tune())
e(properties) nob noV
e(estat cmd) program used to implement h2omlestat
e(predict) program used to implement h2omlpredict
e(marginsnotok) predictions disallowed by margins

Matrices

e(metrics) training, validation, and cross-validation metrics

e(hyperparam table) minimum, maximum, and selected hyperparameter values

Also see
[H2OML] h2oml postestimation — Postestimation tools for h2oml gbm and h2oml rf+

[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2oml rf — Random forest for regression and classification+

[H2OML] h2oml rfmulticlass — Random forest multiclass classification+

[H2OML] h2oml rfregress — Random forest regression+

[H2OML] h2oml gbbinclass — Gradient boosting binary classification+

[U] 20 Estimation and postestimation commands

h2oml rfmulticlass — Random forest multiclass classification+

+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
h2oml rfmulticlass implements random forest multiclass classification for categorical responses.

You can validate your model by using validation data or cross-validation, and you can tune hyperparam-

eters and stop early to improve model performance on new data. This command provides only measures

of performance. See [H2OML] h2oml postestimation for commands to compute and explain predictions,

examine variable importance, and perform other postestimation analyses.

For an introduction to decision trees and the random forest method, see [H2OML] Intro.

Quick start
Before running the h2oml rfmulticlass command, an H2O cluster must be initialized and data must

be imported to an H2O frame; see [H2OML] H2O setup and Prepare your data for H2O machine learning

in Stata in [H2OML] h2oml.

Perform random forest multiclass classification of categorical response y1 on predictors x1 through x100
h2oml rfmulticlass y1 x1-x100

As above, but also report measures of fit for the validation frame named valid, and set an H2O random-

number seed for reproducibility

h2oml rfmulticlass y1 x1-x100, validframe(valid) h2orseed(123)

As above, but instead of a validation frame, use 3-fold cross-validation to report measures of fit

h2oml rfmulticlass y1 x1-x100, cv(3) h2orseed(123)

As above, but set the number of trees to 30, the maximum tree depth to 10, and the number of predictors

to sample to 15

h2oml rfmulticlass y1 x1-x100, cv(3) h2orseed(123) ntrees(30) ///
maxdepth(10) predsampvalue(15)

As above, but use the default exhaustive grid search to select the optimal number of trees and the maxi-

mum tree depth that minimize the log-loss metric

h2oml rfmulticlass y1 x1-x100, cv(3) h2orseed(123) predsampvalue(15) ///
ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss))

As above, but use a random grid search, set an H2O random-number seed, and limit the maximum search

time to 200 seconds

h2oml rfmulticlass y1 x1-x100, cv(3) h2orseed(123) predsampvalue(15) ///
ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss) grid(random, h2orseed(456)) maxtime(200))

155

h2oml rfmulticlass — Random forest multiclass classification+ 156

As above, but use early stopping with the default stopping log-loss metric and 5 iterations of tuning

h2oml rfmulticlass y1 x1-x100, cv(3) h2orseed(123) predsampvalue(15) ///
ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss) grid(random, h2orseed(456)) maxtime(200) ///
stop(5))

As above, but tune the number of bins for the categorical and continuous predictors

h2oml rfmulticlass y1 x1-x100, cv(3) h2orseed(123) predsampvalue(15) ///
ntrees(10(5)100) maxdepth(3(1)10) binscont(15(5)50) ///
binscat(500(50)1100) tune(metric(logloss) ///
grid(random, h2orseed(456)) maxtime(200) stop(5))

Menu
Statistics > H2O machine learning

Syntax
h2oml rfmulticlass response mult predictors [, options]

response mult and predictors correspond to column names of the current H2O frame.

h2oml rfmulticlass — Random forest multiclass classification+ 157

options Description

Model

validframe(framename) specify the name of the H2O frame containing the validation
dataset that will be used to evaluate the performance
of the model

cv[(# [, cvmethod])] specify the number of folds and method for cross-validation

cv(colname) specify the name of the variable (H2O column) for
cross-validation that identifies the fold to which each
observation is assigned

balanceclasses balance the distribution of classes (categories of the response
variable) by oversampling minority classes

h2orseed(#) set H2O random-number seed for random forest

encode(encode type) specify H2O encoding type for categorical predictors; default
is encode(enum)

auc enable potentially time-consuming calculation of the area under
the curve and area under the precision–recall curve metrics

stop[(# [, stop opts])] specify the number of training iterations and other criteria
for stopping random forest training if the stopping metric
does not improve

maxtime(#) specify the maximum run time in seconds for random forest;
by default, no time restriction is imposed

scoreevery(#) specify that metrics be scored after every # trees during training

Hyperparameter

ntrees(# | numlist) specify the number of trees to build the random forest model;
default is ntrees(50)

maxdepth(# | numlist) specify the maximum depth of each tree; default is
maxdepth(20)

minobsleaf(# | numlist) specify the minimum number of observations per child for
splitting a leaf node; default is minobsleaf(1)

predsampvalue(# | numlist) specify rules for how to sample predictors; default is
predsampvalue(-1)

samprate(# | numlist) specify the sampling rate for randomly selecting a fraction of
observations to build a tree; default is samprate(0.632)

minsplitthreshold(# | numlist) specify the threshold for the minimum relative improvement
needed for a node split; default is
minsplitthreshold(1e-05)

binscat(# | numlist) specify the number of bins to build the histogram for node
splits for categorical predictors (enum columns in H2O);
default is binscat(1024)

binsroot(# | numlist) specify the number of bins to build the histogram for root
node splits for continuous predictors (real and int
columns in H2O); default is binsroot(1024)

binscont(# | numlist) specify the number of bins to build the histogram for node
splits for continuous predictors (real and int columns
in H2O); default is binscont(20)

Tuning

tune(tune opts) specify hyperparameter tuning options for selecting the
best-performing model

h2oml rfmulticlass — Random forest multiclass classification+ 158

Only one of validframe() or cv[()] is allowed.
If neither validframe() nor cv[()] is specified, the evaluation metrics are reported for the training dataset.
When numlist is specified in one or more hyperparameter options, tuning is performed for those hyperparameters.

collect is allowed; see [U] 11.1.10 Prefix commands.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

cvmethod Description

random randomly split the training dataset into folds; the default

modulo evenly split the training dataset into folds using the modulo
operation

stratify evenly distribute observations from the different classes of
the response to all folds

stop opts Description

metric(metric option) specify the stopping metric for training or grid search

tolerance(#) specify the tolerance value by which a model must improve
before the training or grid search stops; default is
tolerance(1e-3)

tune opts Description

metric(metric option) specify the metric for selecting the best-performing model

grid(gridspec) specify whether to perform an exhaustive or random search
for all hyperparameter combinations

maxmodels(#) specify the maximum number of models considered in the
grid search; default is all configurations

maxtime(#) specify the maximum run time for the grid search in seconds;
default is no time limit

stop[(# [, stop opts])] specify the number of iterations and other criteria for
stopping random forest training if the stopping metric does
not improve in the grid search

parallel(#) specify the number of models to build in parallel during
the grid search; default is parallel(1), sequential
model building

nooutput suppress the table summarizing hyperparameter tuning

If any of maxmodels(), maxtime(), or stop[()] is specified, then grid(random) is implied.

Options

� � �
Model �

validframe(), cv[()], balanceclasses, h2orseed(), encode(), auc, stop[()], maxtime(), and
scoreevery(); see [H2OML] h2oml rf.

� � �
Hyperparameter �

ntrees(), maxdepth(), minobsleaf(), predsampvalue(), samprate(), minsplitthreshold(),
binscat(), binsroot(), and binscont(); see [H2OML] h2oml rf.

h2oml rfmulticlass — Random forest multiclass classification+ 159

� � �
Tuning �

tune(); see [H2OML] h2oml rf.

Remarks and examples
For examples, see Remarks and examples in [H2OML] h2oml rf.

Stored results
h2oml rfmulticlass stores the following in e():

Scalars

e(N train) number of observations in the training frame

e(N valid) number of observations in the validation frame (with option validframe())
e(N cv) number of observations in the cross-validation (with option cv())
e(n cvfolds) number of cross-validation folds (with option cv())
e(k predictors) number of predictors

e(n class) number of classes

e(n trees) number of trees

e(n trees a) actual number of trees used in random forest

e(maxdepth) maximum specified tree depth

e(depth min a) achieved minimum tree depth

e(depth avg a) achieved average depth among trees

e(depth max a) achieved maximum tree depth

e(minobsleaf) minimum specified number of observations for a child leaf

e(samprate) observation sampling rate

e(predsampvalue) predictor sampling value

e(minsplitthr) minimum split improvement threshold

e(binscat) number of bins for categorical predictors

e(binsroot) number of bins for root node

e(binscont) number of bins for continuous predictors

e(h2orseed) H2O random-number seed

e(maxtime) maximum run time

e(balanceclass) 1 if classes are balanced; 0 otherwise
e(stop iter) maximum iterations before stopping training without metric improvement

e(stop tol) tolerance for metric improvement before training stops

e(scoreevery) number of trees before scoring metrics during training

e(tune h2orseed) random-number seed for tuning (with option tune())
e(tune stop iter) maximum iterations before stopping tuning without metric improvement (with

option tune())
e(tune stop tol) tolerance for metric improvement before tuning stops (with option tune())
e(tune maxtime) maximum run time for tuning grid search (with option tune())
e(tune maxmodels) maximum number of models considered in tuning grid search (with option

tune())
Macros

e(cmd) h2oml rfmulticlass
e(cmdline) command as typed

e(subcmd) rfmulticlass
e(method) randomforest
e(method type) classification
e(class type) multiclass
e(method full name) Random forest multiclass classification
e(response) name of response

e(predictors) names of predictors

e(title) title in estimation output

e(train frame) name of the training frame

h2oml rfmulticlass — Random forest multiclass classification+ 160

e(valid frame) name of the validation frame (with option validframe())
e(cv method) fold assignment method (with option cv())
e(cv varname) name of variable identifying cross-validation folds (with option cv())
e(encode type) encoding type for categorical predictors

e(stop metric) stopping metric for training

e(tune grid) grid search method used for tuning (with option tune())
e(tune metric) name of the tuning metric (with option tune())
e(tune stop metric) stopping metric for tuning (with option tune())
e(properties) nob noV
e(estat cmd) program used to implement h2omlestat
e(predict) program used to implement h2omlpredict
e(marginsnotok) predictions disallowed by margins

Matrices

e(metrics) training, validation, and cross-validation metrics

e(hyperparam table) minimum, maximum, and selected hyperparameter values

Also see
[H2OML] h2oml postestimation — Postestimation tools for h2oml gbm and h2oml rf+

[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2oml rf — Random forest for regression and classification+

[H2OML] h2oml rfbinclass — Random forest binary classification+

[H2OML] h2oml rfregress — Random forest regression+

[H2OML] h2oml gbmulticlass — Gradient boosting multiclass classification+

[U] 20 Estimation and postestimation commands

h2oml rfregress — Random forest regression+

+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
h2oml rfregress implements random forest regression for continuous responses. You can validate

your model by using validation data or cross-validation, and you can tune hyperparameters and stop early

to improve model performance on new data. This command provides only measures of performance. See

[H2OML] h2oml postestimation for commands to compute and explain predictions, examine variable

importance, and perform other postestimation analyses.

For an introduction to decision trees and the random forest method, see [H2OML] Intro.

Quick start
Before running the h2oml rfregress command, an H2O cluster must be initialized and data must be

imported to an H2O frame; see [H2OML] H2O setup and Prepare your data for H2O machine learning in

Stata in [H2OML] h2oml.

Perform random forest regression of response y1 on predictors x1 through x100
h2oml rfregress y1 x1-x100

As above, but also report measures of fit for the validation frame named valid, and set an H2O random-

number seed for reproducibility

h2oml rfregress y1 x1-x100, validframe(valid) h2orseed(123)

As above, but instead of a validation frame, use 3-fold cross-validation

h2oml rfregress y1 x1-x100, cv(3) h2orseed(123)

As above, but set the number of trees to 30, the maximum tree depth to 10, and the number of predictors

to sample to 15

h2oml rfregress y1 x1-x100, cv(3) h2orseed(123) ntrees(30) ///
maxdepth(10) predsampvalue(15)

As above, but use the default exhaustive grid search to select the optimal number of trees and the maxi-

mum tree depth that minimize the mean squared error (MSE) metric

h2oml rfregress y1 x1-x100, cv(3) h2orseed(123) predsampvalue(15) ///
ntrees(10(5)100) maxdepth(3(1)10) tune(metric(mse))

As above, but use a random grid search, set an H2O random-number seed, and limit the maximum search

time to 200 seconds

h2oml rfregress y1 x1-x100, cv(3) h2orseed(123) predsampvalue(15) ///
ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(mse) grid(random, h2orseed(456)) maxtime(200))

161

h2oml rfregress — Random forest regression+ 162

As above, but use early stopping with the MSE metric and 5 iterations of tuning

h2oml rfregress y1 x1-x100, cv(3) h2orseed(123) predsampvalue(15) ///
ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(mse) grid(random, h2orseed(456)) maxtime(200) ///
stop(5, metric(mse)))

As above, but tune the number of bins for the categorical and continuous predictors

h2oml rfregress y1 x1-x100, cv(3) h2orseed(123) predsampvalue(15) ///
ntrees(10(5)100) maxdepth(3(1)10) binscont(15(5)50) ///
binscat(500(50)1100) tune(metric(mse) ///
grid(random, h2orseed(456)) maxtime(200) stop(5, metric(mse)))

Menu
Statistics > H2O machine learning

Syntax
h2oml rfregress response reg predictors [, options]

response reg and predictors correspond to column names of the current H2O frame.

h2oml rfregress — Random forest regression+ 163

options Description

Model

validframe(framename) specify the name of the H2O frame containing the validation
dataset that will be used to evaluate the performance
of the model

cv[(# [, cvmethod])] specify the number of folds and method for cross-validation

cv(colname) specify the name of the variable (H2O column) for
cross-validation that identifies the fold to which each
observation is assigned

h2orseed(#) set H2O random-number seed for random forest

encode(encode type) specify H2O encoding type for categorical predictors; default
is encode(enum)

stop[(# [, stop opts])] specify the number of training iterations and other criteria
for stopping random forest training if the stopping metric
does not improve

maxtime(#) specify the maximum run time in seconds for random forest;
by default, no time restriction is imposed

scoreevery(#) specify that metrics be scored after every # trees during training

Hyperparameter

ntrees(# | numlist) specify the number of trees to build the random forest model;
default is ntrees(50)

maxdepth(# | numlist) specify the maximum depth of each tree; default is
maxdepth(20)

minobsleaf(# | numlist) specify the minimum number of observations per child for
splitting a leaf node; default is minobsleaf(1)

predsampvalue(# | numlist) specify rules for how to sample predictors; default is
predsampvalue(-1)

samprate(# | numlist) specify the sampling rate for randomly selecting a fraction of
observations to build a tree; default is samprate(0.632)

minsplitthreshold(# | numlist) specify the threshold for the minimum relative improvement
needed for a node split; default is
minsplitthreshold(1e-05)

binscat(# | numlist) specify the number of bins to build the histogram for node
splits for categorical predictors (enum columns in H2O);
default is binscat(1024)

binsroot(# | numlist) specify the number of bins to build the histogram for root
node splits for continuous predictors (real and int
columns in H2O); default is binsroot(1024)

binscont(# | numlist) specify the number of bins to build the histogram for node
splits for continuous predictors (real and int columns
in H2O); default is binscont(20)

Tuning

tune(tune opts) specify hyperparameter tuning options for selecting the
best-performing model

h2oml rfregress — Random forest regression+ 164

Only one of validframe() or cv[()] is allowed.
If neither validframe() nor cv[()] is specified, the evaluation metrics are reported for the training dataset.
When numlist is specified in one or more hyperparameter options, tuning is performed for those hyperparameters.

collect is allowed; see [U] 11.1.10 Prefix commands.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

cvmethod Description

random randomly split the training dataset into folds; the default

modulo evenly split the training dataset into folds using the modulo
operation

stratify evenly distribute observations from the different classes of
the response to all folds

stop opts Description

metric(metric option) specify the stopping metric for training or grid search

tolerance(#) specify the tolerance value by which a model must improve
before the training or grid search stops; default is
tolerance(1e-3)

tune opts Description

metric(metric option) specify the metric for selecting the best-performing model

grid(gridspec) specify whether to perform an exhaustive or random search
for all hyperparameter combinations

maxmodels(#) specify the maximum number of models considered in the
grid search; default is all configurations

maxtime(#) specify the maximum run time for the grid search in seconds;
default is no time limit

stop[(# [, stop opts])] specify the number of iterations and other criteria for
stopping random forest training if the stopping metric does
not improve in the grid search

parallel(#) specify the number of models to build in parallel during
the grid search; default is parallel(1), sequential
model building

nooutput suppress the table summarizing hyperparameter tuning

If any of maxmodels(), maxtime(), or stop[()] is specified, then grid(random) is implied.

Options

� � �
Model �

validframe(), cv[()], h2orseed(), encode(), stop[()], maxtime(), and scoreevery(); see
[H2OML] h2oml rf.

� � �
Hyperparameter �

ntrees(), maxdepth(), minobsleaf(), predsampvalue(), samprate(), minsplitthreshold(),
binscat(), binsroot(), and binscont(); see [H2OML] h2oml rf.

h2oml rfregress — Random forest regression+ 165

� � �
Tuning �

tune(); see [H2OML] h2oml rf.

Remarks and examples
For examples, see Remarks and examples in [H2OML] h2oml rf.

Stored results
h2oml rfregress stores the following in e():

Scalars

e(N train) number of observations in the training frame

e(N valid) number of observations in the validation frame (with option validframe())
e(N cv) number of observations in the cross-validation (with option cv())
e(n cvfolds) number of cross-validation folds (with option cv())
e(k predictors) number of predictors

e(n trees) number of trees

e(n trees a) actual number of trees used in random forest

e(maxdepth) maximum specified tree depth

e(depth min a) achieved minimum tree depth

e(depth avg a) achieved average depth among trees

e(depth max a) achieved maximum tree depth

e(minobsleaf) minimum specified number of observations for a child leaf

e(samprate) observation sampling rate

e(predsampvalue) predictor sampling value

e(minsplitthr) minimum split improvement threshold

e(binscat) number of bins for categorical predictors

e(binsroot) number of bins for root node

e(binscont) number of bins for continuous predictors

e(h2orseed) H2O random-number seed

e(maxtime) maximum run time

e(stop iter) maximum iterations before stopping training without metric improvement

e(stop tol) tolerance for metric improvement before training stops

e(scoreevery) number of trees before scoring metrics during training

e(tune h2orseed) random-number seed for tuning (with option tune())
e(tune stop iter) maximum iterations before stopping tuning without metric improvement (with

option tune())
e(tune stop tol) tolerance for metric improvement before tuning stops (with option tune())
e(tune maxtime) maximum run time for tuning grid search (with option tune())
e(tune maxmodels) maximum number of models considered in tuning grid search (with option

tune())
Macros

e(cmd) h2oml rfregress
e(cmdline) command as typed

e(subcmd) rfregress
e(method) randomforest
e(method type) regression
e(method full name) Random forest regression
e(response) name of response

e(predictors) names of predictors

e(title) title in estimation output

e(train frame) name of the training frame

e(valid frame) name of the validation frame (with option validframe())
e(cv method) fold assignment method (with option cv())
e(cv varname) name of variable identifying cross-validation folds (with option cv())

h2oml rfregress — Random forest regression+ 166

e(encode type) encoding type for categorical predictors

e(stop metric) stopping metric for training

e(tune grid) grid search method used for tuning (with option tune())
e(tune metric) name of the tuning metric (with option tune())
e(tune stop metric) stopping metric for tuning (with option tune())
e(properties) nob noV
e(estat cmd) program used to implement h2omlestat
e(predict) program used to implement h2omlpredict
e(marginsnotok) predictions disallowed by margins

Matrices

e(metrics) training, validation, and cross-validation metrics

e(hyperparam table) minimum, maximum, and selected hyperparameter values

Also see
[H2OML] h2oml postestimation — Postestimation tools for h2oml gbm and h2oml rf+

[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2oml rf — Random forest for regression and classification+

[H2OML] h2oml rfbinclass — Random forest binary classification+

[H2OML] h2oml rfmulticlass — Random forest multiclass classification+

[H2OML] h2oml gbregress — Gradient boosting regression+

[U] 20 Estimation and postestimation commands

h2oml postestimation — Postestimation tools for h2oml gbm and h2oml rf+

+This command includes features that are part of StataNow.

Postestimation commands h2omlpredict Remarks and examples References
Also see

Postestimation commands
The following postestimation commands are of special interest after h2oml gbm and h2oml rf:

Command Description

Estimation results and postestimation frame

h2omlest store and restore estimation results

h2omlpostestframe specify frame for postestimation analysis

Tuning and estimation summaries

h2omlestat metrics display performance metrics

h2omlgraph scorehistory produce score history plot

h2omlestat cvsummary display cross-validation summary

h2omlestat gridsummary display grid-search summary

h2omlexplore explore models after grid search

h2omlselect select model after grid search

h2omlgof compare goodness of fit for machine learning models

Model performance after binary classification

h2omlestat threshmetric display threshold-based metrics

h2omlgraph prcurve produce precision–recall curve plot

h2omlgraph roc produce ROC curve plot

Model performance after multiclass classification

h2omlestat aucmulticlass display AUC and AUCPR metrics

h2omlestat hitratio display hit-ratio table

Model performance after binary and multiclass classification

h2omlestat confmatrix display confusion matrix

Prediction

h2omlpredict predict continuous responses, probabilities, and classes

Model explainability

h2omlgraph varimp produce variable importance plot

h2omlgraph pdp produce partial dependence plot

h2omlgraph ice produce individual conditional expectation plot

h2omltree save decision tree DOT file and display rule set

Explainability after regression and binary classification

h2omlgraph shapvalues produce SHAP values plot for individual observations

h2omlgraph shapsummary produce SHAP beeswarm plot

167

h2oml postestimation — Postestimation tools for h2oml gbm and h2oml rf+ 168

h2omlpredict

Description for h2omlpredict
h2omlpredict generates new variables (H2O columns) containing predictions, probabilities, and

class predictions. The latter two are provided for the binary and multiclass classification problems.

Menu for h2omlpredict
Statistics > H2O machine learning

Syntax for h2omlpredict
After h2oml gbregress and h2oml rfregress

h2omlpredict newvar [, frame(framename)]

After h2oml gbbinclass and h2oml rfbinclass

h2omlpredict stub* | newvar | newvarlist [, binopts frame(framename)]

After h2oml gbmulticlass and h2oml rfmulticlass

h2omlpredict stub* | newvar | newvarlist [, multopts frame(framename)]

binopts Description

Main

class predicted classes

pr predicted probability of each class

threshold(#) specify threshold for predicting classes

multopts Description

Main

class predicted classes

pr predicted probability of each class

outcome(outcome) specify outcome level (class) for which probabilities are computed

You specify one or 𝑘 new variables with pr, where 𝑘 is the number of outcomes. If you specify one new variable and you do
not specify outcome(), then outcome(#1) is assumed.

Options for h2omlpredict

� � �
Main �

frame(framename) specifies the H2O frame in which predictions are stored.

h2oml postestimation — Postestimation tools for h2oml gbm and h2oml rf+ 169

class computes class predictions for each observation and is the default. For h2oml gbbinclass and

h2oml rfbinclass, the predicted class for each observation is determined based on a threshold value.
By default, the threshold is set to maximize the F1 score. Alternatively, a custom threshold can be

specified using the threshold() option. For h2oml gbmulticlass and h2oml rfmulticlass, the
predicted class for each observation is based on the highest predicted probability. Only one of class
or pr is allowed.

pr computes the predicted probabilities for all outcome levels (classes) or for a specific outcome level

(class) after classification. To compute probabilities for all outcome levels, you specify 𝑘 new vari-

ables (H2O columns), where 𝑘 is the number of classes of the response. Alternatively, you can specify
stub*, in which case pr will store predicted probabilities in variables (H2O columns) stub1, stub2,

. . . , stubk. To compute the probability for a specific outcome level, you specify one new variable

(H2O column) and, optionally, the outcome value in option outcome(); if you omit outcome(), then
the first outcome value, outcome(#1), is assumed. Say that you fit a model by typing h2oml es-

timation cmd y x1 x2, and y has four classes. Then you could type h2omlpredict p1 p2 p3 p4,
pr to obtain all four predicted probabilities; alternatively, you could type h2omlpredict p*, pr to

generate the four predicted probabilities. To compute specific probabilities one at a time, you can

type h2omlpredict p1, pr outcome(#1) (or simply h2omlpredict p1, pr); h2omlpredict p2,
pr outcome(#2); and so on. See the outcome() option for other ways to refer to the outcome value.
Only one of pr or class is allowed.

threshold(#) specifies the threshold for predicted classes for binary classification. The specified num-
ber should be between [0, 1]. By default, the threshold value that maximizes the F1 metric is used.

outcome(outcome) specifies for which outcome level (class) the predicted probabilities are to be cal-

culated after multiclass classification. outcome() should contain either one class of the response or

one of #1, #2, . . . , with #1 meaning the first class of the response, #2 meaning the second class, etc.

outcome() is not allowed with class.

Remarks and examples
Remarks and examples are presented under the following headings:

Binary classification prediction
Multiclass classification prediction
Testing frame prediction
Regression prediction

Binary classification prediction

Example 1
In this example, we show how to use the h2omlpredict command to predict probabilities and classes

for binary classification.

We start by opening the 1978 automobile data (auto.dta) in Stata and then putting the data into an
H2O frame. Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset
into an H2O frame, and h2oframe changemakes the specified frame the current H2O frame. For details,
see Prepare your data for H2Omachine learning in Stata in [H2OML] h2oml and see [H2OML]H2O setup.

h2oml postestimation — Postestimation tools for h2oml gbm and h2oml rf+ 170

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
(output omitted)

. _h2oframe put, into(auto)
Progress (%): 0 100
. _h2oframe change auto

We use h2oml rfbinclass to perform random forest binary classification to predict classes of the

car origin.

. global predictors price mpg length weight

. h2oml rfbinclass foreign $predictors, ntrees(100) h2orseed(19)
Progress (%): 0 40.0 100
Random forest binary classification using H2O
Response: foreign
Frame: Number of observations:

Training: auto Training = 74
Model parameters
Number of trees = 100

actual = 100
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 3 No. of bins cat. = 1,024
avg = 5.5 No. of bins root = 1,024
max = 9 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Log loss .3053323
Mean class error .1284965

AUC .9309441
AUCPR .8455917

Gini coefficient .8618881
MSE .1046538

RMSE .3235024

Next we use h2omlpredict to create a new variable (a column in the current H2O frame) containing

the predicted classes.

. h2omlpredict foreignhat, class
Progress (%): 0 100

h2oml postestimation — Postestimation tools for h2oml gbm and h2oml rf+ 171

The threshold value is a cutpoint that determines the predicted classes from the predicted probabilities.

In binary classification, the threshold is the value that maximizes the F1 score. We can determine this

threshold value by using h2omlestat threshmetric.

. h2omlestat threshmetric
Maximum or minimum metrics using H2O
Training frame: auto

Metric Max/Min Threshold

F1 .7778 .125
F2 .8871 .0732

F0.5 .7979 .6286
Accuracy .8649 .6286

Precision 1 1
Recall 1 .0732

Specificity 1 1
Min. class accuracy .8269 .2258
Mean class accuracy .8715 .125

True negatives 52 1
False negatives 0 .0732 +
True positives 22 .0732

False positives 0 1 +
True-negative rate 1 1

False-negative rate 0 .0732 +
True-positive rate 1 .0732

False-positive rate 0 1 +
MCC .6855 .125

+ identifies minimum metrics.

The threshold that maximizes the F1 score is 0.125. Thus, the observations with predicted probabil-

ities greater than 0.125 are assigned to the positive class (Foreign in our example), and the remaining

observations are assigned to the negative class (Domestic in our example). We can specify a different

threshold with the threshold() option. For example, we can select the threshold that maximizes the

true-positive rate, which is 0.0732.

. h2omlpredict foreignhat_tpr, class threshold(0.0732)

If we want to obtain predicted probabilities, we can use the pr option.

. h2omlpredict foreignpr1 foreignpr2, pr
Progress (%): 0 100

We can get the predictions and the rest of the data in the H2O frame back into Stata by using the

h2oframe get command.

. clear

. _h2oframe get auto

h2oml postestimation — Postestimation tools for h2oml gbm and h2oml rf+ 172

Multiclass classification prediction

Example 2
In this example, we show how to use the h2omlpredict command to predict probabilities and classes

for multiclass classification.

For this example, we will use a well-known iris dataset, where the goal is to predict a class of iris

plant. This dataset was used in Fisher (1936) and originally collected by Anderson (1935). We start by

initializing a cluster, opening the dataset in Stata, and importing the dataset as an H2O frame. We then

use the h2oframe split command to randomly split the iris frame into a training frame (80% of

observations) and a testing frame (20% of observations), which we name train and test, respectively.
We also change the current frame to train.

. use https://www.stata-press.com/data/r18/iris
(Iris data)
. h2o init
(output omitted)

. _h2oframe put, into(iris)
Progress (%): 0 100
. _h2oframe split iris, into(train test) split(0.8 0.2) rseed(19)
. _h2oframe change train

Next, we use h2oml rfmulticlass to perform random forest multiclass classification.

. global predictors seplen sepwid petlen petwid

. h2oml rfmulticlass iris $predictors, ntrees(100) h2orseed(19)
Progress (%): 0 100
Random forest multiclass classification using H2O
Response: iris Number of classes = 3
Frame: Number of observations:

Training: train Training = 125
Model parameters
Number of trees = 100

actual = 100
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 1 No. of bins cat. = 1,024
avg = 3.5 No. of bins root = 1,024
max = 8 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Log loss .1282741
Mean class error .0650407

MSE .0389344
RMSE .197318

Now, we use h2omlpredict to obtain the predicted classes of the iris plant.

. h2omlpredict irishat, class
Progress (%): 0 100

h2oml postestimation — Postestimation tools for h2oml gbm and h2oml rf+ 173

For multiclass classification, the class is assigned based on the class with the largest predicted proba-

bility. We can use the pr option to see the predicted probabilities. The number of specified new variable

names should correspond to the number of classes (or we can specify stub*, such as irispr*).

. h2omlpredict irispr1 irispr2 irispr3, pr
Progress (%): 0 100

By default, the variables (H2O columns) corresponding to the predicted probabilities and classes are

created in the current frame, which in our case is train.

Testing frame prediction

Example 3
We continue the previous example and show how to obtain predictions on the testing data. In general,

there are two approaches to achieve this goal.

In the first approach, which we recommend, we use the h2omlpostestframe command.

. h2omlpostestframe test
(testing frame test is now active for h2oml postestimation)
. h2omlpredict irishat, class
Progress (%): 0 100

The above commands generate variable irishat in the frame test.

In the second approach, we use the frame() option.

. h2omlpredict irishat1, class frame(test)

Note that neither approach physically changes the working frame to the specified frame, test.

If we are interested in listing the generated variable, then we can type the following.

. _h2oframe change test

. _h2oframe list in 1/5
iris seplen sepwid petlen petwid irishat irishat1

1 Setosa 4.7 3.2 1.3 .2 Setosa Setosa
2 Setosa 5.1 3.8 1.5 .3 Setosa Setosa
3 Setosa 5.1 3.7 1.5 .4 Setosa Setosa
4 Setosa 5.5 4.2 1.4 .2 Setosa Setosa
5 Setosa 4.9 3.6 1.4 .1 Setosa Setosa
[5 rows x 7 columns]

h2oml postestimation — Postestimation tools for h2oml gbm and h2oml rf+ 174

Regression prediction

Example 4
In this example, we show how to obtain predictions for regression.

We again use auto.dta.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
(output omitted)

. _h2oframe put, into(auto)
Progress (%): 0 100
. _h2oframe change auto

We perform gradient boosting regression to predict prices.

. h2oml gbregress price mpg weight length, ntrees(100) h2orseed(19)
Progress (%): 0 100
Gradient boosting regression using H2O
Response: price
Loss: Gaussian
Frame: Number of observations:

Training: auto Training = 74
Model parameters
Number of trees = 100 Learning rate = .1

actual = 100 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 3 No. of bins cat. = 1,024
avg = 4.1 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training

Deviance 1612524
MSE 1612524

RMSE 1269.852
RMSLE .1750365

MAE 853.3532
R-squared .8121031

Then we use h2omlpredict to obtain predictions.

. h2omlpredict pricehat
Progress (%): 0 100

The new variable (H2O column) pricehat now contains the predicted prices based on our model.

h2oml postestimation — Postestimation tools for h2oml gbm and h2oml rf+ 175

References
Anderson, E. 1935. The irises of the Gaspé Peninsula. Bulletin of the American Iris Society 59: 2–5.

Fisher, R. A. 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics 7: 179–188. https:

//doi.org/10.1111/j.1469-1809.1936.tb02137.x.

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x

h2omlest — Store and restore H2OML estimation results+

+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Option Remarks and examples Stored results Also see

Description
h2omlest allows you to store, restore, list, and drop estimation results after h2oml gbm or h2oml rf.

h2omlest store name stores the current (active) estimation results as name.

h2omlest restore name loads the specified results into the current (active) estimation results.

h2omlest dir displays a list of the stored estimates.

h2omlest drop namelist drops the specified stored estimation results.

h2omlest clear drops all stored estimation results.

h2omlest clear, h2omlest drop all, and h2omlest drop * do the same thing. h2omlest drop
and h2omlest clear do not eliminate the current (active) estimation results.

Quick start
Store estimation results as m1 for use later in the same session

h2omlest store m1

Restore estimation results from m2
h2omlest restore m2

Drop stored estimation results m3
h2omlest drop m3

Drop all stored results

h2omlest clear

Display table of information about all stored results

h2omlest dir

Menu
Statistics > H2O machine learning

176

h2omlest — Store and restore H2OML estimation results+ 177

Syntax
h2omlest store name [, nocopy]

h2omlest restore name

h2omlest dir

h2omlest drop namelist

h2omlest clear

where namelist is a name, a list of names, all, or *. all and * mean the same thing.

Option
nocopy, used with h2omlest store, specifies that the current (active) estimation results be moved into

name rather than copied. Typing

. h2omlest store hold, nocopy

is the same as typing

. h2omlest store hold

. ereturn clear

except that the former is faster. The nocopy option is sometimes used by programmers.

h2omlest — Store and restore H2OML estimation results+ 178

Remarks and examples
h2omlest store stores estimation results in memory after h2oml rf and h2oml gbm so that you can

access them later.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
(output omitted)

. _h2oframe put, into(auto)

. _h2oframe change auto

. h2oml gbregress price weight displ
(output omitted)

. h2omlest store myreg

. ... you do other things, including fitting other models ...

. h2omlest restore myreg

. h2oml gbregress
(same output shown again)

After h2omlest restore myreg, things are once again as they were, estimationwise, just after you
typed h2oml gbregress price weight displ.

h2omlest store stores results in memory. When you exit Stata, those stored results vanish.

Youmake copies in memory so that you can quickly switch between them and so that you can compare

estimation results. Concerning the latter, see [H2OML] h2omlgof.

Stored results
h2omlest dir stores the following in r():

Macro

r(names) names of stored results

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

h2omlestat aucmulticlass — Display AUC and AUCPR after multiclass classification+

+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results References
Also see

Description
h2omlestat aucmulticlass reports area under the curve (AUC) and area under the precision–recall

curve (AUCPR) metrics after multiclass classification performed by h2oml gbmulticlass or h2oml
rfmulticlass. These metrics measure how well the model can classify observations. Unlike after

binary classification, multiple variations of AUC and AUCPR metrics can be defined with multiclass clas-

sification. The variations include one-versus-one metrics, one-versus-rest metrics, and averages of these

metrics.

AUC and AUCPR metrics can be computationally intensive. To obtain these metrics, the auc option

must be specified in the h2oml gbmulticlass or h2oml rfmulticlass command before the metrics

can be reported by h2omlestat aucmulticlass.

Quick start
Report AUC and AUCPR metrics

h2omlestat aucmulticlass

As above, but report testing results based on data in frame test
h2omlestat aucmulticlass, test(test)

Menu
Statistics > H2O machine learning

179

h2omlestat aucmulticlass — Display AUC and AUCPR after multiclass classification+ 180

Syntax
h2omlestat aucmulticlass [, options]

options Description

title(string) specify title to be displayed above the table

train specify that metrics be reported using training results

valid specify that metrics be reported using validation
results

cv specify that metrics be reported using
cross-validation results

test specify that metrics be computed using the
testing frame

test(framename) specify that metrics be computed using data in
testing frame framename

frame(framename) specify that metrics be computed using data in
H2O frame framename

framelabel(string) label frame as string in the output

collect is allowed; see [U] 11.1.10 Prefix commands.

train, valid, cv, test, test(), frame(), and framelabel() do not appear in the dialog box.

Options
title(string) specifies the title to be displayed above the table.

The following options are available with h2omlestat aucmulticlass but are not shown in the dialog

box:

train, valid, cv, test, test(), and frame() specify the H2O frame for whichAUC andAUCPRmetrics
are reported. Only one of train, valid, cv, test, test(), or frame() is allowed.

train specifies that AUC and AUCPR metrics be reported using training results. This is the default

when neither validation nor cross-validation is performed during estimation and when a postesti-

mation frame has not been set with h2omlpostestframe.

valid specifies that AUC and AUCPR metrics be reported using validation results. This is the default

when validation is performed during estimation and when a postestimation frame has not been

set with h2omlpostestframe. valid may be specified only when the validframe() option is

specified with h2oml gbm or h2oml rf.

cv specifies thatAUC andAUCPRmetrics be reported using cross-validation results. This is the default
when cross-validation is performed during estimation and when a postestimation frame has not

been set with h2omlpostestframe. cv may be specified only when the cv or cv() option is

specified with h2oml gbm or h2oml rf.

test specifies that AUC and AUCPR metrics be computed on the testing frame specified with h2oml-
postestframe. This is the default when a testing frame is specified with h2omlpostestframe.
test may be specified only after a testing frame is set with h2omlpostestframe. test is neces-
sary onlywhen a subsequent h2omlpostestframe command is used to set a default postestimation
frame other than the testing frame.

h2omlestat aucmulticlass — Display AUC and AUCPR after multiclass classification+ 181

test(framename) specifies that AUC and AUCPR metrics be computed using data in testing frame

framename and is rarely used. This option is most useful when running a single postestimation

command on the named frame. If multiple postestimation commands are to be run on the same test

frame, h2omlpostestframe provides amore convenient and computationally efficient process for
doing this.

frame(framename) specifies that AUC and AUCPR metrics be computed using the data in H2O frame

framename.

framelabel(string) specifies the label to be used for the frame in the output. This option is not allowed
with the cv option.

Remarks and examples
h2omlestat aucmulticlass computes AUC and AUCPR metrics after multiclass classification.

These metrics measure how well the model can classify observations. Unlike with binary classifica-

tion, observations are not classified into simply one positive and one negative class. Instead, with mul-

ticlass classification, variations of these metrics are defined. The one-versus-one metrics compute the

AUC and AUCPR for all pairwise combinations of the classes. The one-versus-rest metrics compute the

AUC and AUCPR for each class versus all the other classes combined. h2omlestat aucmulticlass
reports all one-versus-one and one-versus-rest AUC and AUCPR metrics. It also reports the macro (un-

weighted) average and the prevalence weighted average of each metric. For definitions of these metrics,

see [H2OML] metric option.

Because calculation of theAUC andAUCPRmetrics is computationally expensive for multiclass classi-

fication, thesemetrics are not calculated by default by h2oml gbmulticlass and h2oml rfmulticlass.
To enable the calculation, we must specify the auc option during estimation. Additionally, AUC and

AUCPR metrics may not be requested when the number of response classes is greater than 50.

Example 1: AUC and AUCPR metrics
We use a well-known iris dataset, where the goal is to predict a class of iris plant. This dataset was

used in Fisher (1936) and originally collected by Anderson (1935). We start by initializing a cluster,

opening the dataset in Stata, and importing the dataset as an H2O frame. Recall that h2o init initiates an
H2O cluster, h2oframe put loads the current Stata dataset into an H2O frame, and h2oframe change
makes the specified frame the current H2O frame. For details, see Prepare your data for H2O machine

learning in Stata in [H2OML] h2oml and see [H2OML] H2O setup.

. use https://www.stata-press.com/data/r18/iris
(Iris data)
. h2o init
. _h2oframe put, into(iris)
. _h2oframe change iris

h2omlestat aucmulticlass — Display AUC and AUCPR after multiclass classification+ 182

We define the global macro predictors to store the names of the predictors, and we use the h2oml
rfmulticlass command to perform random forest multiclass classification. We use default settings for

all hyperparameters, and we specify an H2O random-number seed for reproducibility. We also specify

the auc option to request that the AUC and AUCPR metrics be computed.

. global predictors seplen sepwid petlen petwid

. h2oml rfmulticlass iris $predictors, h2orseed(19) auc
Progress (%): 0 100
Random forest multiclass classification using H2O
Response: iris Number of classes = 3
Frame: Number of observations:

Training: iris Training = 150
Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 1 No. of bins cat. = 1,024
avg = 3.7 No. of bins root = 1,024
max = 9 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Log loss .3438683
Mean class error .0533333

AUC .9906667
AUCPR .9816699

MSE .0384685
RMSE .196134

Note: AUC and AUCPR computed
using macro average OVR.

The output reports an AUC of 0.991 and an AUCPR of 0.982. The note at the bottom of the table tells us

that these values are the macro average OVR (one-versus-rest) metrics.

h2omlestat aucmulticlass — Display AUC and AUCPR after multiclass classification+ 183

To report all computed AUC and AUCPR metrics, we type

. h2omlestat aucmulticlass
AUC and AUCPR summary using H2O
Training frame: iris

AUC AUCPR

One vs. rest (OVR)
Setosa vs. rest 1 1

Versicolor vs. rest .983 .978
Virginica vs. rest .989 .967

Macro OVR .991 .982
Weighted OVR .991 .982

One vs. one (OVO)
Setosa vs. Versicolor .995 .997
Setosa vs. Virginica 1 1

Versicolor vs. Virginica .977 .974
Macro OVO .991 .99

Weighted OVO .991 .99

As with standard AUC, a value closer to 1 for each of these metrics indicates better classification. In

the first table, we see the one-versus-rest AUC values followed by the one-versus-one AUC values. The

Setosa vs. Rest AUC value is 1. This means that if we run a binary classification where Setosa is

considered the positive class and the remaining classes are considered the negative class, then the model

will perfectly classify all observations.

Similarly, the Versicolor vs. Rest AUC is the AUC for a binary classification where Versicolor
is treated as the positive class and the other classes jointly comprise the negative class. Macro OVR is an
unweighted average of the above one-versus-restAUCs that gives all classes the same weight. Weighted
OVR is a prevalence weighted average of the one-versus-restAUCs, where weights are assigned to classes
based on the number of positives in each class.

In the next portion of the first table, the AUCs are computed by treating one class as the positive class

and one class as the negative class while ignoring all other classes.

The second table can be interpreted similarly to the first table, but it reportsAUCPRmetrics rather than

AUC metrics. The AUCPR is preferred when the classes of the response variable are highly imbalanced.

In this example, all the reported AUC and AUCPR metrics are close to 1, indicating that the model can

accurately distinguish between each class and the other classes. However, as we illustrate in the next

example, this does not mean that the model is highly accurate at performing multiclass classification in

terms of assigning the correct class to every observation.

h2omlestat aucmulticlass — Display AUC and AUCPR after multiclass classification+ 184

Example 2: AUC and AUCPR for validation and testing frames
Above, we performed classification and evaluated metrics using a single training frame. To demon-

strate how to obtain the AUC and AUCPR metrics for other frames, such as validation and testing frames,

we first use the h2oframe split command to split the dataset, specifying 60% of observations in the

training frame, 20% in the validation frame, and 20% in the testing frame. We then change to the training

frame.

. use https://www.stata-press.com/data/r18/iris, clear
(Iris data)
. h2o init
. _h2oframe put, into(iris)
. _h2oframe split iris, into(training validation testing) split(0.6 0.2 0.2)
> rseed(19)
. _h2oframe change training

Next we perform random forest multiclass classification, setting the number of trees to 500 and leaving

the other hyperparameters at their default values. We also specify the name of our validation frame in

the validframe() option.

. h2oml rfmulticlass iris $predictors, h2orseed(19) auc ntrees(500)
> validframe(validation)
Progress (%): 0 29.6 53.3 71.3 99.1 100
Random forest multiclass classification using H2O
Response: iris Number of classes = 3
Frame: Number of observations:

Training: training Training = 95
Validation: validation Validation = 30

Model parameters
Number of trees = 500

actual = 500
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 1 No. of bins cat. = 1,024
avg = 3.0 No. of bins root = 1,024
max = 9 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Log loss .1027022 .1406913
Mean class error .0423591 .0666667

AUC .995535 1
AUCPR .9915411 1

MSE .0300273 .0473201
RMSE .1732838 .2175318

Note: AUC and AUCPR computed using macro
average OVR.

h2omlestat aucmulticlass — Display AUC and AUCPR after multiclass classification+ 185

Now we can run h2omlestat aucmulticlass to see how well our model classifies the data in

the validation frame. Because we specified the validation frame during estimation, h2omlestat
aucmulticlass defaults to reporting metrics for the validation frame.

. h2omlestat aucmulticlass
AUC and AUCPR summary using H2O
Validation frame: validation

AUC AUCPR

One vs. rest (OVR)
Setosa vs. rest 1 1

Versicolor vs. rest 1 1
Virginica vs. rest 1 1

Macro OVR 1 1
Weighted OVR 1 1

One vs. one (OVO)
Setosa vs. Versicolor 1 1
Setosa vs. Virginica 1 1

Versicolor vs. Virginica 1 1
Macro OVO 1 1

Weighted OVO 1 1

We get a score of 1 for each of the one-versus-rest AUC metrics, meaning that if we performed three

binary classifications, one for each class being positive while the rest of the classes are negative, those

models will correctly classify all observations. Similarly, all the one-versus-one AUC metrics are 1,

corresponding to perfect prediction for all pairwise binary classifications where one class is considered

positive and another is considered negative.

However, it is important to remember that computation of one-versus-one AUC and one-versus-rest

AUC metrics ignores the fact that the initial problem is multiclass. The results can differ compared with

other performance metrics that take into account the true multiclass nature of the problem. For example,

let’s look at the confusion matrix by using the h2omlestat confmatrix command.

. h2omlestat confmatrix
Confusion matrix using H2O
Validation frame: validation

Predicted
iris Setosa Versico~r Virginica Total Error Rate

Setosa 12 0 0 12 0 0
Versicolor 0 8 0 8 0 0
Virginica 0 2 8 10 2 .2

Total 12 10 8 30 2 .067

We see that Setosa and Versicolor were perfectly classified, but the model did misclassify some

Virginica flowers as Versicolor.

In addition to the default metrics that are reported for the validation frame in this case, we can obtain

metrics for other frames. Here we are interested in results from the testing frame, and we have two ways

to request these. One approach is to use the test(testing) option to specify the testing frame. The

second approach, our preferred method, is to use h2omlpostestframe to set the testing frame to be used
as the default for all affected postestimation commands. For details, see [H2OML] h2omlpostestframe.

h2omlestat aucmulticlass — Display AUC and AUCPR after multiclass classification+ 186

. h2omlpostestframe testing
(testing frame testing is now active for h2oml postestimation)
. h2omlestat aucmulticlass
AUC and AUCPR summary using H2O
Testing frame: testing

AUC AUCPR

One vs. rest (OVR)
Setosa vs. rest 1 1

Versicolor vs. rest 1 1
Virginica vs. rest 1 1

Macro OVR 1 1
Weighted OVR 1 1

One vs. one (OVO)
Setosa vs. Versicolor 1 1
Setosa vs. Virginica 1 1

Versicolor vs. Virginica 1 1
Macro OVO 1 1

Weighted OVO 1 1

As with the validation frame, we obtain values of 1 for all AUC and AUCPR metrics calculated on the

testing frame.

Stored results
h2omlestat aucmulticlass stores the following in r():

Matrices

r(aucmulticlass) one-versus-rest and one-versus-oneAUC scores

r(aucprmulticlass) one-versus-rest and one-versus-oneAUCPR scores

References
Anderson, E. 1935. The irises of the Gaspé Peninsula. Bulletin of the American Iris Society 59: 2–5.

Fisher, R. A. 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics 7: 179–188. https:

//doi.org/10.1111/j.1469-1809.1936.tb02137.x.

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2omlestat confmatrix — Display confusion matrix+

https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x

h2omlestat confmatrix — Display confusion matrix+

+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
h2omlestat confmatrix displays a confusion matrix after binary or multiclass classification per-

formed by h2oml gbbinclass, h2oml rfbinclass, h2oml gbmulticlass, or h2oml rfmulticlass.
Aconfusionmatrix is a summary table for the prediction performance of amachine learning classification

model. It displays how different observations are classified based on correct and incorrect predictions.

It provides a more informative breakdown of a model’s performance than a single metric.

Quick start
Display the confusion matrix after classification

h2omlestat confmatrix

As above, but report confusion matrix based on a validation set

h2omlestat confmatrix, valid

As above, but use a threshold value of 0.5 to determine negative versus positive predicted classes

h2omlestat confmatrix, valid threshold(0.5)

Menu
Statistics > H2O machine learning

187

h2omlestat confmatrix — Display confusion matrix+ 188

Syntax
h2omlestat confmatrix [, options]

options Description

Main

metric(metric) specify the metric to be used to select the optimal threshold after
binary classification

threshold(#) specify the threshold value for the predicted probabilities after
binary classification

Reporting

title(string) specify the title to be displayed above the table

labels(lnames) specify label names for rows and columns

nototals suppress row and column totals

norowtotals suppress row totals

nocoltotals suppress column totals

noerrors suppress the error column

norate suppress the rate column

train specify that the confusion matrix be reported using training results

valid specify that the confusion matrix be reported using validation
results

cv specify that the confusion matrix be reported using
cross-validation results

test specify that the confusion matrix be computed using the
testing frame

test(framename) specify that the confusion matrix be computed using data in
testing frame framename

frame(framename) specify that the confusion matrix be computed using data in
H2O frame framename

framelabel(string) label frame as string in the output

collect is allowed; see [U] 11.1.10 Prefix commands.

train, valid, cv, test, test(), frame(), and framelabel() do not appear in the dialog box.

Options

� � �
Main �

metric(metric) specifies the classification metric to be used for selecting a threshold value. This option
is valid only after binary classification. metric can be one of f1 (the default), f2, fhalf, accuracy,
precision, recall, specificity, minclassaccuracy, meanclassaccuracy, tn, fn, tp, fp,
tnr, fnr, tpr, fpr, or mcc. For definitions, see [H2OML] metric option. Only one of metric() or

threshold() is allowed.

threshold(#) specifies the cutpoint for the predicted probabilities after binary classification. The spec-
ified # must be a value between 0 and 1. Observations with a predicted probability greater than the

specified threshold() will be classified as “positive”, and the remaining observations will be clas-
sified as “negative”. By default, the selected threshold value maximizes the F1 score. The list of

threshold values for which threshold-based metrics are computed corresponds to the predicted prob-

abilities of the positive class (the positive class is the largest numeric value, such as 1 in a 0/1 coded

h2omlestat confmatrix — Display confusion matrix+ 189

variable, or the second label in lexicographical order). If the specified threshold(#) is not in the

list of predicted probabilities, a result based on the closest threshold value is reported. Only one of

threshold() or metric() is allowed.

� � �
Reporting �

title(string) specifies the title to be displayed above the table.

labels(lnames) specifies the label names for rows and columns. By default, label names show the

class names of the categorical response variable. The specified number of labels must be equal to the

number of classes of the categorical response variable. The specified labels should be separated by

spaces. If the label itself contains spaces, it must be enclosed with double quotes.

nototals suppresses the totals for rows and columns. nototals is not allowed with norowtotals or

nocoltotals.

norowtotals suppresses the totals for rows. norowtotals is not allowed with nototals.

nocoltotals suppresses the totals for columns. nocoltotals is not allowed with nototals.

noerrors suppresses the error column.

norate suppresses the rate column.

The following options are available with h2omlestat confmatrix but are not shown in the dialog box:

train, valid, cv, test, test(), and frame() specify the H2O frame for which the confusion matrix

is reported. Only one of train, valid, cv, test, test(), or frame() is allowed.

train specifies that the confusion matrix be reported using training results. This is the default when
neither validation nor cross-validation is performed during estimation and when a postestimation

frame has not been set with h2omlpostestframe.

valid specifies that the confusionmatrix be reported using validation results. This is the default when
validation is performed during estimation and when a postestimation frame has not been set with

h2omlpostestframe. valid may be specified only when the validframe() option is specified
with h2oml gbm or h2oml rf.

cv specifies that the confusion matrix be reported using cross-validation results. This is the default

when cross-validation is performed during estimation and when a postestimation frame has not

been set with h2omlpostestframe. cv may be specified only when the cv or cv() option is

specified with h2oml gbm or h2oml rf.

test specifies that the confusion matrix be computed on the testing frame specified with h2oml-
postestframe. This is the default when a testing frame is specified with h2omlpostestframe.
test may be specified only after a testing frame is set with h2omlpostestframe. test is neces-
sary onlywhen a subsequent h2omlpostestframe command is used to set a default postestimation
frame other than the testing frame.

test(framename) specifies that the confusion matrix be computed using data in testing frame frame-

name and is rarely used. This option is most useful when running a single postestimation command

on the named frame. If multiple postestimation commands are to be run on the same test frame,

h2omlpostestframe provides a more convenient and computationally efficient process for doing
this.

frame(framename) specifies that the confusion matrix be computed using the data in H2O frame

framename.

h2omlestat confmatrix — Display confusion matrix+ 190

framelabel(string) specifies the label to be used for the frame in the output. This option is not allowed
with the cv option.

Remarks and examples
Aconfusion matrix is a popular tool for assessing model performance for classification. It consists of

a simple grid that contains information about the model’s performance in terms of correct and incorrect

predictions. A confusion matrix summarizes the types of errors the model makes and allows you to

determine areas in which the model predictions can be improved.

Below is an example of a confusion matrix where we predict the origin of a car to be either Domestic
or Foreign. Rows of the confusion matrix correspond to the actual classes, and columns correspond to
predicted classes. In H2O, a “positive” class corresponds to a class that contains 1, True, or the second
label in lexicographical order. In our case, the positive class corresponds to the car origin being Foreign.

. h2omlestat confmatrix
Confusion matrix using H2O
Training frame: train

Predicted
foreign Domestic Foreign Total Error Rate

Domestic 37 8 45 8 .178
Foreign 0 18 18 0 0

Total 37 26 63 8 .127
Note: Probability threshold .2083 that maximizes F1

metric used for classification.

In this example, the 37 in the upper left cell indicates that there are 37 observations for which the

actual class is Domestic and the model correctly predicts this class. Because Domestic is treated as a

“negative” class in this example, the result in this cell is also known as the number of true negatives. On

the other hand, 8 is the number of observations belonging to the Domestic class that were misclassified
by the model as Foreign, that is, 8 is the number of false positives. Similarly, 0 and 18 are the numbers
of false negatives and true positives, respectively. The predicted class for each observation is determined

based on a threshold value of 0.208, which is reported above the table. A predicted probability greater

than 0.208 will classify the car as Foreign, while a probability below this threshold will classify the

car as Domestic. By default, h2omlestat confmatrix uses the threshold that maximizes the F1 score.
However, you can select a threshold value or specify that a threshold be selected that maximizes another

metric.

The Error column in the output reports the number of misclassified observations for each class, and
the Rate column reports the misclassification error rate.

When there are more than two classes, the number of rows and columns in the confusion matrix

corresponds to the number of classes. The examples below demonstrate h2omlestat confmatrix after
binary classification. For an example with more than two classes, see example 1.

h2omlestat confmatrix — Display confusion matrix+ 191

Example 1: Model comparison
In this example, we use the confusion matrix obtained from 3-fold cross-validation to compare two

machine learning methods, random forest and gradient boosting machine (GBM), at their default values.

We start by opening the 1978 automobile data (auto.dta) in Stata and then putting the data into an
H2O frame. Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset
into an H2O frame, and h2oframe changemakes the specified frame the current H2O frame. For details,
see Prepare your data for H2Omachine learning in Stata in [H2OML] h2oml and see [H2OML]H2O setup.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
. _h2oframe put, into(auto)
. _h2oframe change auto

We run random forest binary classification with 3-fold cross-validation. We store the estimation re-

sults by using the h2omlest store command so that we can use the results in example 2.

. h2oml rfbinclass foreign price mpg trunk weight length, cv(3, modulo)
> h2orseed(19)
Progress (%): 0 100
Random forest binary classification using H2O
Response: foreign
Frame: Number of observations:

Training: auto Training = 74
Cross-validation = 74

Cross-validation: Modulo Number of folds = 3
Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 4 No. of bins cat. = 1,024
avg = 5.8 No. of bins root = 1,024
max = 9 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .7514549 .4192503
Mean class error .1127622 .1809441

AUC .9200175 .8706294
AUCPR .7622589 .624291

Gini coefficient .840035 .7412587
MSE .1081766 .1406502

RMSE .3289021 .3750336

. h2omlest store myrf

h2omlestat confmatrix — Display confusion matrix+ 192

We report the confusion matrix by using the h2omlestat confmatrix command.

. h2omlestat confmatrix
Cross-validation confusion matrix using H2O

Predicted
foreign Domestic Foreign Total Error Rate

Domestic 45 7 52 7 .135
Foreign 5 17 22 5 .227

Total 50 24 74 12 .162
Note: Probability threshold .38 that maximizes F1 metric

used for classification.

Because cross-validation was implemented during estimation, by default, h2omlestat confmatrix re-
ports results that correspond to cross-validation.

Next we implement GBM and report the confusion matrix.

. h2oml gbbinclass foreign price mpg trunk weight length, cv(3, modulo)
> h2orseed(19)
Progress (%): 0 94.9 100
Gradient boosting binary classification using H2O
Response: foreign
Loss: Bernoulli
Frame: Number of observations:

Training: auto Training = 74
Cross-validation = 74

Cross-validation: Modulo Number of folds = 3
Model parameters
Number of trees = 50 Learning rate = .1

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 2 No. of bins cat. = 1,024
avg = 3.9 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .0796245 .3856675
Mean class error 0 .1284965

AUC 1 .9125874
AUCPR 1 .8214532

Gini coefficient 1 .8251748
MSE .017155 .1286581

RMSE .1309771 .3586894

h2omlestat confmatrix — Display confusion matrix+ 193

. h2omlestat confmatrix
Cross-validation confusion matrix using H2O

Predicted
foreign Domestic Foreign Total Error Rate

Domestic 41 11 52 11 .212
Foreign 1 21 22 1 .045

Total 42 32 74 12 .162
Note: Probability threshold .1228 that maximizes F1

metric used for classification.

We can see that random forest is better in predicting Domestic cars (45 true negatives versus 41).

However, it is not straightforward to quantify howmuch better because random forest also has more false

negatives than does GBM (5 false negatives versus 1). In such cases, we recommend comparing the recall

and precision metrics of the two models, which can be obtained from the h2omlestat threshmetric
command.

In general, when you are interested in quantifying how well a method predicts positives, then the

recall metric is recommended.

Example 2: Threshold and metric selection
In example 1, the entries of the confusion matrix were computed using the threshold value that max-

imizes the F1 score. However, we can instead select a different threshold by using the threshold()
option or request that h2omlestat confmatrix select a threshold value based on optimizing a differ-

ent metric. Recall that the threshold is a cutoff above which observations are predicted to belong to the

positive class and below which observations are predicted to belong to the negative class. Thus, if we

change the threshold, the entries of the confusionmatrix will also change. Below, we show two confusion

matrices with threshold values equal to 0.5 and 0.25 for the random forest.

When we specify the threshold value, h2omlestat confmatrix may not report the confusion matrix
for the exact value specified. In H2O, the list of possible threshold values for which threshold-based

metrics have been computed is limited to the predicted probabilities of the positive class. Therefore,

h2omlestat confmatrix reports a confusion matrix using the closest available predicted probability of
a positive class as the threshold value.

We first restore the random forest estimation results from example 1 with the h2omlest
restore command and then specify the threshold value in h2omlestat confmatrix by using the

threshold(0.25) option.

. h2omlest restore myrf
(results myrf are active now)
. h2omlestat confmatrix, threshold(0.25)
Cross-validation confusion matrix using H2O

Predicted
foreign Domestic Foreign Total Error Rate

Domestic 38 14 52 14 .269
Foreign 3 19 22 3 .136

Total 41 33 74 17 .23
Note: Probability threshold .244 that is closest to the

specified .25 used for classification.

h2omlestat confmatrix — Display confusion matrix+ 194

Next we obtain the confusion matrix for a threshold value of 0.5.

. h2omlestat confmatrix, threshold(0.5)
Cross-validation confusion matrix using H2O

Predicted
foreign Domestic Foreign Total Error Rate

Domestic 46 6 52 6 .115
Foreign 9 13 22 9 .409

Total 55 19 74 15 .203
Note: Probability threshold .5 used for classification.

We can see that different threshold values substantially change the reported results. The selection of

the threshold value depends on the problem that the data scientist is trying to answer. For example, if it

is important to classify all Foreign cars correctly, then we could choose the threshold that maximizes

the true-positive rate by specifying the metric(tpr) option.

. h2omlestat confmatrix, metric(tpr)
Cross-validation confusion matrix using H2O

Predicted
foreign Domestic Foreign Total Error Rate

Domestic 32 20 52 20 .385
Foreign 0 22 22 0 0

Total 32 42 74 20 .27
Note: Probability threshold .0885 that maximizes

true-positive rate metric used for classification.

Stored results
h2omlestat confmatrix stores the following in r():

Scalars

r(threshold) specified threshold (with option threshold())
r(threshold a) actual threshold

Macro

r(metric) metric for threshold selection

Matrix

r(confmatrix) confusion matrix

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2omlestat aucmulticlass — Display AUC and AUCPR after multiclass classification+

[H2OML] h2omlestat threshmetric — Display threshold-based metrics for binary classification+

h2omlestat cvsummary — Display cross-validation summary+

+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Option Remarks and examples Stored results Reference
Also see

Description
h2omlestat cvsummary displays the cross-validation summary for each fold after performing cross-

validation with h2oml gbm or h2oml rf. h2omlestat cvsummary reports performance metrics for each
fold as well as the mean and standard deviation of each metric. The individual metrics and summary

statistics are useful for evaluating the stability of the machine learning method and whether results will

generalize well to new data.

Quick start
Display the 5-fold cross-validation summary after h2oml rfregress

h2oml rfregress y1 x1-x100, cv(5) h2orseed(19)
h2omlestat cvsummary

Specify a title for the table

h2omlestat cvsummary, title(5-fold CV summary)

Menu
Statistics > H2O machine learning

Syntax
h2omlestat cvsummary [, title(string)]

Option
title(string) specifies the title to be displayed above the table.

Remarks and examples
We assume you have read Model selection in machine learning in [H2OML] Intro.

𝑘-fold cross-validation is one of the most commonmodel evaluation and selection techniques. Similar
to the two-way holdout method, we start by splitting data into training and testing sets. However, 𝑘-fold
cross-validation additionally splits the training set into 𝑘 folds. In each iteration, it uses one fold for

validation and the remaining 𝑘 − 1 folds as a training subset for model fitting. One way to compute a

cross-validation metric is to take the average of the 𝑘 validation metrics of the cross-validated models.

h2omlestat cvsummary reports this average along with the standard deviation and the estimatedmetrics
for each fold.

195

h2omlestat cvsummary — Display cross-validation summary+ 196

Looking at the standard deviation of cross-validated metrics over the folds can provide useful insights

into the stability and reliability of amachine learningmodel. For example, if the standard deviation across

the folds is large, it may indicate that the performance of the model is not consistent across different

subsets of data and that the model will not generalize well to new data. A large standard deviation could

also indicate data issues; for example, data may be insufficient for reliable training or may suffer from

imbalanced classes.

Another common reason for a large standard deviation is the bias–variance tradeoff of the machine

learning model. A large standard deviation can indicate overfitting, where the model is too complex and

closely learns patterns in the training data. In such cases, a less complex model that provides slightly

lower performance metrics but also low variance might be preferable.

Several authors have tried to find the best value of 𝑘 that minimizes the bias–variance tradeoff. Based
on numerous empirical analyses, Kohavi (1995) suggests 𝑘 = 10 folds. However, cross-validation with

this many folds can be computationally intensive when the dataset is large. In general, as the number of

folds increases, the performance bias decreases but the variance of the performance metric and compu-

tational cost increases.

The steps for hyperparameter tuning with 𝑘-fold cross-validation are as follows:

1. Split the dataset into two sets—a training set for model fitting and selection and a testing set for

the final model evaluation.

2. Perform hyperparameter tuning. For each hyperparameter configuration, apply the 𝑘-fold cross-
validation method on the training set.

3. Select the best hyperparameter settings from the 𝑘-fold cross-validation, and apply them to the

entire training set.

4. Use the independent testing set and the hyperparameter setting from the previous step to estimate

the generalization performance.

To perform cross-validationwith the h2oml gbm and h2oml rf commands, we specify the cv() option.
After estimation, we can use h2omlestat cvsummary to summarize performance metrics and examine

their results for each fold.

h2omlestat cvsummary — Display cross-validation summary+ 197

Example 1: Cross-validation summary for bias–variance tradeoff
In this example, we use gradient boosting binary classification on the auto dataset to examine the

standard deviation of a cross-validated metric as an indicator for overfitting.

We start by opening auto.dta in Stata and then putting it in an H2O frame. Recall that h2o init ini-
tiates an H2O cluster, h2oframe put loads the current Stata dataset into an H2O frame, and h2oframe
change makes the specified frame the current H2O frame. (Because we are focused on evaluating cross-

validation, we do not split the data into training and testing sets as we typically would in practice.) For

details, see Prepare your data for H2Omachine learning in Stata in [H2OML] h2oml and see [H2OML]H2O

setup.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
(output omitted)

. _h2oframe put, into(auto)
Progress (%): 0 100
. _h2oframe change auto

We perform gradient boosting binary classification with 3-fold cross-validation and use 5,000 trees.

. h2oml gbbinclass foreign price mpg weight length, cv(3, modulo) h2orseed(19)
> ntrees(5000)
Progress (%): 0 0.3 1.2 2.4 3.6 11.4 15.6 19.9 26.4 31.9 32.7 33.3 33.8 34.6 38.
> 0 41.0 45.6 52.7 100
Gradient boosting binary classification using H2O
Response: foreign
Loss: Bernoulli
Frame: Number of observations:

Training: auto Training = 74
Cross-validation = 74

Cross-validation: Modulo Number of folds = 3
Model parameters
Number of trees = 5,000 Learning rate = .1

actual = 5,000 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 1 No. of bins cat. = 1,024
avg = 2.7 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss 1.80e-17 2.487799
Mean class error 0 .1197552

AUC 1 .8902972
AUCPR 1 .7719202

Gini coefficient 1 .7805944
MSE 4.00e-33 .1135748

RMSE 6.32e-17 .3370087

h2omlestat cvsummary — Display cross-validation summary+ 198

Next we report the cross-validated metrics for each fold, together with the mean and standard deviation.

. h2omlestat cvsummary
Cross-validation summary using H2O

Metric Mean Std. dev. Fold 1 Fold 2 Fold 3

Log loss 2.467125 2.757786 .8134241 5.650739 .9372107
F1 .8586183 .0740218 .9230769 .7777778 .875
F2 .8872107 .0564633 .882353 .8333333 .9459459

F0.5 .8369541 .1209393 .9677419 .7291667 .8139535
Accuracy .9055555 .0607667 .96 .84 .9166667

Precision .825926 .1556878 1 .7 .7777778
Recall .9107143 .0778375 .8571429 .875 1

Specificity .9019608 .0898544 1 .8235294 .882353
Misclassification .0944444 .0607667 .04 .16 .0833333
Mean class error .0936625 .0498267 .0714286 .1507353 .0588235
Max. class error .1456583 .0295116 .1428571 .1764706 .1176471

Mean class accuracy .9063376 .0498267 .9285714 .8492647 .9411765
Misclassification count 2.333333 1.527525 1 4 2

AUC .919779 .0744504 .984127 .8382353 .9369748
AUCPR .7621639 .180335 .9663477 .624682 .6954619

MSE .1134442 .0786849 .0400411 .196517 .1037744
RMSE .3218485 .1216001 .2001026 .4433024 .3221404

For illustration purposes, we focus on the log-loss metric; for details, see [H2OML]metric option. In

the first row of the output, the mean is 2.47 and the standard deviation is 2.76. Further analysis reveals

that fold 2 has a large log-loss metric. One possible explanation is that, given the simplicity of this

dataset, fitting a model with a large number of trees might lead to overfitting, which is why the model

does not generalize well for data in fold 2. To investigate, we fit a less complex model with the default

50 trees and report the cross-validation results.

h2omlestat cvsummary — Display cross-validation summary+ 199

. h2oml rfbinclass foreign price mpg weight length, cv(3, modulo) h2orseed(19)
Progress (%): 0 100
Random forest binary classification using H2O
Response: foreign
Frame: Number of observations:

Training: auto Training = 74
Cross-validation = 74

Cross-validation: Modulo Number of folds = 3
Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 3 No. of bins cat. = 1,024
avg = 5.6 No. of bins root = 1,024
max = 8 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .3097282 .8764794
Mean class error .1284965 .2036713

AUC .9278846 .8435315
AUCPR .8502403 .6751862

Gini coefficient .8557692 .6870629
MSE .1088474 .1504919

RMSE .3299203 .3879328

. h2omlestat cvsummary
Cross-validation summary using H2O

Metric Mean Std. dev. Fold 1 Fold 2 Fold 3

Log loss .8879563 .7421946 .3638948 .5627286 1.737245
F1 .7857143 .0795395 .8571429 .7 .8
F2 .8286436 .0311104 .8571429 .7954546 .8333333

F0.5 .7504579 .1172045 .8571429 .625 .7692308
Accuracy .8516667 .0825126 .92 .76 .875

Precision .7301587 .1379789 .8571429 .5833333 .75
Recall .8630952 .0103098 .8571429 .875 .8571429

Specificity .8442266 .1237666 .9444444 .7058824 .882353
Misclassification .1483333 .0825126 .08 .24 .125
Mean class error .1463391 .0569079 .0992063 .2095588 .1302521
Max. class error .1932773 .0873303 .1428571 .2941177 .1428571

Mean class accuracy .8536609 .0569079 .9007937 .7904412 .8697479
Misclassification count 3.666667 2.081666 2 6 3

AUC .843643 .067583 .9206349 .8161765 .7941176
AUCPR .663395 .0049219 .6678722 .6581247 .6641881

MSE .150353 .0437331 .112672 .1983087 .1400785
RMSE .3850852 .0556203 .3356665 .4453186 .3742706

We can see that the mean and standard deviation of the log loss are now much smaller.

h2omlestat cvsummary — Display cross-validation summary+ 200

Stored results
h2omlestat cvsummary stores the following in r():

Matrix

r(cvsummary) summary of cross-validation metrics and metrics for each fold

Reference
Kohavi, R. 1995. “A study of cross-validation and bootstrap for accuracy estimation and model selection”. In Proceedings

of the 14th International Joint Conference on Artificial Intelligence, August 20–25, vol. 2: 1137–1143. San Francisco:

Morgan Kaufman.

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

h2omlestat gridsummary — Display grid-search summary+

+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
h2omlestat gridsummary displays the grid summary for configurations of hyperparameters after

h2oml gbm and h2oml rf perform tuning using a grid search.

When tuning is performed, the h2oml gbm and h2oml rf commands report performancemetrics for the

best model based on the tuning metric. h2omlestat gridsummary reports the tuning metric or another
specified metric for additional models that were evaluated as part of the grid search. It also assigns an ID

number to each model. You can then specify these ID numbers in h2omlexplore to compare a variety

of performance metrics for the chosen models. You can also use h2omlselect to select a model based

on the ID number so that subsequent postestimation commands will be based on this model instead of the

one selected by tuning h2oml gbm or h2oml rf.

Quick start
Display the grid summary of log-loss metrics after h2oml gbbinclass

h2oml gbbinclass y x2-x5, ntrees(50(5)80) tune(grid(cartesian))
h2omlestat gridsummary

As above, but report the grid summary for the area under the curve (AUC) metric

h2omlestat gridsummary, metric(auc)

Menu
Statistics > H2O machine learning

Syntax
h2omlestat gridsummary [, options]

options Description

metric(metric) specify the metric to be reported

top(#) report the top # models; top(all) reports all models;
default is top(10)

title(string) specify title to be displayed above the table

201

h2omlestat gridsummary — Display grid-search summary+ 202

Options
metric(metric) specifies the metric for which the grid summary will be reported. Allowed metrics are

provided in [H2OML] metric option. If the metric() suboption is specified in the tune() option

of the h2oml gbm or h2oml rf command, then h2omlestat gridsummary will use the same metric.

Otherwise, the default metric is deviance for regression and log loss for classification.

top(#) specifies that the top # models be included in the summary table. top(all) specifies that all

models be reported. The default is top(10).

title(string) specifies the title to be displayed above the table.

Remarks and examples
To build a machine learning model that generalizes well to new data involves choosing an appropriate

method and selecting a model by tuning hyperparameters; see Hyperparameter tuning in [H2OML] Intro

for more information on tuning. For example, suppose we want to perform gradient boosting binary

classification and use an exhaustive grid search to select the optimal number of trees. We could type

h2oml gbbinclass y x1-x100, ntrees(10(5)100)

We can use h2omlestat gridsummary to report the models ranked based on the default log-loss

tuning metric.

h2omlestat gridsummary

Alternatively, we can request a grid summary for another metric, such as the AUC.

h2omlestat gridsummary, metric(auc)

After reporting the grid-search summary, we can compare models with different hyperparameters

based on other performance metrics by using the h2omlexplore command; we select the desired model
by using the h2omlselect command. See [H2OML] h2omlexplore and [H2OML] h2omlselect for exam-

ples demonstrating how to use h2omlestat gridsummary in combination with these commands.

Example 1: Sequential hyperparameter tuning
When the dataset is large and there are many hyperparameters, tuning these hyperparameters simul-

taneously can be computationally intensive. We can reduce the computational burden by tuning hyper-

parameters sequentially. That is, in the first iteration of tuning, a small set of hyperparameters are tuned

to narrow the search space. Then in the second iteration, the best results from the previous iteration can

be used with additional hyperparameters. However, note that this procedure might lead us to select sub-

optimal values for the hyperparameters, and it is only recommended for large datasets. As an alternative,

which also may result in a suboptimal solution, one could use a random grid search and restrict the search

space by specifying the maxmodels() or maxtime() suboption in the tune() option of the h2oml gbm

or h2oml rf command.

In this example, we use gradient boosting to illustrate the sequential procedure.

We begin by opening the auto.dta dataset in Stata and then putting it into an H2O frame. Recall that

h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset into an H2O frame, and
h2oframe change makes the specified frame the current H2O frame. For details, see Prepare your data

for H2O machine learning in Stata in [H2OML] h2oml and see [H2OML] H2O setup.

h2omlestat gridsummary — Display grid-search summary+ 203

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
(output omitted)

. _h2oframe put, into(auto)
Progress (%): 0 100
. _h2oframe change auto

In the first step of our tuning procedure, we tune the maximum depth of the trees hyperparameter using

3-fold cross-validation and an exhaustive grid search. We set the learning rate to 0.05, a little higher than

the recommended 0.01, because the learning rate decay is 0.9. For details on gradient boosting machine

hyperparameters, see [H2OML] h2oml gbm.

. h2oml gbbinclass foreign price mpg weight length, cv(3, modulo) h2orseed(19)
> lratedecay(0.9) lrate(0.05) maxdepth(1(1)10) tune(grid(cartesian))
Progress (%): 0 100
Gradient boosting binary classification using H2O
Response: foreign
Loss: Bernoulli
Frame: Number of observations:

Training: auto Training = 74
Cross-validation = 74

Cross-validation: Modulo Number of folds = 3
Tuning information for hyperparameters
Method: Cartesian
Metric: Log loss

Grid values
Hyperparameters Minimum Maximum Selected

Max. tree depth 1 10 10

Model parameters
Number of trees = 50 Learning rate = .05

actual = 50 Learning rate decay = .9
Tree depth: Pred. sampling rate = 1

Input max = 10 Sampling rate = 1
min = 2 No. of bins cat. = 1,024
avg = 3.0 No. of bins root = 1,024
max = 4 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .3679234 .4914566
Mean class error .0576923 .1958042

AUC .9820804 .8535839
AUCPR .9584095 .6989351

Gini coefficient .9641608 .7071678
MSE .1063068 .159142

RMSE .3260472 .398926

h2omlestat gridsummary — Display grid-search summary+ 204

Next we use h2omlestat gridsummary to report the configurations that achieve the best perfor-

mance based on the log-loss metric.

. h2omlestat gridsummary
Grid summary using H2O

Max. tree
ID depth Log loss

1 10 .4914566
2 3 .4914566
3 4 .4914566
4 5 .4914566
5 6 .4914566
6 7 .4914566
7 8 .4914566
8 9 .4914566
9 2 .4919681

10 1 .5266221

We see that the performance of the model in terms of the log-loss metric does not change for maximum

tree depths between 3 and 10. Therefore, to have a parsimonious model, we select a maximum tree depth

of 3. In the second step of our tuning procedure, we specify the maxdepth(3) option and tune the

learning rate and sampling rate hyperparameters.

. h2oml gbbinclass foreign price mpg weight length, cv(3, modulo) h2orseed(19)
> lratedecay(0.9) maxdepth(3) samprate(0.4(0.1)1) lrate(0.2(0.02)0.3)
> tune(grid(cartesian))
Progress (%): 0 100
Gradient boosting binary classification using H2O
Response: foreign
Loss: Bernoulli
Frame: Number of observations:

Training: auto Training = 74
Cross-validation = 74

Cross-validation: Modulo Number of folds = 3
Tuning information for hyperparameters
Method: Cartesian
Metric: Log loss

Grid values
Hyperparameters Minimum Maximum Selected

Learning rate .2 .3 .28
Sampling rate .4 1 1

h2omlestat gridsummary — Display grid-search summary+ 205

Model parameters
Number of trees = 50 Learning rate = .28

actual = 50 Learning rate decay = .9
Tree depth: Pred. sampling rate = 1

Input max = 3 Sampling rate = 1
min = 2 No. of bins cat. = 1,024
avg = 3.0 No. of bins root = 1,024
max = 3 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .1357221 .2983633
Mean class error .0227273 .090035

AUC .9982517 .9370629
AUCPR .9961309 .8555774

Gini coefficient .9965035 .8741259
MSE .0326208 .097178

RMSE .1806123 .3117338

Once again, we use h2omlestat gridsummary to report the configurations that achieve the best

performance based on the log-loss metric.

. h2omlestat gridsummary
Grid summary using H2O

Learning Sampling
ID rate rate Log loss

1 .28 1 .2983633
2 .3 1 .2998373
3 .24 1 .3038322
4 .26 1 .3042715
5 .28 .9 .3087905
6 .3 .9 .3102182
7 .22 1 .3137784
8 .26 .9 .3159972
9 .24 .9 .3176375

10 .28 .7 .3319306

We see that the top model achieved a log-loss of 0.298, and the corresponding hyperparameters are a

learning rate of 0.28 and a sampling rate of 1.

Stored results
h2omlestat gridsummary stores the following in r():

Matrix

r(gridsummary) grid-search summary of hyperparameters and metrics

h2omlestat gridsummary — Display grid-search summary+ 206

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2omlexplore — Explore models after grid search+

[H2OML] h2omlselect — Select model after grid search+

h2omlestat hitratio — Display hit-ratio table+

+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results References
Also see

Description
h2omlestat hitratio reports hit ratios after multiclass classification performed by h2oml

gbmulticlass or h2oml rfmulticlass. A hit ratio measures how often the correct class is within

the top-𝑘 predicted classes. The top-𝑘 hit ratio is the proportion of observations for which the correct

class has one of the 𝑘 highest predicted probabilities.

Quick start
Display the top-𝑘 hit ratios

h2omlestat hitratio

As above, but report results for the validation frame

h2omlestat hitratio, valid

Menu
Statistics > H2O machine learning

207

h2omlestat hitratio — Display hit-ratio table+ 208

Syntax
h2omlestat hitratio [, options]

options Description

title(string) specify title to be displayed above the table

train specify that hit ratios be reported using training results

valid specify that hit ratios be reported using validation
results

cv specify that hit ratios be reported using
cross-validation results

test specify that hit ratios be computed using the
testing frame

test(framename) specify that hit ratios be computed using data in
testing frame framename

frame(framename) specify that hit ratios be computed using data in
H2O frame framename

framelabel(string) label frame as string in the output

collect is allowed; see [U] 11.1.10 Prefix commands.

train, valid, cv, test, test(), frame(), and framelabel() do not appear in the dialog box.

Options
title(string) specifies the title to be displayed above the table.

The following options are available with h2omlestat hitratio but are not shown in the dialog box:

train, valid, cv, test, test(), and frame() specify the H2O frame for which hit ratios are reported.

Only one of train, valid, cv, test, test(), or frame() is allowed.

train specifies that hit ratios be reported using training results. This is the default when neither

validation nor cross-validation is performed during estimation and when a postestimation frame

has not been set with h2omlpostestframe.

valid specifies that hit ratios be reported using validation results. This is the default when val-

idation is performed during estimation and when a postestimation frame has not been set with

h2omlpostestframe. valid may be specified only when the validframe() option is specified
with h2oml gbm or h2oml rf.

cv specifies that hit ratios be reported using cross-validation results. This is the default when cross-

validation is performed during estimation and when a postestimation frame has not been set with

h2omlpostestframe. cv may be specified only when the cv or cv() option is specified with

h2oml gbm or h2oml rf.

test specifies that hit ratios be computed on the testing frame specified with h2omlpostestframe.
This is the default when a testing frame is specified with h2omlpostestframe. test may be

specified only after a testing frame is set with h2omlpostestframe. test is necessary only when
a subsequent h2omlpostestframe command is used to set a default postestimation frame other

than the testing frame.

h2omlestat hitratio — Display hit-ratio table+ 209

test(framename) specifies that hit ratios be computed using data in testing frame framename and

is rarely used. This option is most useful when running a single postestimation command on

the named frame. If multiple postestimation commands are to be run on the same test frame,

h2omlpostestframe provides a more convenient and computationally efficient process for doing
this.

frame(framename) specifies that hit ratios be computed using the data in H2O frame framename.

framelabel(string) specifies the label to be used for the frame in the output. This option is not allowed
with the cv option.

Remarks and examples
For multiclass classification, the hit ratio measures how often the correct class is in one of the top-𝑘

predicted classes, where the top-𝑘 predicted classes are ranked by predicted probabilities. For example,

when computing the top-2 hit ratio, if the true class for an observation has one of the two highest predicted

probabilities, then it is considered a “hit”; it is considered a “miss” otherwise. The top-2 hit ratio is the

proportion of observations having such a hit. h2omlestat hitratio provides a table of top-𝑘 hit ratios.
If there are more than 10 classes, H2O limits the computation to a maximum of top-10 hit ratios.

In practice, the hit ratio is useful in situations where multiple predictions are made and the true class

does not need to have the highest predicted probability but does need to be within the top few. For

example, in recommendation systems or search engines, the output is presented as a ranked list of results.

The correct result needs to be somewhere near the top of that list, but it does not necessarily need to be

the first one.

Example 1: Hit ratios
We use a well-known iris dataset, where the goal is to predict a class of iris plant. This dataset was

used in Fisher (1936) and originally collected by Anderson (1935). We start by initializing a cluster,

opening the dataset in Stata, and importing the dataset as an H2O frame. Recall that h2o init initiates an
H2O cluster, h2oframe put loads the current Stata dataset into an H2O frame, and h2oframe change
makes the specified frame the current H2O frame. We also use the h2oframe split command to split

the dataset, specifying 70% of observations in the training frame and 30% in the validation frame. For

details, see Prepare your data for H2Omachine learning in Stata in [H2OML] h2oml and see [H2OML]H2O

setup.

. use https://www.stata-press.com/data/r18/iris
(Iris data)
. h2o init
(output omitted)

. _h2oframe put, into(iris)
Progress (%): 0 100
. _h2oframe split iris, into(train valid) split(0.7 0.3) rseed(19)
. _h2oframe change train

h2omlestat hitratio — Display hit-ratio table+ 210

We define the global macro predictors to store the names of the predictors, and we use the h2oml
rfmulticlass command to perform random forest multiclass classification. We use default settings for

all hyperparameters, and we specify an H2O random-number seed for reproducibility. We also specify

the name of our validation frame in the validframe() option.

. global predictors seplen sepwid petlen petwid

. h2oml rfmulticlass iris $predictors, validframe(valid) h2orseed(19)
Progress (%): 0 100
Random forest multiclass classification using H2O
Response: iris Number of classes = 3
Frame: Number of observations:

Training: train Training = 113
Validation: valid Validation = 37

Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 1 No. of bins cat. = 1,024
avg = 3.2 No. of bins root = 1,024
max = 6 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Log loss .0821639 .1523995
Mean class error .0456654 .0747475

MSE .0269054 .0555373
RMSE .1640287 .2356636

The top-1 hit ratio is closely related to the misclassification error, which we will report first by using

the h2omlestat confmatrix command.

. h2omlestat confmatrix
Confusion matrix using H2O
Validation frame: valid

Predicted
iris Setosa Versico~r Virginica Total Error Rate

Setosa 11 0 0 11 0 0
Versicolor 0 10 1 11 1 .091
Virginica 0 2 13 15 2 .133

Total 11 12 14 37 3 .081

This confusion matrix based on validation results shows that the highest predicted probabilities from

the model misclassified three observations, resulting in a misclassification error of 0.08. This means that

the top-1 hit ratio is 0.92 (1 − 0.08). In other words, the true class has the highest predicted probability

for 92% of observations.

To determine the top-2 hit ratio, we need to know whether the true class for each of the three mis-

classified observations has the second highest predicted probability. To check, we predict the class

and corresponding probabilities using the validation frame. By default, h2omlpredict generates pre-

dictions in the current working frame. (We can use h2oframe pwf to check which is the current

h2omlestat hitratio — Display hit-ratio table+ 211

frame.) To make predictions in the validation frame, we set it as our postestimation frame by using

the h2omlpostestframe command. We use h2omlpredict to obtain the predicted class, the default

prediction. We then specify the pr option to obtain the predicted probabilities of each class.

. h2omlpostestframe _valid
(validation frame valid is now active for h2oml postestimation)
. h2omlpredict pr_class
(option class assumed; predicted class)
Progress (%): 0 100
. h2omlpredict pr_setosa pr_versicolor pr_virginica, pr
Progress (%): 0 100

Because the h2omlpostestframe command does not physically change the current frame, we use the
h2oframe change command to change the working frame before listing the misclassified observations.

. _h2oframe change valid

. _h2oframe list iris pr_class pr_setosa pr_versicolor pr_virginica
> if pr_class != iris, abbreviate(14)

iris pr_class pr_setosa pr_versicolor pr_virginica
1 Versicolor Virginica 0 .2038981 .7961019
2 Virginica Versicolor 0 .8080754 .1919246
3 Virginica Versicolor 0 .8631397 .1368603
[3 rows x 5 columns]

In the first row, we see that the model misclassified true class Versicolor as Virginica with the

probability 0.8. For this observation, the probability of predicting Versicolor, the true class, is the
second highest probability of 0.2. Similarly, for the next two observations, the second highest predicted

probability corresponds to the true class. Consequently, for all misclassified observations, the top-2

predicted classes contain the true class; thus, the top-2 hit ratio is 1.

The h2omlestat hitratio command provides an easy way to obtain the hit ratios we computed

manually.

. h2omlestat hitratio
Hit-ratio table using H2O
Validation frame: valid

Top Hit ratio

1 .9189189
2 1
3 1

From this table, we confirm that the true class has the highest predicted probability for 92% of obser-

vations in the validation data. The true class has one of the two highest predicted probabilities for 100%

of the observations.

In this example, we see top-1, top-2, and top-3 hit ratios. For classification problems in which the

response has many classes, h2omlestat hitratio will report all top-𝑘 hit ratios up to the top-10 hit

ratio.

h2omlestat hitratio — Display hit-ratio table+ 212

Stored results
h2omlestat hitratio stores the following in r():

Matrix

r(hitratio) hit ratios

References
Anderson, E. 1935. The irises of the Gaspé Peninsula. Bulletin of the American Iris Society 59: 2–5.

Fisher, R. A. 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics 7: 179–188. https:

//doi.org/10.1111/j.1469-1809.1936.tb02137.x.

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2omlestat aucmulticlass — Display AUC and AUCPR after multiclass classification+

[H2OML] h2omlestat confmatrix — Display confusion matrix+

https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x

h2omlestat metrics — Display performance metrics+

+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
h2omlestat metrics reports the performance metrics after h2oml gbm and h2oml rf.

Quick start
Report the performance metrics

h2omlestat metrics

As above, but report performance metrics for the validation frame

h2omlestat metrics, valid

Report performance metrics for frame myframe
h2omlestat metrics, frame(myframe)

Menu
Statistics > H2O machine learning

Syntax
h2omlestat metrics [, options]

options Description

train specify that performance metrics be reported using training results

valid specify that performance metrics be reported using validation
results

cv specify that performance metrics be reported using
cross-validation results

test specify that performance metrics be computed using the
testing frame

test(framename) specify that performance metrics be computed using data in
testing frame framename

frame(framename) specify that performance metrics be computed using data in
H2O frame framename

framelabel(string) label frame as string in the output

collect is allowed; see [U] 11.1.10 Prefix commands.

train, valid, cv, test, test(), frame(), and framelabel() do not appear in the dialog box.

213

h2omlestat metrics — Display performance metrics+ 214

Options
The following options are available with h2omlestat metrics but are not shown in the dialog box:

train, valid, cv, test, test(), and frame() specify the H2O frame for which performance metrics

are reported. Only one of train, valid, cv, test, test(), or frame() is allowed.

train specifies that performance metrics be reported using training results. This is the default when
neither validation nor cross-validation is performed during estimation and when a postestimation

frame has not been set with h2omlpostestframe.

valid specifies that performancemetrics be reported using validation results. This is the default when
validation is performed during estimation and when a postestimation frame has not been set with

h2omlpostestframe. valid may be specified only when the validframe() option is specified
with h2oml gbm or h2oml rf.

cv specifies that performance metrics be reported using cross-validation results. This is the default

when cross-validation is performed during estimation and when a postestimation frame has not

been set with h2omlpostestframe. cv may be specified only when the cv or cv() option is

specified with h2oml gbm or h2oml rf.

test specifies that performance metrics be computed on the testing frame specified with h2oml-
postestframe. This is the default when a testing frame is specified with h2omlpostestframe.
test may be specified only after a testing frame is set with h2omlpostestframe. test is neces-
sary onlywhen a subsequent h2omlpostestframe command is used to set a default postestimation
frame other than the testing frame.

test(framename) specifies that performance metrics be computed using data in testing frame frame-

name and is rarely used. This option is most useful when running a single postestimation command

on the named frame. If multiple postestimation commands are to be run on the same test frame,

h2omlpostestframe provides a more convenient and computationally efficient process for doing
this.

frame(framename) specifies that performance metrics be computed using the data in H2O frame

framename.

framelabel(string) specifies the label to be used for the frame in the output. This option is not allowed
with the cv option.

Remarks and examples
h2omlestat metrics reports the performance metrics of a machine learning model after h2oml gbm

or h2oml rf.

The default frame for which metrics are reported depends on options specified in the estimation com-

mand and on whether a postestimation frame has been set by using h2omlpostestframe.

If no postestimation frame has been set and if neither the cv() nor validframe() option was spec-
ified during estimation, performance metrics are reported for the training frame. If the validframe()
option is specified during estimation, performance metrics are reported by the validation frame. If the

cv() option is specified during estimation, performance metrics are reported for cross-validation. If a

postestimation frame has been set by h2omlpostestframe, the performance metrics are reported for the
specified postestimation frame by default; see [H2OML] h2omlpostestframe. You can also specify one

of the train, valid, cv, test, test(), or frame() options with h2omlestat metrics to indicate the
frame for which metrics are reported.

h2omlestat metrics — Display performance metrics+ 215

Example 1: Performance metrics on different frames
In this example, we demonstrate how to obtain performance metrics based on multiple frames after

estimation.

We start by opening the 1978 automobile data (auto.dta) in Stata and then putting the data into an
H2O frame. Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset
into an H2O frame, and h2oframe change makes the specified frame the current H2O frame. We then

use the h2oframe split command to randomly split the auto frame into a training frame (80% of

observations) and a testing frame (20% of observations), which we name train and test, respectively.
We also change the current frame to train. For details, see Prepare your data for H2O machine learning

in Stata in [H2OML] h2oml and [H2OML] H2O setup.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
(output omitted)

. _h2oframe put, into(auto)

. _h2oframe split auto, into(train test) split(0.8 0.2) rseed(19)

. _h2oframe change train

We perform random forest binary classification with default hyperparameters and use 3-fold cross-

validation.

. h2oml rfbinclass foreign price mpg length, cv(3, modulo) h2orseed(19)
(output omitted)

By default, because cross-validation was used during estimation, h2omlestat metrics reports esti-
mation metrics based on cross-validation.

. h2omlestat metrics
Performance metrics using H2O
Random forest binary classification
Response: foreign
Number of observations = 63

Cross-
Metric validation

Log loss .4275175
Mean class error .1777778

AUC .8666667
AUCPR .6008256

Gini coefficient .7333333
MSE .1446453

RMSE .3803227

h2omlestat metrics — Display performance metrics+ 216

If we wish to compute and report results based on a testing frame, we can set the testing frame with

the h2omlpostestframe command.

. h2omlpostestframe test
(testing frame test is now active for h2oml postestimation)
. h2omlestat metrics
Performance metrics using H2O
Random forest binary classification
Response: foreign
Testing frame: test
Number of observations = 11

Metric Testing

Log loss .3117297
Mean class error .0714286

AUC .9285714
AUCPR .8722936

Gini coefficient .8571429
MSE .1053455

RMSE .3245696

Stored results
h2omlestat metrics stores the following in r():

Scalars

r(N) number of observations

Macros

r(method) gbm or randomforest
r(method type) regression or classification
r(class type) binary or multiclass (with classification)
r(method full name) full method name

r(response) name of response

r(title) title in output

Matrices

r(metric) performance metrics

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

h2omlestat threshmetric — Display threshold-based metrics for binary classification+

+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
h2omlestat threshmetric reports threshold-based performance metrics after binary classification

performed by h2oml gbbinclass or h2oml rfbinclass. Threshold-based metrics are functions of

predicted classes, which are determined by comparing predicted probabilities with a threshold value.

Observations with predicted probabilities greater than the threshold are predicted to be in the “positive”

class, and observations with predicted probabilities below the threshold are predicted to be in the “neg-

ative” class. The elements of the confusion matrix—the numbers of true positives, false positives, true

negatives, and false negatives—are threshold-basedmetrics and are components of a variety of additional

threshold-based metrics that are reported by h2omlestat threshmetric. Each of these metrics has a
different threshold value.

h2omlestat threshmetric reports the optimized (minimum or maximum) value of each metric

and the corresponding threshold that produces that optimized metric. Alternatively, the metrics can be

reported for one or more selected threshold values.

Quick start
Display threshold-based metrics

h2omlestat threshmetric

As above, but report metrics based on a validation set

h2omlestat threshmetric, valid

As above, but report metrics corresponding to threshold values of 0.4, 0.5, 0.6, 0.7, and 0.8

h2omlestat threshmetric, valid thresholds(0.4(0.1)0.8)

Menu
Statistics > H2O machine learning

217

h2omlestat threshmetric — Display threshold-based metrics for binary classification+ 218

Syntax
h2omlestat threshmetric [, options]

options Description

Main

thresholds(numlist) specify the thresholds for which to compute the metrics; by default,
the threshold that optimizes each metric is reported

Table options

all report metrics for all stored threshold values

index display threshold index

title(string) specify the title to be displayed above the table

train specify that performance metrics be reported using training results

valid specify that performance metrics be reported using validation
results

cv specify that performance metrics be reported using
cross-validation results

test specify that performance metrics be computed using the
testing frame

test(framename) specify that performance metrics be computed using data in
testing frame framename

frame(framename) specify that performance metrics be computed using data in
H2O frame framename

framelabel(string) label frame as string in the output

collect is allowed; see [U] 11.1.10 Prefix commands.

train, valid, cv, test, test(), frame(), and framelabel() do not appear in the dialog box.

Options

� � �
Main �

thresholds(numlist) specifies the list of threshold values in numlist. All values in numlist must be

between 0 and 1. Observations with predicted probabilities greater than the specified threshold are

classified as “positive”, and the remaining observations are classified as “negative”. The threshold-

based metrics are calculated based on these classifications. By default, the threshold values that

optimize (maximize or minimize) each metric are reported.

The list of threshold values for which threshold-based metrics are computed corresponds to the pre-

dicted probabilities of the positive class (the predicted class is the largest numeric value, such as 1 in

a 0/1 coded variable, or the second label in lexicographical order). If a value specified in numlist is

not in the list of predicted probabilities, the metric based on the closest threshold value is reported.

thresholds() is not allowed with all.

� � �
Table options �

all returns all stored threshold values and metrics. The default is to report the optimized (maximum or

minimum) values for each metric. all is not allowed with thresholds().

index displays the index number of the threshold. By default, the index column is suppressed.

title(string) specifies the title to be displayed above the table.

h2omlestat threshmetric — Display threshold-based metrics for binary classification+ 219

The following options are available with h2omlestat threshmetric but are not shown in the dialog

box:

train, valid, cv, test, test(), and frame() specify the H2O frame for which performance metrics

are reported. Only one of train, valid, cv, test, test(), or frame() is allowed.

train specifies that performance metrics be reported using training results. This is the default when
neither validation nor cross-validation is performed during estimation and when a postestimation

frame has not been set with h2omlpostestframe.

valid specifies that performancemetrics be reported using validation results. This is the default when
validation is performed during estimation and when a postestimation frame has not been set with

h2omlpostestframe. valid may be specified only when the validframe() option is specified
with h2oml gbm or h2oml rf.

cv specifies that performance metrics be reported using cross-validation results. This is the default

when cross-validation is performed during estimation and when a postestimation frame has not

been set with h2omlpostestframe. cv may be specified only when the cv or cv() option is

specified with h2oml gbm or h2oml rf.

test specifies that performance metrics be computed on the testing frame specified with h2oml-
postestframe. This is the default when a testing frame is specified with h2omlpostestframe.
test may be specified only after a testing frame is set with h2omlpostestframe. test is neces-
sary onlywhen a subsequent h2omlpostestframe command is used to set a default postestimation
frame other than the testing frame.

test(framename) specifies that performance metrics be computed using data in testing frame frame-

name and is rarely used. This option is most useful when running a single postestimation command

on the named frame. If multiple postestimation commands are to be run on the same test frame,

h2omlpostestframe provides a more convenient and computationally efficient process for doing
this.

frame(framename) specifies that performance metrics be computed using the data in H2O frame

framename.

framelabel(string) specifies the label to be used for the frame in the output. This option is not allowed
with the cv option.

Remarks and examples
Binary classification divides observations into two classes, typically labeled as “positive” and “neg-

ative”. In H2O, the positive class corresponds to the class that contains 1, True, or the second label in
lexicographical order. Abinary classifier classifies all observations as either positive or negative by com-

paring the predicted probability for each observationwith a threshold value. Observations greater than the

threshold are classified as positive, and the remaining observations are classified as negative. This results

in two types of correct or true classification, true positive and true negative, and two types of incorrect

or false classification, false positive and false negative. These four metrics are reported in the confusion

matrix produced by the h2omlestat confmatrix command. The h2omlestat threshmetric com-

mand reports these metrics as well as other performance metrics that are derived from the elements of a

confusion matrix.

By default, h2omlestat threshmetric reports the optimized (minimum ormaximum) value of each

metric and the corresponding threshold value that produces the optimized metric. You can also evaluate

how different threshold values affect each metric by specifying one or more threshold values in the

h2omlestat threshmetric — Display threshold-based metrics for binary classification+ 220

thresholds() option. When you specify the thresholds() option, metrics may not be reported for

the exact threshold values you have selected. In H2O, the available thresholds are limited to the list

of predicted probabilities of the positive class. Threshold-based metrics are reported for the threshold

corresponding to the closest available predicted probability.

The table below provides definitions of the available threshold-based metrics. See Metrics for classi-

fication in [H2OML] metric option for additional information.

Metric Formula

true positive (tp) number of correct predictions of the positive class

true negative (tn) number of correct predictions of the negative class

false positive (fp) number of incorrect predictions of the positive class

false negative (fn) number of incorrect predictions of the negative class

true-positive rate (tpr), recall
tp

tp+fn

true-negative rate (tnr) tn
tn+fp

false-positive rate (fpr)
fp

tn+fp

false-negative rate (fnr) fn
tp+fn

accuracy
tp+tn

tp+tn+fp+fn

mean per class accuracy
tpr+tnr

2

min. per class accuracy minimum of {tpr, tnr}

specificity tn
tn+fp

precision
tp

tp+fp

𝐹𝛽 score, for 𝛽 = {1, 0.5, 2} (1 + 𝛽2) precision×recall

𝛽2(precision+recall)

Matthews correlation coefficient
tp×tn−fp×fn

√(tp+fp)(tp+fn)(tn+fp)(tn+fn)

Example 1: Report threshold-based metrics
Below, we illustrate the use of h2omlestat threshmetric after h2oml gbbinclass.

We start by opening the 1978 automobile data (auto.dta) in Stata and then putting the data into an
H2O frame. Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset
into an H2O frame, and h2oframe changemakes the specified frame the current H2O frame. For details,
see Prepare your data for H2Omachine learning in Stata in [H2OML] h2oml and see [H2OML]H2O setup.

h2omlestat threshmetric — Display threshold-based metrics for binary classification+ 221

We use the h2oframe split command to randomly split the auto frame into a training frame (70%
of observations) and a testing frame (30% of observations), which we name train and test, respec-
tively. We also change the current frame to train.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
(output omitted)

. _h2oframe put, into(auto)
Progress (%): 0 100
. _h2oframe split auto, into(train test) split(0.7 0.3) rseed(19)
. _h2oframe change train

Next we perform gradient boosting binary classification with default values.

. h2oml gbbinclass foreign price mpg weight length, h2orseed(19)
Progress (%): 0 89.9 100
Gradient boosting binary classification using H2O
Response: foreign
Loss: Bernoulli
Frame: Number of observations:

Training: train Training = 57
Model parameters
Number of trees = 50 Learning rate = .1

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 2 No. of bins cat. = 1,024
avg = 2.9 No. of bins root = 1,024
max = 4 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training

Log loss .1057473
Mean class error .0125

AUC .9948529
AUCPR .9870295

Gini coefficient .9897059
MSE .0255994

RMSE .1599981

. h2omlest store mygbm

h2omlestat threshmetric — Display threshold-based metrics for binary classification+ 222

To report threshold-based metrics, we use the h2omlestat threshmetric command.

. h2omlestat threshmetric
Maximum or minimum metrics using H2O
Training frame: train

Metric Max/Min Threshold

F1 .9714 .6608
F2 .9884 .6608

F0.5 .9551 .6608
Accuracy .9825 .6608

Precision 1 .9694
Recall 1 .6608

Specificity 1 .9694
Min. class accuracy .975 .6608
Mean class accuracy .9875 .6608

True negatives 40 .9694
False negatives 0 .6608 +
True positives 17 .6608

False positives 0 .9694 +
True-negative rate 1 .9694

False-negative rate 0 .6608 +
True-positive rate 1 .6608

False-positive rate 0 .9694 +
MCC .9596 .6608

+ identifies minimum metrics.

By default, because we did not use validation or cross-validation, h2omlestat threshmetric re-

ports training results. The reported table has three columns. The first column provides the names of the

classification metrics. The second and third columns report the optimal value of each metric (maximum

orminimum) and the threshold value that achieves the optimum. The reported optimal value of the metric

is the minimum for the false-negative rate, false-positive rate, false negatives, and false positives metrics

and is the maximum for all other metrics.

h2omlestat threshmetric — Display threshold-based metrics for binary classification+ 223

We can use the thresholds() option to obtain the reported metrics for a different threshold value or
values. For example, to report metrics for a threshold of 0.5, we type

. h2omlestat threshmetric, thresholds(0.5)
Metrics for specific threshold using H2O
Training frame: train

Threshold
Input .5

Computed .4477

Metric
F1 .9444
F2 .977

F0.5 .914
Accuracy .9649

Precision .8947
Recall 1

Specificity .95
Min. class accuracy .95
Mean class accuracy .975

True negatives 38
False negatives 0
True positives 17

False positives 2
True-negative rate .95

False-negative rate 0
True-positive rate 1

False-positive rate .05
MCC .922

We see that, even though we specified thresholds(0.5), H2O returned results for a threshold of 0.4477,
which is the closest available threshold (those found among the stored predicted probabilities).

h2omlestat threshmetric — Display threshold-based metrics for binary classification+ 224

Example 2: Threshold-based metrics using testing frame
Above, we reported metrics for the training frame. If we wish to report those metrics on the new

testing data frame, then we can take one of two approaches.

In the first approach, we specify the test() option with the name of our testing frame.

. h2omlest restore mygbm
(results mygbm are active now)
. h2omlestat threshmetric, test(test)
Maximum or minimum metrics using H2O
Testing frame: test

Metric Max/Min Threshold

F1 .8333 .4477
F2 .9259 .4477

F0.5 .8824 .8916
Accuracy .8824 .8916

Precision 1 .9694
Recall 1 .4477

Specificity 1 .9694
Min. class accuracy .8333 .4477
Mean class accuracy .9167 .4477

True negatives 12 .9694
False negatives 0 .4477 +
True positives 5 .4477

False positives 0 .9694 +
True-negative rate 1 .9694

False-negative rate 0 .4477 +
True-positive rate 1 .4477

False-positive rate 0 .9694 +
MCC .7715 .4477

+ identifies minimum metrics.

h2omlestat threshmetric — Display threshold-based metrics for binary classification+ 225

In the second approach, which we recommend, we use the h2omlpostestframe command to specify
test as the default testing frame to be used by this and other postestimation commands.

. h2omlpostestframe test
(testing frame test is now active for h2oml postestimation)
. h2omlestat threshmetric
Maximum or minimum metrics using H2O
Testing frame: test

Metric Max/Min Threshold

F1 .8333 .4477
F2 .9259 .4477

F0.5 .8824 .8916
Accuracy .8824 .8916

Precision 1 .9694
Recall 1 .4477

Specificity 1 .9694
Min. class accuracy .8333 .4477
Mean class accuracy .9167 .4477

True negatives 12 .9694
False negatives 0 .4477 +
True positives 5 .4477

False positives 0 .9694 +
True-negative rate 1 .9694

False-negative rate 0 .4477 +
True-positive rate 1 .4477

False-positive rate 0 .9694 +
MCC .7715 .4477

+ identifies minimum metrics.

Stored results
h2omlestat threshmetric stores the following in r():

Scalars

r(thresholds) specified thresholds

r(thresholds a) actual thresholds

Matrix

r(threshmetric) classification performance metrics

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

h2omlexplore — Explore models after grid search+

+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Remarks and examples Stored results Also see

Description
h2omlexplore allows you to compare models with different hyperparameter configurations after

h2omlestat gridsummary. In the process of tuning hyperparameters with h2oml gbm and h2oml rf,

you can use h2omlestat gridsummary to report the specified metric for different hyperparameter con-
figurations. h2omlexplore allows you to further explore a few selected models by reporting several

performance metrics.

Quick start
After performing multiclass classification and obtaining the grid-search summary, view the performance

metrics of the models with IDs 2, 4, and 8

h2oml rfmulticlass y1 x1-x20, ntrees(10(5)100) maxdepth(3(1)10)
h2omlestat gridsummary
h2omlexplore id = 2 4 8

Menu
Statistics > H2O machine learning

Syntax
h2omlexplore id = # | numlist

where # is a grid ID from h2omlestat gridsummary corresponding to a model with the desired hyper-

parameter configuration, and numlist is a list of grid IDs.

Remarks and examples
Building a machine learning model that generalizes well to new data involves choosing an appropriate

method and selecting a model by tuning hyperparameters. We can perform a grid search using gradient

boosting and random forest methods and then use h2omlestat gridsummary to report the hyperparam-
eter configurations that achieve the top performance based on the specified metric. In some cases, you

may decide to choose the best-performing model reported in h2omlestat gridsummary; in other cases,
you may want to explore other well-performing models further, which you can do using h2omlexplore.
With h2omlexplore, you can report several performance metrics for models with different hyperparam-
eter configurations.

226

h2omlexplore — Explore models after grid search+ 227

Example 1: Exploring different models
In example 1 of [H2OML] h2omlselect, we used the social pressure dataset (Gerber, Green, and

Larimer 2008) to implement a hyperparameter tuning, and we used the h2omlselect command to select
the second-best model, which was comparably less complex than the best model. In that example, our

decision was based on the area under the precision–recall curve (AUCPR) metric. Suppose now we want

to compare those two models based on different performance metrics to make sure that the same pattern

holds.

We start by opening the social pressure dataset in Stata and then putting the data into an H2O frame.

Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset in an H2O

frame, and h2oframe changemakes the specified frame the current H2O frame. We use the h2oframe
split command to randomly split the social frame into a training frame (80% observations) and a

validation frame (20% of observations), which we name train and valid, respectively. We also change

the current frame to train. For details, see Prepare your data for H2O machine learning in Stata in

[H2OML] h2oml and see [H2OML] H2O setup.

. use https://www.stata-press.com/data/r18/socialpressure
(Social pressure data)
. h2o init
(output omitted)

. _h2oframe _put, into(social)
Progress (%): 0 100
. _h2oframe _split social, into(train valid) split(0.8 0.2) rseed(19)
. _h2oframe _change train

h2omlexplore — Explore models after grid search+ 228

We define a global macro, predictors, to store the names of our predictors. We perform random

forest binary classification, and we specify the maxdepth() and predsampvalue() options to tune the
maximum tree depth and predictor sampling rate hyperparameters. For illustration, we use the AUCPR

metric for tuning.

. global predictors gender g2000 g2002 p2000 p2002 p2004 treatment age

. h2oml rfbinclass voted $predictors, validframe(valid) h2orseed(19)
> ntrees(200) maxdepth(3(3)12) predsampvalue(-1, 1(2)8) tune(metric(aucpr))
Progress (%): 0 100
Random forest binary classification using H2O
Response: voted
Frame: Number of observations:

Training: train Training = 183,607
Validation: valid Validation = 45,854

Tuning information for hyperparameters
Method: Cartesian
Metric: AUCPR

Grid values
Hyperparameters Minimum Maximum Selected

Max. tree depth 3 12 6
Pred. sampling value -1 7 7

Model parameters
Number of trees = 200

actual = 200
Tree depth: Pred. sampling value = 7

Input max = 6 Sampling rate = .632
min = 6 No. of bins cat. = 1,024
avg = 6.0 No. of bins root = 1,024
max = 6 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Log loss .5724664 .5705699
Mean class error .3935492 .3943867

AUC .6705554 .6734867
AUCPR .4658395 .4725543

Gini coefficient .3411109 .3469735
MSE .1946923 .1935647

RMSE .4412395 .4399599

h2omlexplore — Explore models after grid search+ 229

Next we obtain the grid-search summary by using the h2omlestat gridsummary command. This

command lists the configuration of the hyperparameters we are tuning ranked by AUCPR.

. h2omlestat gridsummary
Grid summary using H2O

Pred.
Max. tree sampling

ID depth value AUCPR

1 6 7 .4725543
2 6 5 .4723736
3 6 3 .4714554
4 9 3 .4712076
5 6 -1 .4708614
6 12 -1 .4706606
7 9 -1 .4705794
8 9 5 .4689799
9 9 7 .4682457

10 9 1 .4674565

To compare the first two models based on other metrics, we use the h2omlexplore command.

. h2omlexplore id = 1 2
Performance metric summary using H2O
Training frame : train
Validation frame: valid

Model index
1 2

Training
No. of observations 183,607 183,607

Log loss .5724664 .57237
Mean class error .3935492 .3979593

AUC .6705554 .671146
AUCPR .4658395 .4670326

Gini coefficient .3411109 .342292
MSE .1946923 .1946602

RMSE .4412395 .4412031

Validation
No. of observations 45,854 45,854

Log loss .5705699 .5704978
Mean class error .3943867 .3945857

AUC .6734867 .6737527
AUCPR .4725543 .4723736

Gini coefficient .3469735 .3475054
MSE .1935647 .1935627

RMSE .4399599 .4399576

The first section of the output corresponds to the training metrics, while the second presents the val-

idated metrics of the specified models. For each of the metrics, we see that the difference between the

best and second-best models is not substantial. Therefore, the decision to switch to the less complex

model may be justified.

h2omlexplore — Explore models after grid search+ 230

Stored results
h2omlestat explore stores the following in r():

Macro

r(id) model IDs

Matrix

r(table) performance metrics for selected models

Reference
Gerber, A. S., D. P. Green, and C. W. Larimer. 2008. Social pressure and voter turnout: Evidence from a large-scale field

experiment.American Political Science Review 102: 33–48. https://doi.org/10.1017/S000305540808009X.

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

https://doi.org/10.1017/S000305540808009X

h2omlgof — Compare goodness of fit for machine learning models+

+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
h2omlgof reports goodness of fit after the h2oml rf and h2oml gbm commands. This command cre-

ates a table with side-by-side performance metrics from selected machine learning methods or models

for easy comparison.

Quick start
Goodness of fit for comparing stored estimation results myrf and mygbm

h2omlgof myrf mygbm

Goodness-of-fit for comparing all stored estimation results using H2O frame mynewframe
h2omlgof *, frame(mynewframe)

Menu
Statistics > H2O machine learning

231

h2omlgof — Compare goodness of fit for machine learning models+ 232

Syntax
h2omlgof namelist [, options]

namelist is a name of a stored estimation result, a list of names, all, or *. all or * requests all stored
results. See [H2OML] h2omlest.

options Description

Main

title(string) specify the title to be displayed above the table

train specify that performance metrics be reported using training results

valid specify that performance metrics be reported using validation
results

cv specify that performance metrics be reported using
cross-validation results

test specify that performance metrics be computed using the
testing frame

test(framename) specify that performance metrics be computed using data in
testing frame framename

frame(framename) specify that performance metrics be computed using data in
H2O frame framename

framelabel(string) label frame as string in the output

collect is allowed; see [U] 11.1.10 Prefix commands.

train, valid, cv, test, test(), frame(), and framelabel() do not appear in the dialog box.

Options

� � �
Main �

title(string) specifies the title to be displayed above the table.

The following options are available with h2omlgof but are not shown in the dialog box:

train, valid, cv, test, test(), and frame() specify the H2O frame for which performance metrics

are reported. Only one of train, valid, cv, test, test(), or frame() is allowed.

train specifies that performance metrics be reported using training results. This is the default when
neither validation nor cross-validation is performed during estimation and when a postestimation

frame has not been set with h2omlpostestframe.

valid specifies that performancemetrics be reported using validation results. This is the default when
validation is performed during estimation and when a postestimation frame has not been set with

h2omlpostestframe. valid may be specified only when the validframe() option is specified
with h2oml gbm or h2oml rf.

cv specifies that performance metrics be reported using cross-validation results. This is the default

when cross-validation is performed during estimation and when a postestimation frame has not

been set with h2omlpostestframe. cv may be specified only when the cv or cv() option is

specified with h2oml gbm or h2oml rf.

h2omlgof — Compare goodness of fit for machine learning models+ 233

test specifies that performance metrics be computed on the testing frame specified with h2oml-
postestframe. This is the default when a testing frame is specified with h2omlpostestframe.
test may be specified only after a testing frame is set with h2omlpostestframe. test is neces-
sary onlywhen a subsequent h2omlpostestframe command is used to set a default postestimation
frame other than the testing frame.

test(framename) specifies that performance metrics be computed using data in testing frame frame-

name and is rarely used. This option is most useful when running a single postestimation command

on the named frame. If multiple postestimation commands are to be run on the same test frame,

h2omlpostestframe provides a more convenient and computationally efficient process for doing
this.

frame(framename) specifies that performance metrics be computed using the data in H2O frame

framename.

framelabel(string) specifies the label to be used for the frame in the output. This option is not allowed
with the cv option.

Remarks and examples
The h2omlgof command provides a concise table of performance metrics for comparing different

machine learning methods or models.

After h2oml gbregress and h2oml rfregress, h2omlgof reports the deviance, mean squared error
(MSE), root mean squared error (RMSE), root mean squared logarithmic error (RMSLE), mean absolute

error (MAE), and 𝑅2. After h2oml gbbinclass and h2oml rfbinclass, it reports log loss, mean of
per-class error rates, area under the curve (AUC), area under the precision–recall curve (AUCPR), Gini

coefficient, MSE, and RMSE. Finally, after h2oml gbmulticlass and h2oml rfmulticlass, it reports
log loss, mean of per-class error rates,MSE, and RMSE. See [H2OML]metric option for more information

on the reported metrics.

Example 1: Comparing performance in H2OML
In this example, we use h2omlgof to compare results of h2oml rf and h2oml gbm.

We start by opening the 1978 automobile data (auto.dta) in Stata and then putting the data into an
H2O frame. Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset
into an H2O frame, and h2oframe change makes the specified frame the current H2O frame. We then

use the h2oframe split command to randomly split the auto frame into a training frame (70% of

observations), a validation frame (20% of observations), and a testing frame (10% of observations),

which we name train, valid, and test, respectively. We also change the current frame to train. For
details, see Prepare your data for H2O machine learning in Stata in [H2OML] h2oml and [H2OML] H2O

setup.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
(output omitted)

. _h2oframe _put, into(auto)
Progress (%): 0 100
. _h2oframe split auto, into(train valid test) split(0.7 0.2 0.1) rseed(19)
. _h2oframe change train

h2omlgof — Compare goodness of fit for machine learning models+ 234

We perform random forest binary classification with default values, and we specify the validation frame

in the validframe() option. We store the estimation results by using the h2omlest store command.

. h2oml rfbinclass foreign price length weight, validframe(valid)
> h2orseed(19)
Progress (%): 0 60.0 100
Random forest binary classification using H2O
Response: foreign
Frame: Number of observations:

Training: train Training = 57
Validation: valid Validation = 10

Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 3 No. of bins cat. = 1,024
avg = 5.7 No. of bins root = 1,024
max = 8 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Log loss .8466057 .3177202
Mean class error .0625 .1666667

AUC .9235294 .9047619
AUCPR .6822189 .8512376

Gini coefficient .8470588 .8095238
MSE .0948292 .11421

RMSE .3079434 .3379497

. h2omlest store RF

Next we perform gradient boosting binary classification and store the estimation results.

. h2oml gbbinclass foreign price length weight, validframe(valid)
> h2orseed(19)
Progress (%): 0 100
Gradient boosting binary classification using H2O
Response: foreign
Loss: Bernoulli
Frame: Number of observations:

Training: train Training = 57
Validation: valid Validation = 10

Model parameters
Number of trees = 50 Learning rate = .1

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 2 No. of bins cat. = 1,024
avg = 2.9 No. of bins root = 1,024
max = 4 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001

h2omlgof — Compare goodness of fit for machine learning models+ 235

Metric summary

Metric Training Validation

Log loss .1072901 .2774807
Mean class error .0125 .0714286

AUC .9955882 .952381
AUCPR .9889171 .904106

Gini coefficient .9911765 .9047619
MSE .0261993 .1002502

RMSE .161862 .3166232

. h2omlest store GBM

To compare random forest (RF) and gradient boosting machine (GBM) models, we type

. h2omlgof RF GBM
Performance metrics for model comparison using H2O
Training frame: train
Validation frame: valid

RF GBM

Training
No. of observations 57 57

Log loss .8466057 .1072901
Mean class error .0625 .0125

AUC .9235294 .9955882
AUCPR .6822189 .9889171

Gini coefficient .8470588 .9911765
MSE .0948292 .0261993

RMSE .3079434 .161862

Validation
No. of observations 10 10

Log loss .3177202 .2774807
Mean class error .1666667 .0714286

AUC .9047619 .952381
AUCPR .8512376 .904106

Gini coefficient .8095238 .9047619
MSE .11421 .1002502

RMSE .3379497 .3166232

In the output, the first section reports training results, and the second section reports validation results.

Looking at the validation results, we see that the GBM method outperforms the RF method. The log loss,

mean of per-class error rates, MSE, and RMSE are all smaller for GBM, while AUC, AUCPR, and the Gini

coefficient are larger for GBM, all of which indicate better performance.

h2omlgof — Compare goodness of fit for machine learning models+ 236

Example 2: Comparing performance in H2OML on a new frame
In example 1, we compared the performance of two methods on the validation frame. If we instead

wish to compare methods on a new data frame, we can take one of two approaches. In the first, we

specify the frame in the frame() option or, if it is a testing frame, in the test() option.

. h2omlgof RF GBM, test(test)
Performance metrics for model comparison using H2O
Testing frame: test

RF GBM

Testing
No. of observations 7 7

Log loss .236301 .1155489
Mean class error 0 0

AUC 1 1
AUCPR 1 1

Gini coefficient 1 1
MSE .0878302 .0364771

RMSE .2963615 .1909897

In the second approach, which we recommend, we use the h2omlpostestframe command to specify
the postestimation frame to be used by this and other postestimation commands. With this approach, the

new frame must be set for each set of estimation results. Thus, we first need to restore each set of

estimates by using the h2omlest restore command. For the GBM results, we type

. h2omlest restore GBM
(results GBM are active now)
. h2omlpostestframe test
(testing frame test is now active for h2oml postestimation)

Similarly, for the RF results, we type

. h2omlest restore RF
(results RF are active now)
. h2omlpostestframe test
(testing frame test is now active for h2oml postestimation)

Finally, we compare the testing results by using the h2omlgof command.

. h2omlgof RF GBM
Performance metrics for model comparison using H2O
Testing frame: test

RF GBM

Testing
No. of observations 7 7

Log loss .236301 .1155489
Mean class error 0 0

AUC 1 1
AUCPR 1 1

Gini coefficient 1 1
MSE .0878302 .0364771

RMSE .2963615 .1909897

h2omlgof — Compare goodness of fit for machine learning models+ 237

Here GBM again outperforms RF for most of the performance metrics.

Stored results
h2omlgof stores the following in r():

Macros

r(names) names of estimation results displayed

Matrices

r(table) matrix containing the values displayed

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2omlestat metrics — Display performance metrics+

h2omlgraph ice — Produce individual conditional expectation plot+

+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description
h2omlgraph ice plots the individual conditional expectation (ICE) curves after h2oml gbm and

h2oml rf. For regression, the ICE values correspond to predictions for an individual observation as values

of a predictor of interest vary. For classification, the ICE values correspond to the predicted probabilities

for an individual observation as values of a predictor of interest vary. Rather than plotting the ICE curve

for every observation, h2omlgraph ice plots ICE curves at the boundaries of the deciles of the predic-

tor of interest. The graph produced by h2omlgraph ice is useful for evaluating the partial effect of a

predictor on the response and how that effect differs across deciles of the predictor. It is also useful for

determining whether interaction effects exist between the variable of interest and other predictors.

The ICE plots are similar to the partial density plot (PDP), but the PDP estimates the average predictions

for the entire dataset and can be considered as the average of the ICE curves for all observations.

Quick start
Plot the ICE for predictor x1

h2omlgraph ice x1

As above, but do not show histogram in the plot

h2omlgraph ice x1, nohistogram

Plot the ICE after the multiclass classification for the class no and using H2O frame myframe
h2omlgraph ice x1, target(no) frame(myframe)

Menu
Statistics > H2O machine learning

238

h2omlgraph ice — Produce individual conditional expectation plot+ 239

Syntax
h2omlgraph ice predictor [, options]

options Description

Main
∗ target(class) specify the target class of the response after multiclass

classification

maxlevels(#) specify the maximum number of levels for categorical
predictors; default is maxlevels(30)

savedata(filename[, replace]) save plot data to filename

Plot options

nohistogram do not plot histogram of the predictor

histopts(bar opts) affect rendition of the histogram

line#opts(line options) affect rendition of the ICE curve for quantile #

nopdline do not plot partial dependence curve

pdlineopts(line options) affect rendition of partial dependence curve

twoway options any options other than by() documented in
[G-3] twoway options

train specify that the ICE be reported using training results

valid specify that the ICE be reported using validation results

test specify that the ICE be computed using testing frame

test(framename) specify that the ICE be computed using data
in testing frame framename

frame(framename) specify that the ICE be computed using data
in H2O frame framename

framelabel(string) label frame as string in the output

∗target() is required after multiclass classification.
train, valid, test, test(), frame(), and framelabel() do not appear in the dialog box.

Options

� � �
Main �

target(class) specifies for which class of the response variable the ICE should be plotted. target()
is required after multiclass classification with h2oml gbmulticlass or h2oml rfmulticlass.

maxlevels(#) specifies the maximum number of levels of the specified categorical predictor to be

included in the ICE estimation. The default is maxlevels(30).

savedata(filename[, replace]) saves the plot data to a Stata data file (.dta file). replace specifies
that filename be overwritten if it exists.

� � �
Plot options �

nohistogram removes the histogram of the predictor. By default, the histogram is included.

histopts(bar opts) affects rendition of the histogram; see [G-2] graph twoway bar.

line#opts(line options) affects the rendition of the ICE curve for decile #. See [G-3] line options.

h2omlgraph ice — Produce individual conditional expectation plot+ 240

nopdline removes the line for the partial dependence curve. The partial dependence curve is included

by default.

pdlineopts(line options) affects rendition of the partial dependence curve; see [G-3] line options.

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and options for saving the graph to disk

(see [G-3] saving option).

The following options are available with h2omlgraph ice but are not shown in the dialog box:

train, valid, test, test(), and frame() specify the H2O frame for which ICE is reported. Only one

of train, valid, test, test(), or frame() is allowed.

train specifies that ICE be reported using training results. This is the default when validation

is not performed during estimation and when a postestimation frame has not been set with

h2omlpostestframe.

valid specifies that ICE be reported using validation results. This is the default when valida-

tion is performed during estimation and when a postestimation frame has not been set with

h2omlpostestframe. valid may be specified only when the validframe() option is speci-

fied with h2oml gbm or h2oml rf.

test specifies that ICE be computed on the testing frame specified with h2omlpostestframe. This
is the default when a testing frame is specified with h2omlpostestframe. test may be specified
only after a testing frame is set by using h2omlpostestframe. test is necessary only when a

subsequent h2omlpostestframe command is used to set a default postestimation frame other

than the testing frame.

test(framename) specifies that ICE be computed using data in testing frame framename and is rarely

used. This option is most useful when running a single postestimation command on the named

frame. If multiple postestimation commands are to be run on the same test frame, it is more com-

putationally efficient and convenient to specify the testing frame by using h2omlpostestframe
instead of specifying test(framename) with individual postestimation commands.

frame(framename) specifies that ICE be computed using the data in H2O frame framename.

framelabel(string) specifies the label to be used for the frame in the output.

Remarks and examples
We assume you have read the Interpretation and explanation in [H2OML] Intro.

Remarks are presented under the following headings:

Introduction
Examples of ICE curves

Introduction
The PDP, introduced in [H2OML] h2omlgraph pdp, graphs the average predictions across the values

of a predictor of interest and is useful for understanding the average or partial effect of the predictor

on the response. However, when there is an interaction effect among predictors, the PDP cannot fully

capture the effect. In fact, there may be no average effect shown by a flat curve in the PDP, while there

h2omlgraph ice — Produce individual conditional expectation plot+ 241

are substantial effects at various levels of the predictor, but the effects are in opposite directions and

cancel each other out when averaged in the PDP. The ICE plots improve upon the PDPs by visualizing the

relationship between the response and the predictor for individual observations (Goldstein et al. 2015).

Formally, let 𝑓(X𝑆,X𝐶) be our machine learning model, X𝑆 be the predictor whose effect we wish

to study, and X𝐶 be all other predictors in our model.

To obtain ICE values for all observations 𝑖 = 1, 2, . . . , 𝑛, the values of predictors X𝐶 are fixed to

their observed values of x𝐶𝑖. Then the values of X𝑆 are iteratively set to the observed value x𝑆𝑗 for

observations 𝑗 = 1, 2, . . . , 𝑛 to obtain predictions ̂𝑓(x𝑆𝑗, x𝐶𝑖). Thus, for each observation 𝑖 in the dataset,
we obtain 𝑛 predicted values. These correspond to predictions where X𝑆 is set to its observed value in

observations 𝑗 = 1, . . . , 𝑛, while the remaining predictors X𝐶 are held at their observed values for the

same observation.

The ICE curve for observation 𝑖 plots the resulting predicted values on the 𝑦 axis and the predictor of
interest X𝑆 on the 𝑥 axis. In practice, if the number of observations 𝑛 is large, displaying a graph with

curves for each observation becomes difficult to read. Therefore, it is recommended to consider using

only deciles or quantiles of the data. h2omlgraph ice plots ICE curves for deciles of the predictor of

interest. By default, it also plots the partial dependence curve for comparison with the ICE curves.

Examples of ICE curves
In this section, we demonstrate the advantage of h2omlgraph icewhen an interaction effect is present

among predictors. As with most explainable machine learning methods, caution is advised when using

those results for decision making. For examples where explainable machine learning methods fail, see

example 2 of [H2OML] h2omlgraph varimp, Krishna et al. (2022), Lakkaraju and Bastani (2020), and

Slack et al. (2020).

The examples are presented under the following headings:

Example 1: Capturing an interaction effect through ICE
Example 2: Finding regions of interactions
Example 3: ICE plot for multinomial classification

Example 1: Capturing an interaction effect through ICE
This example is borrowed from Goldstein et al. (2015). We consider the following data-generation

process with an interaction: 𝑌 = 0.2𝑋1 + 5𝑋2 + 𝜀 if 𝑋3 ≥ 0 and 𝑌 = 0.2𝑋1 − 5𝑋2 + 𝜀 otherwise.
Here 𝑋1, 𝑋2, 𝑋3 ∼ 𝑈(−1, 1) and 𝜀 ∼ 𝑁(0, 1).

We start by opening the simulated interaction.dta dataset in Stata and then putting it into an H2O

frame. Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset into
an H2O frame, and h2oframe change makes the specified frame the current H2O frame. For details,

see Prepare your data for H2O machine learning in Stata in [H2OML] h2oml and [H2OML] H2O setup.

. use https://www.stata-press.com/data/r18/interaction
(Fictional interaction data)
. h2o init
(output omitted)

. _h2oframe put, into(interaction)
Progress (%): 0 100
. _h2oframe change interaction

h2omlgraph ice — Produce individual conditional expectation plot+ 242

For illustration purposes, we use h2oml rfregress to perform random forest regression with de-

fault values for hyperparameters. We then store the estimation results by using the h2omlest store
command.

. h2oml rfregress Y X1 X2 X3, h2orseed(19)
Progress (%): 0 54.0 100
Random forest regression using H2O
Response: Y
Frame: Number of observations:

Training: interaction Training = 500
Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 16 No. of bins cat. = 1,024
avg = 18.8 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Deviance 2.876126
MSE 2.876126

RMSE 1.695915
RMSLE .

MAE 1.29916
R-squared .6973235

. h2omlest store rf_inter

Next we plot ICE curves for X2 by using the h2omlgraph ice command.

. h2omlgraph ice X2

-5

0

5

P
re

di
ct

io
n

-1 -.5 0 .5 1
X2

0th
10th
20th
30th
40th
50th
60th
70th
80th
90th
100th

Partial dependence

Percentiles

Training frame: interaction

Individual conditional expectation using H2O

Here the dashed black line represents the partial dependence, and the other 11 lines correspond to ICE

computed at the boundaries of the deciles X2—the 0th, 10th, . . . , 100th percentiles of the observed values

of X2 in the dataset. The partial dependence suggests no partial effect of X2 on the response, because the

h2omlgraph ice — Produce individual conditional expectation plot+ 243

curve is mostly flat over the range of X2 values. This aggregate effect close to zero is actually the result
of the individual effects canceling each other out. Some of them are positive (the ICE lines that increase

with X2), and some of them negative (the ICE lines that decrease with X2).

In contrast to the PDP, the ICE curves provide a more comprehensive representation of the relationship

between X2 and the response. Moreover, an interaction effect can be inferred from the ICE plots, because

depending on the region of the X2 predictor space, ICE is either increasing or decreasing.

Example 2: Finding regions of interactions
In example 1, we showed that the ICE plots suggest some interaction effects among predictors. In

this example, we are interested in detecting the regions where those interactions occur. For details, see

Goldstein et al. (2015, sect. 4.2).

We now visualize ICE plots for the predictor X3.

. h2omlgraph ice X3
Progress (%): 0 10 20 30 40 50 60 70 80 90 100

-6

-4

-2

0

2

4

P
re

di
ct

io
n

-1 -.5 0 .5 1
X3

0th
10th
20th
30th
40th
50th
60th
70th
80th
90th
100th

Partial dependence

Percentiles

Training frame: interaction

Individual conditional expectation using H2O

As in example 1, PDP suggests no effect of X3 on the response. However, the nonparallel ICE curves

show the effect of X3 changes for each of the plotted percentiles near the neighborhood of X3 = 0. This

indicates an interaction of X3 with another variable at this point, and we know this to be true based on

the data-generating process for our simulated data.

h2omlgraph ice — Produce individual conditional expectation plot+ 244

Example 3: ICE plot for multinomial classification
In example 5 of [H2OML] h2omlgraph pdp, we showed how to implement and interpret PDP after

multiclass classification. In this example, we continue from example 5 and plot ICE curves. Note that,

compared with h2omlgraph pdp, the target() option of h2omlgraph ice supports only one class of

the response variable. Here we plot ICE for the Setosa class in iris.

. h2omlgraph ice seplen, target(Setosa)
Progress (%): 0 10 20 30 40 50 60 70 80 90 100

0

.2

.4

.6

.8

1

P
re

di
ct

io
n

4 5 6 7 8
seplen

0th
10th
20th
30th
40th
50th
60th
70th
80th
90th
100th

Partial dependence

Percentiles

Training frame: iris

Individual conditional expectation using H2O

For observations below the 50th percentile of seplen, the probability of predicting Setosa is around
1 when seplen < 7 and goes down afterward. For observations in the higher percentiles of seplen, the
probability of predicting Setosa is close to 0. PDP, the dashed black line, is an average of ICE curves for
all observations.

References
Goldstein, A., A. Kapelner, J. Bleich, and E. Pitkin. 2015. Peeking inside the black box: Visualizing statistical learning

with plots of individual conditional expectation. Journal of Computational and Graphical Statistics 24: 44–65. https:

//doi.org/10.1080/10618600.2014.907095.

Krishna, S., T. Han,A. Gu, S.Wu, S. Jabbari, and H. Lakkaraju. 2022. The disagreement problem in explainable machine

learning: A practitioner’s perspective. arXiv:2202.01602 [cs.LG], https://doi.org/10.48550/arXiv.2202.01602.

Lakkaraju, H., and O. Bastani. 2020. ““How do I fool you?”: Manipulating user trust via misleading black box expla-

nations”. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 79–85. New York: Association for

Computing Machinery. https://doi.org/10.1145/3375627.3375833.

Slack, D., S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju. 2020. “Fooling LIME and SHAP: Adversarial attacks on post

hoc explanation methods”. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 180–186. New

York: Association for Computing Machinery. https://doi.org/10.1145/3375627.3375830.

https://doi.org/10.1080/10618600.2014.907095
https://doi.org/10.1080/10618600.2014.907095
https://doi.org/10.48550/arXiv.2202.01602
https://doi.org/10.1145/3375627.3375833
https://doi.org/10.1145/3375627.3375830

h2omlgraph ice — Produce individual conditional expectation plot+ 245

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2omlgraph pdp — Produce partial dependence plot+

h2omlgraph pdp — Produce partial dependence plot+

+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description
h2ograph pdp produces the partial dependence plot (PDP) after h2oml gbm and h2oml rf. For regres-

sion, the PDP graphs the average prediction versus the values of a predictor of interest. For classification,

PDP graphs average predicted probabilities versus values of a predictor of interest. Thus, PDP graphically

depicts the average or partial effect of predictors on the response.

Quick start
Plot the PDP for the predictor x1

h2omlgraph pdp x1

As above, but plot for x1, x2, and x3, and combine the plots
h2omlgraph pdp x1 x2 x3, combine

As above, but show the standard deviations of the average response, and do not show the histogram

h2omlgraph pdp x1 x2 x3, combine sd nohistogram

Create a contour plot of the joint PDP for x1 and x2
h2omlgraph pdp x1 x2, pair

Menu
Statistics > H2O machine learning

246

h2omlgraph pdp — Produce partial dependence plot+ 247

Syntax
h2omlgraph pdp predictors [, options]

options Description

Main
∗ target(classes) specify the target class(es) of the response variable

for multiclass classification

obs(#) specify the observation number for computing partial
dependence

savedata(filename[, replace]) save plot data to filename

Plot options

pair create a contour plot of the joint marginal predictions

pairopts(contour options) affect rendition of PDP contour plot

lineopts(line options) affect rendition of PDP line

line#opts(line options) affect rendition of PDP line for target class #

sd display standard deviation band with PDP

sdopts(area options) affect rendition of the standard deviation band

combine combine multiple PDP graphs

combineopts(comb opts) affect rendition of the combined graphs

nohistogram do not plot histogram of the predictor

histopts(bar opts) affect rendition of the histogram

Y axis, X axis, Titles, Legend, Overall

name(namespec[, replace]) specify names of graphs

saving(filespec[, replace]) save graphs in files

twoway options any options other than by() documented in
[G-3] twoway options

train specify that the partial dependence be reported using training
results

valid specify that the partial dependence be reported using validation
results

test specify that the partial dependence be computed using testing
frame

test(framename) specify that the partial dependence be computed using data
in testing frame framename

frame(framename) specify that the partial dependence be computed using data
in H2O frame framename

framelabel(string) label frame as string in the output

∗target() is required after multiclass classification.
train, valid, test, test(), frame(), and framelabel() do not appear in the dialog box.

Options

� � �
Main �

target(classes) specifies for which class or classes of the response variable the partial dependence

should be plotted. target() is required after multiclass classification with h2oml gbmulticlass or
h2oml rfmulticlass. target() is not allowed with pair.

h2omlgraph pdp — Produce partial dependence plot+ 248

obs(#) specifies the observation number for which partial dependence will be computed. The specified
value should be a positive integer. If obs() is specified, the individual conditional expectation for

obs(#) is computed; see [H2OML] h2omlgraph ice. obs() is not allowed with sd.

savedata(filename[, replace]) saves the plot data to a Stata data file (.dta file). replace specifies
that filename be overwritten if it exists.

� � �
Plot options �

pair specifies to create the contour plot of the joint marginal predictions of predictors. This option is

valid only if two or more predictors are specified. pair is not allowed with any of sd, target(),
lineopts(), histopts(), or line#opts().

pairopts(contour options) affects the rendition of the contour plot. See [G-2] graph twoway contour.

lineopts(line options) affects the rendition of the PDP line. See [G-3] line options. lineopts() is

not allowed with pair.

line#opts(line options) affects the rendition of the PDP line for the target class #. See

[G-3] line options. line#opts() is valid only if target() is specified. line#opts() is not al-

lowed with pair.

sd specifies to plot a standard deviation band. For each observed value of the specified predictor, PDP

estimates the mean response, and the standard deviation is estimated using those responses. sd is not
allowed with pair or obs().

sdopts(area options) affects the rendition of the standard deviation band. See [G-3] area options.

combine specifies to combine the graphs of PDP for individual predictors when more than one predictor
is specified.

combineopts(comb opts) affects the rendition of the combined graphs. See [G-2] graph combine.

nohistogram removes the histogram of the predictor from the PDP. By default, the histogram is included.

histopts(bar opts) affects the rendition of the histogram; see [G-2] graph twoway bar. histopts()
is not allowed with pair.

� � �
Y axis, X axis, Titles, Legend, Overall �

name(namespec[, replace]) specifies the name of the graph or multiple graphs. See

[G-3] name option for a single graph. If multiple graphs are produced, then the argument of

name() is either a list of names or a stub, in which case graphs are named stub1, stub2, and so on.
With multiple graphs, if name() is not specified and neither sleep() nor wait is specified, then

name(Graph #, replace) is assumed.

replace specifies to replace existing graphs with the specified name or names.

saving(filespec[, replace]) specifies the filename or filenames to use to save the graph or multiple

graphs to disk. See [G-3] saving option for a single graph. If multiple graphs are produced, then

the argument of saving() is either a list of filenames or a stub, in which case graphs are saved with
filenames stub1, stub2, and so on.

replace specifies to replace existing graphs with the specified name or names.

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and options for saving the graph to disk

(see [G-3] saving option).

h2omlgraph pdp — Produce partial dependence plot+ 249

The following options are available with h2omlgraph pdp but are not shown in the dialog box:

train, valid, test, test(), and frame() specify the H2O frame for which partial dependencies are

reported. Only one of train, valid, test, test(), or frame() is allowed.

train specifies that partial dependencies be reported using training results. This is the default when
validation is not performed during estimation and when a postestimation frame has not been set

with h2omlpostestframe.

valid specifies that partial dependencies be reported using validation results. This is the default when
validation is performed during estimation and when a postestimation frame has not been set with

h2omlpostestframe. valid may be specified only when the validframe() option is specified
with h2oml gbm or h2oml rf.

test specifies that partial dependencies be computed on the testing frame specified with h2oml-
postestframe. This is the default when a testing frame is specified with h2omlpostestframe.
test may be specified only after a testing frame is set by using h2omlpostestframe. test is

necessary only when a subsequent h2omlpostestframe command is used to set a default postes-
timation frame other than the testing frame.

test(framename) specifies that partial dependencies be computed using data in testing frame fra-

mename and is rarely used. This option is most useful when running a single postestimation

command on the named frame. If multiple postestimation commands are to be run on the same

test frame, it is more computationally efficient and convenient to specify the testing frame by us-

ing h2omlpostestframe instead of specifying test(framename)with individual postestimation
commands.

frame(framename) specifies that partial dependencies be computed using the data in H2O frame

framename.

framelabel(string) specifies the label to be used for the frame in the output.

Remarks and examples
We assume you have read the introduction to explainable machine learning in [H2OML] Intro.

Remarks are presented under the following headings:

Introduction
Examples of using PDP

Introduction
The partial dependence plot (PDP) is an intuitive tool to study the marginal effect of predictors on the

response (Friedman 2001). The PDP allows you to easily visualize how the expected response changes

across different values of a predictor. For regression, the PDP graphs the average prediction versus the

values of a predictor of interest. For classification, the PDP graphs the average of the predicted probabil-

ities versus the values of a predictor of interest.

In fact, to study the average predictions (or predictive margins) for a single predictor in regres-

sion or binary classification, the PDP is analogous to the plot of predictive margins we can obtain from

marginsplot in Stata after fitting a model with regress or logit, respectively.

h2omlgraph pdp — Produce partial dependence plot+ 250

Formally, let 𝑓(X𝑆,X𝐶) be our machine learning model,X𝑆 be the predictors whose effect we wish to

study, and X𝐶 be all other predictors in our model. For X𝑆 fixed at x𝑆, the partial dependence is defined

as

𝑓𝑆(x𝑆) = 𝐸X𝐶
{𝑓(x𝑆,X𝐶)} = ∫ 𝑓(x𝑆, x𝐶)𝑑𝑃(x𝐶)

In words, partial dependence is an average (over the marginal distribution of X𝐶) of the predictions

our model makes when we fix X𝑆 at some value x𝑆. In the h2omlgraph pdp syntax, X𝑆 corresponds

to the input predictors. In a finite sample, for the 𝑗th observation, partial dependence is computed by
averaging predictions computed at the observed values of predictors x𝐶𝑖

for 𝑖 = 1, . . . , 𝑛.

̂𝑓𝑆(x𝑆𝑗) = 1
𝑛

𝑛
∑
𝑖=1

̂𝑓(x𝑆𝑗, x𝐶𝑖
)

The PDP is a plot of such average predictions over the support of X𝑆, which allows us to investi-

gate how average predicted values of the response (in regression) or average predicted probabilities (in

classification) vary over the support of the predictors of interest.

In practice, PDPworks well when the dependence betweenX𝑆 andX𝐶 is not strong. When the depen-

dence is strong or the true model includes interactions, PDP is not reliable and the individual conditional

expectation curve is recommended for postestimation analysis of partial effects.

Examples of using PDP
In this section, we demonstrate some uses of the h2omlgraph pdp command. The examples are

presented under the following headings.

Example 1: PDP interpretation for regression
Example 2: Caution on PDP causal interpretation
Example 3: PDP with a monotonicity constraint
Example 4: Joint marginal predictions through PDP
Example 5: PDP interpretation for multiclass classification

Example 1: PDP interpretation for regression
In this example, we plot and interpret the PDP for a random forest regression model.

We start by opening the 1978 automobile data (auto.dta) in Stata and then putting the data into an
H2O frame. Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset
into an H2O frame, and h2oframe changemakes the specified frame the current H2O frame. For details,
see Prepare your data for H2Omachine learning in Stata in [H2OML] h2oml and see [H2OML]H2O setup.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
(output omitted)

. _h2oframe put, into(auto)
Progress (%): 0 100
. _h2oframe change auto

h2omlgraph pdp — Produce partial dependence plot+ 251

For simplicity, we save the predictor names in the global macro predictors in Stata. We then per-

form random forest regression with 100 trees and a maximum depth of 5.

. global predictors mpg trunk weight length

. h2oml rfregress price $predictors, h2orseed(19) ntrees(100) maxdepth(5)
Progress (%): 0 92.0 100
Random forest regression using H2O
Response: price
Frame: Number of observations:

Training: auto Training = 74
Model parameters
Number of trees = 100

actual = 100
Tree depth: Pred. sampling value = -1

Input max = 5 Sampling rate = .632
min = 5 No. of bins cat. = 1,024
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Deviance 3760463
MSE 3760463

RMSE 1939.191
RMSLE .2626369

MAE 1361.947
R-squared .5618179

Finally, we use the h2omlgraph pdp command to show how the average predicted price changes

across levels of the predictor mpg.

. h2omlgraph pdp mpg

6000

7000

8000

9000

P
ar

tia
l d

ep
en

de
nc

e

10 20 30 40
mpg

Training frame: auto

Partial dependence plot using H2O

h2omlgraph pdp — Produce partial dependence plot+ 252

From the plot, we can see that the predicted price tends to decrease as the value of mpg increases. We

also see a histogram of mpg, showing that only a few observations have mpg values over 30.

Example 2: Caution on PDP causal interpretation
In this example, we explore why it is important to exercise caution when using and interpreting ma-

chine learning explanation methods such as PDPs. See also example 2 of [H2OML] h2omlgraph varimp

and examples in Krishna et al. (2022), Lakkaraju and Bastani (2020), and Slack et al. (2020).

The data-generating process and the discussion closely follow Lundberg (2021). Our goal is to un-

derstand how various predictors affect a subscriber’s decision to renew their contract with a company,

which is a causal question. We assume that our data are generated from the following causal directed

acyclic graph (DAG).

BR SCPN

MU

BF AS

Di InLU

Re

Ec

See [CAUSAL] Intro for an introduction to DAGs. Here the abbreviations in the nodes correspond to

the following predictors: MU is customer monthly usage, BF is the number of bugs faced, PN is product

need, SC is the number of sales calls, Di is the customer discount, Ec is other macroeconomic activities,

AS is the ad spending amount, LU is the last upgrade, Re is whether the customer renewed the contract,

In is the number of interactions with a customer, and BR is bugs reported by a customer. The response is

Re, whether the customer renewed the contract. The gray nodes represent unobserved confounders.

An important assumption to causally interpret PDP is that the model needs to satisfy the backdoor

or unconfoundedness assumption (Zhao and Hastie 2021). In short, to identify the causal effect of one

of these predictors on the response renewal, all other paths between the predictor and renewal must be

blocked. Blocking the alternative paths involves “controlling for” or “conditioning on” a specific set of

predictors. For definitions, see Pearl (2009) and Imbens and Rubin (2015).

We start by opening the retention.dta dataset in Stata and then putting it into an H2O frame.

. use https://www.stata-press.com/data/r18/retention
(Fictional retention data)
. h2o init
(output omitted)

. _h2oframe put, into(retention)
Progress (%): 0 100
. _h2oframe change retention

h2omlgraph pdp — Produce partial dependence plot+ 253

For convenience, we create a global macro predictors in Stata to store the names of the observed

predictors. We then perform gradient boosting binary classification using these observed predictors.

. global predictors_obs salescalls interactions economy lastupgrade
> discount monthlyusage adspend bugsreported
. h2oml gbbinclass renew $predictors_obs, h2orseed(19) lrate(0.1)
> maxdepth(15) ntrees(300)
Progress (%): 0 0.6 5.3 13.6 23.0 41.6 63.6 86.0 95.9 98.3 100
Gradient boosting binary classification using H2O
Response: renew
Loss: Bernoulli
Frame: Number of observations:

Training: retention Training = 10,000
Model parameters
Number of trees = 300 Learning rate = .1

actual = 300 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 15 Sampling rate = 1
min = 15 No. of bins cat. = 1,024
avg = 15.0 No. of bins root = 1,024
max = 15 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training

Log loss .007453
Mean class error 0

AUC 1
AUCPR 1

Gini coefficient 1
MSE .0000988

RMSE .0099407

h2omlgraph pdp — Produce partial dependence plot+ 254

Next we use h2omlgraph pdp to plot the partial dependence for the predictors bugsreported,
adspend, and discount. To combine the plots, we specify the combine option. We also specify the

combineopts() option with the cols(3) suboption to request three columns, and we give the 𝑦 axis a
common scale by specifying the ycommon suboption.

. h2omlgraph pdp bugsreported adspend discount, combine
> combineopts(cols(3) ycommon)

0

.2

.4

.6

.8

1

P
ar

tia
l d

ep
en

de
nc

e

0 2 4 6
bugsreported

0

.2

.4

.6

.8

1

P
ar

tia
l d

ep
en

de
nc

e

0 1 2 3
adspend

0

.2

.4

.6

.8

1

P
ar

tia
l d

ep
en

de
nc

e

0 .1 .2 .3 .4 .5
discount

Training frame: retention

Partial dependence plot using H2O

The figure suggests counterintuitive results. Specifically, as the number of bugs reported increases,

the probability of retention also increases, and as the discount increases, the probability of retention

decreases.

A closer look at a causal DAG sheds more light on the source of these counterintuitive results. The

bugsreported (BR) predictor is a collider (for definitions, see Causal diagrams in [CAUSAL] Intro), and
by conditioning on a collider, we open a path between its parents, BF and PN, which are unobserved. This

leads to an incorrect positive effect for BR, when there is no true effect. Similarly, conditioning on the

predictor adspend (AS), we introduce a collider bias. Finally, the effect of discount (Di) suffers from

the unobserved confounders. In causal DAG language, because PN and BF are unobserved, there are open

backdoor paths between Di and Re.

These results highlight the fundamental difference between prediction and causal inference. The same

predictors can be good for predicting an outcome but may not be useful for causal inference. For details

and more discussion, see Cinelli, Forney, and Pearl (2024).

h2omlgraph pdp — Produce partial dependence plot+ 255

Because the dataset is artificial, we can demonstrate the effect of controlling unobserved confounders

on the average predicted probabilities. We now control for the number of bugs faced and product

needed, and we omit BR and AS from our model. The new set of predictors is saved in the global macro

predictors in Stata.

. global predictors salescalls interactions economy lastupgrade
> discount monthlyusage bugsfaced productneed
. h2oml gbbinclass renew $predictors, h2orseed(19) lrate(0.1)
> maxdepth(15) ntrees(300)
Progress (%): 0 6.3 15.6 25.3 35.6 56.9 77.6 97.6 100
Gradient boosting binary classification using H2O
Response: renew
Loss: Bernoulli
Frame: Number of observations:

Training: retention Training = 10,000
Model parameters
Number of trees = 300 Learning rate = .1

actual = 300 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 15 Sampling rate = 1
min = 15 No. of bins cat. = 1,024
avg = 15.0 No. of bins root = 1,024
max = 15 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training

Log loss .0022039
Mean class error 0

AUC 1
AUCPR 1

Gini coefficient 1
MSE 9.28e-06

RMSE .0030459

. h2omlgraph pdp discount
Progress (%): 0 100

.2

.22

.24

.26

.28

.3

P
ar

tia
l d

ep
en

de
nc

e

0 .1 .2 .3 .4 .5
discount

Training frame: retention

Partial dependence plot using H2O

h2omlgraph pdp — Produce partial dependence plot+ 256

We can see that the interpretation of Di changed substantially. The partial dependence first grows

with the discount, but then clearly decreases for discounts greater than 0.25.

Example 3: PDP with a monotonicity constraint
In some applications, it is reasonable to assume that the response is a monotone function of the pre-

dictor. For details, see [H2OML] Intro. In this example, we continue with example 2 and show a PDP

after enforcing monotonicity constraints. Suppose we strongly believe that the effect of the predictor

discount should be monotonic increasing. This information can be directly imposed on the gradient

boosting machine model by using the monotone() option.

. h2oml gbbinclass renew $predictors, h2orseed(19) lrate(0.1)
> maxdepth(15) ntrees(300) monotone(discount)
Progress (%): 0 4.3 13.3 22.6 31.3 49.0 68.3 86.3 100
Gradient boosting binary classification using H2O
Response: renew
Loss: Bernoulli
Frame: Number of observations:

Training: retention Training = 10,000
Model parameters
Number of trees = 300 Learning rate = .1

actual = 300 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 15 Sampling rate = 1
min = 15 No. of bins cat. = 1,024
avg = 15.0 No. of bins root = 1,024
max = 15 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training

Log loss .0050499
Mean class error 0

AUC 1
AUCPR 1

Gini coefficient 1
MSE .0000516

RMSE .0071842

Monotone increasing: discount

h2omlgraph pdp — Produce partial dependence plot+ 257

. h2omlgraph pdp discount
Progress (%): 0 100

.26

.28

.3

.32

.34
P

ar
tia

l d
ep

en
de

nc
e

0 .1 .2 .3 .4 .5
discount

Training frame: retention

Partial dependence plot using H2O

Compared with the PDP in example 2, the partial dependence of the predictor discount is monoton-
ically increasing as the size of the discount increases.

Example 4: Joint marginal predictions through PDP
In example 2 of [H2OML] h2omlgraph ice, we show that partial dependence curves are not useful for

capturing an interaction effect and instead suggest to use ICE curves. In this example, we show how we

might mitigate this issue by plotting the joint partial effect.

We start by restoring the rf inter model by using the h2omlest restore command. The model

was stored in example 1 of [H2OML] h2omlgraph ice.

. h2omlest restore rf_inter
(results rf_inter are active now)
. h2omlgraph pdp X2 X3, pair

-1

-.5

0

.5

1

X
2

-1 -.5 0 .5 1
X3

-4

-2

0

2

4

P
ar

tia
l d

ep
en

de
nc

e

Training frame: interaction

Partial dependence plot using H2O

h2omlgraph pdp — Produce partial dependence plot+ 258

We can see that the contour plot of the joint effect clearly captures the interaction, with the largest

predictions in the regions 𝑋3 < 0, 𝑋2 < −0.5 and 𝑋3 > 0, 𝑋2 > 0.5.

Example 5: PDP interpretation for multiclass classification
In this example, we consider the well-known iris dataset, where the goal is to predict a class of iris

plant. This dataset was used in Fisher (1936) and originally collected by Anderson (1935). We will

demonstrate how to interpret the PDP for multiclass classification. For illustration purposes, we use

random forest multiclass classification with 500 trees.

. use https://www.stata-press.com/data/r18/iris
(Iris data)
. h2o init
(output omitted)

. _h2oframe put, into(iris)
Progress (%): 0 100
. _h2oframe change iris

. global predictors seplen sepwid petlen petwid

. h2oml rfmulticlass iris $predictors, h2orseed(19) ntrees(500)
Progress (%): 0 11.8 43.5 70.8 100
Random forest multiclass classification using H2O
Response: iris Number of classes = 3
Frame: Number of observations:

Training: iris Training = 150
Model parameters
Number of trees = 500

actual = 500
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 1 No. of bins cat. = 1,024
avg = 3.7 No. of bins root = 1,024
max = 9 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Log loss .118939
Mean class error .0533333

MSE .037385
RMSE .1933519

To plot the partial dependence after multiclass classification, we need to specify the target() option
in h2omlgraph pdp. In the target() option, we specify the names of the classes of the response iris
for which we want to produce a PDP. We can list the classes of the response by typing

. _h2oframe levelsof iris
‘”Setosa”’ ‘”Versicolor”’ ‘”Virginica”’

h2omlgraph pdp — Produce partial dependence plot+ 259

Next we plot the partial dependence of the predictor seplen on all three classes.

. h2omlgraph pdp seplen, target(Setosa Versicolor Virginica)
Progress (%): 0 100

.3

.35

.4

P
ar

tia
l d

ep
en

de
nc

e

4 5 6 7 8
seplen

Setosa
Versicolor
Virginica

Training frame: iris

Partial dependence plot using H2O

On the plot, the red line corresponds to the PDP for the Setosa class. The plot shows how the average

probability of predicting Setosa differs with the different values of the predictor seplen.

References
Anderson, E. 1935. The irises of the Gaspé Peninsula. Bulletin of the American Iris Society 59: 2–5.

Cinelli, C., A. Forney, and J. Pearl. 2024. A crash course in good and bad controls. Sociological Methods and Research

53: 1071–1104. https://doi.org/10.1177/00491241221099552.

Fisher, R. A. 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics 7: 179–188. https:

//doi.org/10.1111/j.1469-1809.1936.tb02137.x.

Friedman, J. H. 2001. Greedy function approximation: A gradient boosting machine.Annals of Statistics 29: 1189–1232.

https://doi.org/10.1214/aos/1013203451.

Imbens, G. W., and D. B. Rubin. 2015. Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction.

New York: Cambridge University Press. https://doi.org/10.1017/CBO9781139025751.

Krishna, S., T. Han,A. Gu, S.Wu, S. Jabbari, and H. Lakkaraju. 2022. The disagreement problem in explainable machine

learning: A practitioner’s perspective. arXiv:2202.01602 [cs.LG], https://doi.org/10.48550/arXiv.2202.01602.

Lakkaraju, H., and O. Bastani. 2020. ““How do I fool you?”: Manipulating user trust via misleading black box expla-

nations”. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 79–85. New York: Association for

Computing Machinery. https://doi.org/10.1145/3375627.3375833.

Lundberg, S. M. 2021. Be careful when interpreting predictive models in search of causal insights. Medium: Thoughts

and Theory. https://medium.com/towards-data-science/be-careful-when-interpreting-predictive-models-in-search-of-

causal-insights-e68626e664b6.

Pearl, J. 2009. Causality: Models, Reasoning, and Inference. 2nd ed. Cambridge: Cambridge University Press. https:

//doi.org/10.1017/CBO9780511803161.

Slack, D., S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju. 2020. “Fooling LIME and SHAP: Adversarial attacks on post

hoc explanation methods”. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 180–186. New

York: Association for Computing Machinery. https://doi.org/10.1145/3375627.3375830.

Zhao, Q., and T. J. Hastie. 2021. Causal interpretations of black-box models. Journal of Business and Economic Statistics

39: 272–281. https://doi.org/10.1080/07350015.2019.1624293.

https://doi.org/10.1177/00491241221099552
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1017/CBO9781139025751
https://doi.org/10.48550/arXiv.2202.01602
https://doi.org/10.1145/3375627.3375833
https://medium.com/towards-data-science/be-careful-when-interpreting-predictive-models-in-search-of-causal-insights-e68626e664b6
https://medium.com/towards-data-science/be-careful-when-interpreting-predictive-models-in-search-of-causal-insights-e68626e664b6
https://doi.org/10.1017/CBO9780511803161
https://doi.org/10.1017/CBO9780511803161
https://doi.org/10.1145/3375627.3375830
https://doi.org/10.1080/07350015.2019.1624293

h2omlgraph pdp — Produce partial dependence plot+ 260

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2omlgraph ice — Produce individual conditional expectation plot+

h2omlgraph prcurve — Produce precision–recall curve plot+

+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description
h2omlgraph prcurve plots the precision–recall curve after binary classification performed by h2oml

gbbinclass and h2oml rfbinclass. With binary classification, the predicted probability for each

observation is compared with a threshold value to determine whether the observation is predicted to be

in the positive class or the negative class. Thus, for different threshold values, different numbers of

observations are classified as positive and negative. Metrics based on the predicted classes, including

precision (the proportion of correct predictions out of all observations predicted to be in the positive

class) and recall (the true-positive rate), also depend on the selected threshold. Plotting the precision

versus the recall for a variety of threshold values produces the precision–recall curve, which allows us

to evaluate the tradeoff between precision and recall for a model.

The precision–recall curve is useful for evaluating model performance, especially for models fit to

imbalanced response variables. A large area under the precision–recall curve (AUCPR) indicates good fit

with both precision and recall being high.

Quick start
Plot the precision–recall curve

h2omlgraph prcurve

As above, but plot the curve based on the validation data

h2omlgraph prcurve, valid

As above, but remove the reference line

h2omlgraph prcurve, valid norefline

Menu
Statistics > H2O machine learning

261

h2omlgraph prcurve — Produce precision–recall curve plot+ 262

Syntax
h2omlgraph prcurve [, options]

options Description

Main

models(namelist) specify the name or a list of names of the stored estimation
results

savedata(filename[, replace]) save plot data to filename

Plot options

rlopts(line options) affect rendition of reference line

norefline suppress plotting reference line

lineopts(line options) affect rendition of all precision–recall curves

line#opts(line options) affect rendition of the precision–recall curve for model #

twoway options any options other than by() documented in [G-3] twoway options

train specify that precision and recall be reported using training results

valid specify that precision and recall be reported using validation
results

cv specify that precision and recall be reported using
cross-validation results

test specify that precision and recall be computed using the
testing frame

test(framename) specify that precision and recall be computed using data in
testing frame framename

frame(framename) specify that precision and recall be computed using data in
H2O frame framename

framelabel(string) label frame as string in the output

train, valid, cv, test, test(), frame(), and framelabel() do not appear in the dialog box.

Options

� � �
Main �

models(namelist) specifies the name or a list of names of the stored estimation results for which the

precision–recall curve is being plotted. For each model, the displayed curve corresponds to the default

frame of that model when the h2omlpostestframe command has not been used to set a postestima-
tion frame.

savedata(filename[, replace]) saves the plot data to a Stata data file (.dta file). replace specifies
to overwrite the existing file.

� � �
Plot options �

rlopts(line options) affects the rendition of the reference line. See [G-3] line options.

norefline suppresses plotting the reference line. The reference line of the precision–recall curve is

determined by the proportion of the response variable in the positive class, that is, the ratio of the

number of positives to the total number of observations.

lineopts(line options) affects the rendition of all precision–recall curves. See [G-3] line options.

h2omlgraph prcurve — Produce precision–recall curve plot+ 263

line#opts(line options) affects the rendition of the precision–recall curve for model #. See

[G-3] line options.

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and options for saving the graph to disk

(see [G-3] saving option).

The following options are available with h2omlgraph prcurve but are not shown in the dialog box:

train, valid, cv, test, test(), and frame() specify the H2O frame for which precision and recall

are reported. Only one of train, valid, cv, test, test(), or frame() is allowed.

train specifies that precision and recall be reported using training results. This is the default when

neither validation nor cross-validation is performed during estimation and when a postestimation

frame has not been set with h2omlpostestframe.

valid specifies that precision and recall be reported using validation results. This is the default when
validation is performed during estimation and when a postestimation frame has not been set with

h2omlpostestframe. valid may be specified only when the validframe() option is specified
with h2oml gbm or h2oml rf.

cv specifies that precision and recall be reported using cross-validation results. This is the default

when cross-validation is performed during estimation and when a postestimation frame has not

been set with h2omlpostestframe. cv may be specified only when the cv or cv() option is

specified with h2oml gbm or h2oml rf.

test specifies that precision and recall be computed on the testing frame specified with h2oml-
postestframe. This is the default when a testing frame is specified with h2omlpostestframe.
test may be specified only after a testing frame is set with h2omlpostestframe. test is neces-
sary onlywhen a subsequent h2omlpostestframe command is used to set a default postestimation
frame other than the testing frame.

test(framename) specifies that precision and recall be computed using data in testing frame frame-

name and is rarely used. This option is most useful when running a single postestimation command

on the named frame. If multiple postestimation commands are to be run on the same test frame,

h2omlpostestframe provides a more convenient and computationally efficient process for doing
this.

frame(framename) specifies that precision and recall be computed using the data in H2O frame fra-

mename.

framelabel(string) specifies the label to be used for the frame in the output. This option is not allowed
with the cv option.

Remarks and examples
After performing binary classification, the receiver operating characteristic (ROC) curve, introduced

in [H2OML] h2omlgraph roc, is a common tool for evaluating model performance. However, the ROC

curve is not reliable when the data are imbalanced (when the data contain very few positive classes). For

imbalanced data, a small false-positive rate and a large true-positive rate are expected. Consequently,

the ROC curve will be close to the upper-left corner and will indicate good fit rather than reflecting

the true performance of the model. The precision–recall curve is designed to mitigate this problem by

plotting the precision (the proportion of correct predictions out of all observations predicted to be in the

positive class) versus the recall (the proportion of correct predictions out of all observations actually in

h2omlgraph prcurve — Produce precision–recall curve plot+ 264

the positive class; also known as the true-positive rate) (Davis and Goadrich 2006). The precision–recall

curve is more reliable for imbalanced data compared with the ROC curve because the false-positive rate

in the ROC curve is replaced with precision, which does not rely on the number of true negatives. (The

number of true negatives will be large for imbalanced data and will strongly influence the false-positive

rate.)

The computation of the precision and recall metrics relies on a threshold value. After binary classi-

fication, the predicted probability for each observation is compared with a threshold value to determine

whether the observation is predicted to be in the positive class or the negative class. Observations with

probabilities greater than the threshold are classified as positive, and the remaining observations are

classified as negative. Different threshold values lead to different predicted classes. Therefore, as the

threshold changes, the precision and recall also change.

The precision–recall curve plots the precision on the 𝑦 axis and the recall on the 𝑥 axis, where each

metric is computed across a range of threshold values. When evaluating model performance, the closer

the curve is to the upper-right corner, the better the performance. Similarly, the larger the AUCPR, the

better the performance.

Example 1: The precision–recall curve vs. the ROC
In this example, we compare ROC and precision–recall graphs for imbalanced data.

We use a popular credit card dataset available in Kaggle (Pozzolo et al. [2015], Pozzolo et al. [2018])

to predict whether a given credit card transaction is fraudulent.

The dataset contains 28 predictors, denoted V1,...,V28, which are obtained after a principal com-
ponent analysis transformation. Due to confidentiality issues, the original predictors are not available.

The response fraud is a binary variable that takes value 1 in the case of fraud and value 0 otherwise.

We start by opening the dataset in Stata and using the tabulate command to look at the distribution
of the classes of fraud.

. use https://www.stata-press.com/data/r18/creditcard
(Credit card data)
. tabulate fraud

Is
fraudulent Freq. Percent Cum.

No 284,315 99.83 99.83
Yes 492 0.17 100.00

Total 284,807 100.00

The data are highly imbalanced; only 0.17% of the response belongs to the class yes.

Next we put the data into an H2O frame. Recall that h2o init initiates an H2O cluster, h2oframe
put loads the current Stata dataset into an H2O frame, and h2oframe changemakes the specified frame
the current H2O frame. We use the h2oframe split command to randomly split the credit frame into
a training frame (70% of observations) and a testing frame (30% of observations), which we name train
and test, respectively. We also change the current frame to train. For details, see Prepare your data
for H2O machine learning in Stata in [H2OML] h2oml and see [H2OML] H2O setup.

. h2o init
(output omitted)

. _h2oframe put, into(credit)
Progress (%): 0 100

h2omlgraph prcurve — Produce precision–recall curve plot+ 265

. _h2oframe split credit, into(train test) split(0.7 0.3) rseed(19)

. _h2oframe change train

We use random forest binary classification with 3-fold cross-validation to fit a model, and we specify

h2orseed() for reproducibility. Because our goal is to compare ROC and precision–recall curves, we

do not implement tuning. We store the estimation results by using the h2omlest store command.

. h2oml rfbinclass fraud v1-v28 amount, h2orseed(19) cv(3, modulo)
Progress (%): 0 0.4 1.9 3.5 7.0 12.9 20.0 23.9 28.0 31.9 35.4 38.9 44.4 50.0 54.
> 0 57.4 61.0 63.4 69.9 75.0 75.0 76.4 81.9 86.5 91.5 99.0 100
Random forest binary classification using H2O
Response: fraud
Frame: Number of observations:

Training: train Training = 199,612
Cross-validation = 199,612

Cross-validation: Modulo Number of folds = 3
Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 19 No. of bins cat. = 1,024
avg = 19.9 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .0057128 .0054806
Mean class error .0890433 .0904708

AUC .940396 .9553414
AUCPR .8348062 .8391036

Gini coefficient .8807921 .9106828
MSE .0004454 .0004531

RMSE .0211043 .0212871

. h2omlest store RF

h2omlgraph prcurve — Produce precision–recall curve plot+ 266

Now we plot the ROC curve by using the h2omlgraph roc command.

. h2omlgraph roc

0

.2

.4

.6

.8

1

T
ru

e-
po

si
tiv

e
ra

te

0 .2 .4 .6 .8 1
False-positive rate

AUC = .9553

Cross-validation ROC curve
using H2O

As expected, the ROC curve fails to capture the imbalance in the response and shows good performance

of the model.

On the other hand, the precision–recall curve, plotted below, shows an abrupt decrease in performance

closer to the right side.

. h2omlgraph prcurve

0

.2

.4

.6

.8

1

P
re

ci
si

on

0 .2 .4 .6 .8 1
Recall

AUCPR = .8391; ref. AUCPR = .0018

Cross-validation precision–recall
curve using H2O

The abrupt drop in precision when recall is greater than 0.8 suggests that the model’s ability to dis-

tinguish between positive and negative classes diminishes substantially at certain thresholds.

The horizontal black line in the graph is the reference line. The reference line of the precision–

recall curve is determined by the proportion of positive classes in the response (the ratio of the number

of positives and the total number of observations). It corresponds to the model that always predicts a

positive class.

h2omlgraph prcurve — Produce precision–recall curve plot+ 267

Note that the h2omlgraph prcurve command by default plotted the precision and recall values based
on cross-validation because the cv() option was specified and cross-validation was performed during

estimation.

Example 2: Comparing models using the precision–recall curve
In example 1, we plotted the precision–recall curve for random forest binary classification. In practice,

the precision–recall curve is often used to compare the performance of different models and methods on

a testing frame. In this example, we compare the precision–recall curves for the random forest method

and the gradient boosting machine (GBM) method.

We use the h2omlpostestframe command to set the testing frame for the random forest model

estimated in example 1.

. h2omlpostestframe test
(testing frame test is now active for h2oml postestimation)

Then we perform gradient boosting binary classification and store the estimation results.

. h2oml gbbinclass fraud v1-v28 amount, h2orseed(19) cv(3, modulo)
Progress (%): 0 0.9 1.9 10.9 23.4 43.5 52.4 58.9 65.4 71.4 75.4 81.9 91.5 100
Gradient boosting binary classification using H2O
Response: fraud
Loss: Bernoulli
Frame: Number of observations:

Training: train Training = 199,612
Cross-validation = 199,612

Cross-validation: Modulo Number of folds = 3
Model parameters
Number of trees = 50 Learning rate = .1

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 5 No. of bins cat. = 1,024
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .0069067 .0213072
Mean class error .0932605 .1597576

AUC .9220793 .8142659
AUCPR .8075749 .5743456

Gini coefficient .8441585 .6285319
MSE .0004101 .0009271

RMSE .0202519 .0304475

. h2omlest store GBM

. h2omlpostestframe test
(testing frame test is now active for h2oml postestimation)

h2omlgraph prcurve — Produce precision–recall curve plot+ 268

To compare GBM and random forest, with default hyperparameters, we use h2omlgraph prcurve
with the models() option.

. h2omlgraph prcurve, models(RF GBM)

0

.2

.4

.6

.8

1

P
re

ci
si

on

0 .2 .4 .6 .8 1
Recall

RF
GBM
Reference

RF AUCPR = .8326; GBM AUCPR = .6357
Ref. AUCPR = .0016
Testing frame: test

Precision–recall curves
using H2O

Based on the graph above, random forest performs better than GBM.

References
Davis, J., and M. Goadrich. 2006. “The relationship between precision-recall and ROC curves”. In Proceedings of the

23rd International Conference onMachine Learning, 233–240. NewYork: Association for ComputingMachinery. https:

//doi.org/10.1145/1143844.1143874.

Pozzolo, A. D., G. Boracchi, O. Caelen, C. Alippi, and G. Bontempi. 2018. Credit card fraud detection: A realistic

modeling and a novel learning strategy. IEEE Transactions on Neural Networks and Learning Systems 29: 3784–3797.

https://doi.org/10.1109/tnnls.2017.2736643.

Pozzolo, A. D., O. Caelen, R. A. Johnson, and G. Bontempi. 2015. “Calibrating probability with undersampling for

unbalanced classification”. In Proceedings of the IEEE Symposium Series on Computational Intelligence, 159–166.

Piscataway, NJ: IEEE. https://doi.org/10.1109/SSCI.2015.33.

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2omlgraph roc — Produce ROC curve plot+

https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1109/tnnls.2017.2736643
https://doi.org/10.1109/SSCI.2015.33

h2omlgraph roc — Produce ROC curve plot+

+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
h2omlgraph roc plots the receiver operating characteristic (ROC) curve after binary classification

performed by h2oml gbbinclass and h2oml rfbinclass. With binary classification, the predicted

probability for each observation is compared with a threshold value to determine whether the observation

is predicted to be in the positive class or the negative class. Thus, for different threshold values, different

numbers of observations are classified as positive and negative. The ROC curve allows us to evaluate the

tradeoff between the true-positive rate (TPR) and false-positive rate (FPR) by plotting these metrics for a

variety of threshold values.

The curve produced by plotting TPR versus FPR is useful for evaluating model performance. A large

area under the curve (AUC) indicates that the model has a high true-positive rate and low false-positive

rate.

Quick start
Plot the ROC curve

h2omlgraph roc

As above, but report results based on the validation data

h2omlgraph roc, valid

As above, but remove the reference line

h2omlgraph roc, valid norefline

Menu
Statistics > H2O machine learning

269

h2omlgraph roc — Produce ROC curve plot+ 270

Syntax
h2omlgraph roc [, options]

options Description

Main

models(namelist) specify the name or a list of names of stored estimation
results

savedata(filename[, replace]) save plot data to filename

Plot options

rlopts(line options) affect rendition of reference line

norefline suppress plotting reference line

lineopts(line options) affect rendition of all ROC curves

line#opts(line options) affect rendition of the ROC curve for model #

twoway options any options other than by() documented in
[G-3] twoway options

train specify that the TPR and FPR be reported using training results

valid specify that the TPR and FPR be reported using validation
results

cv specify that the TPR and FPR be reported using
cross-validation results

test specify that the TPR and FPR be computed using the
testing frame

test(framename) specify that the TPR and FPR be computed using data in
testing frame framename

frame(framename) specify that the TPR and FPR be computed using data in
H2O frame framename

framelabel(string) label frame as string in the output

train, valid, cv, test, test(), frame(), and framelabel() do not appear in the dialog box.

Options

� � �
Main �

models(namelist) specifies the name or the list of the names of the stored estimation results for which

the ROC curves are plotted. For each model, the displayed curve corresponds to the default frame of

that model when a postestimation frame has not been set with h2omlpostestframe.

savedata(filename[, replace]) saves the plot data to a Stata data file (.dta file). replace specifies
that filename be overwritten if it exists.

� � �
Plot options �

rlopts(line options) affects the rendition of the reference line. See [G-3] line options.

norefline suppresses plotting the reference line. The 45-degree reference line is the ROC curve that is
expected if predictions are a random guess. The area between the ROC curve for the model and the

reference line indicates how much better the model performs over a random guess.

lineopts(line options) affects the rendition of all ROC curves. See [G-3] line options.

h2omlgraph roc — Produce ROC curve plot+ 271

line#opts(line options) affects the rendition of the ROC curve for model #. See [G-3] line options.

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and options for saving the graph to disk

(see [G-3] saving option).

The following options are available with h2omlgraph roc but are not shown in the dialog box:

train, valid, cv, test, test(), and frame() specify the H2O frame for which TPR and FPR are re-

ported. Only one of train, valid, cv, test, test(), or frame() is allowed.

train specifies that TPR and FPR be reported using training results. This is the default when neither

validation nor cross-validation is performed during estimation and when a postestimation frame

has not been set with h2omlpostestframe.

valid specifies that TPR and FPR be reported using validation results. This is the default when val-

idation is performed during estimation and when a postestimation frame has not been set with

h2omlpostestframe. valid may be specified only when the validframe() option is specified
with h2oml gbm or h2oml rf.

cv specifies that TPR and FPR be reported using cross-validation results. This is the default when

cross-validation is performed during estimation and when a postestimation frame has not been set

with h2omlpostestframe. cv may be specified only when the cv or cv() option is specified

with h2oml gbm or h2oml rf.

test specifies that TPR and FPR be computed on the testing frame specified with h2omlpostest-
frame. This is the default when a testing frame is specified with h2omlpostestframe. test
may be specified only after a testing frame is set with h2omlpostestframe. test is necessary

only when a subsequent h2omlpostestframe command is used to set a default postestimation

frame other than the testing frame.

test(framename) specifies that TPR and FPR be computed using data in testing frame framename

and is rarely used. This option is most useful when running a single postestimation command

on the named frame. If multiple postestimation commands are to be run on the same test frame,

h2omlpostestframe provides a more convenient and computationally efficient process for doing
this.

frame(framename) specifies that TPR and FPR be computed using the data in H2O frame framename.

framelabel(string) specifies the label to be used for the frame in the output. This option is not allowed
with the cv option.

Remarks and examples
ROC curves graphically illustrate how well a model performs in terms of the TPR and FPR.

After binary classification, the predicted probability for each observation is compared with a threshold

value to determine whether the observation is predicted to be in the positive class or the negative class.

Observations with probabilities greater than the threshold are classified as positive, and the remaining

observations are classified as negative. Different threshold values lead to different predicted classes.

Therefore, as the threshold changes, the numbers of true positives and false positives also change.

The ROC curve plots the TPR on the 𝑦 axis and FPR on the 𝑥 axis, where each metric is computed across
a range of threshold values. This is useful for evaluating model performance. When the area under the

ROC curve is large (close to 1), the model has a high TPR and low FPR.

h2omlgraph roc — Produce ROC curve plot+ 272

Example 1: Basic example
To best understand the ROC curve, we can find it helpful to first consider the TPR and FPR for individual

threshold values. Below, we use the h2omlestat threshmetric command to obtain these metrics for

three different threshold values.

. h2omlestat threshmetric, threshold(0)
Metrics for specific threshold using H2O
Training frame: auto

Threshold
Input 0

Computed 0

Metric
F1 .4583
F2 .679

F0.5 .3459
Accuracy .2973

Precision .2973
Recall 1

Specificity 0
Min. class accuracy 0
Mean class accuracy .5

True negatives 0
False negatives 0
True positives 22

False positives 52
True-negative rate 0

False-negative rate 0
True-positive rate 1

False-positive rate 1
MCC 0

A threshold of 0 produces a TPR of 1 and an FPR of 1.

h2omlgraph roc — Produce ROC curve plot+ 273

. h2omlestat threshmetric, threshold(0.1)
Metrics for specific threshold using H2O
Training frame: auto

Threshold
Input .1

Computed .125

Metric
F1 .7
F2 .8333

F0.5 .6034
Accuracy .7568

Precision .5526
Recall .9545

Specificity .6731
Min. class accuracy .6731
Mean class accuracy .8138

True negatives 35
False negatives 1
True positives 21

False positives 17
True-negative rate .6731

False-negative rate .0455
True-positive rate .9545

False-positive rate .3269
MCC .5739

A threshold of 0.1 produces a TPR of 0.9545 and an FPR of 0.3269.

. h2omlestat threshmetric, threshold(1)
Metrics for specific threshold using H2O
Training frame: auto

Threshold
Input 1

Computed 1

Metric
F1 .2308
F2 .163

F0.5 .3947
Accuracy .7297

Precision .75
Recall .1364

Specificity .9808
Min. class accuracy .1364
Mean class accuracy .5586

True negatives 51
False negatives 19
True positives 3

False positives 1
True-negative rate .9808

False-negative rate .8636
True-positive rate .1364

False-positive rate .0192
MCC .2368

A threshold of 1 produces a TPR of 0.1364 and an FPR of 0.0192.

h2omlgraph roc — Produce ROC curve plot+ 274

If we repeat the same exercise with more threshold values and graph the corresponding TPRs and FPRs,

the resulting curve is the ROC curve in the graph below.

0

.2

.4

.6

.8

1

T
ru

e-
po

si
tiv

e
ra

te

0 .2 .4 .6 .8 1
False-positive rate

AUC = .92
Training frame: auto

ROC curve using H2O

The black reference line is the ROC curve for a method that randomly classifies with probability equal

to 0.5. Therefore, a model that has a ROC curve that lies below the reference line performs worse than

a random guess. Similarly, the further a model’s ROC curve lies above the reference line, the better the

model performs over a random guess.

We can also use ROC curves to compare models. The ROC curve located closest to the upper-left

corner has the best performance. If ROC curves of two models overlap, then the higher AUCmay indicate

a better performance. In h2omlgraph roc, we can compare models by specifying the models() option
with the names of two or more stored results.

Example 2: ROC for one model
In this example, we plot and interpret the ROC curve after performing random forest binary classifi-

cation.

We start by opening the 1978 automobile data (auto.dta) in Stata and then putting the data into
an H2O frame. Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata

dataset into an H2O frame, and h2oframe change makes the specified frame the current H2O frame.

We use the h2oframe split command to randomly split the auto frame into a training frame (80% of

observations) and a testing frame (20% of observations), which we name train and test, respectively.
We also change the current frame to train. For details, see Prepare your data for H2O machine learning

in Stata in [H2OML] h2oml and [H2OML] H2O setup.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile dataset)
. h2o init
(output omitted)

. _h2oframe put, into(auto)
Progress (%): 0 100
. _h2oframe split auto, into(train test) split(0.8 0.2) rseed(19)
. _h2oframe change train

h2omlgraph roc — Produce ROC curve plot+ 275

Next we perform random forest binary classification with 3-fold cross-validation and store the esti-

mation results by using the h2omlest store command.

. global predictors price mpg trunk weight length

. h2oml rfbinclass foreign $predictors, h2orseed(19) cv(3, modulo)
Progress (%): 0 36.5 100
Random forest binary classification using H2O
Response: foreign
Frame: Number of observations:

Training: train Training = 63
Cross-validation = 63

Cross-validation: Modulo Number of folds = 3
Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 4 No. of bins cat. = 1,024
avg = 5.3 No. of bins root = 1,024
max = 8 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .8986088 .4191571
Mean class error .1166667 .1166667

AUC .8851852 .8771605
AUCPR .590704 .5771737

Gini coefficient .7703704 .754321
MSE .1331692 .144763

RMSE .3649235 .3804774

. h2omlest store RF

Finally, we plot the ROC curve by using the h2omlgraph roc command.

. h2omlgraph roc

0

.2

.4

.6

.8

1

T
ru

e-
po

si
tiv

e
ra

te

0 .2 .4 .6 .8 1
False-positive rate

AUC = .8772

Cross-validation ROC curve
using H2O

h2omlgraph roc — Produce ROC curve plot+ 276

Because the cv() option was specified and cross-validation was performed during the estimation, the
default reported results correspond to the metrics calculated using cross-validation. The closer the curve

is to the upper-left corner, the better the performance. This model performs substantially better than the

reference line corresponding to random guessing.

Example 3: Comparing models using ROC

In example 2, we plotted the ROC curve for the random forest binary classification. In practice, the

ROC curve is often used to compare the performance of different models on a testing frame. In this

example, we compare the ROC curve for the random forest method with the one for the gradient boosting

machine (GBM) method.

We use the h2omlpostestframe command to set the testing frame for the random forest model

estimated in example 2.

. h2omlpostestframe test
(testing frame test is now active for h2oml postestimation)

Then we perform gradient boosting binary classification, set the testing frame for this model, and

store the estimation results.

. h2oml gbbinclass foreign $predictors, h2orseed(19) cv(3, modulo)
Progress (%): 0 95.4 100
Gradient boosting binary classification using H2O
Response: foreign
Loss: Bernoulli
Frame: Number of observations:

Training: train Training = 63
Cross-validation = 63

Cross-validation: Modulo Number of folds = 3
Model parameters
Number of trees = 50 Learning rate = .1

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 2 No. of bins cat. = 1,024
avg = 3.5 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .0931244 .2803522
Mean class error .0111111 .0666667

AUC .9975309 .9259259
AUCPR .9938208 .7733418

Gini coefficient .9950617 .8518519
MSE .0211802 .096305

RMSE .1455344 .3103305

. h2omlpostestframe test
(testing frame test is now active for h2oml postestimation)
. h2omlest store GBM

h2omlgraph roc — Produce ROC curve plot+ 277

To compare the ROC curves of the GBM and random forest models, with default hyperparameters, we

use h2omlgraph roc with the models() option.

. h2omlgraph roc, models(RF GBM)

0

.2

.4

.6

.8

1

T
ru

e-
po

si
tiv

e
ra

te

0 .2 .4 .6 .8 1
False-positive rate

RF
GBM
Reference

RF AUC = .9286; GBM AUC = .9643
Testing frame: test

ROC curves using H2O

Based on the graph above, GBM performs better than random forest.

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

h2omlgraph scorehistory — Produce score history plot+

+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
h2omlgraph scorehistory plots the evolution of a performance metric (a score) as the number of

trees grows in a machine learning model fit using either h2oml gbm or h2oml rf. The performance metric

is based on the training set. If validation was specified during estimation, the performance metric on the

validation set is also plotted. If cross-validation was specified during estimation, the performance metric

based on the cross-validation results and based on the training on cross-validation results is also plotted.

Quick start
Plot the score history

h2omlgraph scorehistory

As above, but show the best score reference line

h2omlgraph scorehistory, bsline

Menu
Statistics > H2O machine learning

278

h2omlgraph scorehistory — Produce score history plot+ 279

Syntax
h2omlgraph scorehistory [, options]

options Description

Main

metric(metric) specify the metric (score) to be plotted

table display results as a table

savedata(filename[, replace]) save plot data to filename

Plot options

bsline plot the best score reference line

bslineopts(line options) affect rendition of the best score reference line

lineopts(line options) affect rendition of all training, validation, and
cross-validation curves

trainlineopts(line options) affect rendition of training curve

validlineopts(line options) affect rendition of validation curve

cvtrainlineopts(line options) affect rendition of the training on cross-validation curve

cvlineopts(line options) affect rendition of cross-validation curve

nocvtrainsd do not plot the standard deviation band for the training on
cross-validation curve

cvtrainsdopts(area options) affect rendition of the standard deviation band for the training
on cross-validation curve

nocvsd do not plot the standard deviation band for the cross-validation
curve

cvsdopts(area options) affect rendition of the standard deviation band for the
cross-validation curve

twoway options any options other than by() documented in
[G-3] twoway options

trainopts(line options) synonym for trainlineopts()
validopts(line options) synonym for validlineopts()
cvtrainopts(line options) synonym for cvtrainlineopts()
cvopts(line options) synonym for cvlineopts()

Options

� � �
Main �

metric(metric) specifies the metric to be plotted. The allowed options are the following:

After regression: deviance, rmse, and mae.

After binary classification: logloss, misclassification, auc, aucpr, and rmse.

After multiclass classification: logloss, misclassification, and rmse.

deviance is the default metric for regression. logloss is the default metric for binary and multiclass
classification.

table displays results as a table. The table is suppressed by default.

savedata(filename[, replace]) saves the plot data to a Stata data file (.dta file). replace specifies
that filename be overwritten if it exists.

h2omlgraph scorehistory — Produce score history plot+ 280

� � �
Plot options �

bsline plots the best score reference line for the training, validation, or cross-validation curve. The best
score corresponds to the optimal training score (the optimal metric) if neither validation nor cross-

validation is performed during estimation. When validation or cross-validation is performed, the best

score corresponds to the optimal validation or cross-validation score, respectively.

bslineopts(line options) affects rendition of the best score reference line. For options, see

[G-3] line options.

lineopts(line options) affects the rendition of both training and validation curves when

validframe() is specified during estimation or the rendition of training, training on cross-validation,
and cross-validation curves when cv() is specified during estimation. If neither validframe() nor

cv() is specified, only training curve is affected. See [G-3] line options.

trainlineopts(line options) affects the rendition of the training curve. See [G-3] line options.

validlineopts(line options) affects the rendition of the validation curve when validframe() is

specified during estimation. See [G-3] line options.

cvtrainlineopts(line options) affects the rendition of the training on cross-validation curve when

cv() is specified during estimation. During 𝑘-fold cross-validation, the training data are separated
into 𝑘 folds, from which 𝑘 − 1 are used for training and 1 for prediction. The training on cross-

validation curve plots the average across the 𝑘 cross-validation iterations of the metrics computed on
the training data (from 𝑘 − 1 folds). See [G-3] line options.

cvlineopts(line options) affects the rendition of the cross-validation curve when cv() is specified

during estimation. See [G-3] line options.

nocvtrainsd suppresses plotting the standard deviation band for the mean training on cross-validation
curve. The standard deviation band is included by default.

cvtrainsdopts(area options) affects rendition of the standard deviation band for mean training on

cross-validation metrics. See [G-3] area options.

nocvsd suppresses plotting the standard deviation band for the mean cross-validation curve.

cvsdopts(area options) affects rendition of the standard deviation band for the mean cross-validation
curve. See [G-3] area options.

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and options for saving the graph to disk

(see [G-3] saving option).

trainopts(line options) is a synonym for trainlineopts().

validopts(line options) is a synonym for validlineopts().

cvtrainopts(line options) is a synonym for cvtrainlineopts().

cvopts(line options) is a synonym for cvlineopts().

Remarks and examples
We assume you have read [H2OML] Intro.

Overfitting occurswhen amachine learningmodel fits the training data toowell. This harms the ability

of the model to generalize to new data, increasing the generalization error. Underfitting occurs when

performance can be improved by increasing complexity of the model by modifying the hyperparameters.

h2omlgraph scorehistory — Produce score history plot+ 281

The score history curve, also known as the learning curve, is a useful graphical tool for examining the

overfitting or underfitting of a model. It plots a performance metric (a score) as a function of the number

of trees and allows you to evaluate the optimal number of trees.

Example 1: Over- and underfitting with score history
Consider churn.dta, described in example 1 of [H2OML] h2oml and where the goal is to build a

predictive model that will predict the best behavior of a customer who is more likely to churn or retain

the company’s services.

We start by opening the churn dataset in Stata and then putting the data into an H2O frame. Recall

that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset into an H2O frame,
and h2oframe changemakes the specified frame the current H2O frame. We use the h2oframe split
command to randomly split the churn frame into a training frame (80% of observations) and a validation

frame (20% of observations), which we name train and valid, respectively. We also change the current

frame to train. For details, see Prepare your data for H2O machine learning in Stata in [H2OML] h2oml

and [H2OML] H2O setup.

. use https://www.stata-press.com/data/r18/churn
(Telco customer churn data)
. h2o init
(output omitted)

. _h2oframe put, into(churn)
Progress (%): 0 100
. _h2oframe split churn, into(train valid) split(0.8 0.2) rseed(19)
. _h2oframe change train

Next we define a global macro, predictors, to store predictors, and perform gradient boosting binary

classification with 200 trees.

. global predictors latitude longitude tenuremonths monthlycharges
> totalcharges gender seniorcitizen partner dependents phoneservice
> multiplelines internetserv onlinesecurity onlinebackup deviceprotect
> techsupport streamtv streammovie contract paperlessbill paymethod
. h2oml gbbinclass churn $predictors, validframe(valid) ntrees(200) h2orseed(19)
Progress (%): 0 2.9 12.5 28.9 46.5 100
Gradient boosting binary classification using H2O
Response: churn
Loss: Bernoulli
Frame: Number of observations:

Training: train Training = 5,643
Validation: valid Validation = 1,400

Model parameters
Number of trees = 200 Learning rate = .1

actual = 200 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 5 No. of bins cat. = 1,024
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001

h2omlgraph scorehistory — Produce score history plot+ 282

Metric summary

Metric Training Validation

Log loss .2353826 .4184287
Mean class error .0982787 .2314265

AUC .9692747 .8515924
AUCPR .9264498 .6724044

Gini coefficient .9385495 .7031848
MSE .0679986 .1370254

RMSE .2607655 .3701694

Next we plot the score history curve by using the h2omlgraph scorehistory command.

. h2omlgraph scorehistory
Training frame: train
Validation frame: valid

.2

.3

.4

.5

.6

Lo
g

lo
ss

0 50 100 150 200
Number of trees

Training
Validation

Score history using H2O

We can see that when the number of trees is fewer than 10, learning and generalization behave simi-

larly. In other words, the log loss is similar for the training and validation data. For these small numbers

of trees, the log-loss metric is large; the model is underfitting the training data, and performance can be

improved. However, when the number of trees exceeds 40, the log-loss metric for the validation data

starts to increase. Generalization stops improving, even though the training metrics continue to improve.

This indicates that the model learns patterns specific to training data that cannot be extended to new data

points. At this stage, the model is overfitting.

Example 2: Score history with cross-validation
In example 1, we used a validation frame during estimation. When cross-validation is used, the

h2omlgraph scorehistory command provides not only the score history curves for cross-validation

but also standard deviation bands for quantifying uncertainty.

h2omlgraph scorehistory — Produce score history plot+ 283

We open auto.dta in Stata and then put it into an H2O frame. Because we are focused on evaluating

cross-validation, we do not split the data into training and testing sets as we typically would in practice.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
(output omitted)

. _h2oframe put, into(auto)
Progress (%): 0 100
. _h2oframe change auto

We perform gradient boosting binary classification with 3-fold cross-validation and use 100 trees.

. h2oml gbbinclass foreign price length weight trunk mpg, h2orseed(19)
> cv(3, modulo) ntrees(100)
Progress (%): 0 15.7 58.9 100
Gradient boosting binary classification using H2O
Response: foreign
Loss: Bernoulli
Frame: Number of observations:

Training: auto Training = 74
Cross-validation = 74

Cross-validation: Modulo Number of folds = 3
Model parameters
Number of trees = 100 Learning rate = .1

actual = 100 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 2 No. of bins cat. = 1,024
avg = 4.3 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .0319483 .5174966
Mean class error 0 .1153846

AUC 1 .9143357
AUCPR 1 .802104

Gini coefficient 1 .8286713
MSE .0050191 .1460853

RMSE .0708458 .3822111

h2omlgraph scorehistory — Produce score history plot+ 284

Next we plot the score history using the h2omlgraph scorehistory command.

. h2omlgraph scorehistory
Training frame: auto

0

.2

.4

.6

.8

Lo
g

lo
ss

0 20 40 60 80 100
Number of trees

Training
Training on cross-validation
Cross-validation
± 1SD train. on cross-validation
± 1SD cross-validation

Score history using H2O

The band representing the cross-validation standard deviation, displayed in green, has an hourglass-

like shape. The uncertainty is greater at the beginning, where the model is underfitting. It then narrows

in the regions where the model’s performance is likely to generalize well before widening again at the

end, where the model overfits the training data.

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

h2omlgraph shapsummary — Produce SHAP beeswarm plot+

+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
h2omlgraph shapsummary produces the beeswarm plot of Shapley additive explanation (SHAP) val-

ues after regression or binary classification performed by h2oml gbregress, h2oml rfregress, h2oml
gbbinclass, or h2oml rfbinclass. SHAP values indicate the contributions of predictors to the pre-

diction for a given observation. The beeswarm plot allows visualization of SHAP values for many ob-

servations by placing them in a one-dimensional scatterplot for each predictor where the overlapping

observations are separated (or jittered) so that each SHAP value is visible.

SHAP values are considered a unified measure for variable importance and machine learning model

explanation. For an overview of SHAP values, see Remarks and examples in [H2OML] h2omlgraph

shapvalues.

Quick start
Plot SHAP summary

h2omlgraph shapsummary

As above, but plot the summary for predictors x1, x2, and x3
h2omlgraph shapsummary x1-x3

Plot the summary for the top 5 highest SHAP-important predictors

h2omlgraph shapsummary, top(5)

Menu
Statistics > H2O machine learning

285

h2omlgraph shapsummary — Produce SHAP beeswarm plot+ 286

Syntax
h2omlgraph shapsummary [predictors] [, options]

options Description

Main

top(#) display the top # highest SHAP-important predictors;
default is top(20)

samples(#) specify the number of observations to be randomly sampled
to estimate the SHAP approximation; default is samples(1000)

rseed(#) set random-number seed to #

savedata(filename[, replace]) save plot data to filename

Plot options

norefline suppress vertical reference line identifying the origin

rlopts(line options) affect rendition of reference line

startcolor(colorstyle) determine starting color for the color legend

endcolor(colorstyle) determine ending color for the color legend

jitter(#) affect the magnitude of jitter of overlapped observations

twoway options any option other than by() documented in [G-3] twoway options

train specify that the SHAP summary be reported using training results

valid specify that the SHAP summary be reported using validation results

test specify that the SHAP summary be computed using testing frame

test(framename) specify that the SHAP summary be computed using data
in testing frame framename

frame(framename) specify that the SHAP summary be computed using data
in H2O frame framename

framelabel(string) label frame as string in the output

train, valid, test, test(), frame(), and framelabel() do not appear in the dialog box.

Options

� � �
Main �

top(#) specifies the number of highest SHAP-important predictors to be included in the plot. Up to 20

top important predictors are included by default. top() is not allowed if predictors are specified.

samples(#) specifies the maximum number of observations to be randomly sampled with replacement

to approximate the estimate of the contribution function. The default is samples(1000).

rseed(#) specifies the random-number seed for reproducibility.

savedata(filename[, replace]) saves the plot data to a Stata data file (.dta file). replace specifies
that filename be overwritten if it exists.

� � �
Plot options �

norefline suppresses the vertical reference line identifying the origin. The line is included by default.

rlopts(line options) affects the rendition of the reference line. See [G-3] line options.

h2omlgraph shapsummary — Produce SHAP beeswarm plot+ 287

startcolor(colorstyle) determines the starting color of the color legend. The color legend shows

whether the value of the given predictor for the observation is low (starting color) or high (ending

color). See [G-4] colorstyle.

endcolor(colorstyle) determines the ending color of the color legend. The color legend shows whether
the value of the given predictor for the observation is low (starting color) or high (ending color). See

[G-4] colorstyle.

jitter(#) adds spherical random noise to the data before plotting. # represents the size of the noise as

a percentage of the graphical area.

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and options for saving the graph to disk

(see [G-3] saving option).

The following options are available with h2omlgraph shapsummary but are not shown in the dialog

box:

train, valid, test, test(), and frame() specify the H2O frame for which SHAP summary is reported.
Only one of train, valid, test, test(), or frame() is allowed.

train specifies that SHAP summary be reported using training results. This is the default when vali-
dation is not performed during estimation and when a postestimation frame has not been set with

h2omlpostestframe.

valid specifies that SHAP summary be reported using validation results. This is the default when

validation is performed during estimation and when a postestimation frame has not been set with

h2omlpostestframe. valid may be specified only when the validframe() option is specified
with h2oml gbm or h2oml rf.

test specifies that SHAP summary be computed on the testing frame specified with h2omlpostest-
frame. This is the default when a testing frame is specified with h2omlpostestframe. testmay
be specified only after a testing frame is set by using h2omlpostestframe. test is necessary only
when a subsequent h2omlpostestframe command is used to set a default postestimation frame

other than the testing frame.

test(framename) specifies that SHAP summary be computed using data in testing frame frame-

name and is rarely used. This option is most useful when running a single postestimation com-

mand on the named frame. If multiple postestimation commands are to be run on the same test

frame, it is more computationally efficient and convenient to specify the testing frame by us-

ing h2omlpostestframe instead of specifying test(framename)with individual postestimation
commands.

frame(framename) specifies that SHAP summary be computed using the data in H2O frame frame-

name.

framelabel(string) specifies the label to be used for the frame in the output.

Remarks and examples
We assume you have read the introduction to explainable machine learning in Interpretation and ex-

planation in [H2OML] Intro and [H2OML] h2omlgraph shapvalues.

Additional examples can be found in example 6 of [H2OML] h2oml and example 2 of [H2OML] h2oml-

graph shapvalues.

h2omlgraph shapsummary — Produce SHAP beeswarm plot+ 288

SHAP values explain the predictions of a model by measuring the contribution of each predictor to

those predictions. For an overview of SHAP values and how they are computed, see Remarks and ex-

amples in [H2OML] h2omlgraph shapvalues. SHAP values can be computed for each observation in the

dataset. The h2omlgraph shapvalues command allows you to plot SHAP values for one observation at
a time. The h2omlgraph shapsummary command discussed here provides a summary beeswarm plot

for evaluating the contribution of predictors across many observations.

Example 1: Interpreting a SHAP summary plot
In this example, we interpret a SHAP summary plot after performing random forest regression.

We start by opening the 1978 automobile data (auto.dta) in Stata and then putting the data into an
H2O frame. Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset
into an H2O frame, and h2oframe changemakes the specified frame the current H2O frame. For details,
see Prepare your data for H2O machine learning in Stata in [H2OML] h2oml and [H2OML] H2O setup.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
(output omitted)

. _h2oframe put, into(auto)
Progress (%): 0 100
. _h2oframe change auto

For simplicity, we save the predictor names in the global macro predictors in Stata. We then per-

form random forest regression with 100 trees and limit the maximum depth of the trees to 5.

. global predictors foreign mpg trunk weight length

. h2oml rfregress price $predictors, h2orseed(19) ntrees(100) maxdepth(5)
Progress (%): 0 100
Random forest regression using H2O
Response: price
Frame: Number of observations:

Training: auto Training = 74
Model parameters
Number of trees = 100

actual = 100
Tree depth: Pred. sampling value = -1

Input max = 5 Sampling rate = .632
min = 2 No. of bins cat. = 1,024
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Deviance 3129378
MSE 3129378

RMSE 1769.005
RMSLE .2315556

MAE 1229.955
R-squared .6353542

h2omlgraph shapsummary — Produce SHAP beeswarm plot+ 289

Finally, we use the h2omlgraph shapsummary command to plot the SHAP summary. The

samples(300) option specifies that 300 randomly sampled observations be used, and the rseed(19)
option is for reproducibility.

. h2omlgraph shapsummary, samples(300) rseed(19)

foreign

weight

trunk

mpg

length

P
re

di
ct

or

0 1000 2000 3000 4000
SHAP contribution

0

1

N
or

m
al

iz
ed

 p
re

di
ct

or
 v

al
ue

Training frame: auto

SHAP summary using H2O

The summary plot is a beeswarm plot that provides a summary of how the predictors in a dataset affect

the model’s predictions. In the graph, for each predictor, each observation is represented as a dot. The

horizontal location shows the contributed SHAP value for a specific observation. Colors showwhether the

predictor has high (red) or low (blue) observed values. For example, smaller observed values of weight

are mostly associated with smaller SHAP contributions and a smaller predicted price. On the other hand,

smaller observed values of mpg mostly imply larger SHAP contributions and a larger predicted price.

h2omlgraph shapsummary offers a number of options to control the look of this graph. The start

color and end color for the normalized predictions can be changed by using the scolor() and ecolor()
options. We can specify the jitter() option to control how much the observations overlap. We can

also specify the sample() option to control the maximum number of observations to be sampled from

the dataset.

h2omlgraph shapsummary — Produce SHAP beeswarm plot+ 290

Example 2: Explaining voting behavior
In example 2 of [H2OML] h2omlgraph shapvalues, we used local SHAP explanation to study voting

behavior for a specific observation. In this example, we use h2omlgraph shapsummary to explain voting
behavior from a global perspective.

We assume that the h2oml gbbinclass command in example 2 of [H2OML] h2omlgraph shapvalues

has been run to perform gradient boosting binary classification. Here we focus on the SHAP summary

plot for the top 5 SHAP-important predictors.

. h2omlgraph shapsummary, top(5) rseed(19)
Progress (%): 0 100

p2000

g2002

age

p2002

p2004

P
re

di
ct

or

-1 -.5 0 .5 1
SHAP contribution

0

1

N
or

m
al

iz
ed

 p
re

di
ct

or
 v

al
ue

Training frame: social

SHAP summary using H2O

For binary classification, the explanation is with respect to the positive class, which in our case is

vote = Yes. We see that being young (represented by blue points for age) has a negative effect on the
probability of voting because lower ages are mostly associated with negative SHAP contributions. The

p2000, p2002, p2004, and g2002 variables are indicators for voting in primary and general elections.

We see that the previous voting behavior of the subjects has a substantial effect on future voting behavior.

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2omlgraph shapvalues — Produce SHAP values plot for individual observations+

h2omlgraph shapvalues — Produce SHAP values plot for individual observations+

+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description
h2omlgraph shapvalues plots the Shapley additive explanation (SHAP) values for an individual ob-

servation after regression or binary classification performed by h2oml gbregress, h2oml rfregress,
h2oml gbbinclass, or h2oml rfbinclass. SHAP values indicate the contributions of predictors to the
prediction for a given observation. SHAP values are considered a unified measure for variable importance

and machine learning model explanation.

Quick start
Plot individual SHAP values for the third observation

h2omlgraph shapvalues, obs(3)

As above, but use H2O frame myframe and predictors x1, x2, and x3
h2omlgraph shapvalues x1-x3, obs(3) frame(myframe)

As above, but instead of x1, x2, and x3, plot the top 4 SHAP-important predictors

h2omlgraph shapvalues, obs(3) frame(myframe) top(4)

As above, but save the result in the shapval3.dta file
h2omlgraph shapvalues, obs(3) frame(myframe) top(4) ///

savedata(shapval3, replace)

Menu
Statistics > H2O machine learning

291

h2omlgraph shapvalues — Produce SHAP values plot for individual observations+ 292

Syntax
h2omlgraph shapvalues [predictors], obs(#) [options]

options Description

Main
∗ obs(#) specify the observation number for which SHAP will be computed

impplot plot SHAP values as zero-based importance—as deviations
from zero rather than deviations from average prediction

top(#) display the top # highest SHAP-important predictors;
default is top(20)

savedata(filename[, replace]) save plot data to filename

Plot options

norefline suppress reference line at zero for zero-based importance

rlopts(line options) affect rendition of reference line for zero-based importance

nopredline suppress prediction line

predlineopts(line options) affect rendition of prediction line

nopredlabel suppress label of prediction line

predlabelopts(textbox options) affect labeling of prediction line

nobiasline suppress bias line

biaslineopts(line options) affect rendition of bias line that identifies the expected
model prediction

nobiaslabel suppress label of bias line

biaslabelopts(textbox options) affect labeling of bias line

noboundarylines suppress boundary lines for SHAP contribution bars

boundarylineopts(line options) affect rendition of boundary lines for SHAP contribution bars

novaluelabel suppress labels of SHAP values

valuelabelopts(label opts) affect labeling of SHAP values

poscolor(colorstyle) affect color for positive SHAP values

negcolor(colorstyle) affect color for negative SHAP values

bar#opts(bar opts) affect rendition of the bar for the #th SHAP-important predictor

baropts(bar opts) affect rendition of all bars for the SHAP plot

barwidth(#) specify the bar width; default is barwidth(0.9)

Y axis, X axis, Titles, Legend, Overall

twoway options any option other than by() documented in
[G-3] twoway options

train specify that SHAP values be reported using training results

valid specify that SHAP values be reported using validation results

test specify that SHAP values be computed using testing frame

test(framename) specify that SHAP values be computed using data
in testing frame framename

frame(framename) specify that SHAP values be computed using data
in H2O frame framename

framelabel(string) label frame as string in the output

∗obs() is required.
train, valid, test, test(), frame(), and framelabel() do not appear in the dialog box.

h2omlgraph shapvalues — Produce SHAP values plot for individual observations+ 293

Options

� � �
Main �

obs(#) specifies the observation number for which SHAPwill be computed. #must be a positive integer.
obs() is required.

impplot plots SHAP values as deviations from zero rather than deviations from the average model

prediction. impplot is not allowed with any of options predlineopts(), predlabelopts(),
biaslineopts(), biaslabelopts(), valuelabelopts(), or boundarylineopts().

top(#) specifies the number of highest SHAP-important predictors to be included in the plot. Up to 20

top important predictors are included by default. top() is not allowed if predictors are specified.

savedata(filename[, replace]) saves the plot data to a Stata data file (.dta file). replace specifies
that filename be overwritten if it exists.

� � �
Plot options �

norefline suppresses the reference line at zero when zero-based importance is plotted. norefline
may be specified with only option impplot. The reference line is included by default.

rlopts(line options) affects the rendition of the reference line at zero for zero-based importance.

rlopts() must be specified with the option impplot. See [G-3] line options.

nopredline suppresses prediction line identifying the predicted value for regression or the predicted

probability for classification. When gradient boosting machine is used, the predicted values corre-

spond to the raw predictions of the model before applying the inverse link function.

predlineopts(line options) affects rendition of prediction line. See [G-3] line options. predline-
opts() is not allowed with impplot.

nopredlabel suppresses the label for prediction line.

predlabelopts(textbox options) affects labeling of prediction line. See [G-3] textbox options. pred-
labelopts() is not allowed with impplot.

nobiasline suppresses bias line identifying the expected model response—the contribution of the

model without any predictors. When gradient boosting machine is used, the bias value corresponds

to the raw prediction of the model before applying the inverse link function.

biaslineopts(line options) affects rendition of bias line. See [G-3] line options. biaslineopts()
is not allowed with impplot.

nobiaslabel suppresses the label for the bias line.

biaslabelopts(textbox options) affects labeling of bias line. See [G-3] textbox options. bias-
labelopts() is not allowed with impplot.

noboundarylines suppresses the boundary lines for the SHAP contribution bars.

boundarylineopts(line options) affects the rendition of the lines on the boundaries of the bars for the
SHAP contributions. boundarylineopts() is not allowed with impplot. See [G-3] line options.

novaluelabel suppresses labeling of the SHAP contributions for each predictor.

valuelabelopts(label opts) affects labeling of the SHAP values for each predictor.
See [G-3]marker label options. The labels are numbers that show the SHAP values. valuelabel()
is not allowed with impplot.

h2omlgraph shapvalues — Produce SHAP values plot for individual observations+ 294

poscolor(colorstyle) affects the bar color of the positive SHAP contributions. See [G-4] colorstyle.

negcolor(colorstyle) affects the bar color of the negative SHAP contributions. See [G-4] colorstyle.

bar#opts(bar opts) affects rendition of the bar for the SHAP-important predictor #. In an h2omlgraph
shapvalues plot, the order of the predictors is based on SHAP importance. The predictor with largest
magnitude of SHAP values will be the first and so on. For example, to change the rendition of the bar

for the third-ranked predictor, we need to specify bar3opts(). See [G-2] graph twoway bar.

baropts(bar opts) affects rendition of all bars for the SHAP plot. See [G-2] graph twoway bar.

barwidth(#) specifies the width of the bar. The default is barwidth(0.9).

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and options for saving the graph to disk

(see [G-3] saving option).

The following options are available with h2omlgraph shapvalues but are not shown in the dialog box:

train, valid, test, test(), and frame() specify the H2O frame for which SHAP values are reported.

Only one of train, valid, test, test(), or frame() is allowed.

train specifies that SHAP values be reported using training results. This is the default when vali-

dation is not performed during estimation and when a postestimation frame has not been set with

h2omlpostestframe.

valid specifies that SHAP values be reported using validation results. This is the default when val-

idation is performed during estimation and when a postestimation frame has not been set with

h2omlpostestframe. valid may be specified only when the validframe() option is specified
with h2oml gbm or h2oml rf.

test specifies that SHAP values be computed on the testing frame specified with h2omlpostest-
frame. This is the default when a testing frame is specified with h2omlpostestframe. testmay
be specified only after a testing frame is set by using h2omlpostestframe. test is necessary only
when a subsequent h2omlpostestframe command is used to set a default postestimation frame

other than the testing frame.

test(framename) specifies that SHAP values be computed using data in testing frame framename

and is rarely used. This option is most useful when running a single postestimation command

on the named frame. If multiple postestimation commands are to be run on the same test

frame, it is more computationally efficient and convenient to specify the testing frame by us-

ing h2omlpostestframe instead of specifying test(framename)with individual postestimation
commands.

frame(framename) specifies that SHAP values be computed using the data in H2O frame framename.

framelabel(string) specifies the label to be used for the frame in the output.

Remarks and examples
We assume you have read the introduction to explainable machine learning in Interpretation and ex-

planation in [H2OML] Intro.

h2omlgraph shapvalues — Produce SHAP values plot for individual observations+ 295

SHAP values are used to explain the predictions of a model by measuring the contribution of each

predictor to those predictions. Specifically, for a given prediction, the SHAP value measures the contri-

bution of a predictor to the deviation of that prediction from a base prediction, typically from the average

prediction our model makes (Štrumbelj and Kononenko 2010, 2013; Lundberg and Lee 2017).

In a traditional linear regression with no interaction terms, the computation of SHAP has a simple

closed-form solution. For example, the contribution of predictor 𝑋1 to the prediction is simply the esti-

mated coefficient on 𝑋1 multiplied by the observed value 𝑥1𝑖. However, for a typical machine learning

model, no such coefficients are available, so computing the contributions requires an alternative ap-

proach.

In this entry, we focus on local SHAP explanation, which allows us to explain the effect of predictors

for one observation at a time. The h2omlgraph shapvalues command plots this type of local SHAP

values. For global SHAP explanations, the h2omlgraph shapsummary command uses the Kernel SHAP

algorithm (Lundberg and Lee 2017) and produces a beeswarm plot that summarizes how each predictor

affects predictions across many observations.

For intuition on SHAP values, suppose we have trained a machine learning model, such as random

forest, to predict the price of a car using three predictors: mileage (M), number of accidents (A), and

the presence of add-on features (F). A new car then arrives with mileage equal to 6,000 miles, a history

of 1 accident, and with add-on features. In the h2omlgraph shapvalues command, we specify the

observation number for this new car with the obs() option. Finally, suppose the predicted price for the

car is $32,000 and the average predicted price for all cars is $29,000. Our goal then is to measure the

contribution of each predictor (M, A, and F) to the $32,000− $29,000 = $3,000 by which the predicted

price of the new car deviates from the average predicted price.

The general idea of SHAP values is to imagine that the three predictors collaborate with each other

to achieve the predicted value. For example, suppose for the newly arrived car we start by adding the

predictor M into our model and observe that it contributes $7,000 to the prediction, then add the number

of accidents A predictor and see that it contributes −$5,000. Finally, the presence of add-on features

F contributes $1,000 to the so-called coalition of predictors {M, A}. The contribution of all predictors
then adds up to the $3,000, the deviation we computed above. Unfortunately, the contribution of each

predictor depends on the order at which it enters the model; that is, it depends on the coalition of the

previously entered predictors. Notice that the coalition S of predictors that entered the model before M

could be one of four:

S ∈ {{∅}, {A}, {F}, {A, F}}

And there are eight possible coalitions of predictors:

C = {M,A,F} ∶ {∅}, {M}, {A}, {F}, {M, A}, {M, F}, {A, F}, {M, A, F}

Therefore, the SHAP contribution of M is a weighted average of the differences of contributions of

a coalition with M, denoted 𝑣𝑥(S ∪ M), and a coalition excluding M, denoted 𝑣𝑥(S), for each possible
scenario of S. Here 𝑣𝑥(S) is defined as a conditional expectation of the prediction given the observed
values of predictors in the coalition S,

𝑣𝑥(S) = 𝐸(̂𝑓(x)|xS)

where ̂𝑓(x) is the prediction for a specific observation x. For more details, see Lundberg and Lee (2017)
and Aas, Jullum, and Løland (2021).

h2omlgraph shapvalues — Produce SHAP values plot for individual observations+ 296

For machine learning methods, there is no simple form for the weighted average and with many

predictors, direct computation becomes intractable. Therefore, H2O uses the TREESHAP algorithm, intro-

duced in Lundberg, Erion, and Lee (2018), which is an efficient procedure for the exact computation of

the SHAP values.

SHAP values have desirable properties (Molnar 2022, chap. 9). For instance, the efficiency property

is

̂𝑓(x) = 𝜙0 +
𝑝

∑
𝑗=1

𝜙𝑗

where 𝜙0 = 𝐸{ ̂𝑓(x)} is the average predicted contribution and 𝜙𝑗, 𝑗 = 1, . . . , 𝑝 is the SHAP value of

each predictor. The prediction for each observation is the sum of the average prediction plus the SHAP

values for all predictors.

We can also define SHAP predictor importance (Molnar 2022, chap. 9.6), which is based on the idea

that important predictors are associated with large absolute SHAP values. Thus, the global importance for

predictors 𝑗 = 1, . . . , 𝑝 can be computed by averaging their absolute SHAP values over the observations

𝐼𝑗 = 1
𝑁

𝑛
∑
𝑖=1

|𝜙(𝑖)
𝑗 |

In h2omlgraph shapvalues, you can specify that only a given number of highest SHAP-important pre-
dictors to be included in the graph with the top() option.

Example 1: Interpreting SHAP values
In this example, we interpret SHAP values after performing random forest regression.

We start by opening the 1978 automobile data (auto.dta) in Stata and then putting the data into an
H2O frame. Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset
into an H2O frame, and h2oframe changemakes the specified frame the current H2O frame. For details,
see Prepare your data for H2O machine learning in Stata in [H2OML] h2oml and [H2OML] H2O setup.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
(output omitted)

. _h2oframe put, into(auto)
Progress (%): 0 100
. _h2oframe change auto

h2omlgraph shapvalues — Produce SHAP values plot for individual observations+ 297

For simplicity, we save the predictor names in the global macro predictors in Stata. We then per-

form random forest regression with 100 trees and limit the maximum depth of the trees to 5.

. global predictors foreign mpg trunk weight length

. h2oml rfregress price $predictors, h2orseed(19) ntrees(100) maxdepth(5)
Progress (%): 0 100
Random forest regression using H2O
Response: price
Frame: Number of observations:

Training: auto Training = 74
Model parameters
Number of trees = 100

actual = 100
Tree depth: Pred. sampling value = -1

Input max = 5 Sampling rate = .632
min = 2 No. of bins cat. = 1,024
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Deviance 3129378
MSE 3129378

RMSE 1769.005
RMSLE .2315556

MAE 1229.955
R-squared .6353542

Finally, we use the h2omlgraph shapvalues command to plot SHAP values for the third observation.

. h2omlgraph shapvalues, obs(3)

+19.1

+44.91

-51.26

+152.7

+507.8

ƒ(x) = 4728

E[ƒ(x)] = 4055

foreign = Domestic

length = 168

weight = 2640

mpg = 22

trunk = 12

P
re

di
ct

or

3700 3900 4100 4300 4500 4700 4900
SHAP contribution

Obs. = 3; prediction = 4728.009
Training frame: auto

SHAP values using H2O

In this case, the predicted car price is 4728. We wish to explain the contribution of each predictor to

this predicted price. In the plot, the contributions are plotted bottom to top, starting from the baseline

value, which is the average prediction of 4055. We can see from the top blue bar that trunk = 12 has a

h2omlgraph shapvalues — Produce SHAP values plot for individual observations+ 298

positive SHAP value, which means it increases the predicted price. On the other hand, weight = 2640 has
a negative contribution to the predicted price as indicated by the red bar in the center of the graph. The

sum of the bars in the plot is equal to the difference of the predicted price and the bias term 4728−4055.

If we wish to display contributions of a subset of predictors, for example, trunk and mpg, the plot
can be customized to show contributions of this subset by specifying the names of the predictors in the

h2omlgraph shapvalues command.

. h2omlgraph shapvalues trunk mpg, obs(3)

+12.75

+152.7

+507.8

ƒ(x) = 4728

E[ƒ(x)] = 4055

Remaining predictors

mpg = 22

trunk = 12

P
re

di
ct

or

3700 3900 4100 4300 4500 4700 4900
SHAP contribution

Obs. = 3; prediction = 4728.009
Training frame: auto

SHAP values using H2O

In this case, the bottom bar in the plot shows the total contribution of the remaining predictors. The

order of the predictors is determined based on the magnitude of their SHAP values.

Example 2: Explaining voting behavior
In this example, we consider the social pressure dataset described in example 1 of [H2OML] h2oml

rf. The goal is to explain how the predictors affect the probability of voting in the August 2006 primary

election. As with most explainable machine learning methods, caution is advised when interpreting the

results.

We start by opening the simulated socialpressure.dta dataset in Stata and then putting it into an

H2O frame.

. use https://www.stata-press.com/data/r18/socialpressure
(Social pressure data)
. h2o init
. _h2oframe _put, into(social)
Progress (%): 0 100
. _h2oframe _change social

h2omlgraph shapvalues — Produce SHAP values plot for individual observations+ 299

For convenience, we create a global macro, predictors, in Stata that contains the predictor names
and perform gradient boosting binary classification with a learning rate of 0.05, a maximum tree depth

of 6, and 70 trees.

. global predictors gender g2000 g2002 p2000 p2002 p2004 treatment age

. h2oml gbbinclass voted $predictors, h2orseed(19) lrate(0.05)
> maxdepth(6) ntrees(70)
Progress (%): 0 1.4 4.2 27.1 38.5 64.2 74.2 100
Gradient boosting binary classification using H2O
Response: voted
Loss: Bernoulli
Frame: Number of observations:

Training: social Training = 229,461
Model parameters
Number of trees = 70 Learning rate = .05

actual = 70 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 6 Sampling rate = 1
min = 6 No. of bins cat. = 1,024
avg = 6.0 No. of bins root = 1,024
max = 6 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training

Log loss .5695804
Mean class error .3907184

AUC .6771573
AUCPR .4761226

Gini coefficient .3543147
MSE .1934469

RMSE .439826

h2omlgraph shapvalues — Produce SHAP values plot for individual observations+ 300

We display SHAP values for the second observation of the dataset by using the h2omlgraph
shapvalues command with the option obs(2). The option xlabel() improves the display of the figure
by setting the range of the 𝑥 axis to a convenient interval.

. h2omlgraph shapvalues, obs(2) xlabel(-1.4(0.1)-0.7)

-.0038

-.0049

-.0336

-.0784

+.0985

-.1194

-.2882

+.3742

ƒ(x) = -.9653

E[ƒ(x)] = -.9097

gender = Male

g2000 = Yes

treatment = No

age = 47

g2002 = Yes

p2000 = No

p2004 = No

p2002 = Yes

P
re

di
ct

or

-1.4 -1.3 -1.2 -1.1 -1 -.9 -.8 -.7
SHAP contribution

Obs. = 2; prediction = Yes
Training frame: social

SHAP values using H2O

The second observation corresponds to a male who voted in the primary election, so our goal is to

explain why the prediction of his vote is “Yes” based on predictors. We can see that the subject being

male has a very small effect on the probability of voting. On the other hand, as expected, voting in the

primary election in 2002 (p2002) has a substantial positive effect on the probability of voting.

Note that the reported SHAP values after h2oml gbbinclass are reported as raw predictions. To

interpret these values as probabilities, we need to apply the inverse logit transformation to the values

shown in the graph. Similarly, for SHAP values reported after h2oml gbregress with a loss other than

Gaussian, an appropriate transformation may be needed for interpretation. Nonetheless, the graph still

allows us to infer the direction and magnitude of the predictions directly.

References
Aas, K., M. Jullum, and A. Løland. 2021. Explaining individual predictions when features are dependent: More accu-

rate approximations to Shapley values. Artificial Intelligence 298: art. 103502. https://doi.org/10.1016/j.artint.2021.

103502.

Lundberg, S. M., G. G. Erion, and S. Lee. 2018. Consistent individualized feature attribution for tree ensembles.

arXiv:1802.03888 [cs.LG], https://doi.org/10.48550/arXiv.1802.03888.

Lundberg, S. M., and S. Lee. 2017. “A unified approach to interpreting model predictions”. In Proceedings of the 31st

International Conference on Neural Information Processing Systems, vol. 30: 4768–4777. Red Hook, NY: CurranAsso-

ciates.

Molnar, C. 2022. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. 2nd ed. https:

//christophm.github.io/interpretable-ml-book.

Štrumbelj, E., and I. Kononenko. 2010. An efficient explanation of individual classifications using game theory. Journal

of Machine Learning Research 11: 1–18.

———. 2013. Explaining prediction models and individual predictions with feature contributions. Knowledge and Infor-

mation Systems 41: 647–665. https://doi.org/10.1007/s10115-013-0679-x.

https://doi.org/10.1016/j.artint.2021.103502
https://doi.org/10.1016/j.artint.2021.103502
https://doi.org/10.48550/arXiv.1802.03888
https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
https://doi.org/10.1007/s10115-013-0679-x

h2omlgraph shapvalues — Produce SHAP values plot for individual observations+ 301

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2omlgraph shapsummary — Produce SHAP beeswarm plot+

h2omlgraph varimp — Produce variable importance plot+

+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description
h2omlgraph varimp plots the variable importance after h2oml gbm and h2oml rf. Variable impor-

tance for ensemble decision tree methods, such as random forest and gradient boosting machine, mea-

sures the relative influence of a predictor to the predictive performance of the model.

Quick start
Plot the variable importance

h2omlgraph varimp

As above, but plot the top 5 important predictors

h2omlgraph varimp, top(5)

Plot scaled importance of predictors

h2omlgraph varimp, scaled

Plot variable importance as a dot graph

h2omlgraph varimp, dot

As above, but save the graph data

h2omlgraph varimp, dot savedata(varimp)

Menu
Statistics > H2O machine learning

302

h2omlgraph varimp — Produce variable importance plot+ 303

Syntax
h2omlgraph varimp [, options]

options Description

Main

top(#) plot the top # important predictors; default is top(10)
proportion plot the proportional contribution of the importance of each

predictor; the default

relative plot relative influence of each predictor

scaled plot scaled importance of each predictor

table display results as a table

savedata(filename[, replace]) save plot data to filename

Plot options

bar plot variable importance as a bar plot; the default

baropts(bar opts) affect rendition of the bar plot

dot plot variable importance as a dot plot

dotopts(dot opts) affect rendition of the dot plot

valuelabel display variable importance values

valuelabelopts(label opts) affect the labeling of important values

twoway options any options other than by() documented in
[G-3] twoway options

Options

� � �
Main �

top(#) plots the top # important predictors. The default is top(10).

proportion, relative, and scaled specify the type of the variable importance contribution to be

plotted.

proportion plots the proportional contribution of the importance of each predictor. It is calculated

by dividing the importance of each predictor by the total sum of the importance of all predictors.

proportion is the default.

relative plots the importance, which is the relative influence of each predictor.

scaled plots the scaled importance. It is calculated by dividing the importance of each predictor by

the largest importance score of the predictors.

Only one of proportion, relative, or scaled is allowed.

table displays results as a table. The table is suppressed by default.

savedata(filename[, replace]) saves the plot data to a Stata data file (.dta file). replace specifies
that filename be overwritten if it exists.

� � �
Plot options �

bar plots the variable importance as a bar plot. This is the default. bar is not allowed with dot.

h2omlgraph varimp — Produce variable importance plot+ 304

baropts(bar opts) affects rendition of the bar plot. bar opts are any of the options documented in

[G-2] graph twoway bar, excluding horizontal and vertical.

dot plots the variable importance as a dot plot. dot is not allowed with bar.

dotopts(dot opts) affects the rendition of the dot plot. dot opts are any of the options documented in

[G-2] graph twoway dot, excluding horizontal and vertical.

valuelabel displays the values of the variable importance on the graph.

valuelabelopts(label opts) affects the labeling of variable importance values. label opts includes

any of the options documented in [G-3] marker label options, excluding mlabel().

twoway options are any of the options documented in [G-3] twoway options, excluding by(),
horizontal, and vertical. These include options for titling the graph (see [G-3] title options)

and options for saving the graph to disk (see [G-3] saving option).

Remarks and examples
We assume you have read the Interpretation and explanation in [H2OML] Intro.

In a typical machine learning problem, the predictors influence on the outcome differs. Some of

the predictors are more relevant than others. In decision trees, the variable importance of a predictor

quantifies this relevance by accumulating the improvement of an impurity measure, such as cross-entropy

or mean squared error (MSE), from the splitting of this predictor. For a single tree 𝑇, Breiman et al.
(1984) propose to measure a relative importance of a predictor X𝑖 by summing the square of relative

improvements 𝚤2
𝑗 associated to all 𝐽 − 1 node splits,

𝐼2
𝑖 (𝑇) =

𝐽−1
∑
𝑗=1

𝚤2
𝑗 𝐼(𝑣(𝑗) = 𝑖)

where the split relative improvement 𝚤𝑗 is defined in (1) of [H2OML] Intro and is computed using entropy

for classification and MSE for regression. 𝐼(𝑣(𝑗) = 𝑖) is an indicator function, which takes 1 when the
internal node is the predictor 𝑋𝑖. This measure easily extends to ensemble decision trees by taking an

average over the number of trees. For example, if the ensemble decision tree method contains 100 trees

(𝑡 = 1, 2, . . . , 100), then

𝐼2
𝑖 = 1

100

100
∑
𝑡=1

𝐼2
𝑖 (𝑇𝑡)

To find the importance for the variable 𝑋𝑖, we take the square root of the measure above.

For multiclass classification with 𝐾 classes (𝑘 = 1, 2, . . .𝐾), there are 𝐾 different models induced,

where each model is an ensemble of classification trees. Then for the class 𝑘 with 100 trees, the impor-

tance of the predictor 𝑋𝑖 is computed by

𝐼2
𝑖𝑘 = 1

100

100
∑
𝑡=1

𝐼2
𝑖 (𝑇𝑡𝑘)

where 𝑇𝑡𝑘 is the 𝑡th tree for the class 𝑘.
It is common to plot the proportional contributions of importance values so that the total importance of

all predictors sums to 1. This approachmakes it easier to compare predictors. In the h2omlgraph varimp
command, this is the default behavior. To plot the relative influences, you can specify the relative
option.

h2omlgraph varimp — Produce variable importance plot+ 305

One of the main limitations of variable importance based on impurity measures is their bias toward

predictors with more levels. Additionally, they are not reliable when predictors are correlated.

Example 1: Plotting variable importance
In this example, we plot variable importance after performing random forest binary classification.

We consider the churn dataset described in example 1 of [H2OML] h2oml and where the goal is to

build a predictive model that will predict the best behavior of a customer who is more likely to churn or

retain the company’s services.

We start by opening the churn dataset in Stata and then putting the data into an H2O frame. Recall

that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset into an H2O frame,
and h2oframe change makes the specified frame the current H2O frame. For details, see Prepare your

data for H2O machine learning in Stata in [H2OML] h2oml and [H2OML] H2O setup.

. use https://www.stata-press.com/data/r18/churn
(Telco customer churn data)
. h2o init
(output omitted)

. _h2oframe put, into(churn)
Progress (%): 0 100
. _h2oframe change churn

For convenience, we save the name of the predictors in the global macro predictors in Stata.

. global predictors latitude longitude tenuremonths monthlycharges
> totalcharges gender seniorcitizen partner dependents phoneservice
> multiplelines internetserv onlinesecurity onlinebackup deviceprotect
> techsupport streamtv streammovie contract paperlessbill paymethod

We use h2oml rfbinclass to perform random forest binary classification with 200 trees, a maximum

tree depth of 3, an observation sampling rate of 0.9, and a predictor sampling value of 1. Then we use

h2omlgraph varimp to plot the variable importance.

. h2oml rfbinclass churn $predictors, h2orseed(19) ntrees(200)
> maxdepth(3) samprate(0.9) predsampvalue(1)
Progress (%): 0 28.4 59.5 87.9 100
Random forest binary classification using H2O
Response: churn
Frame: Number of observations:

Training: churn Training = 7,043
Model parameters
Number of trees = 200

actual = 200
Tree depth: Pred. sampling value = 1

Input max = 3 Sampling rate = .9
min = 3 No. of bins cat. = 1,024
avg = 3.0 No. of bins root = 1,024
max = 3 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001

h2omlgraph varimp — Produce variable importance plot+ 306

Metric summary

Metric Training

Log loss .480982
Mean class error .2400372

AUC .8284618
AUCPR .6263171

Gini coefficient .6569236
MSE .1572825

RMSE .3965886

. h2omlgraph varimp

deviceprotect

dependents

techsupport

onlinebackup

totalcharges

onlinesecurity

tenuremonths

internetserv

paymethod

contract

.04 .06 .08 .1 .12
Proportion importance

Variable importance plot using H2O

The proportion of importance for the top 10 predictors is plotted. Based on this model, contract,
paymethod, and internetserv are the three most important predictors of churn.

Example 2: Assessing stability of variable importance
Recent literature shows an increased attention on assessing stability of variable importance (Wang

et al. 2016). In this example, we study the stability of variable importance by showing dependence of

variable rankings from the predictor sampling number. That is, our goal is to vary the predictor sampling

value predsampvalue() in random forest and explore the change in rankings of predictors based on the

importance. Wang et al. (2016) implement a more extensive study and use rank-based tests to quantify

stability. Our example is limited only to graphical comparison.

In the previous example, we specified a predictor sampling value of 1. Here we will compare this

with the results using three other values. For convenience, we save a list of possible predsampvalues
in the local macro sratelist in Stata.

. local sratelist 1 -1 10 -2

Next we use a loop to perform random forest binary classification with the predictor sampling

values of {1, −1, 10, −2}, iteratively specifying each of these values in the predsampvalue() op-

tion of h2oml rfbinclass. We plot the variable importance after each estimation by using the

h2omlgraph varimp command. Note that predsampvalue(-2) corresponds to selecting all predic-

h2omlgraph varimp — Produce variable importance plot+ 307

tors, and predsampvalue(-1) corresponds to selecting the square root of the number of predictors. In

h2omlgraph varimp, we also specify the option saving() to save the graphs and the option title()
to provide a title for each graph.

. local i = 1

. foreach rate in ‘sratelist’{
2. quietly h2oml rfbinclass churn $predictors, h2orseed(19)

> ntrees(200) maxdepth(3) samprate(0.9) predsampvalue(‘rate’)
3. h2omlgraph varimp, saving(imp‘i’, replace)

> title(”Predictor sampling value = ‘rate’”)
4. local i = ‘i’ + 1
5. }

file imp1.gph saved
file imp2.gph saved
file imp3.gph saved
file imp4.gph saved

Finally, we display the saved graphs by using the graph combine command in Stata.

. graph combine imp1.gph imp2.gph imp3.gph imp4.gph

deviceprotect
dependents
techsupport

onlinebackup
totalcharges

onlinesecurity
tenuremonths

internetserv
paymethod

contract

.04 .06 .08 .1 .12
Proportion importance

Predictor sampling value = 1

deviceprotect
onlinebackup
totalcharges
dependents
paymethod
internetserv
techsupport

onlinesecurity
tenuremonths

contract

0 .1 .2 .3
Proportion importance

Predictor sampling value = -1

onlinebackup
paymethod

monthlycharges
totalcharges
dependents
techsupport
internetserv

tenuremonths
onlinesecurity

contract

0 .1 .2 .3 .4
Proportion importance

Predictor sampling value = 10

gender
longitude

latitude
totalcharges

onlinesecurity
monthlycharges

dependents
tenuremonths

internetserv
contract

0 .2 .4 .6
Proportion importance

Predictor sampling value = -2

As the predictor sampling value changes, except for the contract predictor, the ranking of the im-

portance of predictors changes substantially, indicating instability in the variable importance measure.

In practice, this instability can be explained as follows: For smaller numbers of sampled predictors,

predictors with smaller effects are assigned greater importance. Conversely, for larger numbers of sam-

pled predictors, such as when all predictors are sampled with predsampvalue(-2), the random forest

focuses on highly influential predictors, resulting in only a few predictors considered important.

h2omlgraph varimp — Produce variable importance plot+ 308

References
Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classification and Regression Trees. Boca Raton, FL:

Chapman and Hall/CRC.

Wang, L., C. S. McMahan, M. G. Hudgens, and Z. P. Qureshi. 2016. A flexible, computationally efficient method for

fitting the proportional hazards model to interval-censored data. Biometrics 72: 222–231. https://doi.org/10.1111/

biom.12389.

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

https://doi.org/10.1111/biom.12389
https://doi.org/10.1111/biom.12389

h2omlpostestframe — Specify frame for postestimation analysis+

+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
h2omlpostestframe is a convenience command for setting anH2O frame to be used by h2oml postes-

timation commands to report results after h2oml gbm and h2oml rf. h2omlpostestframe does not

physically change the current frame to the specified frame; see h2oframe change.

h2omlpostestframe affects all but the following postestimation commands: h2omlestat grid-
summary, h2omlselect, h2omlexplore, h2omlestat cvsummary, h2omlgraph varimp, h2oml-
graph scorehistory, and h2omltree.

Quick start
Specify a generic frame named mytest to be used by postestimation commands, and label it as “Testing”

in the output

h2omlpostestframe mytest

Specify a predefined validation frame to be used by postestimation commands

h2omlpostestframe _valid

Specify a frame named auto and label it
h2omlpostestframe auto, label(Auto dataset)

Switch back to the default frame specific to each postestimation command

h2omlpostestframe _default

Menu
Statistics > H2O machine learning

309

h2omlpostestframe — Specify frame for postestimation analysis+ 310

Syntax
Specify generic frame to be used by postestimation commands to report the results

h2omlpostestframe framename [, notest label(string)]

Specify prespecified frame to be used by postestimation commands to report the results

h2omlpostestframe frametype [, label(string)]

frametype Description

default default frame; varies across commands

train training frame

valid validation frame
∗ cv cross-validation “frame”

∗ cv does not correspond to an actual H2O frame; it is not applicable for some postestimation commands. See Remarks and
examples.

label() is not allowed with default or cv.

Options

� � �
Options �

notest specifies that the generic frame should not be considered a testing frame. By default, the specified
frame is assumed to be a testing frame. This frame will be used whenever option test is specified

with h2oml postestimation commands that support this option. However, if option notest is specified
with h2omlpostestframe, then option test may not be used with the postestimation commands.

label(string) labels frame as string in the output.

Remarks and examples
The h2omlpostestframe command is designed to simplify machine learning postestimation analy-

sis. If neither the cv() nor validframe() option is specified during estimation, the h2oml postestima-
tion commands perform computations using the training frame. If the validframe() option is specified,
they use the validation frame. And if the cv() option is specified, they use the cross-validation results

for computation.

Sometimes, we may want to use a different frame for postestimation analysis such as a testing frame.

The h2oml postestimation commands support options that allow you to specify a different frame. Al-

ternatively, we can use the h2omlpostestframe command to specify the desired frame once for all

postestimation analyses. By default, the specified frame is assumed to be a testing frame and thus will

be labeled correspondingly in the output. You can use the notest option to suppress this and use the

label() option to provide your own frame label.

Instead of a generic frame name, we can also specify train, valid, or cv with the h2omlpost-
estframe command to use the respective training, validation, or cross-validation results for all postesti-
mation analyses, provided the appropriate options were specified during estimation. The cv specifica-
tion does not correspond to an actual H2O frame and is not supported by h2omlpredict, h2omlgraph
pdp, h2omlgraph ice, h2omlgraph shapvalues, and h2omlgraph shapsummary postestimation

commands.

h2omlpostestframe — Specify frame for postestimation analysis+ 311

At any point during your postestimation analyses, you can specify default to switch back to using
the default frame, which is specific to each postestimation command.

Below, we demonstrate various uses of h2omlpostestframe on auto.dta.

Example 1: Using h2omlpostestframe

Suppose we want to perform various postestimation analyses using the testing frame. We start by

opening the 1978 automobile data (auto.dta) in Stata and then putting the data into an H2O frame.

Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset into an H2O
frame, and h2oframe changemakes the specified frame the current H2O frame. We use the h2oframe
split command to randomly split the auto frame into a training frame (80%) and a testing frame (20%),
which we name train and test, respectively. We also change the current frame to train. For details,
see Prepare your data for H2O machine learning in Stata in [H2OML] h2oml and [H2OML] H2O setup.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
. _h2oframe put, into(auto)
. _h2oframe split auto, into(train test) split(0.8 0.2) rseed(19)
. _h2oframe change train

Next we perform random forest binary classification using cross-validation.

. h2oml rfbinclass foreign price mpg length, cv(3, modulo) h2orseed(19)
(output omitted)

We want to use the testing frame test for all postestimation analyses. We type

. h2omlpostestframe test
(testing frame test is now active for h2oml postestimation)

The command reported that test is assumed to be a testing frame.

Now we can use any of the postestimation commands that work with a testing frame, and the test
frame will be used in computations automatically:

. h2omlestat confmatrix
Confusion matrix using H2O
Testing frame: test

Predicted
foreign Domestic Foreign Total Error Rate

Domestic 6 1 7 1 .143
Foreign 0 4 4 0 0

Total 6 5 11 1 .091
Note: Probability threshold .52 that maximizes F1 metric

used for classification.

h2omlpostestframe — Specify frame for postestimation analysis+ 312

or

. h2omlgraph pdp price

.1

.2

.3

.4

.5
P

ar
tia

l d
ep

en
de

nc
e

2000 4000 6000 8000 10000
price

Testing frame: test

Partial dependence plot using H2O

And to compute predictions for the testing frame test, we can simply type

. h2omlpredict foreignhat, class

Note that h2omlpostestframe does not physically change the current frame to test. To access the
predicted classes, we will need to change the working frame to test with h2oframe change test.

Instead of using h2omlpostestframe, we could have specified the test(test) options with each

command above. For instance, we could have typed

. h2omlestat confmatrix, test(test)
Confusion matrix using H2O
Testing frame: test

Predicted
foreign Domestic Foreign Total Error Rate

Domestic 6 1 7 1 .143
Foreign 0 4 4 0 0

Total 6 5 11 1 .091
Note: Probability threshold .52 that maximizes F1 metric

used for classification.

But this would require more typing.

h2omlpostestframe — Specify frame for postestimation analysis+ 313

If we need to switch back to postestimation commands using their default frames, we can specify

default instead of the frame name. For instance, because we specified the cv() option during estima-
tion, by default, h2omlestat confmatrix would have reported the results based on cross-validation.

We can still obtain these results by specifying the cv option with the command:

. h2omlestat confmatrix, cv
Cross-validation confusion matrix using H2O

Predicted
foreign Domestic Foreign Total Error Rate

Domestic 34 11 45 11 .244
Foreign 2 16 18 2 .111

Total 36 27 63 13 .206
Note: Probability threshold .22 that maximizes F1 metric

used for classification.

Or we can use h2omlpostestframe to restore the default frame for all postestimation commands by

typing

. h2omlpostestframe _default
(cross-validation results are now active for h2oml postestimation)

We can also specify one of the predefined frames with h2omlpostestframe to be used for h2oml
postestimation analysis: train to use the training frame, valid to use the validation frame when the
validframe() option is specified during estimation, and cv to use cross-validation results when the

cv() option is specified during estimation. For instance, we can type

. h2omlpostestframe _train
(training frame train is now active for h2oml postestimation)

The above is also equivalent to specifying the train option with h2omlestat confmatrix:

. h2omlestat confmatrix, train
(output omitted)

Also, because we previously used h2omlpostestframe to define a testing frame, we can use the test
option with the postestimation commands that support this option to obtain results for the testing frame:

. h2omlestat confmatrix, test
Confusion matrix using H2O
Testing frame: test

Predicted
foreign Domestic Foreign Total Error Rate

Domestic 6 1 7 1 .143
Foreign 0 4 4 0 0

Total 6 5 11 1 .091
Note: Probability threshold .52 that maximizes F1 metric

used for classification.

h2omlpostestframe — Specify frame for postestimation analysis+ 314

Stored results
h2omlpostestframe stores the following in r():

Macros

r(postest frame) name of the frame

r(postest label) frame label

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2oml postestimation — Postestimation tools for h2oml gbm and h2oml rf+

h2omlselect — Select model after grid search+

+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Remarks and examples Stored results Also see

Description
h2omlselect retrieves the fitted model with the hyperparameter configuration you select after h2oml

gbm and h2oml rf perform tuning using a grid search. These estimation commands select the top-

performing model, the one with the most optimal tuning performance metric, as the working model.

After estimation, you can use h2omlestat gridsummary to see performance metrics for models with

different hyperparameter configurations and to obtain an ID for each of these models. You can then select

a different model to be the working model by using h2omlselect. h2omlselect selects and retrieves

the fitted model; afterward, you can treat this model just as you would treat estimation results from the

h2oml gbm and h2oml rf estimation commands. Subsequent postestimation commands are based on the

selected model.

Quick start
After performing multiclass classification and obtaining the grid-search summary, select the model that

has id = 2
h2oml rfmulticlass y x1-x20, ntrees(10(5)100) maxdepth(3(1)10)
h2omlestat gridsummary
h2omlselect id = 2

Menu
Statistics > H2O machine learning

Syntax
h2omlselect id = #

where # is a grid ID from h2omlestat gridsummary corresponding to the desired model configuration.

Remarks and examples
Building a machine learning model that generalizes well to new data involves choosing an appropriate

method and selecting a model by tuning hyperparameters. We can perform a grid search using gradient

boosting and random forest methods and then use h2omlestat gridsummary to report the hyperparam-
eter configurations that achieve the top performance based on the specified metric. For example, you

might use the log-loss metric to choose between models with 10, 20, and 30 trees. Typically, you would

select the model that performs the best based on the chosen metric. However, you may want to explore

different hyperparameter configurations that do not correspond to the best model, in which case you can

use h2omlselect and h2omlexplore.

315

h2omlselect — Select model after grid search+ 316

After you review the grid-search summary from h2omlestat gridsummary, you can select themodel
you are interested in by specifying the ID number with h2omlselect. Once you have selected a model
with h2omlselect, you can treat the model in the same way you would treat results from the h2oml
gbm and h2oml rf estimation commands. Postestimation commands will be based on the model selected

by h2omlselect; for example, you could estimate variable importance for the selected model with

h2omlgraph varimp. h2omlselect overwrites the previously stored estimation results, which can be

recovered by refitting the original model or by storing the estimation results before running h2omlselect
and then restoring them; see [H2OML] h2omlest.

Example 1: Selecting the second-best model
In this example, we illustrate the use of h2omlselect by performing random forest binary classifi-

cation with the social pressure dataset discussed in example 1 of [H2OML] h2oml rf.

We start by opening the social pressure dataset in Stata and then putting the data into an H2O frame.

Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset in an H2O

frame, and h2oframe changemakes the specified frame the current H2O frame. We use the h2oframe
split command to randomly split the social frame into a training frame (80% of observations) and

a validation frame (20% of observations), which we name train and valid, respectively. We also

change the current frame to train. For details, see Prepare your data for H2O machine learning in Stata

in [H2OML] h2oml and see [H2OML] H2O setup.

. use https://www.stata-press.com/data/r18/socialpressure
(Social pressure data)
. h2o init
(output omitted)

. _h2oframe _put, into(social)
Progress (%): 0 100
. _h2oframe _split social, into(train valid) split(0.8 0.2) rseed(19)
. _h2oframe _change train

h2omlselect — Select model after grid search+ 317

We define a global macro, predictors, to store the names of our predictors. We perform random

forest binary classification, and we specify the maxdepth() and predsampvalue() options to tune the
maximum tree depth and predictor sampling rate hyperparameters. For illustration, we use the area under

the precision–recall curve (AUCPR) metric for tuning.

. global predictors gender g2000 g2002 p2000 p2002 p2004 treatment age

. h2oml rfbinclass voted $predictors, validframe(valid) h2orseed(19)
> ntrees(200) maxdepth(3(3)12) predsampvalue(-1, 1(2)8) tune(metric(aucpr))
Progress (%): 0 100
Random forest binary classification using H2O
Response: voted
Frame: Number of observations:

Training: train Training = 183,607
Validation: valid Validation = 45,854

Tuning information for hyperparameters
Method: Cartesian
Metric: AUCPR

Grid values
Hyperparameters Minimum Maximum Selected

Max. tree depth 3 12 6
Pred. sampling value -1 7 7

Model parameters
Number of trees = 200

actual = 200
Tree depth: Pred. sampling value = 7

Input max = 6 Sampling rate = .632
min = 6 No. of bins cat. = 1,024
avg = 6.0 No. of bins root = 1,024
max = 6 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Log loss .5724664 .5705699
Mean class error .3935492 .3943867

AUC .6705554 .6734867
AUCPR .4658395 .4725543

Gini coefficient .3411109 .3469735
MSE .1946923 .1935647

RMSE .4412395 .4399599

h2omlselect — Select model after grid search+ 318

Next we obtain the grid-search summary by using the h2omlestat gridsummary command. This

command lists the configuration of the hyperparameters we are tuning ranked by AUCPR.

. h2omlestat gridsummary
Grid summary using H2O

Pred.
Max. tree sampling

ID depth value AUCPR

1 6 7 .4725543
2 6 5 .4723736
3 6 3 .4714554
4 9 3 .4712076
5 6 -1 .4708614
6 12 -1 .4706606
7 9 -1 .4705794
8 9 5 .4689799
9 9 7 .4682457

10 9 1 .4674565

The top two models have very similar values of AUCPR, and they correspond to models with 7 and 5

randomly sampled predictors and a maximum tree depth of 6. As discussed in [H2OML] h2oml rf, using a

random sample of predictors improves the ability of the model to generalize to new data, compared with

using the full set of predictors, because it introduces an additional randomness to the method. Therefore,

we may prefer to continue our analysis with the second-best model.

To select the second-best model, we specify id = 2 in h2omlselect.

. h2omlselect id = 2
Random forest binary classification using H2O
Response: voted
Frame: Number of observations:

Training: train Training = 183,607
Validation: valid Validation = 45,854

Model parameters
Number of trees = 200

actual = 200
Tree depth: Pred. sampling value = 5

Input max = 6 Sampling rate = .632
min = 6 No. of bins cat. = 1,024
avg = 6.0 No. of bins root = 1,024
max = 6 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Log loss .57237 .5704978
Mean class error .3979593 .3945857

AUC .671146 .6737527
AUCPR .4670326 .4723736

Gini coefficient .342292 .3475054
MSE .1946602 .1935627

RMSE .4412031 .4399576

h2omlselect — Select model after grid search+ 319

Now we can continue our analysis using the second-best model.

Stored results
h2omlselect retrieves the selected fitted model and thus stores the same results as the estimation

command used.

See Stored results in [H2OML] h2oml gbm or [H2OML] h2oml rf.

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2omlestat gridsummary — Display grid-search summary+

[H2OML] h2omlexplore — Explore models after grid search+

h2omltree — Save decision tree DOT file and display rule set+

+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description
h2omltree saves the decision tree plot in a DOT file and returns the decision rules for a specified tree

after the h2oml gbm and h2oml rf commands. For details on how to work with DOT files and convert

them to images, see [H2OML] DOT extension.

Quick start
Save the plot of the second tree as a DOT file after regression

h2omltree, id(2) dotsaving(tree.dot)

As above, but report the returned results as a rule set, and replace the existing tree.dot file
h2omltree, id(2) dotsaving(tree.dot, replace) rule

Save the plot of the first tree as a DOT file after multiclass classification, and use the second class as the

target (reference) class

h2omltree, target(2) dotsaving(classtree.dot, replace)

As above, but set the direction to horizontal with the tree built left to right

h2omltree, target(2) dotsaving(classtree.dot, replace direction(lr))

Menu
Statistics > H2O machine learning

Syntax
h2omltree [, options]

options Description

∗ target(class) specify the target class of the response variable after
multiclass classification

id(#) specify the number of the tree; default is id(1)
rule report the result as a rule set

dotsaving(filename[, saveopts]) specify that the graph be saved as filename

∗target() is required for multiclass classification.

saveopts Description

replace overwrites the existing file if it already exists

direction(diropts) sets the direction of tree layout; may be tb (the default), bt, lr, or rl
titile(string) specifies the tree title in the DOT file

320

h2omltree — Save decision tree DOT file and display rule set+ 321

Options
target(class) specifies the target class of the response variable for which the decision tree DOT file is

to be created. target() is required after multiclass classification with h2oml gbmulticlass and

h2oml rfmulticlass.

id(#) specifies the number of the tree. The default is the first tree.

rule specifies that the tree results be reported as a rule set.

dotsaving(filename[, saveopts]) specifies that the tree be saved as filename. saveopts are the follow-

ing:

replace specifies that, if the file already exists, it is okay to replace it.

direction(diropts) sets the direction of the tree layout. diropts may be one of the following:

tb specifies that the tree is built top to bottom; the default.

bt specifies that the tree is built bottom to top.

lr specifies that the tree is built left to right.

rl specifies that the tree is built right to left.

title(string) specifies the tree title in the DOT file.

Remarks and examples
We assume you have read the introduction to decision trees in [H2OML] Intro.

Remarks are presented under the following headings:

Example 1: Plotting a classification tree after random forest
Example 2: Plotting a classification tree after gradient boosting machine (GBM)
Example 3: Plotting a regression tree
Example 4: Plotting a tree for multiclass classification

An additional example can be found in Explaining classification prediction of [H2OML] h2oml.

All decision tree plots in the examples below are produced using Graphviz (https://graphviz.org). See

[H2OML] DOT extension for more information.

Example 1: Plotting a classification tree after random forest
We plot and interpret binary classification trees produced by random forest.

We start by opening the 1978 automobile data (auto.dta) in Stata and then putting the data into an
H2O frame. Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset
into an H2O frame, and h2oframe change makes the specified frame the current H2O frame.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile dataset)
. h2o init
(output omitted)

. _h2oframe put, into(auto)
Progress (%): 0 100
. _h2oframe change auto

https://graphviz.org

h2omltree — Save decision tree DOT file and display rule set+ 322

For simplicity, we save the predictor names in the global macro predictors in Stata. We then per-

form random forest binary classification with 100 trees and a maximum depth of 5.

. global predictors price mpg trunk weight length

. h2oml rfbinclass foreign $predictors, h2orseed(19) ntrees(100) maxdepth(5)
Progress (%): 0 100
Random forest binary classification using H2O
Response: foreign
Frame: Number of observations:

Training: auto Training = 74
Model parameters
Number of trees = 100

actual = 100
Tree depth: Pred. sampling value = -1

Input max = 5 Sampling rate = .632
min = 3 No. of bins cat. = 1,024
avg = 4.8 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Log loss .3238765
Mean class error .1223776

AUC .9160839
AUCPR .7850033

Gini coefficient .8321678
MSE .1089033

RMSE .330005

Finally, we use the h2omltree command to save the 10th tree in the DOT file named classtreerf.dot.

. h2omltree, id(10) dotsaving(classtreerf, replace)

h2omltree — Save decision tree DOT file and display rule set+ 323

For binary classification, only the base class (the “negative” class) can be chosen as a target or ref-

erence class in H2O. In this example, this is the Domestic class. The tree plot shown below can be

generated and saved as a PDF or another format using the information in classtreerf.dot and the

Graphviz tool. For more details, refer to [H2OML] DOT extension.

Tree 10, class Domestic
trunk

price

[NA]
< 15.5

length

>= 15.5

length

[NA]
< 5003.5

weight

>= 5003.5

0

< 163.0

1

[NA]
>= 163.0

length

< 166.0

1

[NA]
>= 166.0

mpg

[NA]
< 3624.0

1

>= 3624.0

0

< 156.0

trunk

>= 156.0

0

[NA]
< 25.5

length

>= 25.5

1

< 10.0

0.5

[NA]
>= 10.0

0

< 167.0

1

[NA]
>= 167.0

The internal nodes in the tree correspond to the predictor names for which the split has occurred and

the terminal nodes correspond to 𝑃(Domestic = 1). Each internal predictor separates data based on the
split. The NA’s on the branches indicate the split of the missing values, if any. Based on this tree, for the
observations with length ≥ 163, the predicted probability of the car being domestic is 1.

Example 2: Plotting a classification tree after gradient boosting machine (GBM)
In this example, we plot a classification tree after gradient boosting binary classification. We start by

running the h2oml gbbinclass command with options ntrees(100) and maxdepth(5).
. h2oml gbbinclass foreign $predictors, h2orseed(19) ntrees(100) maxdepth(5)
(output omitted)

Thenwe use the h2omltree command to save the 10th tree in theDOT file named classtreegbm.dot

. h2omltree, id(10) dotsaving(classtreegbm, replace)

h2omltree — Save decision tree DOT file and display rule set+ 324

The tree below is generated from the classtreegbm.dot file using Graphviz.

Tree 10, class Domestic
length

price

[NA]
< 194.0

price

>= 194.0

-0.019

< 4498.5

weight

[NA]
>= 4498.5

mpg

[NA]
< 7085.5

-0.116

>= 7085.5

0.148

[NA]
< 2467.5

0.065

>= 2467.5

-0.114

[NA]
< 18.5

-0.114

>= 18.5

Compared with the classification tree in Example 1: Plotting a classification tree after random forest,

the terminal nodes of the classification tree after GBM contain negative values. This may be surprising

because the expected values should be between [0, 1]. However, as we explain below, this is the expected
behavior.

As discussed in the Introduction of [H2OML] h2oml gbm, GBM relies on link functions to determine

the loss function. For instance, in binary classification, GBM uses the logit link function. Consequently,

for certain postestimation commands, such as h2omltree and h2omlgraph shapvalues, probabilities
are obtained by applying the inverse link function, in this case, the inverse logit function.

For example, the predicted raw value −0.114 in the terminal node corresponds to probability

0.47153083.

. display invlogit(-0.114)

.47153083

Here the terminal nodes can be explained based on increasing or decreasing probability

𝑃(Domestic = 1). Thus, the highest probability corresponds to 0.148 (probability of 0.54) and occurs
for the observations with length less than 194, price greater than 4498.5, and weight less than 2467.5.

h2omltree — Save decision tree DOT file and display rule set+ 325

Example 3: Plotting a regression tree
In this example, we create and save a DOT file and display a regression tree for random forest regres-

sion.

We start by redefining the global macro predictors. Then we perform random forest regression

with 100 trees and a maximum depth of 5 for each tree.

. global predictors foreign mpg trunk weight length

. h2oml rfregress price $predictors, h2orseed(19) ntrees(100) maxdepth(5)
Progress (%): 0 100
Random forest regression using H2O
Response: price
Frame: Number of observations:

Training: auto Training = 74
Model parameters
Number of trees = 100

actual = 100
Tree depth: Pred. sampling value = -1

Input max = 5 Sampling rate = .632
min = 2 No. of bins cat. = 1,024
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Deviance 3129378
MSE 3129378

RMSE 1769.005
RMSLE .2315556

MAE 1229.955
R-squared .6353542

We save the regression tree as a DOT file by using the h2omltree command.

. h2omltree, id(10) dotsaving(regtreerf, replace)

h2omltree — Save decision tree DOT file and display rule set+ 326

The following tree is created from the regtreerf.dot file using Graphviz.

Tree 10
mpg

trunk

< 17.5

length

[NA]
>= 17.5

4749

< 12.5

weight

[NA]
>= 12.5

foreign

[NA]
< 203.0

mpg

>= 203.0

foreign

[NA]
< 4046.5

mpg

>= 4046.5

trunk

[NA]
Domestic

length

Foreign

weight

[NA]
< 20.0

trunk

>= 20.0

trunk

[NA]
Domestic

length

Foreign

11497

< 13.0

mpg

>= 13.0

mpg

< 8.5

mpg

[NA]
>= 8.5

5337.75

[NA]
< 176.5

9735

>= 176.5

5788

< 3685.5

5344

[NA]
>= 3685.5

15906

< 16.5

8814

[NA]
>= 16.5

12177.25

[NA]
< 19.0

6253.5

>= 19.0

11340

[NA]
< 192.5

11995

>= 192.5

5841

< 14.5

7827

>= 14.5

4257.667

[NA]
< 25.5

6486

>= 25.5

4630.2

< 19.5

4118.111

[NA]
>= 19.5

From the tree above, the predicted price for the cars with mileage per gallon less than 17.5 and trunk

space less than 12.5 cu.ft. is equal to $4,749.

Example 4: Plotting a tree for multiclass classification
In this example, we create a DOT file for a tree for multiclass classification by using the iris dataset

and random forest. This dataset was used in Fisher (1936) and originally collected by Anderson (1935).

We start by initializing a cluster, opening the dataset in Stata, and importing the dataset as an H2O

frame.

. use https://www.stata-press.com/data/r18/iris
(Iris data)
. h2o init
(output omitted)

. _h2oframe put, into(iris)
Progress (%): 0 100
. _h2oframe change iris

h2omltree — Save decision tree DOT file and display rule set+ 327

Next we define the global macro predictors to store the name of predictors and perform random

forest multiclass classification.

. global predictors seplen sepwid petlen petwid

. h2oml rfmulticlass iris $predictors, h2orseed(19) ntrees(100) maxdepth(5)
Progress (%): 0 100
Random forest multiclass classification using H2O
Response: iris Number of classes = 3
Frame: Number of observations:

Training: iris Training = 150
Model parameters
Number of trees = 100

actual = 100
Tree depth: Pred. sampling value = -1

Input max = 5 Sampling rate = .632
min = 1 No. of bins cat. = 1,024
avg = 3.4 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Log loss .1290855
Mean class error .06

MSE .0370932
RMSE .1925959

To save a tree after a multiclass classification, you must specify the option target() in the

h2omltree command. Here we create a DOT file to plot the 10th tree for the class Setosa.

. h2omltree, id(10) dotsaving(mclasstreerf, replace) target(Setosa)

The following tree is created from the mclasstreerf.dot file using Graphviz.

Tree 10, class Setosa
petwid

1

< 0.80078125

0

[NA]
>= 0.80078125

References
Anderson, E. 1935. The irises of the Gaspé Peninsula. Bulletin of the American Iris Society 59: 2–5.

Fisher, R. A. 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics 7: 179–188. https:

//doi.org/10.1111/j.1469-1809.1936.tb02137.x.

https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x

h2omltree — Save decision tree DOT file and display rule set+ 328

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] DOT extension — Handling DOT files+

DOT extension — Handling DOT files+

+These features are part of StataNow.

Description Remarks and examples Also see

Description
This entry provides a brief introduction to the DOT language and DOT files. These DOT files, which

can be created by h2omltree, can be converted into images of decision trees.

The open source software Graphviz can be used to convert DOT files to images.

Remarks and examples
Remarks are presented under the following headings:

Install Graphviz
How to use Graphviz and DOT language
Modifying the DOT file

Install Graphviz
Graphviz is available for most operating systems. For the steps to download and install Graphviz, see

https://graphviz.org/download/. If prompted during installation, you can allow Graphviz to be installed

on the system path so that Graphviz commands can be issued from the terminal and issued from the

Commandwindow of Stata using the shell command. For the rest of this entry, we assume that Graphviz
is installed.

How to use Graphviz and DOT language
Instead of providing extensive details of DOT language, we will explain by example and focus on

options that are relevant to our goal.

First, we open the 1978 automobile data (auto.dta) in Stata and then put the data into an H2O frame.
Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset in an H2O

frame, and h2oframe change makes the specified frame the current H2O frame.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
(output omitted)

. _h2oframe _put, into(auto)

. _h2oframe _change auto

Next, we perform gradient boosting regression and specify h2orseed(19) for reproducibility.

. h2oml gbregress price make mpg, h2orseed(19)
(output omitted)

Finally, we use the h2omltree command to save the second tree in a file called example.dot.

. h2omltree, id(2) dotsaving(example.dot, replace)

329

https://graphviz.org/download/

DOT extension — Handling DOT files+ 330

The code below is the content of the example.dot file. You can look through the content of DOT

files using your preferred text editor.

digraph G {
rankdir = TB
/* Level 0 */
{
”Node_0” [shape=box, fontsize=20, label=”mpg”]
}
/* Level 1 */
{
”Node_9” [fontsize=20, label=”286.207”]
”Node_2” [shape=box, fontsize=20, label=”mpg”]
}
/* Level 2 */
{
”Node_3” [shape=box, fontsize=20, label=”mpg”]
”Node_10” [fontsize=20, label=”-172.209”]
}
/* Level 3 */
{
”Node_11” [fontsize=20, label=”-125.564”]
”Node_6” [shape=box, fontsize=20, label=”mpg”]
}
/* Level 4 */
{
”Node_12” [fontsize=20, label=”15.111”]
”Node_13” [fontsize=20, label=”-78.548”]
}
/* Edges */
”Node_0” -> ”Node_9” [fontsize=20, label=”< 17.5
”]
”Node_0” -> ”Node_2” [fontsize=20, label=”[NA]
>= 17.5
”]
”Node_2” -> ”Node_3” [fontsize=20, label=”[NA]
< 27.0
”]
”Node_2” -> ”Node_10” [fontsize=20, label=”>= 27.0
”]
”Node_3” -> ”Node_11” [fontsize=20, label=”< 20.5
”]
”Node_3” -> ”Node_6” [fontsize=20, label=”[NA]
>= 20.5
”]
”Node_6” -> ”Node_12” [fontsize=20, label=”[NA]
< 23.5
”]
”Node_6” -> ”Node_13” [fontsize=20, label=”>= 23.5
”]
fontsize=40
labelloc=”t”
label = ”Tree 2”
}

DOT extension — Handling DOT files+ 331

The file provides information about nodes of each level in the tree. For example, Node 2 and Node 9
belong to level 1. By default, the file provides information about the shape of the node, font size, and

label. Those entries can be modified and other options can be added to describe the node. The Edges
section in the file provides information about the structure of the tree, that is, which nodes are connected

and how.

To create a PDF file with a diagram of this tree with Graphviz, we type in Stata

. shell dot -Tpdf example.dot -o example.pdf

and to create the diagram as a PNG image, we type

. shell dot -Tpng example.dot -o example.png

The shell command of Stata allows you to send commands to the operating system. For details, see

[D] shell. The resulting tree is shown below.

Tree 2
mpg

286.207

< 17.5

mpg

[NA]
>= 17.5

mpg

[NA]
< 27.0

-172.209

>= 27.0

-125.564

< 20.5

mpg

[NA]
>= 20.5

15.111

[NA]
< 23.5

-78.548

>= 23.5

DOT extension — Handling DOT files+ 332

Modifying the DOT file
Having a DOT file gives us the flexibility to modify the tree based on our preference. For example, in

the code below, we change the title to “Toy Example”, the contour of the Node 0 to red, and the color

of the left edge emanating from the Node 0 also to red. Note that the title also can be changed using the
title() option in h2omltree. Changes are highlighted in bold.

digraph G {
rankdir = TB
/* Level 0 */
{
”Node_0” [shape=box, fontsize=20, label=”mpg”, color = "red"]
}
/* Level 1 */
{
”Node_9” [fontsize=20, label=”286.207”]
”Node_2” [shape=box, fontsize=20, label=”mpg”]
}
/* Level 2 */
{
”Node_3” [shape=box, fontsize=20, label=”mpg”]
”Node_10” [fontsize=20, label=”-172.209”]
}
/* Level 3 */
{
”Node_11” [fontsize=20, label=”-125.564”]
”Node_6” [shape=box, fontsize=20, label=”mpg”]
}
/* Level 4 */
{
”Node_12” [fontsize=20, label=”15.111”]
”Node_13” [fontsize=20, label=”-78.548”]
}
/* Edges */
”Node_0” -> ”Node_9” [fontsize=20, label=”< 17.5
”, color = "red"]
”Node_0” -> ”Node_2” [fontsize=20, label=”[NA]
>= 17.5
”]
”Node_2” -> ”Node_3” [fontsize=20, label=”[NA]
< 27.0
”]
”Node_2” -> ”Node_10” [fontsize=20, label=”>= 27.0
”]
”Node_3” -> ”Node_11” [fontsize=20, label=”< 20.5
”]
”Node_3” -> ”Node_6” [fontsize=20, label=”[NA]
>= 20.5
”]
”Node_6” -> ”Node_12” [fontsize=20, label=”[NA]
< 23.5
”]
”Node_6” -> ”Node_13” [fontsize=20, label=”>= 23.5
”]
fontsize=40
labelloc=”t”
label = ”Toy Example”
}

DOT extension — Handling DOT files+ 333

The following plot depicts the changes.

Toy Example
mpg

286.207

< 17.5

mpg

[NA]
>= 17.5

mpg

[NA]
< 27.0

-172.209

>= 27.0

-125.564

< 20.5

mpg

[NA]
>= 20.5

15.111

[NA]
< 23.5

-78.548

>= 23.5

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

encode option — Encoding schemes for categorical predictors+

+These features are part of StataNow.

Description Syntax Option Reference Also see

Description
The encode() option specifies the encoding scheme to use for categorical predictors in machine

learning models implemented by the h2oml gbm and h2oml rf commands. The encoding scheme deter-

mines how a machine learning method splits categorical predictors, which can affect model performance.

This entry introduces encoding schemes for categorical predictors that are available in H2O and that may

be selected via the encode() option. For more details, see https://docs.h2o.ai/h2o/latest-stable/h2o-

docs/data-science/algo-params/categorical_encoding.html. For an introduction to predictor encoding,

see Kuhn and Johnson (2020).

Syntax
command ...[, ... encode(encode type) ...]

command is one of h2oml gbregress, h2oml gbbinclass, h2oml gbmulticlass, h2oml rfregress,
h2oml rfbinclass, or h2oml rfmulticlass.

encode type Description

enum map labels of categorical predictors to integers; the default

enumfreq map labels for 10 most frequent levels of each categorical predictor
to integers; combine all other levels to an 11th integer

onehotexplicit generate a binary predictor for each level of each categorical
predictor

binary convert levels of categorical predictors into binary digit representation

eigen generate new predictors for a categorical predictor based on eigenvalues
of the one-hot-encoding matrix

label map labels of categorical predictors to integers; ensure order is
preserved

sortbyresponse map levels of categorical predictors to integers; order by average
response within levels

Option
encode(encode type) specifies the H2O encoding scheme to be used for categorical predictors. The

selected encoding scheme does not modify the existing H2O frame. The predictors generated by the

encoding scheme are entirely virtual; they are created at the algorithmic level rather than at the mem-

ory level. Therefore, they cannot be accessed directly. However, it can be helpful to think of the

predictors as physically generated.

encode type may be one of enum, enumfreq, onehotexplicit, binary, eigen, label, or
sortbyresponse.

334

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-params/categorical_encoding.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-params/categorical_encoding.html

encode option — Encoding schemes for categorical predictors+ 335

enum maps the labels of categorical predictors into integers, which are then used by the machine

learning method for splitting decisions. For example, if a categorical predictor has the levels

{cat, dog, horse, cow, turtle, unicorn}, then the enum option maps those levels to {0, 1, 2, 3, 4, 5}.
The machine learning method may split the levels as {0, 2, 4} and {1, 3, 5}. This is the default
scheme.

enumfreq reduces the levels of each categorical predictor to the 10 most frequent levels. All other

levels, if any, are grouped into a separate 11th level. This option is useful when the number of levels

of categorical predictors is very large and some of the categories are very rare andmight not provide

useful information. In reporting postestimation results, this option adds suffix .top 10 levels
to the names of the categorical predictors.

onehotexplicit internally generates a new binary predictor for each level of each

categorical predictor. For example, if a categorical predictor has the observations

{cat, dog, cat, cat, dog, unicorn, unicorn}, then three new predictors will be generated with

cat = {1, 0, 1, 1, 0, 0, 0}, dog = {0, 1, 0, 0, 1, 0, 0}, and unicorn = {0, 0, 0, 0, 0, 1, 1}. This is the
most well-known encoding scheme in machine learning. In reporting postestimation results, this

option adds suffix .level to the names of the categorical predictors, where level corresponds to

the class of the predictor, including missing values, which are labeled as class NA.

binary converts the levels of each categorical predictor into binary digits, with each binary digit rep-
resenting a new separate predictor. The encoding process begins by assigning a numeric value

to each level of the categorical predictor, starting from 1. For example, the observations of

the categorical predictor {cat, dog, cat, cat, dog, unicorn, unicorn} are converted to the sequence

{1, 2, 1, 1, 2, 3, 3}. The binary code for each numeric value is then determined, with 1 being rep-
resented by 01, 2 by 10, and 3 by 11. Then the observations are converted to the binary code

{01, 10, 01, 01, 10, 11, 11}, with the digits of the binary number forming separate predictors. In
our example, there are two new encoded predictors: {0, 1, 0, 0, 1, 1, 1} and {1, 0, 1, 1, 0, 1, 1}. Bi-
nary encoding is useful when the number of categories is very large. However, H2O limits the

number of new encoded predictors to 32. In reporting postestimation results, this option adds suf-

fix :# to the names of the categorical predictors, where # varies from 1 to the maximum number of

newly generated predictors. In the above example, the maximum number of generated predictors

is 2.

eigen generates 𝑘 new projected predictors per categorical predictor, such that the projections

of the matrix generated from one-hot-encoding of the categorical predictor is in 𝑘-dimensional
eigenspace. Currently, H2O uses 𝑘 = 1. For details, see https://docs.h2o.ai/h2o/latest-stable/h2o-

docs/data-science/algo-params/categorical_encoding.html. In reporting postestimation results,

this option adds suffix .Eigen to the names of the categorical predictors.

label maps the labels of categorical predictors into integers, ensuring that the ordinal nature of each
encoded predictor is preserved. For example, if an encoded predictor has values {0, 1, 2, 3, 4, 5},
a possible split could be {0, 1, 2} and {3, 4, 5}, but not {0, 3, 4} and {1, 2, 5}.

sortbyresponse maps the levels of categorical predictors into integers according to the ascending

order of the average value of the response for each level. Thus, the level with the lowest average

response value is assigned to 0, the level with second-lowest average response is assigned to 1,

and so on.

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-params/categorical_encoding.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-params/categorical_encoding.html

encode option — Encoding schemes for categorical predictors+ 336

Reference
Kuhn, M., and K. Johnson. 2020. Feature Engineering and Selection: A Practical Approach for Predictive Models. Boca

Raton, FL: CRC Press.

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2oml gbm — Gradient boosting machine for regression and classification+

[H2OML] h2oml rf — Random forest for regression and classification+

metric option — Classification and regression metrics+

+These features are part of StataNow.

Description Syntax Options References Also see

Description
The h2oml gbm and h2oml rf estimation commands allow you to specify which metric is to be used

for tuning and for early stopping. In addition, h2omlestat gridsummary allows you to specify a metric
for reporting; h2omlestat confmatrix allows you to specify a metric for selecting an optimal threshold
for classifying predictions; and h2omlgraph scorehistory allows you to specify a metric for the 𝑦 axis
of the graph. In each case, you may specify the metric via a metric() option or suboption. The allowed
list of metrics for each command is documented here. Available metrics vary depending on whether

regression, binary classification, or multiclass classification is performed.

Syntax
In h2oml gbm and h2oml rf

command ... [, ... tune(metric(metric) ...)]

or

command ... [, ... stop(#, metric(metric) ...)]

In h2omlestat gridsummary

h2omlestat gridsummary ... [, ... metric(metric) ...]

In h2omlestat confmatrix

h2omlestat confmatrix ... [, ... metric(metric conf) ...]

In h2omlgraph scorehistory

h2omlgraph scorehistory ... [, ... metric(metric score) ...]

command is one of h2oml gbregress, h2oml gbbinclass, h2oml gbmulticlass, h2oml rfregress,
h2oml rfbinclass, or h2oml rfmulticlass.

metric Description

reg metric metric for regression (h2oml gbregress and h2oml rfregress)
binclass metric metric for binary classification (h2oml gbbinclass and

h2oml rfbinclass)
multiclass metric metric for multiclass classification (h2oml gbmulticlass and

h2oml rfmulticlass)

337

metric option — Classification and regression metrics+ 338

reg metric Description

∗ deviance deviance
∗ mse mean squared error
∗ rmse root mean squared error
∗ rmsle root mean squared logarithmic error
∗ mae mean absolute error

r2 coefficient of determination

∗ indicates metrics allowed for stopping.

binclass metric Description

∗ logloss logarithmic loss

f1 𝐹1 score

f2 𝐹2 score

fhalf 𝐹0.5 score

accuracy number of correct predictions as a ratio of all predictions made

precision proportion of correct predictions in predictions of positive class

recall proportion of correct predictions of positive class

specificity proportion of correct predictions in the negative class
∗ misclassification number of observations incorrectly classified divided by

the total number of observations
∗ meanclasserror mean of per-class error rates

maxclasserror maximum of per-class error rates

meanclassaccuracy mean of per-class accuracy

misclasscount total count of misclassification per class
∗ auc area under the ROC curve
∗ aucpr area under the precision–recall curve
∗ mse mean squared error
∗ rmse root mean squared error

misclasserror synonym for misclassification
meanpcerr synonym for meanclasserror
maxpcerr synonym for maxclasserror
meanpcacc synonym for meanclassaccuracy
misclasscnt synonym for misclasscount

∗ indicates metrics allowed for stopping.

metric_option — Classification and regression metrics+ 339

multiclass metric Description

∗ logloss logarithmic loss metric

accuracy number of correct predictions as a ratio of all predictions made
∗ misclassification number of observations incorrectly classified divided by

the total number of observations
∗ meanclasserror mean of per-class error rates

maxclasserror maximum of per-class error rates

meanclassaccuracy mean of per-class accuracy

misclasscount total count of misclassification per class
∗ mse mean squared error
∗ rmse root mean squared error

meanpcerr synonym for meanclasserror
maxpcerr synonym for maxclasserror
meanpcacc synonym for meanclassaccuracy
misclasscnt synonym for misclasscount

∗ indicates metrics allowed for stopping.

metric conf Description

f1 𝐹1 score

f2 𝐹2 score

fhalf 𝐹0.5 score

accuracy number of correct predictions as a ratio of all predictions made

precision proportion of correct predictions in predictions of positive class

recall proportion of correct predictions of positive class

specificity proportion of correct predictions in the negative class

minclassaccuracy minimum of per-class accuracy

meanclassaccuracy mean of per-class accuracy

tn true negative; the number of correct predictions of the negative
class

fn false negative; the number of incorrect predictions of the negative
class

tp true positive; the number of correct predictions of the positive
class

fp false positive; the number of incorrect predictions of the positive
class

metric option — Classification and regression metrics+ 340

tnr true-negative rate; synonym for specificity
fnr false-negative rate; the proportion of incorrect predictions in negative

class

tpr true-positive rate; synonym for recall
fpr false-positive rate; the proportion of incorrect predictions in positive

class

mcc Matthews correlation coefficient

meanpcacc synonym for meanclassaccuracy
tneg synonym for tn
fneg synonym for fn
tpos synonym for tp
fpos synonym for fp
tnegrate synonym for tnr
fnegrate synonym for fnr
tposrate synonym for tpr
fposrate synonym for fpr
mccorr synonym for mcc

metric score Description

reg metric score metric for regression (h2oml gbregress and h2oml rfregress)
binclass metric score metric for binary classification (h2oml gbbinclass and

h2oml rfbinclass)
multiclass metric score metric for multiclass classification (h2oml gbmulticlass and

h2oml rfmulticlass)

reg metric score Description

deviance deviance

rmse root mean squared error

mae mean absolute error

binclass metric score Description

logloss logarithmic loss

misclassification number of observations incorrectly classified divided by
the total number of observations

auc area under the ROC curve

aucpr area under the precision–recall curve

rmse root mean squared error

misclasserror synonym for misclassification

multiclass metric score Description

logloss logarithmic loss

misclassification number of observations incorrectly classified divided by
the total number of observations

rmse root mean squared error

misclasserror synonym for misclassification

metric option — Classification and regression metrics+ 341

Options
Options are presented under the following headings:

Metrics for regression
Metrics for classification
Additional classification metrics

Metrics are divided into those for regression and those for classification (binary and multiclass).

Metrics for regression
In the metric formulas, the 𝑖th observation is denoted by 𝑦𝑖, the predicted value by ̂𝑦, the mean by 𝑦, and
the total number of observations by 𝑛.

deviance requests the deviance, which is a measurement of goodness-of-fit of the model.

With h2oml rfregress or with h2oml gbregress and the Gaussian loss, the deviance,𝐷, is defined

as

𝐷 =
𝑛

∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2

which is equivalent to the mean squared error (MSE).

With h2oml gbregress and the Tweedie loss, the deviance is defined as

𝐷 =
𝑛

∑
𝑖=1

[{max(𝑦, 0)}2−𝑝

(1 − 𝑝)(2 − 𝑝)
− 𝑦(̂𝑦)1−𝑝

1 − 𝑝
+ (̂𝑦)2−𝑝

2 − 𝑝
]

where 𝑝 is the parameter in Tweedie and specified as power() in h2oml gbm.

With h2oml gbregress and the Poisson loss, the deviance is defined as

𝐷 = −2
𝑛

∑
𝑖=1

{𝑦𝑖 log(𝑦𝑖
̂𝑦𝑖
) − (𝑦𝑖 − ̂𝑦𝑖)}

With h2oml gbregress and the Laplace loss, the deviance is defined as

𝐷 = 1
𝑛

𝑛
∑
𝑖=1

|𝑦𝑖 − ̂𝑦𝑖|

which is equivalent to the mean absolute error (MAE).

mse requests the MSE, which is the average of the squared errors. MSE can be represented as a sum of the

variance and the square of the bias. It imposes larger penalties on larger errors. Thus, it is sensitive

to outliers. The formula is
1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2

rmse requests the root mean squared error (RMSE). Unlike the MSE, the units of RMSE are the same as

the units of the response variable, which provides a useful interpretation when the size of the error is

of interest. The formula is

√ 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2

metric option — Classification and regression metrics+ 342

rmsle requests the rootmean squared logarithmic error (RMSLE), which is the ratio between the logarithm

actual values and the logarithm of predicted values. The RMSLE is recommended when underpredic-

tion of the model is worse than the overprediction. The formula is

√ 1
𝑛

𝑛
∑
𝑖=1

{ ln(𝑦𝑖 + 1
̂𝑦𝑖 − 1

)}
2

mae requests the MAE, which is the average of the absolute value of the error. The units of MAE are

the same as the units of the response, and it is robust to outliers. A smaller MAE indicates a better

performance. The formula is
1
𝑛

𝑛
∑
𝑖=1

|𝑦𝑖 − ̂𝑦𝑖|

r2 requests the 𝑅2, also known as the coefficient of determination. 𝑅2 is the proportion of the variance

of a response that is explained by the predictors. Because the estimated variance depends on the given

dataset, we do not advise the comparison of 𝑅2 across different datasets. The best 𝑅2 score is 1, and

it can be negative because a model can predict arbitrarily poorly. The estimated 𝑅2 is defined as

1 −
∑𝑛

𝑖=1(𝑦𝑖 − ̂𝑦𝑖)2

∑𝑛
𝑖=1(𝑦𝑖 − 𝑦)2

Metrics for classification
For binary classification, suppose that 𝑦𝑖 takes two possible values {0, 1}, where 0 and 1 correspond to
negative and positive classes, respectively. The predicted probability for the positive class and observa-

tion 𝑖 is denoted by ̂𝑝𝑖 and the predicted class by ̂𝑦𝑖.

For multiclass classification, the number of classes is denoted by 𝐾 and 𝑦𝑖𝑘 = 1 if the observation 𝑖
belongs to the class 𝑘 and 0 otherwise. The predicted probability for the observation 𝑖 and class 𝑘 is

denoted by ̂𝑝𝑖𝑘.

logloss requests log loss (logarithmic loss). The goal of the log loss is to estimate the closeness of the
model’s predicted probabilities to the actual values of the response variable. That is, log loss indicates

the ability of the model to assign higher predicted probabilities to observations in the positive class

and smaller probabilities to observations in the negative class. Log loss may take any nonnegative

value. For binary classification, it is defined as

− 1
𝑛

𝑛
∑
𝑖=1

𝑦𝑖 ln(̂𝑝𝑖) + (1 − 𝑦𝑖) ln(1 − ̂𝑝𝑖)

For multiclass classification, it is defined as

− 1
𝑛

𝑛
∑
𝑖=1

𝐾
∑
𝑘=1

𝑦𝑖𝑘 ln(̂𝑝𝑖𝑘)

f1, f2, and fhalf are 𝐹𝛽 scores and are functions of recall and precision. The 𝐹𝛽 scores are defined as

𝐹𝛽 = (1 + 𝛽2) precision × recall

𝛽2(precision + recall)

metric option — Classification and regression metrics+ 343

where 𝛽 > 0 is chosen such that recall is considered 𝛽 times as important as precision. Here precision

and recall are defined as in the descriptions of the precision and recall options.

f1 requests 𝐹1.

f2 requests 𝐹2, which is the harmonic mean of precision and recall.

fhalf requests 𝐹0.5.

accuracy requests the accuracy, which is the ratio of the number of correct predictions to the total number
of all predictions made. The accuracy metric is not recommended for imbalanced data (Bradley 1997;

Huang and Ling 2005). For example, for a sample with 100 observations such that 96 belong to

positive and 4 to negative classes, the accuracy score for a model that predicts the positive class for

all observations is 0.96, which is misleading. The formula is

tp + tn

tp + tn + fp + fn

where tn and tp are the numbers of true negatives and true positives (correct predictions) and where

fn and fp are the numbers of false negatives and false positives (incorrect predictions).

For multiclass classification, accuracy k denotes the estimated accuracy for the class 𝑘.
precision requests the precision, which is the proportion of observations correctly predicted to be in

the positive class out of all observations predicted to be in the positive class. Precision is a biased

metric; it fails to account for the performance in negative classes (Powers 2011). The formula is

tp

tp + fp

recall requests the recall, also known as the sensitivity or the true-positive rate. It is the proportion of
observations correctly predicted to be in the positive class out of all observations that actually belong

to the positive class. Recall is a biased metric; it fails to account for the performance in negative

classes (Powers 2011). The formula is
tp

tp + fn

specificity requests the specificity, also known as the true-negative rate. It is the proportion of correct
predictions in the negative class. The formula is

tn

tn + fn

misclassification requests the misclassification, which is the proportion of the predictions that are

false. It is equal to

1 − accuracy

For multiclass classification, the misclassification error for the class 𝑘 is defined as

1 − accuracy𝑘

misclasserror is a synonym for misclassification.

metric option — Classification and regression metrics+ 344

meanclasserror requests the mean of the per-class misclassification errors. The misclassification error
in class 𝑘 is estimated by 1− accuracy𝑘, where accuracy𝑘 is the accuracy for the class 𝑘. Then for 𝐾
classes, the meanclasserror is

1
𝐾

𝐾
∑
𝑘=1

(1 − accuracy𝑘)

meanpcerr is a synonym for meanclasserror.

maxclasserror requests the maximum per-class misclassification error. For 𝐾 classes, it is defined as

max𝑘=1,...,𝐾{1 − accuracy𝑘}

maxpcerr is a synonym for maxclasserror.

minclassaccuracy requests the minimum per-class accuracy. For 𝐾 classes, it is defined as

min𝑘=1,...,𝐾{accuracy𝑘}

meanclassaccuracy requests the mean of the per-class accuracies. For 𝐾 classes, it is defined as

1
𝐾

𝐾
∑
𝑘=1

accuracy𝑘

meanpcacc is a synonym for meanclassaccuracy.

misclasscount requests the total number of observations that a model has incorrectly classified. For

the binary classification, it is defined as

𝑛
∑
𝑖=1

1(𝑦𝑖 ≠ ̂𝑦𝑖)

where 1(⋅) is an indicator function and ̂𝑦𝑖 is the predicted class.

For the multiclass classification, it is defined as

𝑛
∑
𝑖=1

𝐾
∑
𝑘=1

1(𝑦𝑖𝑘 ≠ ̂𝑦𝑖𝑘)

misclasscnt is a synonym for misclasscount.

auc requests the area under the curve (AUC), which measures the ability of the classification model to

distinguish between true positives and false positives. A higher value indicates a better classifier. A

classifier with an AUC score of 0.5 is no better than a random guess. H2O uses the trapezoidal rule to

approximate the area under the receiver operating characteristic (ROC) curve. The ROC curve plots

the recall against the false-positive rate. For imbalanced data, AUC is preferred more than accuracy

(Bradley 1997) but less recommended than the area under the precision–recall curve (AUCPR) or the

Matthews correlation coefficient (MCC).

For multiclass classification with the number of classes equal to 𝐾, there exist several variations of

the AUC score.

The one-versus-oneAUC (OVOAUC) calculates theAUC score for all pairwise combinations of classes.

The computation of this metric requires fitting one binary classification per class pair. Thus, there are

𝐾 × (𝐾 − 1)/2 binary classifiers.

metric option — Classification and regression metrics+ 345

The one-versus-restAUC (OVRAUC) calculates theAUC score for one class with the rest of the classes.

The computation of this metric requires fitting one binary classifier per class, where a given class is

regarded as the “positive” class and the remaining classes are regarded as the “negative” class.

The macro average OVRAUC is a uniform weighted average of all OVRAUCs.

1
𝐾

𝐾
∑
𝑘=1

AUC(𝑘, 𝐾−𝑘)

where 𝐾 is the number of classes and AUC(𝑗, 𝐾−𝑗) is the AUC with class 𝑗 as the positive class and
the rest of classes 𝐾−𝑗 as the negative class.

The weighted average OVR AUC calculates the prevalence weighted average of all OVR AUCs, where

the prevalence of class 𝑘, 𝑝(𝑘), is the number of observations in class 𝑘.

1
∑𝐾

𝑘=1 𝑝(𝑘)

𝐾
∑
𝑘=1

𝑝(𝑘)AUC(𝑘, 𝐾−𝑘)

The macro average OVOAUC is a uniformly weighted average of all OVOAUCs

2
𝐾

𝐾
∑
𝑘=1

𝐾
∑
𝑗≠𝑘

1
2

{AUC(𝑘, 𝑗) + AUC(𝑗, 𝑘)}

The weighted average OVOAUC is a prevalence weighted average of all OVOAUCs.

2
∑𝐾

𝑘=1 ∑𝐾
𝑗≠𝑘 𝑝(𝑘 ∪ 𝑗)

𝐾
∑
𝑘=1

𝐾
∑
𝑗≠𝑘

𝑝(𝑘 ∪ 𝑗)1
2

{AUC(𝑘, 𝑗) + AUC(𝑗, 𝑘)}

aucpr requests the AUCPR. It is a weighted average of precision, where the weights are determined by

recall at the threshold. By construction, AUCPR is more sensitive to true-positive, false-positive, and

false-negative rates than AUC. Thus, it is more suitable for highly imbalanced data.

For multiclass classification, AUCPR metrics are defined similarly to the corresponding AUC metrics.

tn requests the true-negative metric, tn, which is the number of correct predictions of the negative class.

tneg is a synonym for tn.

fn requests the false-negative metric, fn, which is the number of incorrect predictions of the negative

class.

fneg is a synonym for fn.

tp requests the true-positive metric, tp, which is the number of correct predictions of the positive class.

tpos is a synonym for tp.

fp requests the false-positive metric, fp, which is the number of incorrect predictions of the positive

class.

fpos is a synonym for fp.

tnr requests the true-negative rate, which is the same as specificity.

tnegrate is a synonym for tnr.

metric option — Classification and regression metrics+ 346

fnr requests the false-negative rate, which is the proportion of incorrect predictions in the positive class.
The formula is

fn

tp + fn

fnegrate is a synonym for fnr.

tpr requests the true-positive rate, which is the same as recall.

tposrate is a synonym for tpr.

fpr requests the false-positive rate, which is the proportion of incorrect predictions in the negative class.
The formula is

fp

tn + fp

fposrate is a synonym for fpr.

mcc requests the MCC, which measures how well a binary classifier detects true and false positives, and

true and false negatives. The MCC provides correlation between the actual and predicted values.

tp × tn − fp × fn

√(tp + fp)(tp + fn)(tn + fp)(tn + fn)

mccorr is a synonym for mcc.

Additional classification metrics
Below, we provide definitions for additional metrics that are reported by H2OML commands for classifi-

cation but that need not be specified via the metric() option.

Gini coefficient. Often referred to as the Gini index, this estimates the “purity” of a dataset in classifi-

cation problems. For a binary classification, the Gini coefficient is calculated as

Gini = 1 − (𝑝2
1 + 𝑝2

2)

where 𝑝1 and 𝑝2 are the proportions of class 1 and 2, respectively.

R2 for classification. This represents the degree to which the predicted probability and the actual class

move together. The best 𝑅2 score is 1, and it can be negative because a model can predict arbitrarily

poorly. For binary classification, the estimated 𝑅2 is defined as

1 −
∑𝑛

𝑖=1(𝑦𝑖 − ̂𝑝𝑖)2

∑𝑛
𝑖=1(𝑦𝑖 − 𝑝𝑖)2

For multiclass classification, it is defined as

1 −
∑𝑛

𝑖=1 ∑𝐾
𝑘=1(𝑦𝑖𝑘 − ̂𝑝𝑖𝑘)2

∑𝑛
𝑖=1 ∑𝐾

𝑘=1(𝑦𝑖 − 𝑝𝑖𝑘)2

metric option — Classification and regression metrics+ 347

MSE for classification. This is the average of the squared errors, where error is the difference between

the predicted probability and the actual class. For binary classification, the formula is

1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑝𝑖)2

For multiclass classification, it is

1
𝑛

𝑛
∑
𝑖=1

𝐾
∑
𝑘=1

(𝑦𝑖𝑘 − ̂𝑝𝑖𝑘)2

RMSE for classification. This is the square root of MSE.

References
Bradley, A. P. 1997. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern

Recognition 30: 1145–1159. https://doi.org/10.1016/S0031-3203(96)00142-2.

Huang, J., and C. X. Ling. 2005. Using AUC and accuracy in evaluating learning algorithms. IEEE Transactions on

Knowledge and Data Engineering 17: 299–310. https://doi.org/10.1109/TKDE.2005.50.

Powers, D. M. W. 2011. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and

correlation. Journal of Machine Learning Technologies 2: 37–63.

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2oml gbm — Gradient boosting machine for regression and classification+

[H2OML] h2oml rf — Random forest for regression and classification+

[H2OML] h2omlestat gridsummary — Display grid-search summary+

[H2OML] h2omlestat confmatrix — Display confusion matrix+

[H2OML] h2omlgraph scorehistory — Produce score history plot+

https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/10.1109/TKDE.2005.50

H2O option mapping — Mapping of H2OML estimation options to H2O+

+These features are part of StataNow.

Description Also see

Description
The H2OML suite of commands in Stata provides a wrapper for H2O. To facilitate the transition and

clear up a potential ambiguity that you might encounter, in this entry we provide a mapping of h2oml
gbm and h2oml rf option names in Stata to the H2O option names available in H2O GBM and H2O random

forest. For options corresponding to hyperparameter tuning and grid search (via h2oml’s tune() option),
we refer you to documentation for H2O tuning.

H2OML in Stata H2O

∗ loss() distribution
validframe() validation frame
cv(#) nfolds
cv(cvmethod) fold assignment
cv(varname) fold column
h2orseed() seed
encode() categorical encoding
stop(#) stopping rounds
stop(metric()) stopping metric
stop(tolerance) stopping tolerance
maxtime() max runtime secs
scoreevery() score tree interval

∗ monotone() monotone constraints
ntrees() ntrees

∗ lrate() learn rate (GBM option)
∗ lratedecay() learn rate annealing

maxdepth() max depth
minobsleaf() min rows

∗ predsamprate() col sample rate
† predsampvalue() mtries

samprate() sample rate
minsplitthreshold() min split improvement
binscat() nbins cats
binsroot() nbins top level
binscont() nbins
tune(grid(gridspec)) strategy
tune(maxmodels()) max models
∗ indicates that the option is available only for GBM.
† indicates that the option is available only for random forest.

348

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/drf.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/drf.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/grid-search.html

H2O option mapping — Mapping of H2OML estimation options to H2O+ 349

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2oml gbm — Gradient boosting machine for regression and classification+

[H2OML] h2oml rf — Random forest for regression and classification+

H2O reproducibility — Reproducibility in H2O+

+These features are part of StataNow.

Description Also see

Description
Reproducibility is an important consideration in all scientific research, data analyses, and machine

learning experiments. The goal is ensure that repeating the same analysis under the same conditions will

yield identical results. In H2O, reproducibility can be affected by randomness in data splitting, model

training, and the design of the machine learning method.

Below, we provide a list of guidelines to help you ensure that your analysis and results are repro-

ducible. For more details, see H2O’s reproducibility page.

1. Control data splitting: If you split the dataset into multiple datasets, such as training and testing

sets, by using the h2oframe split command, control the randomness of the splitting by setting
the random-number seed with the rseed() option. For example, you might type

. _h2oframe split mydata, into(train test) split(0.8 0.2) rseed(19)

2. Set a seed when fitting a model: Gradient boosting machine (GBM) and random forest meth-

ods use random-number generation for various operations throughout estimation and grid search.

For example, the observation sampling rate and column sampling rate set by the samprate()
and colsamprate() options in the commands for GBM use a seed for sampling. To ensure re-

producibility, set a seed via the h2orseed() option for both the model and the grid search. For

example, you might type

. h2oml gbregress y x1 x2, h2orseed(19) ntrees(10(4)20)
> tune(grid(random, h2orseed(20)))

3. Make sure hyperparameters are the same in every execution: For reproducibility, the hyper-

parameters of the model, such as those set by the maxdepth(), samprate(), minobsleaf(), and
other hyperparameter options, should be identical in each execution of the estimation command.

4. Be careful with early stopping: Early stopping, specified by the stop() option in GBM and

random forest commands, stops the training process early when the model performance does not

improve. Even though early stopping may prevent overfitting and significantly improve execution

time, it is a potential source of nonreproducibility. By default, during training H2O determines an

interval 𝑇, and the model performance is scored only after 𝑇 trees are added to the model. In each

execution of the estimation command, this default interval 𝑇 can vary, which affects the scoring

of the model performance, and the training may stop at different times. To ensure that the scoring

of the model is consistent throughout multiple executions, specify the scoreevery() option with
early stopping. For example, you might type

. h2oml gbregress y x1 x2, h2orseed(19) ntrees(100) stop(3) scoreevery(1)

5. Control parallelism: The number ofmachine cores, the specified number of threads during cluster

initialization, and the parallelism level determine how a dataset is partitioned in memory (referred

to as “chunks” by H2O) and affect the estimation of various methods, such as GBM. While H2O

leverages parallelism to improve training time, this can introduce some randomness when running

on multiple threads and cores.

350

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm-faq/reproducibility.html

H2O reproducibility — Reproducibility in H2O+ 351

You can limit parallelism during cluster initialization by specifying the desired number of threads

using the nthread() option in the h2o.init command. For example, you can type

. h2o init, nthread(1)

However, even though nthreads() is closely related to the number of cores, in H2O this does

not determine how it partitions the dataset into chunks, as this depends on the number of cores

available on the machine. If the number of chunks varies, the order of operations executed by H2O

will also differ. As a result, certain numeric operations may produce slightly different outcomes

depending on the order of operations. This can lead to small variations in metrics sensitive to

ordering, such as AUC, AUCPR, etc, when the same model with the same parameters is run in a

machine with different number of cores.

The reproducibility issues described above also apply when you choose to enable parallel model

building during grid search to reduce computational time. For example,

. h2oml gbregress y x1 x2, h2orseed(19) ntrees(100(50)200) tune(parallel(0))

6. Use the same version of H2O: A different version of H2O may contain slight differences in im-

plementation of the method, which can affect the reproducibility. To avoid discrepancies, ensure

that the same version of H2O is used each time the command is executed. The version of H2O in

Stata can be checked by using the h2o query command. In the output below, the H2O version is

3.46.0.6. For details on how to download and set up H2O, see [H2OML] H2O setup.

. h2o query
Cluster is running at http://127.0.0.1:54321.

H2O cluster uptime: 1 hour 0 mins
H2O cluster timezone: America/Chicago
H2O data parsing timezone: UTC
H2O cluster version: 3.46.0.6
H2O cluster version age: 3 months
H2O cluster total nodes: 1
H2O cluster free memory: 6.892 Gb
H2O cluster total cores: 28
H2O cluster allowed cores: 28
H2O cluster status: locked, healthy
H2O connection url: http://127.0.0.1:54321

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2oml gbm — Gradient boosting machine for regression and classification+

[H2OML] h2oml rf — Random forest for regression and classification+

Glossary+

+These features are part of StataNow.

bagging. Amodel agnostic procedure that generates perturbation of the dataset by random and indepen-

dent drawings (Breiman 1996).

base learner. A learner whose error rate is only slightly better than random guessing.

beeswarm plot. A type of data visualization used to display the individual data points as dots such that

the points do not overlap, resulting in a “swarm” of points. This type of plot is used by h2omlgraph
shapsummary.

bias-variance tradeoff. This controls the tension between learning and generalization. The tradeoff

concerns how to lower generalization error by reducing the bias and variance of the machine learning

methods. For details, see Fundamentals of machine learning in [H2OML] Intro.

black box method. A machine learning method that is difficult to interpret by design. For example,

linear models and decision trees belong to the class of interpretable models, but ensemble methods,

and neural networks are considered black box methods.

boosting. Amodel agnostic deterministic procedure that generates perturbation of the dataset by sequen-

tially reweighting it (Freund and Schapire 1997).

categorical encoding. A process of transforming categorical predictors into numerical representations

so that they can be used in machine learning models. For details, see [H2OML] encode option.

classification. A type of supervised machine learning task where the goal is to predict the category or

class of a response based on predictors.

classifier. A machine learning method that is designed for classification. When the response variable in

the supervised learning method is categorical, then the method implements classification.

DOT language. A plain-text graph description language used in the Graphviz software.

ensemble method. A mechanism that forms a smart committee of incompetent but carefully selected

members to solve a machine learning problem. For details, see Ensemble methods in [H2OML] Intro.

explainable method. A technique used in machine learning that enables explaining the predictions of a

model.

feature. Same as predictor.

fitting. A process of training a model on data by adjusting its hyperparameters to improve performance.

generalization. A process where the model not only performs well on the training data but also general-

izes to new (testing) data.

generalization error. A quantitative measure of how well a machine learning model can predict out-

comes for new (testing) data. Generalization error is the expected error on new data (the testing set).

grid search. A process of evaluating different hyperparameter configurations in the hyperparameter

space to find the best configuration that improves performance of a model.

hyperparameter. A parameter whose value is adjusted to control and improve the training process.

hyperparameter space. Possible values and ranges of the hyperparameters.

hyperparameter tuning. A process where the hyperparameters of a model are optimized to improve

performance.

352

Glossary+ 353

impurity measure. Ameasure to quantify the goodness of fit of a split in the regression or classification

trees.

k-fold cross-validation. A process of splitting a dataset into 𝑘 parts. For each of 𝑘 iterations, it uses one
part for validation and the remaining 𝑘 − 1 parts as a training subset for model fitting.
learn. In the machine learning context, learning refers to the process when a model uses data to adjust

its parameters to increase prediction accuracy.

learner. A machine learning method such as random forest and gradient boosting machine used for

learning.

majority-vote rule. A classification rule that returns a class that is the most commonly occurring one

among the predictors. Majority-vote rule is used in bagging and random forest to predict the class.

manifold hypothesis. The manifold hypothesis states that the observed high-dimensional data lie on a

low-dimensional manifold.

metric scoring. A process of evaluating the performance of a machine learning algorithm by using a

specified metric.

model agnostic. A methodology whose implementation does not directly require a particular model.

model selection. The process of building an optimal model by exploring a range of possible hyperpa-

rameters and selecting the ones that result in the best-performing model.

one-hot encoding. A process that decomposes categories of a categorical predictor into binary variables.

optimism bias. Bias that occurs when a sufficiently complex machine learning model memorizes the

patterns in the training data.

out-of-bag observations. Observations that are not used to grow the tree after bootstrap.

overfitting. A process of fitting a machine learning method too well on the training data so the method

fails to generalize to testing data. For details, see Fundamentals of machine learning in [H2OML] Intro.

performance metric. A quantitative measure used to evaluate the performance of a model.

pessimistic bias. Bias that occurs when the validation set is small and the machine learning model fails

to reach its full capacity.

predictive modeling. A process of developing a model that generates accurate predictions.

predictor importance. The degree to which a predictor influences the model’s predictions.

predictors. The inputs for a machine learning model. In classical statistics, these may be referred to as

independent variables, covariates, 𝑥 variables, or predictors. In machine learning literature, they are

also referred to as features.

proportion predictor importance. A type of predictor importance calculated by dividing the importance

of each predictor by the total sum of the importance of all predictors.

pruning. A process to optimize hyperparameters for regression and classification trees (Breiman et al.

1984).

response. The outputs for a machine learning model. In classical statistics, these may be referred to as

dependent variables, 𝑦 variables, or outcomes. In machine learning literature, they are also referred
to as targets.

root node. A node in the graph or tree that does not have parents. For details, see Decision trees in

[H2OML] Intro.

Glossary+ 354

scaled predictor importance. A type of predictor importance calculated by dividing the importance of

each predictor by the largest importance score of the predictors.

stopping criteria. In growing decision trees, the stopping criteria determine what will be used to halt

the additional splitting of the node. Examples of stopping criteria are the depth of the tree, minimum

number of observations in each tree, etc.

stump. A decision tree with depth equal to one. Stumps are weak learners.

supervised learning. A type of machine learning in which a method is trained on data where there is

an associated response for each observation. Linear regression, random forest, and gradient boosting

machine are examples of supervised learning.

surrogatemodel. An explainable model that approximates the prediction of the machine learningmodel.

target. See response.

terminal node. A node in the graph that does not have children. For details, see Decision trees in

[H2OML] Intro.

testing set. New data used to estimate the generalization error of the machine learning method.

three-way holdout. A process of splitting the dataset into three parts: training, validation, and testing

datasets. This method is used to evaluate model performance.

training set. Data used to train a machine learning method.

tuning budget. Time or computational resources allocated for hyperparameter tuning.

two-way holdout. A process of splitting the dataset into two parts: training and testing datasets. This

method is used to evaluate model performance.

underfitting. Underfitting occurs when a machine learning model is not complex enough to capture the

hidden patterns of the data, resulting in poor performance on the training and testing data.

unsupervised learning. A type of machine learning where there is no response variable.

validation dataset. A subset of data separated during the training process of a machine learning model

and used to evaluate the model’s performance during hyperparameter tuning.

variable importance. See predictor importance.

weak learner. See base learner.

References
Breiman, L. 1996. Bagging predictors.Machine Learning 24: 123–140. https://doi.org/10.1007/BF00058655.

Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classification and Regression Trees. Boca Raton, FL:

Chapman and Hall/CRC.

Freund, Y., and R. E. Schapire. 1997. A decision-theoretic generalization of on-line learning and an application to boost-

ing. Journal of Computer and System Sciences 55: 119–139. https://doi.org/10.1006/jcss.1997.1504.

https://doi.org/10.1007/BF00058655
https://doi.org/10.1006/jcss.1997.1504

Subject and author index

See the combined subject index and the combined author index in the Stata Index.

355

	Contents
	[IG] Installation Guide
	Simple installation
	Installing Stata or StataNow for Windows
	Installation

	Installing Stata or StataNow for Mac
	Installation

	Installing Stata or StataNow for Unix
	Platforms and editions
	Documentation

	[GS] Getting Started
	[GSM] Mac
	Contents
	1 Introducing Stata---sample session
	Introducing Stata
	Sample session
	Simple data management
	Descriptive statistics
	A simple hypothesis test
	Descriptive statistics---correlation matrices
	Graphing data
	Model fitting: Linear regression
	Commands versus menus
	Keeping track of your work
	Video example
	Conclusion

	2 The Stata user interface
	The windows
	The toolbar
	The Command window
	The Results window
	The Sidebar
	The Variables window
	The Properties window
	The History window
	Tabs
	Menus and dialogs
	The working directory

	3 Using the Viewer
	The Viewer's purpose
	Viewer buttons
	Viewer's function
	Viewing local text files, including SMCL files
	Viewing remote files over the Internet
	Navigating within the Viewer
	Printing
	Right-clicking on the Viewer window
	Searching for help in the Viewer
	Commands in the Viewer
	Using the Viewer from the Command window

	4 Getting help
	System help
	Searching help
	Help and search commands
	The Stata reference manuals and User's Guide
	Stata videos
	The Stata Journal

	5 Opening and saving Stata datasets
	How to load your dataset from disk and save it to disk
	How to load a set of frames from disk and save them to disk

	6 Using the Data Editor
	The Data Editor
	Buttons on the Data Editor
	Data entry
	Notes on data entry
	Renaming and formatting variables
	Copying and pasting data
	Notes on copying and pasting
	Changing data
	Working with snapshots
	Dates and the Data Editor
	Data Editor advice
	Filtering and hiding
	Browse mode
	Variable labels in column headers and column width control
	Pinning rows and columns

	7 Using the Variables Manager
	The Variables Manager
	The Variable pane
	Right-clicking on the Variable pane
	The Variable properties pane
	Managing notes

	8 Importing data
	Copying and pasting
	Commands for importing data
	The import delimited command
	Importing files from other software

	9 Labeling data
	Making data readable
	The dataset structure: The describe command
	Labeling datasets and variables
	Labeling values of variables

	10 Listing data and basic command syntax
	Command syntax
	list with a variable list
	list with if
	list with if, common mistakes
	list with in
	Controlling the list output
	Break

	11 Creating new variables
	generate and replace
	generate
	replace
	generate with string variables

	12 Deleting variables and observations
	clear, drop, and keep
	clear and drop _all
	drop
	keep

	13 Using the Do-file Editor---automating Stata
	The Do-file Editor
	The Do-file Editor toolbar
	Using the Do-file Editor
	The File menu
	The Edit menu
	The View > Do-file Editor menu
	Saving interactive commands from Stata as a do-file
	Navigating your do-file
	Projects
	Auto backup
	Adding user-defined keywords for syntax highlighting

	14 Graphing data
	Working with graphs
	A simple graph example
	Graph window
	Saving and printing graphs
	Right-clicking on the Graph window
	The Graph button

	15 Editing graphs
	The Graph Editor

	16 Saving and printing results by using logs
	Using logs in Stata
	Logging output
	Working with logs
	Printing logs
	Rerunning commands as do-files

	17 Setting font and window preferences
	Changing and saving fonts and sizes and positions of your windows
	Graph window
	All other windows
	Changing color schemes
	Managing multiple sets of preferences
	Closing and opening windows

	18 Learning more about Stata
	Where to go from here
	Suggested reading from the User's Guide and reference manuals
	Internet resources

	19 Updating and extending Stata---Internet functionality
	Internet functionality in Stata
	Using files from the Internet
	Official Stata updates
	Automatic update checking
	Finding community-contributed commands by keyword
	Downloading community-contributed commands

	A Troubleshooting Stata
	A.1 If Stata does not start
	A.2 Troubleshooting tips

	B Advanced Stata usage
	B.1 Executing commands every time Stata is started
	B.2 Other ways to launch Stata
	B.3 Stata batch mode
	B.4 Changing Stata's locale
	B.5 More
	B.6 Memory size considerations

	C More on Stata for Mac
	C.1 Using Stata datasets and graphs created on other platforms
	C.2 Exporting a Stata graph to another document
	C.3 Stata and the Notification Manager
	C.4 Stata(console) for Mac
	C.5 Calling Stata from Python
	C.6 Changing a Stata for Mac license

	Subject index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y

	[GSU] Unix
	Contents
	1 Introducing Stata---sample session
	Introducing Stata
	Sample session
	Simple data management
	Descriptive statistics
	A simple hypothesis test
	Descriptive statistics---correlation matrices
	Graphing data
	Model fitting: Linear regression
	Commands versus menus
	Keeping track of your work
	Video example
	Conclusion

	2 The Stata user interface
	The windows
	The toolbar
	The Command window
	The Results window
	The Variables window
	The Properties window
	The History window
	Menus and dialogs
	The working directory

	3 Using the Viewer
	The Viewer in Stata(GUI)
	The Viewer's purpose
	Viewer buttons
	Viewer's function
	Viewing local text files, including SMCL files
	Viewing remote files over the Internet
	Navigating within the Viewer
	Printing
	Tabs in the Viewer
	Right-clicking on the Viewer window
	Searching for help in the Viewer
	Commands in the Viewer
	Using the Viewer from the Command window

	4 Getting help
	System help
	Searching help
	Help and search commands
	The Stata reference manuals and User's Guide
	Stata videos
	The Stata Journal

	5 Opening and saving Stata datasets
	How to load your dataset from disk and save it to disk
	How to load a set of frames from disk and save them to disk

	6 Using the Data Editor
	The Data Editor in Stata(GUI)
	Buttons on the Data Editor
	Data entry
	Notes on data entry
	Renaming and formatting variables
	Copying and pasting data
	Notes on copying and pasting
	Changing data
	Working with snapshots
	Dates and the Data Editor
	Data Editor advice
	Filtering and hiding
	Browse mode
	Variable labels in column headers and column width control
	Pinning rows and columns

	7 Using the Variables Manager
	The Variables Manager in Stata(GUI)
	The Variable pane
	Right-clicking on the Variable pane
	The Variable properties pane
	Managing notes

	8 Importing data
	Copying and pasting in Stata(GUI)
	Commands for importing data
	The import delimited command
	Importing files from other software

	9 Labeling data
	Making data readable
	The dataset structure: The describe command
	Labeling datasets and variables
	Labeling values of variables

	10 Listing data and basic command syntax
	Command syntax
	list with a variable list
	list with if
	list with if, common mistakes
	list with in
	Controlling the list output
	Break

	11 Creating new variables
	generate and replace
	generate
	replace
	generate with string variables

	12 Deleting variables and observations
	clear, drop, and keep
	clear and drop _all
	drop
	keep

	13 Using the Do-file Editor---automating Stata
	The Do-file Editor in Stata(GUI)
	The Do-file Editor toolbar
	Using the Do-file Editor
	The File menu
	The Edit menu
	The View menu
	The Tools menu
	Saving interactive commands from Stata as a do-file
	Navigating your do-file
	Projects
	Auto backup
	Adding user-defined keywords for syntax highlighting

	14 Graphing data
	Working with graphs
	A simple graph example
	Graph window
	Saving and printing graphs
	Right-clicking on the Graph window
	The Graph button

	15 Editing graphs
	The Graph Editor

	16 Saving and printing results by using logs
	Using logs in Stata
	Logging output
	Working with logs
	Printing logs
	Rerunning commands as do-files

	17 Setting font and window preferences
	Changing and saving fonts and sizes and positions of your windows
	Graph window
	All other windows
	Changing color schemes
	Managing multiple sets of preferences
	Closing and opening windows

	18 Learning more about Stata
	Where to go from here
	Suggested reading from the User's Guide and reference manuals
	Internet resources

	19 Updating and extending Stata---Internet functionality
	Internet functionality in Stata
	Using files from the Internet
	Official Stata updates
	Finding community-contributed commands by keyword
	Downloading community-contributed commands

	A Troubleshooting Stata
	A.1 If Stata(GUI) and Stata(console) do not start
	A.2 If Stata(console) starts but Stata(GUI) does not
	A.3 Troubleshooting tips

	B Advanced Stata usage
	B.1 Executing commands every time Stata is started
	B.2 Advanced starting of Stata for Unix
	B.3 Stata batch mode
	B.4 Using X Windows remotely
	B.5 Summary of environment variables
	B.6 Changing Stata's locale
	B.7 More
	B.8 Memory size considerations

	C Stata manual pages for Unix
	conren
	Syntax
	Description
	Finding a color scheme
	Can your terminal underline?
	If you had success
	If you did not have success
	Also see

	stata
	Syntax
	Description
	Remarks and examples

	pystata
	Subject index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

	[GSW] Windows
	Contents
	1 Introducing Stata---sample session
	Introducing Stata
	Sample session
	Simple data management
	Descriptive statistics
	A simple hypothesis test
	Descriptive statistics---correlation matrices
	Graphing data
	Model fitting: Linear regression
	Commands versus menus
	Keeping track of your work
	Video example
	Conclusion

	2 The Stata user interface
	The windows
	The toolbar
	The Command window
	The Results window
	The Variables window
	The Properties window
	The History window
	Menus and dialogs
	The working directory
	Fine control of Stata's windows
	Window types
	Docking windows
	Auto Hide and pinning
	Nondocking windows

	3 Using the Viewer
	The Viewer's purpose
	Viewer buttons
	Viewer's function
	Viewing local text files, including SMCL files
	Viewing remote files over the Internet
	Navigating within the Viewer
	Printing
	Tabs in the Viewer
	Right-clicking on the Viewer window
	Searching for help in the Viewer
	Commands in the Viewer
	Using the Viewer from the Command window

	4 Getting help
	System help
	Searching help
	Help and search commands
	The Stata reference manuals and User's Guide
	Stata videos
	The Stata Journal

	5 Opening and saving Stata datasets
	How to load your dataset from disk and save it to disk
	How to load a set of frames from disk and save them to disk

	6 Using the Data Editor
	The Data Editor
	Buttons on the Data Editor
	Data entry
	Notes on data entry
	Renaming and formatting variables
	Copying and pasting data
	Notes on copying and pasting
	Changing data
	Working with snapshots
	Dates and the Data Editor
	Data Editor advice
	Filtering and hiding
	Browse mode
	Variable labels in column headers and column width control
	Pinning rows and columns

	7 Using the Variables Manager
	The Variables Manager
	The Variable pane
	Right-clicking on the Variable pane
	The Variable properties pane
	Managing notes

	8 Importing data
	Copying and pasting
	Commands for importing data
	The import delimited command
	Importing files from other software

	9 Labeling data
	Making data readable
	The dataset structure: The describe command
	Labeling datasets and variables
	Labeling values of variables

	10 Listing data and basic command syntax
	Command syntax
	list with a variable list
	list with if
	list with if, common mistakes
	list with in
	Controlling the list output
	Break

	11 Creating new variables
	generate and replace
	generate
	replace
	generate with string variables

	12 Deleting variables and observations
	clear, drop, and keep
	clear and drop _all
	drop
	keep

	13 Using the Do-file Editor---automating Stata
	The Do-file Editor
	The Do-file Editor toolbar
	Using the Do-file Editor
	The File menu
	The Edit menu
	The View menu
	The Tools menu
	Saving interactive commands from Stata as a do-file
	Navigating your do-file
	Projects
	Auto backup
	Adding user-defined keywords for syntax highlighting

	14 Graphing data
	Working with graphs
	A simple graph example
	Graph window
	Saving and printing graphs
	Right-clicking on the Graph window
	The Graph button

	15 Editing graphs
	The Graph Editor

	16 Saving and printing results by using logs
	Using logs in Stata
	Logging output
	Working with logs
	Printing logs
	Rerunning commands as do-files

	17 Setting font and window preferences
	Changing and saving fonts and sizes and positions of your windows
	Graph window
	All other windows
	Changing color schemes
	Managing multiple sets of preferences
	Closing and opening windows

	18 Learning more about Stata
	Where to go from here
	Suggested reading from the User's Guide and reference manuals
	Internet resources

	19 Updating and extending Stata---Internet functionality
	Internet functionality in Stata
	Using files from the Internet
	Official Stata updates
	Automatic update checking
	Finding community-contributed commands by keyword
	Downloading community-contributed commands

	A Troubleshooting Stata
	A.1 If Stata does not start
	A.2 Troubleshooting tips

	B Advanced Stata usage
	B.1 The Windows Properties Sheet
	B.2 Making shortcuts
	B.3 Executing commands every time Stata is started
	B.4 Other ways to launch Stata
	B.5 Stata batch mode
	B.6 Running simultaneous Stata sessions
	B.7 Changing Stata's locale
	B.8 More
	B.9 Memory size considerations

	C More on Stata for Windows
	C.1 Using Stata datasets and graphs created on other platforms
	C.2 Exporting a Stata graph to another document
	C.3 Installing Stata for Windows on a network drive
	C.4 Calling Stata from Python
	C.5 Changing a Stata for Windows license

	Subject index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y

	[U] User's Guide
	Contents
	Stata basics
	1 Read this---it will help
	1.1 Getting started with Stata
	1.2 The Stata Documentation
	1.3 What's new
	1.4 References

	2 A brief description of Stata
	3 Resources for learning and using Stata
	3.1 Overview
	3.2 Stata on the Internet (www.stata.com and other resources)
	3.3 Stata Press
	3.4 The Stata Journal
	3.5 Updating and adding features from the web
	3.6 Conferences and training
	3.7 Books and other support materials
	3.8 Technical support

	4 Stata's help and search facilities
	4.1 Introduction
	4.2 Getting started
	4.3 help: Stata's help system
	4.4 Accessing PDF manuals from help entries
	4.5 Searching
	4.6 More on search
	4.7 More on help
	4.8 search: All the details
	4.9 net search: Searching net resources

	5 Editions of Stata
	5.1 StataNow
	5.2 Platforms
	5.3 Stata/MP, Stata/SE, or Stata/BE
	5.4 Size limits of Stata/MP, SE, and BE
	5.5 Speed comparison of Stata/MP, SE, and BE
	5.6 Feature comparison of Stata/MP, SE, and BE

	6 Managing memory
	6.1 Memory-size considerations
	6.2 Compressing data
	6.3 Setting maxvar
	6.4 The memory command
	6.5 Setting aside memory for temporary storage of preserved datasets

	7 --more-- conditions
	7.1 Description
	7.2 The set more command
	7.3 The more programming command

	8 Error messages and return codes
	8.1 Making mistakes
	8.2 The return message for obtaining command timings

	9 The Break key
	9.1 Making Stata stop what it is doing
	9.2 Side effects of clicking on Break
	9.3 Programming considerations

	10 Keyboard use
	10.1 Description
	10.2 F-keys
	10.3 Editing keys in Stata
	10.4 Editing keys in Stata for Unix(console)
	10.5 Editing previous lines in Stata
	10.6 Tab expansion of variable names

	Elements of Stata
	11 Language syntax
	11.1 Overview
	11.2 Abbreviation rules
	11.3 Naming conventions
	11.4 varname and varlists
	11.5 by varlist: construct
	11.6 Filenaming conventions
	11.7 References

	12 Data
	12.1 Data and datasets
	12.2 Numbers
	12.3 Dates and times
	12.4 Strings
	12.5 Formats: Controlling how data are displayed
	12.6 Dataset, variable, and value labels
	12.7 Notes attached to data
	12.8 Characteristics
	12.9 Data Editor and Variables Manager
	12.10 Data frames
	12.11 References

	13 Functions and expressions
	13.1 Overview
	13.2 Operators
	13.3 Functions
	13.4 System variables (_variables)
	13.5 Accessing coefficients and standard errors
	13.6 Accessing results from Stata commands
	13.7 Explicit subscripting
	13.8 Using the Expression Builder
	13.9 Indicator values for levels of factor variables
	13.10 Time-series operators
	13.11 Label values
	13.12 Precision and problems therein
	13.13 References

	14 Matrix expressions
	14.1 Overview
	14.2 Row and column names
	14.3 Vectors and scalars
	14.4 Inputting matrices by hand
	14.5 Accessing matrices created by Stata commands
	14.6 Creating matrices by accumulating data
	14.7 Matrix operators
	14.8 Matrix functions
	14.9 Subscripting
	14.10 Using matrices in scalar expressions
	14.11 Reference

	15 Saving and printing output---log files
	15.1 Overview
	15.2 Placing comments in logs
	15.3 Logging only what you type
	15.4 The log-button alternative
	15.5 Printing logs
	15.6 Creating multiple log files for simultaneous use

	16 Do-files
	16.1 Description
	16.2 Calling other do-files
	16.3 Creating and running do-files
	16.4 Programming with do-files
	16.5 References

	17 Ado-files
	17.1 Description
	17.2 What is an ado-file?
	17.3 How can I tell if a command is built in or an ado-file?
	17.4 How can I look at an ado-file?
	17.5 Where does Stata look for ado-files?
	17.6 How do I install an addition?
	17.7 How do I add my own ado-files?
	17.8 How do I install official updates?
	17.9 How do I install updates to community-contributed additions?
	17.10 References

	18 Programming Stata
	18.1 Description
	18.2 Relationship between a program and a do-file
	18.3 Macros
	18.4 Program arguments
	18.5 Scalars and matrices
	18.6 Temporarily destroying the data in memory
	18.7 Temporary objects
	18.8 Accessing results calculated by other programs
	18.9 Accessing results calculated by estimation commands
	18.10 Storing results
	18.11 Ado-files
	18.12 Tools for interacting with programs outside Stata and with other languages
	18.13 A compendium of useful commands for programmers
	18.14 References

	19 Immediate commands
	19.1 Overview
	19.2 The display command
	19.3 The power, precision, and sample-size commands

	20 Estimation and postestimation commands
	20.1 All estimation commands work the same way
	20.2 Standard syntax
	20.3 Replaying prior results
	20.4 Cataloging estimation results
	20.5 Saving estimation results
	20.6 Specification search tools
	20.7 Specifying the estimation subsample
	20.8 Specifying the width of confidence intervals
	20.9 Formatting the coefficient table
	20.10 Obtaining the variance--covariance matrix
	20.11 Obtaining predicted values
	20.12 Accessing estimated coefficients
	20.13 Performing hypothesis tests on the coefficients
	20.14 Obtaining linear combinations of parameters
	20.15 Obtaining nonlinear combinations of parameters
	20.16 Obtaining marginal means, adjusted predictions, and predictive margins
	20.17 Obtaining conditional and average marginal effects
	20.18 Obtaining pairwise comparisons
	20.19 Obtaining contrasts, tests of interactions, and main effects
	20.20 Graphing margins, marginal effects, and contrasts
	20.21 Dynamic forecasts and simulations
	20.22 Obtaining robust variance estimates
	20.23 Obtaining scores
	20.24 Weighted estimation
	20.25 A list of postestimation commands
	20.26 References

	21 Creating reports
	21.1 Overview
	21.2 The dynamic document commands
	21.3 The putdocx, putpdf, and putexcel commands

	Advice
	22 Entering and importing data
	22.1 Overview
	22.2 Determining which method to use
	22.3 If you run out of memory
	22.4 ODBC sources
	22.5 JDBC sources

	23 Combining datasets
	23.1 References

	24 Working with strings
	24.1 Description
	24.2 Categorical string variables
	24.3 Mistaken string variables
	24.4 Complex strings
	24.5 References

	25 Working with dates and times
	25.1 Overview
	25.2 Inputting dates and times
	25.3 Displaying dates and times
	25.4 Typing dates and times (datetime literals)
	25.5 Extracting components of dates and times
	25.6 Converting between date and time values
	25.7 Business dates and calendars
	25.8 References

	26 Working with categorical data and factor variables
	26.1 Continuous, categorical, and indicator variables
	26.2 Estimation with factor variables
	26.3 References

	27 Overview of Stata estimation commands
	27.1 Introduction
	27.2 Means, proportions, and related statistics
	27.3 Continuous outcomes
	27.4 Binary outcomes
	27.5 Fractional outcomes
	27.6 Ordinal outcomes
	27.7 Categorical outcomes
	27.8 Count outcomes
	27.9 Generalized linear models
	27.10 Choice models
	27.11 Exact estimators
	27.12 Models with endogenous covariates
	27.13 Models with endogenous sample selection
	27.14 Time-series models
	27.15 Panel-data models
	27.16 Multilevel mixed-effects models
	27.17 Survival analysis models
	27.18 Meta-analysis
	27.19 Spatial autoregressive models
	27.20 Causal inference
	27.21 Pharmacokinetic data
	27.22 Multivariate analysis
	27.23 Maximum likelihood estimation
	27.24 Generalized method of moments (GMM)
	27.25 Structural equation modeling (SEM)
	27.26 Latent class models
	27.27 Finite mixture models (FMMs)
	27.28 Item response theory (IRT)
	27.29 Dynamic stochastic general equilibrium (DSGE) models
	27.30 Lasso
	27.31 Survey data
	27.32 Multiple imputation
	27.33 Power, precision, and sample-size analysis
	27.34 Bayesian analysis
	27.35 Bayesian model averaging
	27.36 H2O machine learning
	27.37 Reference

	28 Commands everyone should know
	29 Using the Internet to keep up to date
	29.1 Overview
	29.2 Sharing datasets (and other files)
	29.3 Official updates
	29.4 Downloading and managing additions by users
	29.5 Making your own download site

	Glossary

	[ADAPT] Adaptive Designs
	Contents
	Intro
	Description
	Remarks and examples
	References
	Also see

	GSD intro
	Description
	Remarks and examples
	Introduction
	FSDs
	GSDs

	Components of GSD
	Origins of GSD
	Brief overview of GSD
	Graphing group sequential boundaries

	References
	Also see

	gs
	Description
	Menu
	Syntax
	Remarks and examples
	Introduction
	Efficacy stopping
	Futility stopping
	Graphing stopping boundaries
	Boundary and sample-size calculations using gsdesign
	One-sample tests
	Two-sample tests
	Survival analysis
	Add your own methods

	Stored results
	Acknowledgments
	References
	Also see

	gsbounds
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples
	Efficacy stopping
	Efficacy and futility stopping
	Nonbinding futility bounds
	One-sided tests
	Error-spending bounds
	Unevenly spaced looks
	Futility-only stopping

	Stored results
	Methods and formulas
	Group sequential bounds
	Classical (Wang--Tsiatis) bounds
	Error-spending bounds
	Significance level approach

	References
	Also see

	gsdesign
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples
	Design for GSD with tests of two means
	Background on the BHAT study
	Design for GSD with survival analysis

	Stored results
	Methods and formulas
	Sample sizes at interim analyses
	Expected sample size

	References
	Also see

	gsdesign onemean
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using gsdesign onemean
	Background for examples
	Computing sample size and stopping boundaries
	Unknown standard deviation and hypothesis tests on mean
	Stopping for both efficacy and futility

	Stored results
	Methods and formulas
	References
	Also see

	gsdesign twomeans
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using gsdesign twomeans
	Background for examples 1 and 2
	Computing sample size and stopping boundaries with known standard deviation
	Unknown standard deviation and hypothesis tests on means
	Background for example 3
	Efficacy and futility stopping

	Stored results
	Methods and formulas
	References
	Also see

	gsdesign oneproportion
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using gsdesign oneproportion
	Background for examples
	Computing sample size and stopping boundaries

	Stored results
	Methods and formulas
	References
	Also see

	gsdesign twoproportions
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using gsdesign twoproportions
	Background for examples
	Computing sample size and stopping boundaries

	Stored results
	Methods and formulas
	References
	Also see

	gsdesign logrank
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using gsdesign logrank
	Background for examples
	Computing sample size and boundaries in the absence of censoring
	Computing sample size and boundaries in the presence of censoring
	Computing sample size and boundaries with uniform accrual

	Stored results
	Methods and formulas
	References
	Also see

	gsdesign usermethod
	Description
	Syntax
	Options
	Remarks and examples
	Steps for adding a new method to the gsdesign command
	A quick example
	Convention for naming options and storing results
	Example: A log-rank test for substantial superiority
	Graphing boundaries

	Initializer and parser
	Using an initializer and parser
	Initializer's s() return settings

	Stored results
	References
	Also see

	Glossary
	Reference

	[BAYES] Bayesian Analysis
	Contents
	Intro
	Description
	Remarks and examples
	What is Bayesian analysis?
	Bayesian versus frequentist analysis, or why Bayesian analysis?
	How to do Bayesian analysis
	Advantages and disadvantages of Bayesian analysis
	Brief background and literature review
	Bayesian statistics
	Posterior distribution
	Selecting priors
	Point and interval estimation
	Comparing Bayesian models
	Posterior prediction

	Bayesian computation
	Markov chain Monte Carlo methods
	Metropolis--Hastings algorithm
	Adaptive random-walk Metropolis--Hastings
	Blocking of parameters
	Metropolis--Hastings with Gibbs updates
	Convergence diagnostics of MCMC

	Summary
	Video examples

	References
	Also see

	Bayesian commands
	Description
	Remarks and examples
	Overview example

	Acknowledgments
	References
	Also see

	Bayesian estimation
	Description
	Video examples
	Also see

	bayes
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using the bayes prefix
	Likelihood model
	Default priors
	Initial values
	Command-specific options

	Introductory example
	Linear regression: A case of informative default priors
	Logistic regression with perfect predictors
	Multinomial logistic regression
	Generalized linear model
	Truncated Poisson regression
	Zero-inflated negative binomial model
	Parametric survival model
	Heckman selection model
	Multilevel models
	Two-level models
	Crossed-effects model
	Blocked-diagonal covariance structures

	Panel-data models
	Time-series and DSGE models
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	bayesmh
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using bayesmh
	Setting up a posterior model
	Likelihood model
	Prior distributions
	Declaring model parameters
	Referring to model parameters
	Specifying arguments of likelihood models and prior distributions
	Substitutable expressions
	Constraints on coefficients in linear combinations
	Random effects
	Checking model specification

	Specifying MCMC sampling procedure
	Reproducing results
	Burn-in period and MCMC sample size
	Improving efficiency of the MH algorithm---blocking of parameters
	Gibbs and hybrid MH sampling
	Adaptation of the MH algorithm
	Specifying initial values

	Summarizing and reporting results
	Posterior summaries and credible intervals
	Saving MCMC results

	Convergence of MCMC
	Video examples
	Getting started examples
	Mean of a normal distribution with a known variance
	Mean of a normal distribution with an unknown variance
	Simple linear regression
	Multiple linear regression
	Improving efficiency of the MH sampling

	Convergence diagnostics using multiple chains
	Multiple chains using default initial values
	Multiple chains using overdispersed initial values

	Bayesian predictions
	Simulating replicated outcomes
	Posterior predictive checks

	Logistic regression model: A case of nonidentifiable parameters
	Ordered probit regression
	Beta-binomial model
	Multivariate regression
	Panel-data and multilevel models
	Two-level random-intercept model or panel-data model
	Linear growth curve model---a random-coefficient model
	Multilevel logistic regression
	Three-level nonlinear model

	Survival models
	Bayesian analysis of change-point problem
	Bioequivalence in a crossover trial
	Random-effects meta-analysis of clinical trials
	Item response theory
	Latent growth model

	Stored results
	Methods and formulas
	Adaptive MH algorithm
	Adaptive MH algorithm for random effects
	Gibbs sampling for some likelihood-prior and prior-hyperprior configurations
	Likelihood-prior configurations
	Prior-hyperprior configurations

	Marginal likelihood

	References
	Also see

	bayesmh evaluators
	Description
	Syntax
	Options
	Remarks and examples
	Program evaluators
	Simple linear regression model
	Logistic regression model
	Multivariate normal regression model
	Cox proportional hazards regression
	Global macros

	Stored results
	Reference
	Also see

	bayesselect
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introductory examples
	Diabetes progression study

	Stored results
	Methods and formulas
	Global--local shrinkage priors
	Spike-and-slab priors

	References
	Also see

	Bayesian postestimation
	Postestimation commands
	Remarks and examples
	Different ways of specifying model parameters
	Specifying functions of model parameters
	Storing estimation results after Bayesian estimation
	Different ways of specifying predictions and their functions

	Also see

	bayesgraph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using bayesgraph
	Examples
	Trace plots
	Autocorrelation plots
	Histogram plots
	Kernel density plots
	Cumulative sum plots
	Bivariate scatterplots
	Diagnostic plots
	Functions of model parameters

	Methods and formulas
	References
	Also see

	bayesstats
	Description
	Also see

	bayesstats ess
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Effective sample size and MCMC sampling efficiency
	Using bayesstats ess

	Stored results
	Methods and formulas
	Also see

	bayesstats grubin
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Gelman--Rubin convergence diagnostic
	Using bayesstats grubin

	Stored results
	Methods and formulas
	References
	Also see

	bayesstats ic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Bayesian information criteria
	Bayes factors
	Using bayesstats ic

	Stored results
	Methods and formulas
	References
	Also see

	bayesstats ppvalues
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Posterior predictive checks
	PPPs
	Nonlinear effect of labor and capital on companies' output

	Stored results
	Methods and formulas
	References
	Also see

	bayesstats summary
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Bayesian summaries for an auto data example

	Stored results
	Methods and formulas
	Point estimates
	Credible intervals

	References
	Also see

	bayestest
	Description
	Remarks and examples
	Also see

	bayestest interval
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Interval tests for continuous parameters
	Interval tests for discrete parameters

	Stored results
	Methods and formulas
	Reference
	Also see

	bayestest model
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Testing nested hypotheses
	Comparing models with different priors

	Stored results
	Methods and formulas
	Also see

	bayespredict
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for predictions
	Options for posterior summaries
	Options for bayesreps

	Remarks and examples
	Overview of Bayesian predictions
	Prior and posterior predictive distributions
	Simulated outcomes
	Posterior predictive checking and replicated outcomes

	Using bayespredict and bayesreps
	Generating and saving simulated outcomes
	Defining test statistics using Mata functions
	User-defined Stata programs
	Posterior summaries of simulated outcomes
	Prediction dataset

	Bayesian predictions
	Posterior predictive inference
	Out-of-sample prediction
	One-step-ahead Bayesian forecast after Bayesian VAR

	Stored results
	Methods and formulas
	Posterior predictive distribution
	MCMC sampling from posterior predictive distribution
	Residuals and expected values

	References
	Also see

	set clevel
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	bayes: betareg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: binreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: biprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: clogit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: cloglog
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: dsge
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: dsgenl
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: dsge postestimation
	Postestimation commands
	Remarks and examples
	Also see

	bayes: fracreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: glm
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: gnbreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: heckman
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: heckoprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: heckprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: hetoprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: hetprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: hetregress
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: intreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: logistic
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	bayes: logit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	bayes: mecloglog
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: meglm
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Additional model parameters

	Stored results
	Methods and formulas
	Also see

	bayes: meintreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: melogit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: menbreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: meologit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: meoprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: mepoisson
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: meprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: mestreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Ancillary model parameters

	Stored results
	Methods and formulas
	Also see

	bayes: metobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: mixed
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: mlogit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	bayes: mprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: mvreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: nbreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: ologit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: oprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: poisson
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: probit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: qreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	bayes: regress
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Video examples

	Stored results
	Methods and formulas
	Also see

	bayes: streg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Ancillary model parameters

	Stored results
	Methods and formulas
	Also see

	bayes: tnbreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: tobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: tpoisson
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: truncreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: var
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Advantages of Bayesian VAR models
	Introductory examples
	US macroeconomic examples

	Stored results
	Methods and formulas
	VAR model specification
	Original Minnesota prior with known (fixed) error covariance
	Conjugate Minnesota prior for VAR model with unknown error covariance
	MVN-inverse Wishart prior
	MVN-diffuse (normal-Jeffreys) prior

	References
	Also see

	bayes: var postestimation
	Postestimation commands
	Also see

	bayesvarstable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	bayesfcast
	Description
	Quick start
	Syntax
	Also see

	bayesfcast compute
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Bayesian dynamic forecasts
	Dynamic forecasts after bayes: var

	Reference
	Also see

	bayesfcast graph
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	bayesirf
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	bayesirf create
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	IRFs after Bayesian vector autoregression (VAR) models
	Technical aspects of IRF files

	Methods and formulas
	Also see

	bayesirf graph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	bayesirf cgraph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	bayesirf ograph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	bayesirf table
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	bayesirf ctable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	bayes: xtlogit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: xtmlogit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: xtnbreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	bayes: xtologit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: xtoprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: xtpoisson
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: xtprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: xtreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: zinb
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: ziologit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: zioprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	bayes: zip
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	Glossary
	Reference

	[BMA] Bayesian Model Averaging
	Contents
	Intro
	Description
	Remarks and examples
	Brief motivation
	What is model averaging and why do we need it?
	Bayesian model averaging (BMA)
	Concepts of BMA
	Usage of BMA
	BMA versus frequentist model averaging
	Computational methods for BMA
	Motivating examples
	Brief background and literature review

	References
	Also see

	BMA commands
	Description
	Remarks and examples
	Acknowledgments
	Reference
	Also see

	bmaregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction to BMA for linear regression
	Convergence of BMA
	Interpretation of BMA regression coefficients
	Using the bmaregress command
	Groups of predictors
	Handling factor variables and interactions
	Getting started examples
	BMA predictive performance for the USA crime rate data
	BMA analysis of cross-country economic growth data

	Stored results
	Methods and formulas
	Model assumptions and generic formulas
	Priors on the model space
	Priors for parameter g
	Fixed g priors
	Random g priors

	Centering
	Conditional posterior distribution of model parameters
	Conditional posterior predictive distribution
	MCMC algorithms
	Fixed g parameter
	Random g parameter

	Inference
	Posterior model probability
	Posterior inclusion probability
	Posterior distributions of regression coefficients
	Posterior means and variances of model parameters

	References
	Also see

	bmacoefsample
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Enumerated model space
	Simulated model space

	Also see

	BMA postestimation
	Description
	Remarks and examples
	Also see

	bmagraph
	Description
	Remarks and examples
	Also see

	bmagraph coefdensity
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	bmagraph msize
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	bmagraph pmp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	bmagraph varmap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	bmapredict
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for analytical posterior predictive summaries
	Options for MCMC-sample posterior predictive summaries
	Options for predictions of simulated outcome
	Options for bmareps
	Option for log predictive-scores

	Remarks and examples
	Methods and formulas
	BMA predictions for the linear model
	Analytic predictive mean and standard deviation for fixed g
	Simulating outcome from its posterior predictive distribution

	Reference
	Also see

	bmastats
	Description
	Remarks and examples
	Also see

	bmastats jointness
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Jointness as a measure of variable-inclusion dependence
	Example: Jointness of growth determinants

	Stored results
	Methods and formulas
	References
	Also see

	bmastats lps
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	bmastats models
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	bmastats msize
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	bmastats pip
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	Glossary
	References

	[CAUSAL] Causal
	Contents
	Intro
	Description
	Remarks and examples
	Motivation: Causation versus association
	Causal inference workflow
	Potential-outcomes framework
	Treatment-effect estimands
	Assumptions required in potential-outcomes framework
	Relaxing causal assumptions

	Causal diagrams
	Importance of identification before estimation

	References

	Causal inference commands
	Description
	Remarks and examples
	teffects
	stteffects
	telasso
	Difference in differences
	Endogenous treatment
	Causal mediation
	Extended regression models
	margins

	Also see

	DID intro
	Description
	Remarks and examples
	Introduction
	Intuition for estimating effects
	DID with heterogeneous treatment effects
	Standard error considerations
	Different types of data and specification
	Specifying groups and time as binary indicators
	Excluding group and time effects
	Exploring treatment-effect heterogeneity

	Conclusion

	References
	Also see

	didregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	DID estimation
	Graphical diagnostics and tests
	Specifying a 2-by-2 DID
	Standard error considerations
	Default cluster{--}robust standard errors

	Stored results
	Methods and formulas
	DID for repeated cross-sectional data
	DDD model

	DID and DDD models with longitudinal data
	Aggregation estimators
	Wild bootstrap confidence intervals and p-values
	Bias-corrected clustered standard error

	Acknowledgment
	References
	Also see

	didregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat trendplots
	Options for estat grangerplot
	Options for estat bdecomp

	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	eteffects
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	eteffects postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Also see

	etpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Basic example
	Average treatment effect (ATE)
	Average treatment effect on the treated (ATET)

	Stored results
	Methods and formulas
	References
	Also see

	etpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	etregress
	Description
	Quick start
	Menu
	Syntax
	Options for maximum likelihood estimates
	Options for two-step consistent estimates
	Options for control-function estimates
	Remarks and examples
	Overview
	Basic examples
	Average treatment effect (ATE)
	Average treatment effect on the treated (ATET)

	Stored results
	Methods and formulas
	Constrained model
	General potential-outcome model
	Average treatment effect
	Average treatment effect on the treated

	References
	Also see

	etregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	hdidregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	The RA, IPW, and AIPW estimators
	The TWFE estimator

	Acknowledgments
	References
	Also see

	hdidregress postestimation
	Postestimation commands
	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat atetplot
	Options for estat aggregation
	Options for estat sci

	Remarks and examples
	Stored results
	Methods and formulas
	Test for all pretreatment period ATETs being zero
	Aggregations for the RA, IPW, and AIPW estimators
	Aggregations for the TWFE estimator
	SCIs

	Reference
	Also see

	mediate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Approaches to mediation analysis
	Workflow for causal mediation
	Forming research questions
	Potential outcomes and effect decompositions
	Evaluating assumptions for causal inference
	Estimation of effects

	Technical overview of causal mediation
	Mediation analysis in the potential-outcomes framework
	Total, direct, and indirect effects
	Comparison of potential outcomes and classical mediation analysis
	Accounting for treatment--mediator interaction
	Assumptions for causal identification

	Examples
	Example 1: A simple causal mediation model
	Example 2: Including covariates and relaxing the no-interaction assumption
	Example 3: Referring to treatment effects using an alternative naming scheme
	Example 4: Causal mediation model with a binary mediator
	Example 5: Causal mediation model with a binary outcome
	Example 6: Causal mediation model with a binary mediator and binary outcome
	Example 7: Causal mediation model with a count mediator
	Example 8: Causal mediation model with an exponential-mean outcome
	Example 9: Causal mediation model with multivalued treatment
	Example 10: Causal mediation model with continuous treatment
	Example 11: Estimating controlled direct effects
	Example 12: Estimating treatment effects on different scales

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	mediate postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat proportion
	Options for estat cde
	Options for estat or, estat rr, and estat irr
	Options for estat effectsplot

	Remarks and examples
	Stored results
	Also see

	stteffects
	Description
	Syntax
	Also see

	stteffects intro
	Description
	Remarks and examples
	Introduction
	A quick tour of the estimators
	Regression adjustment
	Inverse-probability weighting
	Combinations of RA and IPW
	Weighted regression adjustment

	Average treatment effect on the treated
	Comparison of treatment-effects estimators
	Assumptions and tradeoffs
	The conditional independence assumption
	The sufficient overlap assumption
	The correct adjustment for censoring assumption
	Assumptions for the ATET

	Specification diagnostics and tests
	Multivalued treatments

	Acknowledgments
	References
	Also see

	stteffects ipw
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	stteffects ipwra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	Regression-adjusted estimators
	Weighted-adjusted-censoring assumptions
	Weighted regression-adjusted estimators
	Inverse-probability-weighted estimators
	Uncensored data

	Inverse-probability-weighted regression-adjustment estimators
	Weighted-adjusted-censoring IPWRA
	Likelihood-adjusted-censoring IPWRA

	Functional-form details

	References
	Also see

	stteffects postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntaxes for predict
	Syntax for predict after stteffects ipw
	Syntax for predict after stteffects ipwra
	Syntax for predict after stteffects ra
	Syntax for predict after stteffects wra

	Options for predict
	Options for predict after stteffects ipw
	Options for predict after stteffects ipwra
	Options for predict after stteffects ra
	Options for predict after stteffects wra

	Remarks and examples
	References
	Also see

	stteffects ra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	stteffects wra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tebalance
	Description
	Syntax
	Remarks and examples
	Methods and formulas
	Introduction
	Matched samples
	IPW samples
	Testing the propensity-score model specification

	References
	Also see

	tebalance box
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	tebalance density
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	tebalance overid
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	tebalance summarize
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	teffects
	Description
	Syntax
	Also see

	teffects intro
	Description
	Remarks and examples
	Introduction
	Defining treatment effects
	Estimating treatment effects
	Regression adjustment
	Inverse-probability weighting
	Doubly robust combinations of RA and IPW
	Matching

	Caveats and assumptions
	A quick tour of the estimators
	RA
	IPW
	IPWRA
	AIPW
	Nearest-neighbor matching
	Propensity-score matching

	Video examples

	References
	Also see

	teffects intro advanced
	Description
	Remarks and examples
	Introduction
	Defining treatment effects
	The potential-outcome model
	Assumptions needed for estimation
	The CI assumption
	The overlap assumption
	The i.i.d. assumption

	Comparing the ATE and ATET
	Overview of treatment-effect estimators
	RA estimators
	IPW estimators
	AIPW estimators
	IPWRA estimators
	Nearest-neighbor matching estimators
	Propensity-score matching estimators
	Choosing among estimators
	Model choice

	Acknowledgments
	References
	Also see

	teffects aipw
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	Parameters and notation
	Overview of EE estimators
	VCE for EE estimators
	TM and OM estimating functions
	TM estimating functions
	OM estimating functions

	Effect estimating functions
	RA estimators
	IPW estimators
	AIPW estimators
	IPWRA estimators

	References
	Also see

	teffects ipw
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	teffects ipwra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	teffects multivalued
	Description
	Remarks and examples
	Introduction
	Parameters and notation
	Illustrating multivalued treatments
	Examples

	References
	Also see

	teffects nnmatch
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	Nearest-neighbor matching estimator
	Bias-corrected matching estimator

	Propensity-score matching estimator
	PSM, ATE, and ATET variance adjustment

	References
	Also see

	teffects postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntaxes for predict
	Syntax for predict after aipw and ipwra
	Syntax for predict after ipw
	Syntax for predict after nnmatch and psmatch
	Syntax for predict after ra

	Options for predict
	Options for predict after aipw and ipwra
	Options for predict after ipw
	Options for predict after nnmatch and psmatch
	Options for predict after ra

	Remarks and examples
	Also see

	teffects psmatch
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	teffects ra
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	telasso
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Estimating the ATE with lassos for covariate selection
	Choosing the tuning parameter
	Estimating the ATET
	High-dimensional semiparametric models

	Stored results
	Methods and formulas
	The model
	Neyman orthogonal moments
	Double machine learning
	Resampling the partitions

	References
	Also see

	telasso postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Also see

	teoverlap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	xthdidregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	The model
	The RA, IPW, and AIPW estimators
	Panel data

	The TWFE estimator

	Acknowledgments
	References
	Also see

	xthdidregress postestimation
	Description

	Glossary

	[CM] Choice Models
	Contents
	Intro
	Description
	Remarks and examples
	Introductions
	Declaring and summarizing data
	Fitting choice models
	Postestimation
	Glossary

	Intro 1
	Description
	Remarks and examples
	Interpretation of coefficients
	Inferences from margins
	Expected choice probabilities
	Effects of a continuous covariate
	Effects of a categorical covariate
	Effects of an alternative-specific covariate

	More inferences using margins

	Also see

	Intro 2
	Description
	Remarks and examples
	Data layout for choice models
	cmset: Cross-sectional data
	cmset: Panel data

	Also see

	Intro 3
	Description
	Remarks and examples
	cmchoiceset: Tabulating choice sets
	cmsample: Looking at problem observations
	cmtab: Tabulating chosen alternatives versus other variables
	cmsummarize: Descriptive statistics for CM variables

	Also see

	Intro 4
	Description
	Remarks and examples
	Specialized choice model commands
	Other commands for choice models
	Models for cross-sectional data
	Models for panel data
	Multilevel models for clustered data

	Reference

	Intro 5
	Description
	Remarks and examples
	Overview of CM commands for discrete choices
	cmclogit: McFadden's choice model
	Looking at cases with missing values using cmsample
	margins after CM estimation
	cmmixlogit: Mixed logit choice models
	cmmprobit: Multinomial probit choice models
	nlogit: Nested logit choice models
	Relationships with other estimation commands
	Duplicating cmclogit using clogit
	Multinomial logistic regression and McFadden's choice model

	Estimation considerations
	Setting the number of integration points
	Convergence
	More than one chosen alternative

	References
	Also see

	Intro 6
	Description
	Remarks and examples
	Overview of CM commands for rank-ordered alternatives
	cmroprobit: Probit regression for rank-ordered alternatives
	Expected choice probabilities (the margins command) after cmroprobit
	cmrologit: Logistic regression for rank-ordered alternatives

	References
	Also see

	Intro 7
	Description
	Remarks and examples
	Data layout for panel choice data
	A cmxtmixlogit model
	Time-series operators
	Using other cm estimation commands with panel data

	Also see

	Intro 8
	Description
	Remarks and examples
	Random utility models
	Alternative-specific variables and case-specific variables
	Independence of irrelevant alternatives
	Estimators that do not assume IIA
	Maximum simulated likelihood

	References
	Also see

	cmchoiceset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	cmclogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cmclogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Testing coefficient estimates
	Predicted probabilities
	Casewise versus alternativewise sample selection

	Obtaining estimation statistics for the alternatives

	Also see

	cmmixlogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cmmixlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Methods and formulas
	Also see

	cmmprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	The multinomial probit model
	Covariance structures
	Applying constraints to correlation parameters

	Convergence problems

	Stored results
	Methods and formulas
	Overview
	Simulated likelihood

	References
	Also see

	cmmprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat covariance, estat correlation, and estat facweights

	Remarks and examples
	Predicted probabilities
	Obtaining estimation statistics

	Also see

	cmrologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Examples
	Comparing respondents
	Incomplete rankings and ties
	Clustered choice data
	Comparison of cmrologit and clogit
	On reversals of rankings

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	cmrologit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	cmroprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	cmroprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat covariance, estat correlation, and estat facweights

	Remarks and examples
	Also see

	cmsample
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	cmset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	cmsummarize
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	cmtab
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	cmxtmixlogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cmxtmixlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Methods and formulas
	Also see

	margins
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Estimating margins for case-specific variables
	Estimating margins for alternative-specific variables
	The altsubpop suboption for unbalanced choice sets
	More on unbalanced choice sets
	The outcomecontrast() and alternativecontrast() suboptions

	Graphing margins results

	Stored results
	Also see

	nlogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Specification and options for lev#_equation
	Options for nlogit
	Specification and options for nlogitgen
	Specification and options for nlogittree

	Remarks and examples
	Introduction
	Data setup and the tree structure
	Estimation
	Testing for the IIA
	Nonnormalized model

	Stored results
	Methods and formulas
	Two-level nested logit model
	Three-level nested logit model

	References
	Also see

	nlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Also see

	Glossary

	[D] Data Management
	Contents
	Intro
	Description
	Also see

	Data management
	Description
	References
	Also see

	append
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Reference
	Also see

	assert
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	assertnested
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	bcal
	Description
	Quick start
	Menu
	Syntax
	Option for bcal check
	Options for bcal create
	Remarks and examples
	Stored results
	Reference
	Also see

	by
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	References
	Also see

	cd
	Description
	Quick start
	Syntax
	Remarks and examples
	Stata for Windows
	Stata for Mac
	Stata for Unix

	Also see

	cf
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgment
	Also see

	changeeol
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	checksum
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	clear
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	clonevar
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Acknowledgments
	Also see

	codebook
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	collapse
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introductory examples
	Variablewise or casewise deletion
	Weights
	A final example

	Acknowledgment
	Also see

	compare
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	compress
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Video example

	Also see

	contract
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgments
	Reference
	Also see

	copy
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	corr2data
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	count
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	References
	Also see

	cross
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	References
	Also see

	Data types
	Description
	Remarks and examples
	Precision of numeric storage types

	Also see

	datasignature
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using datasignature interactively
	Using datasignature in do-files
	Interpreting data signatures
	The logic of data signatures

	Stored results
	Methods and formulas
	Reference
	Also see

	Datetime
	Description
	Quick start
	Syntax
	Types of dates and how they are displayed
	How Stata dates are stored
	Converting dates stored as strings to Stata dates
	Formatting Stata dates for display
	Creating dates from components
	Converting among units
	Extracting time-of-day components from datetimes
	Extracting date components from daily dates
	Typing dates into expressions

	Remarks and examples
	Introduction
	Example 1: Converting string datetimes to Stata datetimes
	Example 2: Extracting date components
	Example 3: Building dates from components
	Example 4: Converting among date types
	Example 5: Using dates in expressions

	References
	Also see

	Datetime business calendars
	Description
	Syntax
	Remarks and examples
	Step 1: Read the data, date as string
	Step 2: Convert date variable to %td date
	Step 3: Convert %td date to %tb date
	Key feature: Each business calendar has its own encoding
	Key feature: Omitted dates really are omitted
	Key feature: Extracting components from %tb dates
	Key feature: Merging on dates

	Also see

	Datetime business calendars creation
	Description
	Syntax
	Remarks and examples
	Introduction
	Concepts
	The preliminary commands
	The omit commands: from/to and if
	The omit commands: and
	The omit commands: omit date
	The omit commands: omit dayofweek
	The omit commands: omit dowinmonth
	Creating stbcal-files with bcal create
	Where to place stbcal-files
	How to debug stbcal-files
	Ideas for calendars that may not occur to you

	Also see

	Datetime conversion
	Description
	Quick start
	Syntax
	Remarks and examples
	Introduction
	Specifying the mask
	How the conversion functions interpret the mask
	Working with two-digit years
	Working with incomplete dates and times
	Converting run-together dates, such as 20060125
	Valid times
	The clock() and Clock() functions
	Why there are two datetime encodings
	Advice on using datetime/c and datetime/C
	Determining when leap seconds occurred
	The date() function
	The other conversion functions

	Reference
	Also see

	Datetime display formats
	Description
	Quick start
	Syntax
	Remarks and examples
	Specifying display formats
	Times are truncated, not rounded, when displayed

	Also see

	Datetime durations
	Description
	Quick start
	Syntax
	Functions for calculating durations
	Functions for converting units of a duration

	Remarks and examples
	Calculating ages and differences of dates
	Calculating differences of datetimes

	Reference
	Also see

	Datetime relative dates
	Description
	Quick start
	Syntax
	Remarks and examples
	Current date and time
	Birthdays and anniversaries
	Months: Number of days, first day, and last day
	Determining leap years
	Determining leap seconds
	Dates of days of week

	Also see

	Datetime values from other software
	Description
	Remarks and examples
	Introduction
	Converting SAS dates
	Converting SPSS dates
	Converting R dates
	Converting Excel dates
	Example 1: Converting Excel dates to Stata dates

	Converting OpenOffice dates
	Converting Unix time

	Reference
	Also see

	describe
	Description
	Quick start
	Menu
	Syntax
	Options to describe data in memory
	Options to describe data in a file
	Remarks and examples
	describe
	describe, replace

	Stored results
	References
	Also see

	destring
	Description
	Quick start
	Menu
	Syntax
	Options for destring
	Options for tostring
	Remarks and examples
	destring
	tostring
	Saved characteristics
	Video example

	Acknowledgment
	References
	Also see

	dir
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	drawnorm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	drop
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	ds
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	Also see

	duplicates
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for duplicates examples and duplicates list
	Option for duplicates tag
	Option for duplicates drop

	Remarks and examples
	Video example

	Stored results
	Acknowledgments
	References
	Also see

	dyngen
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	edit
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Modes
	The current observation and current variable
	Assigning value labels to variables
	Changing values of existing cells
	Adding new variables
	Adding new observations
	Copying and pasting
	Logging changes
	Advice

	Also see

	egen
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Summary statistics
	Definitions of egen summary functions

	Missing values
	Generating patterns
	Marking differences among variables
	Ranks
	Standardized variables
	Row functions
	Categorical and integer variables
	String variables

	Acknowledgments
	References
	Also see

	encode
	Description
	Quick start
	Menu
	Syntax
	Options for encode
	Options for decode
	Remarks and examples
	encode
	decode
	Video example

	References
	Also see

	erase
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	expand
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	References
	Also see

	expandcl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	export
	Description
	Remarks and examples
	Summary of the different methods
	export excel
	export delimited
	jdbc
	odbc
	outfile
	export sasxport5 and export sasxport8
	export spss
	export dbase

	Also see

	filefilter
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	fillin
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	References
	Also see

	format
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Setting formats
	Setting European formats
	Details of formats
	Other effects of formats
	Displaying current formats
	Video example

	References
	Also see

	fralias
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Overview
	Everything you need to know about fralias add
	Where are alias variables not allowed
	Breaking alias variables
	Rename or drop the linked variable
	Rename or drop the linkage variable
	Rename or drop a matching variable
	Rename or drop the linked frame
	Change sort order in the linked frame

	Stored results
	Also see

	frames intro
	Description
	Remarks and examples
	What frames can do for you
	Use frames to multitask
	Use frames to perform tasks integral to your work
	Use frames to work with separate datasets simultaneously
	Use frames to record statistics gathered from simulations
	Frames make Stata (preserve/restore) faster
	Other uses will occur to you that we should have listed

	Learning frames
	The current frame
	Creating new frames
	Type frame or frames, it does not matter
	Switching frames
	Copying frames
	Dropping frames
	Resetting frames
	Frame prefix command
	Linking frames
	Ignore the _frval() function
	Posting new observations to frames
	Saving, loading, and describing a set of frames

	Programming with frames
	Ado-programming with frames
	Mata programming with frames

	References
	Also see

	frames
	Description
	Menu
	Syntax
	Also see

	frame change
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	frame copy
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	frame create
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	frame drop
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	frame prefix
	Description
	Quick start
	Syntax
	Remarks and examples
	Example of interactive use
	Example of use in programs

	Also see

	frame put
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	frame pwf
	Description
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	frame rename
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	frames describe
	Description
	Quick start
	Menu
	Syntax
	Options
	Options to describe frames in memory
	Options to describe frames in a file

	Remarks and examples
	Stored results
	Also see

	frames dir
	Description
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	frames reset
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	frames save
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	frames use
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	frget
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Overview
	Everything you need to know about frget

	Stored results
	Also see

	frlink
	Description
	Quick start
	Syntax
	Options
	Options for frlink 1:1 and frlink m:1
	Options for frlink rebuild

	Remarks and examples
	Overview of the frlink command
	Everything you need to know about linkages
	Example 1: A typical m:1 linkage
	How link variables work
	Advanced examples
	Example 2: A complex m:1 linkage
	Example 3: A 1:1 linkage, a simple solution to a hard problem

	Stored results
	Also see

	frunalias
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	generate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	generate and replace
	set type
	Video examples

	References
	Also see

	gsort
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	hexdump
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	icd
	Description
	Remarks and examples
	Introduction to ICD coding
	Terminology
	Diagnosis codes
	Procedure codes
	Working with multiple codes

	References
	Also see

	icd9
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for icd9 check
	Options for icd9 clean
	Options for icd9 generate
	Option for icd9 search

	Remarks and examples
	Using icd9 and icd9p
	Verifying and cleaning variables
	Interactive utilities
	Creating new variables

	Stored results
	References
	Also see

	icd9p
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for icd9p check
	Options for icd9p clean
	Options for icd9p generate
	Option for icd9p search

	Remarks and examples
	Verifying and cleaning variables
	Interactive utilities
	Creating new variables

	Stored results
	References
	Also see

	icd10
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for icd10 check
	Options for icd10 clean
	Options for icd10 generate
	Option for icd10 lookup
	Options for icd10 search

	Remarks and examples
	Introduction
	Managing datasets with ICD-10 codes
	Creating new variables

	Stored results
	Acknowledgments
	References
	Also see

	icd10cm
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for icd10cm check
	Options for icd10cm clean
	Options for icd10cm generate
	Option for icd10cm lookup
	Options for icd10cm search

	Remarks and examples
	Introduction
	Managing datasets with ICD-10-CM codes
	Interactive utilities

	Stored results
	Acknowledgments
	Reference
	Also see

	icd10pcs
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for icd10pcs check
	Options for icd10pcs clean
	Options for icd10pcs generate
	Option for icd10pcs lookup
	Options for icd10pcs search

	Remarks and examples
	Introduction
	Managing datasets with ICD-10-PCS codes
	Interactive utilities

	Stored results
	Acknowledgments
	Also see

	import
	Description
	Remarks and examples
	Summary of the different methods
	import excel
	import delimited
	jdbc
	odbc
	infile (free format)---infile without a dictionary
	infix (fixed format)
	infile (fixed format)---infile with a dictionary
	import sas
	import sasxport5 and import sasxport8
	import spss
	import fred
	import haver (Windows only)
	import haverdirect (Windows only)
	import dbase
	spshape2dta

	Examples
	Video example

	References
	Also see

	import dbase
	Description
	Quick start
	Menu
	Syntax
	Options for import dbase
	Options for export dbase
	Remarks
	Stored results
	Also see

	import delimited
	Description
	Quick start
	Menu
	Syntax
	Options for import delimited
	Options for export delimited
	Remarks and examples
	Introduction
	Importing a text file
	Using other delimiters
	Specifying variable types

	Exporting to a text file
	Video example

	Stored results
	Also see

	import excel
	Description
	Quick start
	Menu
	Syntax
	Options for import excel
	Options for export excel
	Remarks and examples
	Video example

	Stored results
	References
	Also see

	import fred
	Description
	Quick start
	Menu
	Syntax
	Options
	Option for set fredkey
	Options for import fred
	Options for freddescribe
	Options for fredsearch

	Remarks and examples
	Introduction and setup
	The FRED interface
	Advanced imports using the import fred command
	Importing historical vintage data
	Searching, saving, and retrieving series information
	Describing series

	Stored results
	References
	Also see

	import haver
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for import haver
	Options for import haver, describe
	Option for set haverdir

	Remarks and examples
	Installation
	Setting the path to Haver databases
	Download example Haver databases
	Determining the contents of a Haver database
	Loading a Haver database
	Loading a Haver database from a describe file
	Temporal aggregation
	Daily and weekly data

	Stored results
	Also see

	import haverdirect
	Description
	Quick start
	Syntax
	Options
	Options for import haverdirect
	Options for import haverdirect, describe

	Remarks and examples
	Installation
	Authentication
	Determining the contents of a Haver database
	Loading a Haver database
	Loading a Haver database from a describe file
	Temporal aggregation
	Daily and weekly data

	Stored results
	Also see

	import sas
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	import sasxport5
	Description
	Quick start
	Menu
	Syntax
	Options for import sasxport5
	Options for export sasxport5
	Remarks and examples
	Saving XPORT files for transferring to SAS
	Determining the contents of XPORT files received from SAS
	Using XPORT files received from SAS

	Stored results
	Technical appendix
	A1. Overview of SAS XPORT Transport format
	A2. Implications for writing XPORT datasets from Stata
	A3. Implications for reading XPORT datasets into Stata

	Also see

	import sasxport8
	Description
	Quick start
	Menu
	Syntax
	Options for import sasxport8
	Options for export sasxport8
	Remarks and examples
	Stored results
	Also see

	import spss
	Description
	Quick start
	Menu
	Syntax
	Options for import spss
	Option for export spss
	Remarks and examples
	Stored results
	Also see

	infile (fixed format)
	Description
	Quick start
	Menu
	Syntax
	Options
	Dictionary directives

	Remarks and examples
	Introduction
	Reading free-format files
	Reading fixed-format files
	Numeric formats
	String formats
	Specifying column and line numbers
	Examples of reading fixed-format files
	Reading fixed-block files
	Reading EBCDIC files

	Also see

	infile (free format)
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reading free-format data
	Reading comma-separated data
	Specifying variable types
	Reading string variables
	Skipping variables
	Skipping observations
	Reading time-series data

	Also see

	infix (fixed format)
	Description
	Quick start
	Menu
	Syntax
	Options
	Specifications

	Remarks and examples
	Two ways to use infix
	Reading string variables
	Reading data with multiple lines per observation
	Reading subsets of observations

	Also see

	input
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	insobs
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgment
	Also see

	inspect
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	ipolate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	isid
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	jdbc
	Description
	Quick start
	Syntax
	Options
	Options for jdbc connect and jdbc add
	Options for jdbc load
	Options for jdbc insert

	Remarks and examples
	JDBC drivers
	Connecting to a database
	Data source names
	Exploring a database
	Loading data from a database
	Inserting data into a database
	Executing SQL on a database

	Stored results
	References
	Also see

	joinby
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgment
	References
	Also see

	label
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video examples

	Stored results
	References
	Also see

	label language
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Creating labels in the first language
	Creating labels in the second and subsequent languages
	Creating labels from a clean slate
	Creating labels from a previously existing language
	Switching languages
	Changing the name of a language
	Deleting a language
	Appendix: Selected ISO 639-1 two-letter codes

	Stored results
	Methods and formulas
	References
	Also see

	labelbook
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for labelbook
	Options for numlabel
	Options for uselabel

	Remarks and examples
	labelbook
	Diagnosing problems
	numlabel
	uselabel

	Stored results
	Acknowledgments
	References
	Also see

	list
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	lookfor
	Description
	Quick start
	Syntax
	Remarks and examples
	Stored results
	Reference
	Also see

	memory
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Examples
	Serious bug in Linux OS
	Notes for system administrators

	Stored results
	Also see

	merge
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Basic description
	1:1 merges
	m:1 merges
	1:m merges
	m:m merges
	Sequential merges
	Treatment of overlapping variables
	Sort order
	Troubleshooting m:m merges
	Working with alias variables
	Examples
	Video example

	References
	Also see

	Missing values
	Description
	Remarks and examples
	References
	Also see

	mkdir
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	mvencode
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Acknowledgment
	Also see

	notes
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	How notes are numbered
	Attaching and listing notes
	Selectively listing notes
	Searching and replacing notes
	Deleting notes
	Warnings
	Video example

	Reference
	Also see

	obs
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	odbc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Unicode and ODBC
	Setting up the data sources
	Listing ODBC data source names
	Listing available table names from a specified data source's system catalog
	Describing a specified table
	Loading data from ODBC sources

	Reference
	Also see

	order
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	outfile
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	pctile
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	pctile
	xtile
	_pctile

	Stored results
	Methods and formulas
	Acknowledgment
	Also see

	putmata
	Description
	Quick start
	Syntax
	Options for putmata
	Options for getmata
	Remarks and examples
	Use of putmata
	Use of putmata and getmata
	Using putmata and getmata on subsets of observations
	Using views
	Constructing do-files

	Stored results
	Reference
	Also see

	range
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	recast
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	recode
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Simple examples
	Setting up value labels with recode
	Referring to the minimum and maximum in rules
	Recoding missing values
	Recoding subsets of the data
	Otherwise rules
	Test for overlapping rules
	Video example

	Acknowledgment
	Also see

	rename
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	rename group
	Description
	Quick start
	Menu
	Syntax
	Options for renaming variables
	Options for changing the case of groups of variable names
	Remarks and examples
	Advice
	Explanation
	* matches 0 or more characters; use ?* to match 1 or more
	* is greedy
	# is greedier

	Stored results
	Also see

	reshape
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Description of basic syntax
	Wide and long data forms
	Avoiding and correcting mistakes
	reshape long and reshape wide without arguments
	Missing variables
	Advanced issues with basic syntax: i()
	Advanced issues with basic syntax: j()
	Advanced issues with basic syntax: xij
	Advanced issues with basic syntax: String identifiers for j()
	Advanced issues with basic syntax: Second-level nesting
	Description of advanced syntax
	Why favor memory over speed?
	Video examples

	Stored results
	Acknowledgment
	References
	Also see

	rmdir
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	sample
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	save
	Description
	Quick start
	Menu
	Syntax
	Options for save
	Options for saveold
	Remarks and examples
	Also see

	separate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgment
	Reference
	Also see

	shell
	Description
	Syntax
	Remarks and examples
	Stata for Windows
	Stata for Mac
	Stata for Unix(GUI)
	Stata for Unix(console)

	Reference
	Also see

	snapshot
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	sort
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Finding the smallest values (and the largest)
	Tracking sort order
	Sorting on multiple variables
	Descending sorts
	Sorting on string variables
	Sorting with ties

	References
	Also see

	split
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	Also see

	splitsample
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	stack
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	statsby
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Collecting coefficients and standard errors
	Collecting stored results
	All subsets

	Acknowledgment
	References
	Also see

	sysuse
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	A note concerning shipped datasets
	Using user-installed datasets
	How sysuse works

	Stored results
	Also see

	type
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	unicode
	Description
	Remarks and examples
	Also see

	unicode collator
	Description
	Syntax
	Remarks and examples
	Overview of collation
	The role of locales in collation
	Further controlling collation

	Also see

	unicode convertfile
	Description
	Syntax
	Options
	Remarks and examples
	Conversion between encodings
	Invalid and unsupported characters
	Examples

	Also see

	unicode encoding
	Description
	Syntax
	Remarks and examples
	Also see

	unicode locale
	Description
	Syntax
	Remarks and examples
	Overview
	Default locale and locale fallback

	Also see

	unicode translate
	Description
	Syntax
	Options
	Remarks and examples
	What is this about?
	Do I need to translate my files?
	Overview of the process
	How to determine the extended ASCII encoding
	Use of unicode analyze
	Use of unicode translate: Overview
	Use of unicode translate: A word on backups
	Use of unicode translate: Output
	Translating binary strLs

	Also see

	use
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	varmanage
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	vl
	Description
	Remarks and examples
	Introduction
	vl set and system-defined variable lists
	Classification criteria for system-defined variable lists
	Moving variables into another classification
	vl create and user-defined variable lists
	vl list
	vl substitute and factor-variable operators
	Exploring data with vl set
	Changing the cutoffs for classification
	Moving variables from one classification to another
	Dropping variables and rebuilding variable lists
	Changing variables and updating variable lists
	Saving and using datasets with variable lists
	User-defined variable lists and factor-variable operators
	Updating variable lists created by vl substitute

	Also see

	vl create
	Description
	Quick start
	Syntax
	Remarks and examples
	vl create
	vl modify

	Using variable lists with other Stata commands
	vl substitute

	Also see

	vl drop
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	vl list
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	vl rebuild
	Description
	Quick start
	Syntax
	Remarks and examples
	Reloading datasets
	Merging datasets
	Dropping variables
	vl substitute and vl rebuild
	Characteristics

	Stored results
	Also see

	vl set
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	webuse
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Typical use
	A note concerning example datasets
	Redirecting the source

	Also see

	xpose
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	zipfile
	Description
	Quick start
	Syntax
	Options for zipfile
	Options for unzipfile
	Remarks and examples
	Stored results

	Glossary

	[DSGE] DSGE
	Contents
	Intro
	Description
	Remarks and examples
	Also see

	Intro 1
	Description
	Remarks and examples
	Introduction to DSGE models
	An example: A nonlinear DSGE model
	Writing down nonlinear DSGEs
	Data preparation
	Specifying the model to dsgenl
	Parameter estimation and interpretation of nonlinear DSGEs

	An example: A linear DSGE model
	Writing down linearized DSGEs
	Specifying the model to dsge
	Parameter estimation and interpretation of linear DSGEs

	Postestimation
	Policy and transition matrices
	Impulse responses
	Forecasts

	Structural and reduced forms of DSGE models

	References
	Also see

	Intro 2
	Description
	Remarks and examples
	Introduction
	Syntax for linear DSGE models
	Preview of dsge syntax
	Specifying the system of linear equations
	Control variables
	State variables and shocks
	Expectations of future values of control variables
	Specifying parameters using dsge's substitutable expressions

	Syntax for nonlinear DSGE models
	Preview of dsgenl syntax
	Specifying the system of nonlinear equations
	State and control variables
	Expectations in nonlinear models

	Also see

	Intro 3
	Description
	Remarks and examples
	Also see

	Intro 3a
	Description
	Remarks and examples
	The model
	Parameter estimation
	Policy and transition matrices
	One-step-ahead predictions
	Estimating an unobserved state

	Reference
	Also see

	Intro 3b
	Description
	Remarks and examples
	The model
	Solving the model
	Policy and transition matrices
	Impulse responses
	Sensitivity analysis

	Reference
	Also see

	Intro 3c
	Description
	Remarks and examples
	The model
	Parameter estimation
	Policy and transition matrices
	Impulse responses

	Also see

	Intro 3d
	Description
	Remarks and examples
	The model
	Parameter estimation
	Policy and transition matrices
	Impulse responses
	A change in constraints

	Reference
	Also see

	Intro 3e
	Description
	Remarks and examples
	The model
	Parameter estimation
	Steady state
	Model-implied covariances
	Policy and transition matrices
	Impulse responses
	Sensitivity analysis

	Reference
	Also see

	Intro 3f
	Description
	Remarks and examples
	The model
	Approximating the solution to a nonlinear DSGE model
	Specifying the model to Stata
	After solving
	The steady state
	Approximations to the policy and transition matrices
	Linear and log-linear approximations

	References
	Also see

	Intro 4
	Description
	Remarks and examples
	Introduction
	Shocks to a control equation
	Including a lag of a control variable
	Including a lag of a state variable
	Including an expectation of a control dated by more than one period ahead
	Including a second-order lag of a control variable
	Including an observed exogenous variable

	Also see

	Intro 4a
	Description
	Remarks and examples
	The model
	Parameter estimation

	Also see

	Intro 4b
	Description
	Remarks and examples
	A model with a lagged endogenous variable
	Parameter estimation

	Also see

	Intro 4c
	Description
	Remarks and examples
	A model with a lagged state variable
	Parameter estimation

	Also see

	Intro 4d
	Description
	Remarks and examples
	The model
	Parameter estimation

	Also see

	Intro 4e
	Description
	Remarks and examples
	The model
	Parameter estimation

	Also see

	Intro 4f
	Description
	Remarks and examples
	The model
	Parameter estimation

	Also see

	Intro 4g
	Description
	Remarks and examples
	The model
	Parameter estimation

	Also see

	Intro 5
	Description
	Remarks and examples
	Why we care about stability
	What if the initial values are not saddle-path stable?

	References
	Also see

	Intro 6
	Description
	Remarks and examples
	Reference
	Also see

	Intro 7
	Description
	Remarks and examples
	Also see

	Intro 8
	Description
	Remarks and examples
	Wald tests vary with nonlinear transforms
	LR tests do not vary with nonlinear transforms

	References
	Also see

	Intro 9
	Description
	Remarks and examples
	Introduction
	Principles of Bayesian DSGE estimation
	An uninformative prior
	An informative prior
	Convergence diagnostics

	Also see

	Intro 9a
	Description
	Remarks and examples
	The model
	Parameter estimation
	Posterior diagnostics and plots
	Improving sampling efficiency
	Impulse responses

	Also see

	Intro 9b
	Description
	Remarks and examples
	The model
	Parameter estimation
	Posterior diagnostics and plots
	Impulse responses

	Reference
	Also see

	dsge
	Description
	Menu
	Syntax
	Options
	Remarks
	Stored results
	Methods and formulas
	References
	Also see

	dsge postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	Also see

	dsgenl
	Description
	Menu
	Syntax
	Options
	Remarks
	Stored results
	Methods and formulas
	Reference
	Also see

	dsgenl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	Also see

	estat covariance
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	estat policy
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	estat stable
	Description
	Menu for estat
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	estat steady
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	estat transition
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	Glossary
	Reference

	[ERM] Extended Regression
	Contents
	Intro
	Description
	Remarks and examples
	Introductions
	Examples
	ERM commands
	Postestimation
	Technical details
	Glossary

	Intro 1
	Description
	Remarks and examples
	The problems ERMs solve
	The simple syntax of ERMs
	Normality assumption underlying ERMs
	Learning more about ERMs

	Reference
	Also see

	Intro 2
	Description
	Remarks and examples
	Linear regression models
	Interval regression models
	Probit regression models
	Ordered probit regression models

	Also see

	Intro 3
	Description
	Remarks and examples
	What are endogenous and exogenous covariates?
	Solving the problem of endogenous covariates
	Solving the problem of reverse causation
	You can interact endogenous covariates
	You can have continuous, binary, and ordered endogenous covariates
	You can have instruments that are themselves endogenous
	Video example

	Also see

	Intro 4
	Description
	Remarks and examples
	Is sample selection a concern in your research problem?
	The problem and solution of endogenous sample selection
	Endogenous sample selection handles missing not at random
	Endogenous sample selection can be used with other features of ERMs
	Mechanical notes
	Video example

	Also see

	Intro 5
	Description
	Remarks and examples
	What are treatment-effect models?
	Treatment-effect models and potential outcomes
	Endogenous and exogenous treatment effects
	Binary and ordinal treatment effects
	Sample versus population standard errors
	Using treatment effects with other ERMs
	Using treatment effects with other features of ERMs
	Using treat() and select() to handle lost to follow-up
	Treatment statistics reported by estat teffects
	Video example

	Also see

	Intro 6
	Description
	Remarks and examples
	Random-effects models that ERMs handle
	Random effects can be used with other features of ERMs

	Also see

	Intro 7
	Description
	Remarks and examples
	Use margins
	Endogenous covariates
	How to interpret coefficients
	How to use and interpret margins
	How to use margins in models without endogenous covariates
	How to use margins with endogenous covariates
	margins with predict(asf)
	margins with predict(fixedasf)
	When to use which
	Using margins with nonlinear and random-effects models
	Advanced options: Using margins predict(base()) and predict(fix())

	References
	Also see

	Intro 8
	Description
	Remarks and examples
	Also see

	Intro 9
	Description
	Remarks and examples
	Introduction
	Complications
	Endogenous covariates
	Nonrandom treatment assignment
	Endogenous sample selection

	Interpreting effects
	Video examples

	References
	Also see

	eintreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	Endogenous covariates
	Continuous endogenous covariates
	Binary and ordinal endogenous covariates

	Treatment
	Endogenous sample selection
	Probit endogenous sample selection
	Tobit endogenous sample selection

	Random effects
	Combinations of features
	Confidence intervals

	References
	Also see

	eintreg postestimation
	Postestimation commands
	predict
	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	eintreg predict
	Description
	Syntax
	Options for statistics
	Options for asfmethod
	Option for counterfactuals
	Remarks and examples
	Methods and formulas
	Also see

	eoprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	intro
	Endogenous covariates
	contendog
	catendog

	Treatment
	Endogenous sample selection
	probitsel
	tobitsel

	Random effects
	Combinations of features
	ci

	References
	Also see

	eoprobit postestimation
	Postestimation commands
	predict
	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	eoprobit predict
	Description
	Syntax
	Options for statistics
	Options for asfmethod
	Option for counterfactuals
	Remarks and examples
	Using predict after eoprobit and xteoprobit
	How to think about nonlinear models

	Methods and formulas
	Also see

	eprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	intro
	Endogenous covariates
	contendog
	catendog

	Treatment
	Endogenous sample selection
	probitsel
	tobitsel

	Random effects
	Combined model
	ci
	likelihood

	References
	Also see

	eprobit postestimation
	Postestimation commands
	predict
	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	asf
	predtotal

	References
	Also see

	eprobit predict
	Description
	Syntax
	Options for statistics
	Options for asfmethod
	Option for counterfactuals
	Remarks and examples
	Using predict after eprobit
	How to think about nonlinear models

	Methods and formulas
	Also see

	eregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	intro
	Endogenous covariates
	contendog
	catendog

	Treatment
	Endogenous sample selection
	probitsel
	tobitsel

	Random effects
	Combinations of features
	ci

	References
	Also see

	eregress postestimation
	Postestimation commands
	predict
	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	eregress predict
	Description
	Syntax
	Options for statistics
	Options for asfmethod
	Option for counterfactuals
	Remarks and examples
	How to think about the model you fit
	The default asf mean calculation for predictions
	The fixedasf calculation for predictions

	Methods and formulas
	References
	Also see

	ERM options
	Description
	Syntax
	Options
	Also see

	estat teffects
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	Example 1a
	Description
	Remarks and examples
	Video example

	Also see

	Example 1b
	Description
	Remarks and examples
	Also see

	Example 1c
	Description
	Remarks and examples
	Also see

	Example 2a
	Description
	Remarks and examples
	Also see

	Example 2b
	Description
	Remarks and examples
	Also see

	Example 2c
	Description
	Remarks and examples
	Video example

	Also see

	Example 3a
	Description
	Remarks and examples
	Also see

	Example 3b
	Description
	Remarks and examples
	Also see

	Example 4a
	Description
	Remarks and examples
	Also see

	Example 4b
	Description
	Remarks and examples
	Also see

	Example 5
	Description
	Remarks and examples
	Also see

	Example 6a
	Description
	Remarks and examples
	Also see

	Example 6b
	Description
	Remarks and examples
	Also see

	Example 7
	Description
	Remarks and examples
	Reference
	Also see

	Example 8a
	Description
	Remarks and examples
	Also see

	Example 8b
	Description
	Remarks and examples
	Also see

	Example 9
	Description
	Remarks and examples
	Also see

	predict advanced
	Description
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Also see

	predict treatment
	Description
	Syntax
	Options
	Remarks and examples
	Predicting treatment effects after eregress, eintreg, xteregress, and xteintreg
	Predicting treatment effects after eprobit and xteprobit
	Predicting treatment effects after eoprobit and xteoprobit

	Methods and formulas
	Also see

	Triangularize
	Description
	Remarks and examples
	What is a triangular system?
	Triangularizing nontriangular systems
	You can only triangularize linear equations
	Options entreat(), select(), and tobitselect() also add endogenous variables
	Workarounds involving the main equation
	Why the above is a workaround and not a fix

	Also see

	Glossary
	References

	[FMM] Finite Mixture Models
	Contents
	fmm intro
	Description
	Remarks and examples
	Introduction
	Finite mixture models
	ex1
	Beyond mixtures of distributions

	Acknowledgment
	References
	Also see

	fmm estimation
	Description
	Also see

	fmm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	The likelihood
	The EM algorithm
	Survey data
	Predictions

	Also see

	fmm: betareg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	fmm: cloglog
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: glm
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: intreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: ivregress
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: logit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: mlogit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: nbreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: ologit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: oprobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: pointmass
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: poisson
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: probit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: regress
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: streg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: tobit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: tpoisson
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm: truncreg
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	fmm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	estat eform
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Also see

	estat lcmean
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat lcprob
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	Example 1a
	Description
	Remarks and examples
	References
	Also see

	Example 1b
	Description
	Remarks and examples
	Also see

	Example 1c
	Description
	Remarks and examples
	Also see

	Example 1d
	Description
	Remarks and examples
	Also see

	Example 2
	Description
	Remarks and examples
	References
	Also see

	Example 3
	Description
	Remarks and examples
	References
	Also see

	Example 4
	Description
	Remarks and examples
	References
	Also see

	Glossary

	[FN] Functions
	Contents
	Intro
	Description
	Reference
	Also see

	Functions by category
	Contents
	Date and time functions
	Mathematical functions
	Matrix functions
	Programming functions
	Random-number functions
	Selecting time-span functions
	Statistical functions
	String functions
	Trigonometric functions
	Also see

	Functions by name
	
	Also see

	Date and time functions
	Contents
	Functions
	age()
	age_frac()
	birthday()
	bofd()
	Cdhms()
	Chms()
	Clock()
	clock()
	Clockdiff()
	clockdiff()
	Clockdiff_frac()
	clockdiff_frac()
	Clockpart()
	clockpart()
	Cmdyhms()
	Cofc()
	cofC()
	Cofd()
	cofd()
	daily()
	date()
	datediff()
	datediff_frac()
	datepart()
	day()
	daysinmonth()
	dayssincedow()
	dayssinceweekday()
	daysuntildow()
	daysuntilweekday()
	dhms()
	dmy()
	dofb()
	dofC()
	dofc()
	dofh()
	dofm()
	dofq()
	dofw()
	dofy()
	dow()
	doy()
	firstdayofmonth()
	firstdowofmonth()
	firstweekdayofmonth()
	halfyear()
	halfyearly()
	hh()
	hhC()
	hms()
	hofd()
	hours()
	isleapsecond()
	isleapyear()
	lastdayofmonth()
	lastdowofmonth()
	lastweekdayofmonth()
	mdy()
	mdyhms()
	minutes()
	mm()
	mmC()
	mofd()
	month()
	monthly()
	msofhours()
	msofminutes()
	msofseconds()
	nextbirthday()
	nextdow()
	nextleapyear()
	nextweekday()
	now()
	previousbirthday()
	previousdow()
	previousleapyear()
	previousweekday()
	qofd()
	quarter()
	quarterly()
	seconds()
	ss()
	ssC()
	tC()
	tc()
	td()
	th()
	tm()
	today()
	tq()
	tw()
	week()
	weekly()
	wofd()
	year()
	yearly()
	yh()
	ym()
	yofd()
	yq()
	yw()

	Remarks and examples
	Video example

	Methods and formulas
	References
	Also see

	Mathematical functions
	Contents
	Functions
	abs()
	ceil()
	cloglog()
	comb()
	digamma()
	exp()
	expm1()
	floor()
	int()
	invcloglog()
	invlogit()
	ln()
	ln1m()
	ln1p()
	lnfactorial()
	lngamma()
	log()
	log10()
	log1m()
	log1p()
	logit()
	max()
	min()
	mod()
	reldif()
	round()
	sign()
	sqrt()
	sum()
	trigamma()
	trunc()

	Video example
	References
	Also see

	Matrix functions
	Contents
	Functions
	Matrix functions returning a matrix
	cholesky()
	corr()
	diag()
	get()
	hadamard()
	I()
	inv()
	invsym()
	invvech()
	invvecp()
	J()
	matuniform()
	nullmat()
	sweep()
	vec()
	vecdiag()
	vech()
	vecp()
	Matrix functions returning a scalar
	coleqnumb()
	colnfreeparms()
	colnumb()
	colsof()
	det()
	diag0cnt()
	el()
	issymmetric()
	matmissing()
	mreldif()
	roweqnumb()
	rownfreeparms()
	rownumb()
	rowsof()
	trace()

	Reference
	Also see

	Programming functions
	Contents
	Functions
	autocode()
	byteorder()
	c()
	_caller()
	chop()
	clip()
	cond()
	e()
	e(sample)
	epsdouble()
	epsfloat()
	fileexists()
	fileread()
	filereaderror()
	filewrite()
	float()
	fmtwidth()
	frval()
	frvalu()
	_frval()
	_frvaliv()
	has_eprop()
	inlist()
	inrange()
	irecode()
	matrix()
	maxbyte()
	maxdouble()
	maxfloat()
	maxint()
	maxlong()
	mi()
	minbyte()
	mindouble()
	minfloat()
	minint()
	minlong()
	missing()
	r()
	recode()
	replay()
	return()
	s()
	scalar()
	smallestdouble()

	References
	Also see

	Random-number functions
	Contents
	Functions
	runiform()
	runiform(ab)
	runiformint()
	rbeta()
	rbinomial()
	rcauchy()
	rchi2()
	rexponential()
	rgamma()
	rhypergeometric()
	rigaussian()
	rlaplace()
	rlogistic()
	rlogistic(s)
	rlogistic(ms)
	rnbinomial()
	rnormal()
	rnormal(m)
	rnormal(ms)
	rpoisson()
	rt()
	rweibull()
	rweibull(ab)
	rweibull(abg)
	rweibullph()
	rweibullph(ab)
	rweibullph(abg)

	Remarks and examples
	Methods and formulas
	kiss32 generator

	Acknowledgments
	References
	Also see

	Selecting time-span functions
	Contents
	Functions
	tin()
	twithin()

	Also see

	Statistical functions
	Contents
	Functions
	Beta and noncentral beta distributions
	betaden()
	ibeta()
	ibetatail()
	invibeta()
	invibetatail()
	nbetaden()
	nibeta()
	invnibeta()
	Binomial distribution
	binomialp()
	binomial()
	binomialtail()
	invbinomial()
	invbinomialtail()
	Cauchy distribution
	cauchyden()
	cauchy()
	cauchytail()
	invcauchy()
	invcauchytail()
	lncauchyden()
	Chi-squared and noncentral chi-squared distributions
	chi2den()
	chi2()
	chi2tail()
	invchi2()
	invchi2tail()
	nchi2den()
	nchi2()
	nchi2tail()
	invnchi2()
	invnchi2tail()
	npnchi2()
	Dunnett's multiple range distribution
	dunnettprob()
	invdunnettprob()
	Exponential distribution
	exponentialden()
	exponential()
	exponentialtail()
	invexponential()
	invexponentialtail()
	F and noncentral F distributions
	Fden()
	F()
	Ftail()
	invF()
	invFtail()
	nFden()
	nF()
	nFtail()
	invnF()
	invnFtail()
	npnF()
	Gamma distribution
	gammaden()
	gammap()
	gammaptail()
	invgammap()
	invgammaptail()
	dgammapda()
	dgammapdada()
	dgammapdadx()
	dgammapdx()
	dgammapdxdx()
	lnigammaden()
	Hypergeometric distribution
	hypergeometricp()
	hypergeometric()
	Inverse Gaussian distribution
	igaussianden()
	igaussian()
	igaussiantail()
	invigaussian()
	invigaussiantail()
	lnigaussianden()
	Laplace distribution
	laplaceden()
	laplace()
	laplacetail()
	invlaplace()
	invlaplacetail()
	lnlaplaceden()
	Logistic distribution
	logisticden(x)
	logisticden(sx)
	logisticden()
	logisticden(msx)
	logistic()
	logistic(x)
	logistic(sx)
	logistic(msx)
	logistictail()
	logistictail(x)
	logistictail(sx)
	logistictail(msx)
	invlogistic()
	invlogistic(p)
	invlogistic(sp)
	invlogistic(msp)
	invlogistictail()
	invlogistictail(p)
	invlogistictail(sp)
	invlogistictail(msp)
	Negative binomial distribution
	nbinomialp()
	nbinomial()
	nbinomialtail()
	invnbinomial()
	invnbinomialtail()
	Normal (Gaussian), binormal, and multivariate normal distributions
	normalden()
	normalden(xs)
	normalden(xms)
	normal()
	invnormal()
	lnnormalden()
	lnnormalden(xs)
	lnnormalden(xms)
	lnnormal()
	binormal()
	lnmvnormalden()
	Poisson distribution
	poissonp()
	poisson()
	poissontail()
	invpoisson()
	invpoissontail()
	Student's t and noncentral Student's t distributions
	tden()
	t()
	ttail()
	invt()
	invttail()
	invnt()
	invnttail()
	ntden()
	nt()
	nttail()
	npnt()
	Tukey's Studentized range distribution
	tukeyprob()
	invtukeyprob()
	Weibull distribution
	weibullden()
	weibullden(abx)
	weibullden(abgx)
	weibull()
	weibull(abx)
	weibull(abgx)
	weibulltail()
	weibulltail(abx)
	weibulltail(abgx)
	invweibull()
	invweibull(abp)
	invweibull(abgp)
	invweibulltail()
	invweibulltail(abp)
	invweibulltail(abgp)
	Weibull (proportional hazards) distribution
	weibullphden()
	weibullphden(abx)
	weibullphden(abgx)
	weibullph()
	weibullph(abx)
	weibullph(abgx)
	weibullphtail()
	weibullphtail(abx)
	weibullphtail(abgx)
	invweibullph()
	invweibullph(abp)
	invweibullph(abgp)
	invweibullphtail()
	invweibullphtail(abp)
	invweibullphtail(abgp)
	Wishart distribution
	lnwishartden()
	lniwishartden()

	References
	Also see

	String functions
	Contents
	Functions
	abbrev()
	char()
	uchar()
	collatorlocale()
	collatorversion()
	indexnot()
	plural()
	real()
	regexcapture()
	regexcapturenamed()
	regexm()
	regexmatch()
	regexr()
	regexreplace()
	regexreplaceall()
	regexs()
	ustrregexm()
	ustrregexrf()
	ustrregexra()
	ustrregexs()
	soundex()
	soundex_nara()
	strcat()
	strdup()
	string()
	string(ns)
	stritrim()
	strlen()
	ustrlen()
	udstrlen()
	strlower()
	ustrlower()
	strltrim()
	ustrltrim()
	strmatch()
	strofreal()
	strofreal(ns)
	strpos()
	ustrpos()
	strproper()
	ustrtitle()
	strreverse()
	ustrreverse()
	strrpos()
	ustrrpos()
	strrtrim()
	ustrrtrim()
	strtoname()
	ustrtoname()
	strtrim()
	ustrtrim()
	strupper()
	ustrupper()
	subinstr()
	usubinstr()
	subinword()
	substr()
	usubstr()
	udsubstr()
	tobytes()
	uisdigit()
	uisletter()
	ustrcompare()
	ustrcompareex()
	ustrfix()
	ustrfrom()
	ustrinvalidcnt()
	ustrleft()
	ustrnormalize()
	ustrright()
	ustrsortkey()
	ustrsortkeyex()
	ustrto()
	ustrtohex()
	ustrunescape()
	word()
	ustrword()
	wordbreaklocale()
	wordcount()
	ustrwordcount()

	References
	Also see

	Trigonometric functions
	Contents
	Functions
	acos()
	acosh()
	asin()
	asinh()
	atan()
	atan2()
	atanh()
	cos()
	cosh()
	sin()
	sinh()
	tan()
	tanh()

	References
	Also see

	[G] Graphics
	Contents
	Introduction
	Intro
	Description
	Also see

	Graph intro
	Remarks and examples
	Suggested reading order
	A quick tour
	Using the menus

	References
	Also see

	Graph Editor
	Remarks and examples
	Quick start
	Introduction
	Starting and stopping the Graph Editor
	The tools
	The Object Browser
	Right-click menus, or Contextual menus
	The Standard Toolbar
	The main Graph Editor menu
	Grid editing
	Graph Recorder
	Tips, tricks, and quick edits
	Video example

	Reference
	Also see

	Commands
	graph
	Description
	Syntax
	Remarks and examples
	Also see

	graph bar
	Description
	Quick start
	Menu
	Syntax
	Options
	group_options
	yvar_options
	lookofbar_options
	legending_options
	axis_options
	title_and_other_options
	Suboptions for use with over() and yvaroptions()

	Remarks and examples
	Introduction
	Examples of syntax
	Treatment of bars
	Treatment of data
	Obtaining frequencies
	Multiple bars (overlapping the bars)
	Controlling the text of the legend
	Multiple over()s (repeating the bars)
	Nested over()s
	Charts with many categories
	How bars are ordered
	Reordering the bars
	Putting the bars in a prespecified order
	Putting the bars in height order
	Putting the bars in a derived order
	Reordering the bars, example
	Use with by()
	Video example
	History

	References
	Also see

	graph box
	Description
	Quick start
	Menu
	Syntax
	Options
	group_options
	yvar_options
	boxlook_options
	legending_options
	axis_options
	title_and_other_options
	Suboptions for use with over() and yvaroptions()

	Remarks and examples
	Introduction
	Examples of syntax
	Treatment of multiple yvars versus treatment of over() groups
	How boxes are ordered
	Reordering the boxes
	Putting the boxes in a prespecified order
	Putting the boxes in median order
	Use with by()
	Video example
	History

	Methods and formulas
	References
	Also see

	graph close
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	graph combine
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Typical use with memory graphs
	Combining twoway graphs
	Advanced use
	Controlling the aspect ratio of subgraphs

	References
	Also see

	graph copy
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	graph describe
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	graph dir
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	graph display
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Changing the size and aspect ratio
	Changing the margins and aspect ratio
	Changing the scheme

	Also see

	graph dot
	Description
	Quick start
	Menu
	Syntax
	Options
	group_options
	yvar_options
	linelook_options
	legending_options
	axis_options
	title_and_other_options
	Suboptions for use with over() and yvaroptions()

	Remarks and examples
	Relationship between dot plots and horizontal bar charts
	Examples
	Appendix: Examples of syntax

	References
	Also see

	graph drop
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Typical use
	Relationship between graph drop _all and discard
	Erasing graphs on disk

	Also see

	graph export
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Exporting the graph displayed in a Graph window
	Exporting a graph stored on disk
	Exporting a graph stored in memory

	Reference
	Also see

	graph manipulation
	Description
	Syntax
	Remarks and examples
	Overview of graphs in memory and graphs on disk
	Summary of graph manipulation commands

	Also see

	graph matrix
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Marker symbols and the number of observations
	Controlling the axes labeling
	Adding grid lines
	Adding titles
	Use with by()
	History

	References
	Also see

	graph other
	Description
	Syntax
	Remarks and examples
	Reference
	Also see

	graph pie
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Data are summed
	Data may be long rather than wide
	How slices are ordered
	Ordering slices by size
	Reordering the slices
	Use with by()
	Video example
	History

	References
	Also see

	graph play
	Description
	Syntax
	Remarks and examples
	Also see

	graph print
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Printing the graph displayed in a Graph window
	Printing a graph stored on disk
	Printing a graph stored in memory
	Appendix: Setting up Stata for Unix to print graphs

	Also see

	graph query
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	graph rename
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	graph replay
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	graph save
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	graph set
	Description
	Quick start
	Syntax
	Remarks and examples
	Overview
	Setting defaults

	Also see

	graph twoway
	Description
	Menu
	Syntax
	Remarks and examples
	Definition
	Syntax
	Multiple if and in restrictions
	twoway and plot options

	References

	graph twoway area
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway bar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use: Overlaying
	Advanced use: Population pyramid
	Cautions

	References
	Also see

	graph twoway connected
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway contour
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Controlling the number of contours and their values
	Controlling the colors of the contour areas
	Choose the interpolation method
	Video example

	Reference
	Also see

	graph twoway contourline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Controlling the number of contour lines and their values
	Controlling the colors of the contour lines
	Choose the interpolation method

	Also see

	graph twoway dot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	graph twoway dropline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway fpfit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway fpfitci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions
	Use with by()

	Also see

	graph twoway function
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use 1
	Advanced use 2

	Reference
	Also see

	graph twoway histogram
	Description
	Quick start
	Menu
	Syntax
	Options for use in the discrete case
	Options for use in the continuous case
	Options for use in both cases
	Remarks and examples
	Relationship between graph twoway histogram and histogram
	Typical use
	Use with by()
	History

	References
	Also see

	graph twoway kdensity
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	References
	Also see

	graph twoway lfit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway lfitci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions
	Use with by()

	Also see

	graph twoway line
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Oneway equivalency of line and scatter
	Typical use
	Advanced use
	Cautions

	Reference
	Also see

	graph twoway lowess
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	References
	Also see

	graph twoway lpoly
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	References
	Also see

	graph twoway lpolyci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	Also see

	graph twoway mband
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Use with by()

	Also see

	graph twoway mspline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway pcarrow
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic use
	Advanced use

	References
	Also see

	graph twoway pcarrowi
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway pccapsym
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic use 1
	Basic use 2

	Also see

	graph twoway pci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway pcscatter
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway pcspike
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic use
	Advanced use
	Advanced use 2

	Reference
	Also see

	graph twoway qfit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway qfitci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions
	Use with by()

	Also see

	graph twoway rarea
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway rbar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use

	References
	Also see

	graph twoway rcap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Advanced use 2

	Also see

	graph twoway rcapsym
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway rconnected
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway rline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway rscatter
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway rspike
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Advanced use 2

	Also see

	graph twoway scatter
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Scatter syntax
	The overall look for the graph
	The size and aspect ratio of the graph
	Titles
	Axis titles
	Axis labels and ticking
	Grid lines
	Added lines
	Axis range
	Log scales
	Multiple axes
	Markers
	Weighted markers
	Jittered markers
	Connected lines
	Graphs by groups
	Saving graphs
	Video example
	Appendix: Styles and composite styles

	References
	Also see

	graph twoway scatteri
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	graph twoway spike
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway tsline
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	graph use
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	palette
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	References
	Also see

	set graphics
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	set printcolor
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	What set printcolor affects
	The problem set printcolor solves
	set printcolor automatic
	set printcolor asis
	set printcolor gs1, gs2, and gs3
	The scheme matters, not the background color you set

	Also see

	set scheme
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	References
	Also see

	Options
	added_line_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Typical use
	Interpretation of repeated options

	References
	Also see

	added_text_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Typical use
	Advanced use
	Use of the textbox option width()

	Reference
	Also see

	addplot_option
	Description
	Syntax
	Option
	Remarks and examples
	Commands that allow the addplot() option
	Advantage of graph twoway commands
	Advantages of graphic commands implemented outside graph twoway
	Use of the addplot() option

	Reference
	Also see

	advanced_options
	Description
	Syntax
	Options
	Remarks and examples
	Use of yvarlabel() and xvarlabel()
	Use of yvarformat() and xvarformat()
	Use of recast()

	Also see

	area_options
	Description
	Syntax
	Options
	Remarks and examples
	Use with twoway
	Use with graph dot

	Also see

	aspect_option
	Description
	Quick start
	Syntax
	Option
	Suboptions
	Remarks and examples
	Reference
	Also see

	axis_choice_options
	Description
	Syntax
	Options
	Remarks and examples
	Usual case: one set of axes
	Special case: multiple axes due to multiple scales
	yaxis(1) and xaxis(1) are the defaults
	Notation style is irrelevant
	yaxis() and xaxis() are plot options
	Specifying the other axes options with multiple axes
	Each plot may have at most one x scale and one y scale
	Special case: Multiple axes with a shared scale

	Reference
	Also see

	axis_label_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Default labeling and ticking
	Controlling the labeling and ticking
	Adding extra ticks
	Adding minor labels and ticks
	Adding grid lines
	Suppressing grid lines
	Substituting text for labels
	z-axis options---zlabel(), ztick(), etc.
	Appendix: Details of syntax

	References
	Also see

	axis_options
	Description
	Options
	Remarks and examples
	Also see

	axis_scale_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Use of the yscale() and xscale()
	Specifying the range of a scale
	Obtaining log scales
	Obtaining reversed scales
	Suppressing the axes
	Contour axes---zscale()

	References
	Also see

	axis_title_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Default axis titles
	Overriding default titles
	Specifying multiline titles
	Suppressing axis titles
	Interpretation of repeated options
	Titles with multiple y axes or multiple x axes
	Contour axes---ztitle()

	Also see

	barlook_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	blabel_option
	Description
	Quick start
	Syntax
	Option
	Suboptions

	Remarks and examples
	Increasing the information content
	Changing how bars are labeled

	Also see

	by_option
	Description
	Quick start
	Syntax
	Option
	byopts
	Remarks and examples
	Typical use
	Placement of graphs
	Treatment of titles
	by() uses subtitle() with graph
	Placement of the subtitle()
	by() uses the overall note()
	Use of legends with by()
	By-styles
	Labeling the edges
	Specifying separate scales for the separate plots
	History

	References
	Also see

	cat_axis_label_options
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	cat_axis_line_options
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	clegend_option
	Description
	Quick start
	Syntax
	Option
	Content and appearance suboptions for use with clegend()
	Suboptions for use with clegend(region())
	Location suboptions for use with clegend()

	Remarks and examples
	When contour legends appear
	Where contour legends appear
	Putting titles on contour legends
	Controlling the axis in contour legends
	Use of legends with by()

	Also see

	cline_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	colorvar_options
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Introduction
	Controlling the number of levels
	Controlling the colors

	References
	Also see

	connect_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	eps_options
	Description
	Syntax
	Options
	Remarks and examples
	Using the eps_options
	Setting defaults
	Note about PostScript fonts

	Also see

	fcline_options
	Description
	Syntax
	Options
	Remarks and examples

	fitarea_options
	Description
	Syntax
	Options
	Remarks and examples

	gif_options
	Description
	Syntax
	Options
	Remarks and examples
	Using gif_options
	Specifying the width or height

	Also see

	jpg_options
	Description
	Syntax
	Options
	Remarks and examples
	Using jpg_options
	Specifying the width or height
	Image quality

	Also see

	legend_options
	Description
	Quick start
	Syntax
	Options
	Content suboptions for use with legend() and plegend()
	Suboptions for use with legend(region())
	Location suboptions for use with legend()

	Remarks and examples
	When legends appear
	The contents of legends
	Where legends appear
	Putting titles on legends
	Use of legends with by()
	Problems arising with or because of legends

	Also see

	line_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	marker_label_options
	Description
	Syntax
	Options
	Remarks and examples
	Typical use
	Eliminating overprinting and overruns
	Advanced use
	Using marker labels in place of markers

	Also see

	marker_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	name_option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	nodraw_option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	pdf_options
	Description
	Syntax
	Options
	Remarks and examples
	Using the pdf_options
	Setting defaults

	Also see

	play_option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	png_options
	Description
	Syntax
	Options
	Remarks and examples
	Using png_options
	Specifying the width or height

	Also see

	pr_options
	Description
	Syntax
	Options
	Remarks and examples
	Using the pr_options
	Setting defaults
	Note for Unix users

	Also see

	ps_options
	Description
	Syntax
	Options
	Remarks and examples
	Using the ps_options
	Setting defaults
	Note about PostScript fonts
	Note for Unix users

	Also see

	rcap_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	region_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Setting the offset between the axes and the plot region
	Controlling the aspect ratio
	Suppressing the border around the plot region
	Setting background and fill colors
	How graphs are constructed

	Also see

	rspike_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	saving_option
	Description
	Quick start
	Syntax
	Option
	Suboptions

	Remarks and examples
	Also see

	scale_option
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	scheme_option
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Also see

	std_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	svg_options
	Description
	Syntax
	Options
	Remarks and examples
	Using the svg_options
	Setting defaults

	Also see

	textbox_options
	Description
	Syntax
	Options
	Remarks and examples
	Definition of a textbox
	Position
	Justification
	Position and justification combined
	Margins
	Width and height
	Appendix: Overriding default or context-specified positioning

	Also see

	tif_options
	Description
	Syntax
	Options
	Remarks and examples
	Using tif_options
	Specifying the width or height

	Also see

	title_options
	Description
	Quick start
	Syntax
	Options
	Suboptions

	Remarks and examples
	Multiple-line titles
	Interpretation of repeated options
	Positioning of titles
	Alignment of titles
	Spanning
	Using the textbox options box and bexpand

	Reference
	Also see

	twoway_options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	Styles/concepts/schemes
	addedlinestyle
	Description
	Syntax
	Remarks and examples
	What is an added line?
	What is an addedlinestyle?
	You do not need to specify an addedlinestyle

	Also see

	alignmentstyle
	Description
	Syntax
	Remarks and examples
	Also see

	anglestyle
	Description
	Syntax
	Remarks and examples
	Also see

	areastyle
	Description
	Syntax
	Remarks and examples
	Overview of areastyles
	Numbered styles
	Using numbered styles
	When to use areastyles

	Also see

	axisstyle
	Description
	Syntax
	Remarks and examples
	Also see

	bystyle
	Description
	Syntax
	Remarks and examples
	What is a by-graph?
	What is a bystyle?

	Also see

	clockposstyle
	Description
	Syntax
	Remarks and examples
	Also see

	colorstyle
	Description
	Syntax
	Remarks and examples
	Adjust opacity
	Adjust intensity
	Specify RGB values
	Specify CMYK values
	Specify HSV values
	Export custom colors
	Video example

	References
	Also see

	compassdirstyle
	Description
	Syntax
	Remarks and examples
	Also see

	Concept: gph files
	Description
	Remarks and examples
	Background
	Gph files are machine/operating system independent
	Gph files come in three forms
	Advantages of live-format files
	Advantages of as-is format files
	Retrieving data from live-format files

	Also see

	Concept: lines
	Description
	Syntax
	Remarks and examples
	linestyle
	linealignmentstyle
	linepatternstyle
	linewidthstyle
	colorstyle

	Also see

	Concept: repeated options
	Description
	Remarks and examples
	Also see

	connectstyle
	Description
	Syntax
	Remarks and examples
	Also see

	gridstyle
	Description
	Syntax
	Remarks and examples
	What is a grid?
	What is a gridstyle?
	You do not need to specify a gridstyle
	Turning off and on the grid

	Also see

	intensitystyle
	Description
	Syntax
	Remarks and examples
	Also see

	justificationstyle
	Description
	Syntax
	Remarks and examples
	Also see

	legendstyle
	Description
	Syntax
	Remarks and examples
	What is a legend?
	What is a legendstyle?
	You do not need to specify a legendstyle

	Also see

	linealignmentstyle
	Description
	Syntax
	Also see

	linepatternstyle
	Description
	Syntax
	Remarks and examples
	Also see

	linestyle
	Description
	Syntax
	Remarks and examples
	What is a line?
	What is a linestyle?
	You do not need to specify a linestyle
	Specifying a linestyle can be convenient
	What are numbered styles?
	Suppressing lines

	Reference
	Also see

	linewidthstyle
	Description
	Syntax
	Remarks and examples
	Also see

	marginstyle
	Description
	Syntax
	Remarks and examples
	Also see

	markerlabelstyle
	Description
	Syntax
	Remarks and examples
	What is a markerlabel?
	What is a markerlabelstyle?
	You do not need to specify a markerlabelstyle
	Specifying a markerlabelstyle can be convenient
	What are numbered styles?

	Also see

	markersizestyle
	Description
	Syntax
	Remarks and examples
	Also see

	markerstyle
	Description
	Syntax
	Remarks and examples
	What is a marker?
	What is a markerstyle?
	You do not have to specify a markerstyle
	Specifying a markerstyle can be convenient
	What are numbered styles?

	Also see

	orientationstyle
	Description
	Syntax
	Remarks and examples
	Also see

	plotregionstyle
	Description
	Syntax
	Remarks and examples
	Also see

	pstyle
	Description
	Syntax
	Remarks and examples
	What is a plot?
	What is a pstyle?
	The pstyle() option
	Specifying a pstyle
	What are numbered styles?

	Also see

	ringposstyle
	Description
	Syntax
	Remarks and examples
	Also see

	Schemes intro
	Description
	Syntax
	Remarks and examples
	The role of schemes
	Finding out about other schemes
	Setting your default scheme
	The scheme is applied at display time
	Background color
	Foreground color
	Obtaining new schemes
	Examples of schemes

	References
	Also see

	Scheme economist
	Description
	Syntax
	Remarks and examples
	Also see

	Scheme s1
	Description
	Syntax
	Remarks and examples
	Also see

	Scheme s2
	Description
	Syntax
	Remarks and examples
	Also see

	Scheme sj
	Description
	Syntax
	Also see

	Scheme st
	Description
	Syntax
	Remarks and examples
	stcolor and stcolor_alt
	stgcolor and stgcolor_alt
	stmono1 and stmono2
	stsj

	Also see

	shadestyle
	Description
	Syntax
	Remarks and examples
	What is a shadestyle?
	What are numbered styles?

	Also see

	size
	Description
	Syntax
	Remarks and examples
	Also see

	stylelists
	Description
	Syntax
	Also see

	symbolstyle
	Description
	Syntax
	Remarks and examples
	Typical use
	Filled and hollow symbols
	Size of symbols

	Also see

	text
	Description
	Remarks and examples
	Overview
	Bold and italics
	Superscripts and subscripts
	Fonts, standard
	Fonts, advanced
	Greek letters and other symbols
	Full list of SMCL tags useful in graph text

	Also see

	textboxstyle
	Description
	Syntax
	Remarks and examples
	What is a textbox?
	What is a textboxstyle?
	You do not need to specify a textboxstyle

	Also see

	textsizestyle
	Description
	Syntax
	Also see

	textstyle
	Description
	Syntax
	Remarks and examples
	What is text?
	What is a textstyle?
	You do not need to specify a textstyle
	Relationship between textstyles and textboxstyles

	Also see

	ticksetstyle
	Description
	Syntax
	Also see

	tickstyle
	Description
	Syntax
	Remarks and examples
	What is a tick? What is a tick label?
	What is a tickstyle?
	You do not need to specify a tickstyle
	Suppressing ticks and/or tick labels

	Also see

	Glossary

	[H2OML] Machine Learning Using H2O
	Contents
	Intro
	Description
	Remarks and examples
	Why machine learning?
	Preliminaries
	Fundamentals of machine learning
	Decision trees
	Classification trees
	Regression trees
	Pros and cons of decision trees

	Ensemble methods
	Bagging
	Random forest
	Boosting
	GBM
	Trees with monotonicity constraints

	Model selection in machine learning
	Three-way and two-way holdout methods
	k-fold cross-validation
	Hyperparameter tuning
	Method comparison

	Interpretation and explanation
	Global surrogate models

	References
	Also see

	h2oml
	Description
	Remarks and examples
	Brief overview
	h2oml in a nutshell
	Tour of machine learning commands
	Prepare your data for H2O machine learning in Stata
	End-to-end binary classification analysis
	Regression analysis
	Effect of categorical predictors
	Detecting nuisance predictors
	Gradient boosting Poisson regression

	References
	Also see

	H2O setup
	Description
	Remarks and examples
	What is H2O?
	How does H2O work from Stata?
	Start a local H2O cluster
	Connect to an existing H2O cluster

	Interact with the H2O cluster
	Close and disconnect the H2O cluster

	Also see

	h2oml gbm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Tuning hyperparameters
	Examples of using GBM

	Stored results
	Methods and formulas
	References
	Also see

	h2oml gbbinclass
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	h2oml gbmulticlass
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	h2oml gbregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	h2oml rf
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Tuning hyperparameters
	Examples of using random forest

	Stored results
	Methods and formulas
	References
	Also see

	h2oml rfbinclass
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	h2oml rfmulticlass
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	h2oml rfregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	h2oml postestimation
	Postestimation commands
	h2omlpredict
	Description for h2omlpredict
	Menu for h2omlpredict
	Syntax for h2omlpredict
	Options for h2omlpredict

	Remarks and examples
	Binary classification prediction
	Multiclass classification prediction
	Testing frame prediction
	Regression prediction

	References
	Also see

	h2omlest
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	h2omlestat aucmulticlass
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	h2omlestat confmatrix
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	h2omlestat cvsummary
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	h2omlestat gridsummary
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	h2omlestat hitratio
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	h2omlestat metrics
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	h2omlestat threshmetric
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	h2omlexplore
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Reference
	Also see

	h2omlgof
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	h2omlgraph ice
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples of ICE curves

	References
	Also see

	h2omlgraph pdp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples of using PDP

	References
	Also see

	h2omlgraph prcurve
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	h2omlgraph roc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	h2omlgraph scorehistory
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	h2omlgraph shapsummary
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	h2omlgraph shapvalues
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	h2omlgraph varimp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	h2omlpostestframe
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	h2omlselect
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	h2omltree
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Example 1: Plotting a classification tree after random forest
	Example 2: Plotting a classification tree after gradient boosting machine (GBM)
	Example 3: Plotting a regression tree
	Example 4: Plotting a tree for multiclass classification

	References
	Also see

	DOT extension
	Description
	Remarks and examples
	Install Graphviz
	How to use Graphviz and DOT language
	Modifying the DOT file

	Also see

	encode_option
	Description
	Syntax
	Option
	Reference
	Also see

	metric_option
	Description
	Syntax
	Options
	Metrics for regression
	Metrics for classification
	Additional classification metrics

	References
	Also see

	H2O option mapping
	Description
	Also see

	H2O reproducibility
	Description
	Also see

	Glossary
	References

	[IRT] Item Response Theory
	Contents
	irt
	Description
	Remarks and examples
	References
	Also see

	Control Panel
	Description
	Remarks and examples
	Reference
	Also see

	irt 1pl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	irt 1pl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt 2pl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	irt 2pl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt 3pl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	irt 3pl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt grm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	irt grm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt nrm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	irt nrm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt pcm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	irt pcm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt rsm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	irt rsm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt hybrid
	Description
	Quick start
	Menu
	Syntax
	mopts
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	The likelihood
	Groups
	Gauss--Hermite quadrature
	Adaptive quadrature

	References
	Also see

	irt hybrid postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Empirical Bayes
	Other predictions

	References
	Also see

	irt, group()
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Baseline group model
	Differential item functioning

	Reference
	Also see

	irt, group() postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Methods and formulas
	Also see

	irt constraints
	Description
	Quick start
	Syntax
	Remarks and examples
	Overview
	Constraints in 1PL, 2PL, and 3PL models
	Constraints in graded response models
	Constraints in nominal response models
	Constraints in partial credit models
	Constraints in rating scale models

	Also see

	estat report
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat greport
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irtgraph icc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	irtgraph tcc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	irtgraph iif
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	irtgraph tif
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	DIF
	Description
	Remarks and examples
	References
	Also see

	diflogistic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	difmh
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	Glossary

	[LASSO] Lasso
	Contents
	Lasso intro
	Description
	Remarks and examples
	Summary of Stata's lasso and elastic-net features
	What is lasso?
	Lasso for prediction
	How lasso for prediction works
	Stata commands for prediction

	Lasso for model selection
	Lasso for inference
	Why do we need special lasso methods for inference?
	Methods of lasso for inference
	Stata commands for inference

	Where to learn more

	Acknowledgments
	References
	Also see

	Lasso inference intro
	Description
	Remarks and examples
	The problem
	Possible solutions
	Solutions that focus on the true model
	The double-selection solution
	The partialing-out solution
	The cross-fit partialing-out (double machine learning) solution

	Where to learn more

	References
	Also see

	bicplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	coefpath
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Coefficient path plots
	An example
	Adding a legend
	lambda scale and reference line
	After fitting with sqrtlasso
	After fitting with elasticnet
	After fitting with inference commands

	Also see

	Collinear covariates
	Description
	Remarks and examples
	Summary
	Explanation
	Applies to inferential commands
	Does not apply to alwaysvars

	Also see

	cvplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	dslogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	dspoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	dsregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	elasticnet
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estimates store
	Description
	Remarks and examples
	Overview
	Postestimation commands that work only with current results
	Postestimation commands that work with current results
	lassoselect creates new estimation results

	Also see

	Inference examples
	Description
	Remarks and examples
	1 Overview
	1.1 How to read the example entries
	1.2 Detailed outline of the topics
	1.3 Review of concepts
	1.4 The primary dataset

	2 Fitting and interpreting inferential models
	2.1 Overview of inferential estimation methods
	2.2 Fitting via cross-fit partialing out (xpo) using plugin
	2.3 Fitting via cross-fit partialing out (xpo) using cross-validation
	2.4 Fitting via double selection (ds) using cross-validation
	2.5 Fitting via the other 22 methods
	2.6 Fitting models with several variables of interest
	2.7 Fitting models with factor variables of interest
	2.8 Fitting models with interactions of interest
	2.9 Fitting models with a nonlinear relationship of interest
	2.10 Controls are controls

	3 Fitting logit inferential models to binary outcomes. What is different?
	3.1 Interpreting standard odds ratios
	3.2 Interpreting models with factor variables, nonlinear relationships, and interactions

	4 Fitting inferential models to count outcomes. What is different?
	4.1 Interpreting standard incidence-rate ratios
	4.2 Interpreting models with factor variables

	5 Exploring inferential model lassos
	6 Fitting an inferential model with endogenous covariates

	References
	Also see

	Inference requirements
	Description
	Remarks and examples
	Also see

	lasso
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Lasso fitting and selection methods
	selection(cv): Cross-validation
	The CV function
	Penalized and postselection coefficients
	predict
	Selecting lambda by hand using lassoselect
	More lasso examples

	Stored results
	Methods and formulas
	Lasso and elastic-net objective functions
	Coordinate descent
	Grid of values for lambda
	How to choose the penalty parameter
	How CV is performed
	Adaptive lasso
	Plugin estimators
	BIC

	References
	Also see

	lasso postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	stcurve
	Description for stcurve
	Menu for stcurve
	Syntax for stcurve
	Options for stcurve

	Remarks and examples
	Methods and formulas
	References
	Also see

	lassocoef
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	lasso examples
	Description
	Remarks and examples
	Overview
	Using vl to manage variables
	Using splitsample
	Lasso linear models
	Adaptive lasso
	Cross-validation folds
	BIC
	More potential variables than observations
	Factor variables in lasso
	Lasso logit and probit models
	Lasso Poisson models
	Lasso Cox models

	References
	Also see

	lasso fitting
	Description
	Remarks and examples
	Introduction
	Model selection
	The process
	Step 1. Set the grid range
	Step 2. Fit the model for next lambda in grid
	Selection method none
	Step 3. Identifying a minimum of the CV function
	Plotting the CV function
	Selecting another model

	What exactly is CV?
	Adaptive lasso
	Plugin selection
	Selection using the BIC function

	Also see

	lassogof
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	lasso inference postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict

	Remarks and examples
	Also see

	lassoinfo
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	lassoknots
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Measures of fit
	In-sample measures versus estimates of out-of-sample measures
	BIC
	Examples

	Stored results
	Methods and formulas
	Overview
	Statistics that measure the size of the coefficient vector
	Statistics that measure fit
	CV measures of fit
	Single-sample measures of fit
	Deviance formulas
	Saturated log likelihood

	Prediction error formulas
	BIC formula

	References
	Also see

	lasso options
	Description
	Syntax
	Options
	Suboptions for lasso() and sqrtlasso()

	Remarks and examples
	Reference
	Also see

	lassoselect
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	poivregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	pologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	popoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	poregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	sqrtlasso
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Notation
	Plugin estimators

	References
	Also see

	xpoivregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	xpologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	xpopoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	xporegress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	Glossary

	[M] Mata
	Contents
	Introduction to the Mata manual
	Intro
	Contents
	Description
	Remarks and examples
	References
	Also see

	Introduction and advice
	Intro
	Contents
	Description
	Remarks and examples
	References
	Also see

	Ado
	Description
	Remarks and examples
	A first example
	Where to store the Mata functions
	Passing arguments to Mata functions
	Returning results to ado-code
	Advice: Use of matastrict
	Advice: Some useful Mata functions

	Also see

	First
	Description
	Remarks and examples
	Invoking Mata
	Using Mata
	Making mistakes: Interpreting error messages
	Working with real numbers, complex numbers, and strings
	Working with scalars, vectors, and matrices
	Working with functions
	Distinguishing real and complex values
	Working with matrix and scalar functions
	Performing element-by-element calculations: Colon operators
	Writing programs
	More functions
	Mata environment commands
	Exiting Mata

	Also see

	help
	Description
	Syntax
	Remarks and examples
	Also see

	How
	Description
	Remarks and examples
	What happens when you define a program
	What happens when you work interactively
	What happens when you type a mata environment command
	Working with object code I: .mo files
	Working with object code II: .mlib libraries
	The Mata environment

	Reference
	Also see

	Interactive
	Description
	Remarks and examples
	1. Start in Stata; load the data
	2. Create any time-series variables
	3. Create a constant variable
	4. Drop unnecessary variables
	5. Drop observations with missing values
	6. Put variables on roughly the same numeric scale
	7. Enter Mata
	8. Use Mata's st_view() function to access your data
	9. Perform your matrix calculations

	Review
	Reference
	Also see

	LAPACK
	Description
	Syntax
	Option for set lapack_mkl
	Remarks and examples
	LAPACK in Mata
	set lapack_mkl
	Intel MKL conditional numerical reproducibility
	set lapack_mkl_cnr

	Acknowledgments
	References
	Also see

	Limits
	Description
	Summary
	Remarks and examples
	Also see

	Naming
	Description
	Syntax
	Remarks and examples
	Interactive use
	Naming variables
	Naming functions
	What happens when functions have the same names
	How to determine if a function name has been taken

	Also see

	Permutation
	Description
	Syntax
	Remarks and examples
	Permutation matrices
	How permutation matrices arise
	Permutation vectors

	Also see

	Returned args
	Description
	Syntax
	Remarks and examples
	Also see

	Source
	Description
	Syntax
	Remarks and examples
	Also see

	Tolerance
	Description
	Syntax
	Remarks and examples
	The problem
	Absolute versus relative tolerances
	Specifying tolerances

	Also see

	Language definition
	Intro
	Contents
	Description
	Remarks and examples
	Also see

	break
	Description
	Syntax
	Remarks and examples
	Also see

	class
	Description
	Syntax
	Introduction
	Example
	Declaration of member variables
	Declaration and definition of methods (member functions)
	Default exposure in declarations

	Remarks and examples
	Notation and jargon
	Declaring and defining a class
	Saving classes in files
	Workflow recommendation
	When you need to recompile
	Obtaining instances of a class
	Constructors and destructors
	Setting member variable and member function exposure
	Making a member final
	Making a member static
	Virtual functions
	Referring to the current class using this
	Using super to access the parent's concept
	Casting back to a parent
	Accessing external functions from member functions
	Pointers to classes

	Reference
	Also see

	Comments
	Description
	Syntax
	Remarks and examples
	The /* */ enclosed comment
	The // rest-of-line comment

	Also see

	continue
	Description
	Syntax
	Remarks and examples
	Also see

	Declarations
	Description
	Syntax
	Remarks and examples
	The purpose of declarations
	Types, element types, and organizational types
	Implicit declarations
	Element types
	Organizational types
	Function declarations
	Argument declarations
	The by-address calling convention
	Variable declarations
	Linking to external globals

	Also see

	do
	Description
	Syntax
	Remarks and examples
	Also see

	Errors
	Description
	Remarks and examples
	The error codes

	Also see

	exp
	Description
	Syntax
	Remarks and examples
	What's an expression
	Assignment suppresses display, as does (void)
	The pieces of an expression
	Numeric literals
	String literals
	Variable names
	Operators
	Functions

	Reference
	Also see

	for
	Description
	Syntax
	Remarks and examples
	Also see

	ftof
	Description
	Syntax
	Remarks and examples
	Passing functions to functions
	Writing functions that receive functions, the simplified convention
	Passing built-in functions

	Also see

	goto
	Description
	Syntax
	Remarks and examples
	Reference
	Also see

	if
	Description
	Syntax
	Remarks and examples
	Also see

	op_arith
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	op_assignment
	Description
	Syntax
	Remarks and examples
	Assignment suppresses display
	The equal-assignment operator
	lvals, what appears on the left-hand side
	Row, column, and element lvals
	Pointer lvals

	Conformability
	Diagnostics
	Also see

	op_colon
	Description
	Syntax
	Remarks and examples
	C-conformability: element by element
	Usefulness of colon logical operators
	Use parentheses

	Conformability
	Diagnostics
	Also see

	op_conditional
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	op_increment
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	op_join
	Description
	Syntax
	Remarks and examples
	Comma and backslash are operators
	Comma as a separator
	Warning about the misuse of comma and backslash operators

	Conformability
	Diagnostics
	Also see

	op_kronecker
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	op_logical
	Description
	Syntax
	Remarks and examples
	Introduction
	Use of logical operators with pointers

	Conformability
	Diagnostics
	Also see

	op_range
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	op_transpose
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	optargs
	Description
	Syntax
	Remarks and examples
	What are optional arguments?
	How to code optional arguments
	Examples revisited

	Also see

	pointers
	Description
	Syntax
	Remarks and examples
	What is a pointer?
	Pointers to variables
	Pointers to expressions
	Pointers to functions
	Pointers to pointers
	Pointer arrays
	Mixed pointer arrays
	Definition of NULL
	Use of parentheses
	Pointer arithmetic
	Listing pointers
	Declaration of pointers
	Use of pointers to collect objects
	Efficiency

	Diagnostics
	References
	Also see

	pragma
	Description
	Syntax
	Remarks and examples
	pragma unset
	pragma unused

	Also see

	reswords
	Description
	Syntax
	Remarks and examples
	Future developments
	Version control

	Also see

	return
	Description
	Syntax
	Remarks and examples
	Functions that return results
	Functions that return nothing (void functions)

	Also see

	Semicolons
	Description
	Syntax
	Remarks and examples
	Optional use of semicolons
	You cannot break a statement anywhere even if you use semicolons
	Use of semicolons to create multistatement lines
	Significant semicolons
	Do not use #delimit ;

	Also see

	struct
	Description
	Syntax
	Remarks and examples
	Introduction
	Structures and functions must have different names
	Structure variables must be explicitly declared
	Declare structure variables to be scalars whenever possible
	Vectors and matrices of structures
	Structures of structures
	Pointers to structures
	Operators and functions for use with structure members
	Operators and functions for use with entire structures
	Listing structures
	Use of transmorphics as passthrus
	Saving compiled structure definitions
	Saving structure variables

	References
	Also see

	Subscripts
	Description
	Syntax
	Remarks and examples
	List subscripts
	Range subscripts
	When to use list subscripts and when to use range subscripts
	A fine distinction

	Conformability
	Diagnostics
	Reference
	Also see

	Syntax
	Description
	Syntax
	Remarks and examples
	Treatment of semicolons
	Types and declarations
	Void matrices
	Void functions
	Operators
	Subscripts
	Implied input tokens
	Function argument-passing convention
	Passing functions to functions
	Optional arguments

	Reference
	Also see

	version
	Description
	Syntax
	Remarks and examples
	Purpose of version control
	Recommendations for do-files
	Recommendations for ado-files
	Compile-time and runtime versioning

	Also see

	void
	Description
	Syntax
	Remarks and examples
	Void matrices, vectors, row vectors, and column vectors
	How to read conformability charts

	Also see

	while
	Description
	Syntax
	Remarks and examples
	Also see

	Commands for controlling Mata
	Intro
	Contents
	Description
	Remarks and examples
	Also see

	end
	Description
	Syntax
	Remarks and examples
	Also see

	lmbuild
	Description
	Syntax
	Options
	Remarks and examples
	Background
	Version control

	Also see

	mata
	Description
	Syntax
	Remarks and examples
	Introduction
	The fine distinction between syntaxes 3 and 4
	The fine distinction between syntaxes 1 and 2

	Also see

	mata clear
	Description
	Syntax
	Remarks and examples
	Also see

	mata describe
	Description
	Syntax
	Option
	Remarks and examples
	Diagnostics
	Also see

	mata drop
	Description
	Syntax
	Remarks and examples
	Also see

	mata help
	Description
	Syntax
	Remarks and examples
	Also see

	mata matsave
	Description
	Syntax
	Option for mata matsave
	Option for mata matuse
	Remarks and examples
	Diagnostics
	Also see

	mata memory
	Description
	Syntax
	Remarks and examples
	Also see

	mata mlib
	Description
	Syntax
	Options
	Remarks and examples
	Background
	Outline of the procedure for dealing with libraries
	Creating a .mlib library
	Adding members to a .mlib library
	Listing the contents of a library
	Making it so Mata knows to search your libraries
	Advice on organizing your source code

	Also see

	mata mosave
	Description
	Syntax
	Options
	Remarks and examples
	Example of use
	Where to store .mo files
	Use of .mo files versus .mlib files

	Also see

	mata rename
	Description
	Syntax
	Also see

	mata set
	Description
	Syntax
	Option
	Remarks and examples
	Relationship between Mata's mata set and Stata's set commands
	c() values

	Also see

	mata stata
	Description
	Syntax
	Remarks and examples
	Also see

	mata which
	Description
	Syntax
	Remarks and examples
	Also see

	namelists
	Description
	Syntax
	Remarks and examples
	Also see

	Categorical guide to Mata functions
	Intro
	Contents
	Description
	Remarks and examples
	Also see

	Dates
	Contents
	Description
	Also see

	IO
	Contents
	Description
	Remarks and examples
	Reference
	Also see

	Manipulation
	Contents
	Description
	Remarks and examples
	Also see

	Mathematical
	Contents
	Description
	Remarks and examples
	Also see

	Matrix
	Contents
	Description
	Remarks and examples
	Also see

	Programming
	Contents
	Also see

	Scalar
	Contents
	Description
	Remarks and examples
	Also see

	Solvers
	Contents
	Description
	Remarks and examples
	Also see

	Standard
	Contents
	Description
	Remarks and examples
	Also see

	Stata
	Contents
	Description
	Remarks and examples
	Reference
	Also see

	Statistical
	Contents
	Description
	Remarks and examples
	Also see

	String
	Contents
	Description
	Remarks and examples
	Also see

	Utility
	Contents
	Description
	Remarks and examples
	Also see

	Alphabetical index to Mata functions
	Intro
	Contents
	Description
	Remarks and examples
	Also see

	abbrev()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	abs()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	adosubdir()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	all()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	args()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	asarray()
	Description
	Syntax
	Remarks and examples
	Detailed description
	Example 1: Scalar keys and scalar contents
	Example 2: Scalar keys and matrix contents
	Example 3: Vector keys and scalar contents; sparse matrix
	Setting the efficiency parameters

	Conformability
	Diagnostics
	Also see

	AssociativeArray()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ascii()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	uchar()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	assert()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	base64encode()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	blockdiag()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	bufio()
	Description
	Syntax
	Remarks and examples
	Basics
	Argument C
	Arguments B and offset
	Argument fh
	Argument bfmt
	bfmts for numeric data
	bfmts for string data
	Argument X
	Arguments r and c
	Advanced issues

	Conformability
	Diagnostics
	Also see

	byteorder()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	C()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	c()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	callersversion()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	cat()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	chdir()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	cholesky()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	cholinv()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	cholsolve()
	Description
	Syntax
	Remarks and examples
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	comb()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	cond()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	conj()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	corr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	cross()
	Description
	Syntax
	Remarks and examples
	Comment concerning cross() and missing values

	Conformability
	Diagnostics
	Also see

	crossdev()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	cvpermute()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	date()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	deriv()
	Description
	Syntax
	Remarks and examples
	First example
	Notation and formulas
	Notation
	Numerical differentiation method
	Complex step method

	Type d evaluators
	Example of a type d evaluator
	Type v evaluators
	User-defined arguments
	Example of a type v evaluator
	Type t evaluators
	Example of a type t evaluator
	Example of using step-size lower bounds
	Example of complex step method
	Functions

	Conformability
	Diagnostics
	Methods and formulas
	References
	Also see

	designmatrix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	det()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_diag()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	diag()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	diag0cnt()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	diagonal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	dir()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	direxists()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	direxternal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	display()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	displayas()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	displayflush()
	Description
	Syntax
	Remarks and examples
	Diagnostics
	Also see

	Dmatrix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	_docx*()
	Description
	Syntax
	Create and save .docx file
	Add paragraph and text
	Add image file
	Add table
	Edit table
	Query routines

	Remarks and examples
	Detailed description
	Error codes
	Functions
	Create and save .docx file
	Add paragraph and text
	Add image
	Add table
	Edit table
	Query routines

	Save document to disk file
	Current paragraph and text
	Supported image types
	Linked and embedded images
	Styles
	Performance
	Examples
	Create a .docx document in memory
	Add paragraphs and text
	Display data
	Display regression results
	Add an image
	Display nested table
	Add images to table cells
	Save the .docx document in memory to a disk file

	Diagnostics
	References
	Also see

	dsign()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	e()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	editmissing()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	edittoint()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	edittozero()
	Description
	Syntax
	Remarks and examples
	Background
	Treatment of complex values
	Recommendations

	Conformability
	Diagnostics
	Also see

	editvalue()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	eigensystem()
	Description
	Syntax
	Remarks and examples
	Eigenvalues and eigenvectors
	Left eigenvectors
	Symmetric eigensystems
	Normalization and order
	Eigenvalue condition
	Balancing
	eigensystem() and eigenvalues()
	lefteigensystem()
	symeigensystem() and symeigenvalues()

	Conformability
	Diagnostics
	References
	Also see

	eigensystemselect()
	Description
	Syntax
	Remarks and examples
	Introduction
	Range selection
	Index selection
	Criterion selection
	Other functions

	Conformability
	Diagnostics
	Also see

	eltype()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	epsilon()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_equilrc()
	Description
	Syntax
	Remarks and examples
	Introduction
	Is equilibration necessary?
	The _equil*() family of functions
	The _perhapsequil*() family of functions
	rowscalefactors() and colscalefactors()

	Conformability
	Diagnostics
	Also see

	error()
	Description
	Syntax
	Remarks and examples
	Use of _error()
	Use of error()

	Conformability
	Diagnostics
	Also see

	errprintf()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	exit()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	exp()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	factorial()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	favorspeed()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ferrortext()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	fft()
	Description
	Syntax
	Remarks and examples
	Definitions, notation, and conventions
	Fourier transform
	Convolution and deconvolution
	Correlation
	Utility routines
	Warnings

	Conformability
	Diagnostics
	Also see

	fileexists()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	_fillmissing()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	findexternal()
	Description
	Syntax
	Remarks and examples
	Definition of a global
	Use of globals

	Conformability
	Diagnostics
	Also see

	findfile()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	floatround()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	fmtwidth()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	fopen()
	Description
	Syntax
	Remarks and examples
	Opening and closing files
	Reading from a file
	Writing to a file
	Reading and writing in the same file
	Reading and writing matrices
	Repositioning in a file
	Truncating a file
	Error codes

	Conformability
	Diagnostics
	Also see

	fullsvd()
	Description
	Syntax
	Remarks and examples
	Introduction
	Relationship between the full and thin SVDs
	The contents of s
	Possibility of convergence problems

	Conformability
	Diagnostics
	Also see

	geigensystem()
	Description
	Syntax
	Remarks and examples
	Generalized eigenvalues
	Generalized eigenvectors
	Criterion selection
	Range selection
	Index selection

	Conformability
	Diagnostics
	References
	Also see

	ghessenbergd()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ghk()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ghkfast()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	gschurd()
	Description
	Syntax
	Remarks and examples
	Generalized Schur decomposition
	Grouping the results

	Conformability
	Diagnostics
	Also see

	halton()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	hash1()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	hessenbergd()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Hilbert()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	I()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	inbase()
	Description
	Syntax
	Remarks and examples
	Positive integers
	Negative integers
	Numbers with nonzero fractional parts
	Use of the functions

	Conformability
	Diagnostics
	Reference
	Also see

	indexnot()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	invorder()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	invsym()
	Description
	Syntax
	Remarks and examples
	Definition of generalized inverse
	Specifying the order in which columns are omitted
	Determining the rank, or counting the number of omitted columns
	Extracting linear dependencies

	Conformability
	Diagnostics
	Also see

	invtokens()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	isascii()
	Description
	Syntax
	Conformability
	Also see

	isdiagonal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	isfleeting()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	isreal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	isrealvalues()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	issamefile()
	Description
	Syntax
	Remarks and examples
	Conformability
	Also see

	issymmetric()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	isview()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	J()
	Description
	Syntax
	Remarks and examples
	First syntax: J(r, c, val), val a scalar
	Second syntax: J(r, c, mat), mat a matrix

	Conformability
	Diagnostics
	Also see

	Kmatrix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	lapack()
	Description
	Syntax
	Remarks and examples
	Mapping calling sequence from Fortran to Mata
	Flopping: Preparing matrices for LAPACK
	Warning on the use of rows() and cols() after _flopin()
	Warning: It is your responsibility to check info
	Example

	Reference
	Also see

	ldl()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	LinearProgram()
	Description
	Syntax
	Step 1: Initialization
	Step 2: Definition of linear programming problem
	Step 3: Perform optimization
	Step 4: Display or obtain results
	Utility function for use in all steps
	Definition of q
	Functions defining the linear programming problem
	Performing optimization
	Functions for obtaining results
	Utility function

	Remarks and examples
	Introduction
	Details about the interior-point method
	Examples

	Conformability
	Diagnostics
	References
	Also see

	liststruct()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Lmatrix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	logit()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	lowertriangle()
	Description
	Syntax
	Remarks and examples
	Optional argument d
	Nonsquare matrices

	Conformability
	Diagnostics
	Also see

	lud()
	Description
	Syntax
	Remarks and examples
	LU decomposition
	LAPACK routine

	Conformability
	Diagnostics
	Also see

	luinv()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	lusolve()
	Description
	Syntax
	Remarks and examples
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	makesymmetric()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	matexpsym()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	matpowersym()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	mean()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	mindouble()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	minindex()
	Description
	Syntax
	Remarks and examples
	Use of functions when v has all unique values
	Use of functions when v has repeated (tied) values
	Summary

	Conformability
	Diagnostics
	Also see

	minmax()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	missing()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	missingof()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	mod()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	moptimize()
	Description
	Syntax
	Step 1: Initialization
	Step 2: Definition of maximization or minimization problem
	Step 3: Perform optimization or perform a single function evaluation
	Step 4: Post, display, or obtain results
	Utility functions for use in all steps
	Definition of M
	Setting the sample
	Specifying dependent variables
	Specifying independent variables
	Specifying constraints
	Specifying weights or survey data
	Specifying clusters and panels
	Specifying optimization technique
	Specifying initial values
	Performing one evaluation of the objective function
	Performing optimization of the objective function
	Tracing optimization
	Specifying convergence criteria
	Accessing results
	Stata evaluators
	Advanced functions
	Syntax of evaluators
	Syntax of type lf evaluators
	Syntax of type d evaluators
	Syntax of type lf* evaluators
	Syntax of type gf evaluators
	Syntax of type q evaluators
	Passing extra information to evaluators
	Utility functions

	Remarks and examples
	Relationship of moptimize() to Stata's ml and to Mata's optimize()
	Mathematical statement of the moptimize() problem
	Filling in moptimize() from the mathematical statement
	The type lf evaluator
	The type d, lf*, gf, and q evaluators
	Example using type d
	Example using type lf*

	Conformability
	Diagnostics
	References
	Also see

	more()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	mvnormal()
	Description
	Syntax
	Remarks and examples
	Distribution functions
	mvnormal(U,R)
	mvnormal(L,U,R)
	mvnormalcv(L,U,M,V)

	Derivatives of multivariate normal distribution functions
	mvnormalderiv(U,R,dU,dR)
	mvnormalderiv(L,U,R,dL,dU,dR)
	mvnormalcvderiv(L,U,M,V,dL,dU,dM,dV)

	Conformability
	References
	Also see

	_negate()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	norm()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	normal()
	Description
	Syntax
	Remarks and examples
	R-conformability
	A note concerning invbinomial() and invbinomialtail()
	A note concerning ibeta()
	A note concerning gammap()

	Conformability
	Diagnostics
	Also see

	optimize()
	Description
	Syntax
	Remarks and examples
	First example
	Notation
	Type d evaluators
	Example of d0, d1, and d2
	d1debug and d2debug
	Type gf evaluators
	Example of gf0, gf1, and gf2
	Functions

	Conformability
	Diagnostics
	References
	Also see

	panelsetup()
	Description
	Syntax
	Remarks and examples
	Definition of panel data
	Definition of problem
	Preparation
	Use of panelsetup()
	Using panelstats()
	Using panelsubmatrix()
	Using panelsubview()

	Conformability
	Diagnostics
	Also see

	panelsum()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	pathjoin()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Pdf*()
	Description
	Syntax
	PdfDocument
	PdfParagraph
	PdfText
	PdfTable

	Remarks and examples
	PdfDocument class details
	PdfParagraph class details
	PdfText class details
	PdfTable class details
	Error codes
	Examples
	Add paragraph
	Add paragraph with customized text
	Add table (simple example)
	Add table (table with header and footer)
	Add table (table with graph)

	Also see

	pinv()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	polyeval()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	printf()
	Description
	Syntax
	Remarks and examples
	printf()
	sprintf()
	The %us and %uds formats

	Conformability
	Diagnostics
	Also see

	qrd()
	Description
	Syntax
	Remarks and examples
	QR decomposition
	Avoiding calculation of Q
	Pivoting
	Least-squares solutions with omitted columns

	Conformability
	Diagnostics
	Also see

	qrinv()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	qrsolve()
	Description
	Syntax
	Remarks and examples
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	quadcross()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Quadrature()
	Description
	Syntax
	Step 1: Problem initialization
	Step 2: Problem definition
	Step 3: Perform integration
	Step 4: Display or obtain results
	Utility function for use in all steps
	Definition of q
	Functions defining the integration problem
	Performing integration
	Functions for obtaining results
	Utility function

	Remarks and examples
	Introduction
	Examples
	A basic example of Quadrature()
	A basic example of QuadratureVec()
	Integrals with infinite limits
	Passing arguments to the evaluator function
	Singular points and setting tolerances
	Displaying settings and results at each stage
	Solving vectors and matrices of integrals

	Conformability
	Diagnostics
	References
	Also see

	range()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	rank()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Re()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	reldif()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	rows()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	rowshape()
	Description
	Syntax
	Remarks and examples
	Example of rowshape()
	Example of colshape()

	Conformability
	Diagnostics
	Also see

	runiform()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	runningsum()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	schurd()
	Description
	Syntax
	Remarks and examples
	Schur decomposition
	Grouping the results

	Conformability
	Diagnostics
	Reference
	Also see

	select()
	Description
	Syntax
	Remarks and examples
	Examples
	Using st_select()

	Conformability
	Diagnostics
	Also see

	setbreakintr()
	Description
	Syntax
	Remarks and examples
	Default break-key processing
	Suspending the break-key interrupt
	Break-key polling

	Conformability
	Diagnostics
	Also see

	sign()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	sin()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	sizeof()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	solve_tol()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	solvelower()
	Description
	Syntax
	Remarks and examples
	Derivation
	Tolerance

	Conformability
	Diagnostics
	Also see

	solvenl()
	Description
	Syntax
	Remarks and examples
	Introduction
	A fixed-point example
	A zero-finding example
	Writing a fixed-point problem as a zero-finding problem and vice versa
	Gauss{--}Seidel methods
	Newton-type methods
	Convergence criteria
	Exiting early
	Functions

	Conformability
	Diagnostics
	References
	Also see

	sort()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	soundex()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	spline3()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	sqrt()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_addalias()
	Description
	Syntax
	Remarks and examples
	Creating a new alias variable
	Handling errors

	Conformability
	Diagnostics
	Also see

	st_addobs()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_addvar()
	Description
	Syntax
	Remarks and examples
	Creating a new variable
	Creating new variables
	Creating new string variables
	Creating a new temporary variable
	Creating temporary variables
	Handling errors
	Using nofill

	Conformability
	Diagnostics
	Reference
	Also see

	st_data()
	Description
	Syntax
	Remarks and examples
	Description of _st_data() and _st_sdata()
	Description of st_data() and st_sdata()
	Details of observation subscripting using st_data() and st_sdata()

	Conformability
	Diagnostics
	Also see

	st_dir()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_dropvar()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_frame*()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_global()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	st_isalias()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_isfmt()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_isname()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_local()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	st_macroexpand()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_matrix()
	Description
	Syntax
	Remarks and examples
	Processing Stata's row and column stripes

	Conformability
	Diagnostics
	Also see

	st_numscalar()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_nvar()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_rclear()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_store()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_subview()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_tempname()
	Description
	Syntax
	Remarks and examples
	Creating temporary objects
	When temporary objects will be eliminated

	Conformability
	Diagnostics
	Also see

	st_tsrevar()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_updata()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_varformat()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_varindex()
	Description
	Syntax
	Remarks and examples
	Overview
	Cautions when using variable indices: A variable index can change

	Conformability
	Diagnostics
	Also see

	st_varname()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_varrename()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	st_vartype()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_view()
	Description
	Syntax
	Remarks and examples
	Overview
	Advantages and disadvantages of views
	When not to use views
	Cautions when using views 1: Conserving memory
	Cautions when using views 2: Assignment
	Cautions when using views 3: View connections are ephemeral
	Efficiency

	Conformability
	Diagnostics
	Reference
	Also see

	st_viewvars()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_vlexists()
	Description
	Syntax
	Remarks and examples
	Value-label mapping
	Value-label creation and editing
	Loading value labels

	Conformability
	Diagnostics
	Also see

	stata()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	stataversion()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strdup()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	strlen()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrlen()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	udstrlen()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strmatch()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strofreal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strpos()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrpos()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strreverse()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrreverse()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strtoname()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrtoname()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strtoreal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strtrim()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrtrim()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strupper()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrupper()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	subinstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	usubinstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	sublowertriangle()
	Description
	Syntax
	Remarks and examples
	Get lower triangle of a matrix
	Nonsquare matrices

	Conformability
	Diagnostics
	Also see

	_substr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_usubstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	substr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	usubstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	udsubstr()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	sum()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	svd()
	Description
	Syntax
	Remarks and examples
	Introduction
	Possibility of convergence problems

	Conformability
	Diagnostics
	References
	Also see

	svsolve()
	Description
	Syntax
	Remarks and examples
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	swap()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Toeplitz()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	tokenget()
	Description
	Syntax
	Remarks and examples
	Concepts
	Function overview

	Conformability
	Diagnostics
	Also see

	tokens()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	trace()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_transpose()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	transposeonly()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	trunc()
	Description
	Syntax
	Remarks and examples
	Relationship to Stata's functions
	Examples of rounding

	Conformability
	Diagnostics
	Also see

	uniqrows()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	unitcircle()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	unlink()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	urlencode()
	Description
	Syntax
	Conformability
	Diagnostics
	Also see

	ustrcompare()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrfix()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrnormalize()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrsplit()
	Description
	Syntax
	Remarks and examples
	Conformability
	Also see

	ustrto()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrunescape()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ustrword()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	valofexternal()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Vandermonde()
	Description
	Syntax
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	vec()
	Description
	Syntax
	Remarks and examples
	Example of vec()
	Example of vech() and invvech()

	Conformability
	Diagnostics
	Also see

	xl()
	Description
	Syntax
	Step 1: Initialization
	Step 2: Creating and opening an Excel workbook
	Step 3: Working with Excel worksheets
	Step 4: Excel active worksheet settings
	Step 5: Reading and writing data from and to an Excel worksheet
	Step 6: Formatting cells in an Excel worksheet
	Step 7: Formatting text in an Excel worksheet
	Step 8: Formatting cell ranges in an Excel worksheet
	Utility functions for use in all steps

	Remarks and examples
	Definition of B
	Specifying the Excel workbook
	Working with Excel worksheets
	Excel active worksheet settings
	Reading data from Excel
	Writing data to Excel
	Dealing with missing values
	Dealing with dates
	Formatting functions
	Numeric formatting
	Text alignment
	Cell borders
	Fonts
	Other
	Formatting examples

	Range formatting functions
	Adding format IDs
	Setting formats by ID
	Cell formatting functions
	Adding font IDs
	Setting font IDs for format IDs
	Font formatting functions
	Range formatting examples

	Utility functions
	Handling errors
	Error codes

	Appendix
	Codes for numeric formats
	Codes for border styles
	Codes for fill pattern styles
	Codes for text rotation
	Format colors

	Also see

	Mata glossary of common terms
	Glossary
	Description
	Mata glossary
	Also see

	[ME] Multilevel Mixed Effects
	Contents
	me
	Description
	Quick start
	Syntax
	Remarks and examples
	Introduction
	Using mixed-effects commands
	Mixed-effects models
	Linear mixed-effects models
	Generalized linear mixed-effects models
	Survival mixed-effects models
	Nonlinear mixed-effects models
	Alternative mixed-effects model specification
	Likelihood calculation
	Computation time and the Laplacian approximation
	Diagnosing convergence problems
	Distribution theory for likelihood-ratio test

	Examples
	Two-level models
	Covariance structures
	Three-level models
	Crossed-effects models
	Nonlinear models

	Acknowledgments
	References
	Also see

	estat df
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat group
	Description
	Menu for estat
	Syntax
	Remarks and examples
	Also see

	estat icc
	Description
	Menu for estat
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	Intraclass correlations

	Also see

	estat recovariance
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat sd
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat wcorrelation
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Linear mixed-effects model
	Nonlinear mixed-effects model

	Reference
	Also see

	mecloglog
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	mecloglog postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	meglm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models for continuous responses
	Two-level models for nonlinear responses
	Three-level models for nonlinear responses
	Crossed-effects models
	Obtaining better starting values
	Survey data
	Video example

	Stored results
	Methods and formulas
	Introduction
	Gauss--Hermite quadrature
	Adaptive Gauss--Hermite quadrature
	Laplacian approximation
	Survey data

	References
	Also see

	meglm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	meintreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	meintreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	melogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Other covariance structures
	Three-level models
	Crossed-effects models

	Stored results
	Methods and formulas
	References
	Also see

	melogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	menbreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	menbreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	menl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Random-effects substitutable expressions
	Substitutable expressions
	Linear combinations
	Linear forms versus linear combinations
	Random effects
	Multilevel specifications
	Time-series operators
	Summary

	Specifying initial values
	Two-level models
	Testing variance components
	Random-effects covariance structures
	Heteroskedastic within-group errors
	Restricted maximum likelihood
	Pharmacokinetic modeling
	Single-dose pharmacokinetic modeling
	Multiple-dose pharmacokinetic modeling

	Nonlinear marginal models
	Three-level models
	Obtaining initial values
	Linearization approach to finding initial values
	Graphical approach to finding initial values
	Smart regressions approach to finding initial values
	Examples of specifying initial values

	Stored results
	Methods and formulas
	Introduction
	Variance-components parameters
	Inference based on linearization
	Initial values

	References
	Also see

	menl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Reference
	Also see

	meologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	meologit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	meoprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	meoprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mepoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Higher-level models

	Stored results
	Methods and formulas
	References
	Also see

	mepoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	meprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	meprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mestreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Three-level models

	Stored results
	Methods and formulas
	Survival models
	Survey data

	References
	Also see

	mestreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	metobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	metobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Introduction
	Conditional predictions
	Marginal predictions
	Marginal variance of the linear predictor

	Also see

	mixed
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Two-level models
	Covariance structures
	Likelihood versus restricted likelihood
	Three-level models
	Blocked-diagonal covariance structures
	Heteroskedastic random effects
	Heteroskedastic residual errors
	Other residual-error structures
	Crossed-effects models
	Diagnosing convergence problems
	Survey data
	Small-sample inference for fixed effects

	Stored results
	Methods and formulas
	Estimation using ML and REML
	Denominator degrees of freedom
	Residual DDF
	Repeated DDF
	ANOVA DDF
	Satterthwaite DDF
	Kenward{--}Roger DDF

	Fixed-effects constraints

	Acknowledgments
	References
	Also see

	mixed postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	test and testparm
	Description for test and testparm
	Menu for test and testparm
	Syntax for test and testparm
	Options for test and testparm

	lincom
	Description for lincom
	Menu for lincom
	Syntax for lincom
	Options for lincom

	contrast
	Description for contrast
	Menu for contrast
	Syntax for contrast
	Options for contrast

	pwcompare
	Description for pwcompare
	Menu for pwcompare
	Syntax for pwcompare
	Options for pwcompare

	Remarks and examples
	Stored results
	Methods and formulas
	Prediction
	Small-sample inference

	References
	Also see

	Glossary
	References

	[META] Meta-Analysis
	Contents
	Intro
	Description
	Remarks and examples
	Brief overview of meta-analysis
	Meta-analysis models
	Common-effect (``fixed-effect'') model
	Fixed-effects model
	Random-effects model
	Comparison between the models and interpretation of their results
	Meta-analysis estimation methods

	Forest plots
	Heterogeneity
	Assessing heterogeneity
	Addressing heterogeneity
	Subgroup meta-analysis
	Meta-regression

	Publication bias
	Funnel plots
	Tests for funnel-plot asymmetry
	The trim-and-fill method

	Cumulative meta-analysis
	Leave-one-out meta-analysis
	Multivariate meta-regression
	Multilevel meta-regression

	References
	Also see

	meta
	Description
	Remarks and examples
	Introduction to meta-analysis using Stata
	Example datasets
	Effects of teacher expectancy on pupil IQ (pupiliq.dta)
	Effect of streptokinase after a myocardial infarction (strepto.dta)
	Efficacy of BCG vaccine against tuberculosis (bcg.dta)
	Effectiveness of nonsteroidal anti-inflammatory drugs (nsaids.dta)
	Treatment of moderate periodontal disease (periodontal.dta)

	Tour of meta-analysis commands
	Prepare your data for meta-analysis in Stata
	Basic meta-analysis summary
	Subgroup meta-analysis
	Cumulative meta-analysis
	Heterogeneity: Galbraith plot, meta-regression, and bubble plot
	Funnel plots for exploring small-study effects
	Testing for small-study effects
	Trim-and-fill analysis for addressing publication bias
	Multivariate meta-regression
	Multilevel meta-regression

	Acknowledgments
	References
	Also see

	meta data
	Description
	Remarks and examples
	Overview
	Declaring meta-analysis information
	Declaring effect sizes and their precision
	Declaring a meta-analysis model
	Declaring a meta-analysis estimation method
	Default meta-analysis model and method
	Declaring a confidence level for meta-analysis
	Declaring display settings for meta-analysis
	Modifying default meta settings

	Meta-analysis information
	Meta settings with meta set
	Meta settings with meta esize

	System variables
	Examples of data declaration for meta-analysis
	Declaring precomputed effect sizes using meta set
	Computing and declaring effect sizes using meta esize
	Displaying and updating meta settings

	References
	Also see

	meta esize
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Meta-analysis for two-group comparison of binary outcomes
	Meta-analysis for two-group comparison of continuous outcomes
	Meta-analysis for estimating a single proportion
	Meta-analysis for correlation data (StataNow)

	Stored results
	Methods and formulas
	Effect sizes for two-group comparison of continuous outcomes
	Unstandardized mean difference
	Standardized mean difference

	Effect sizes for two-group comparison of binary outcomes
	Odds ratio
	Risk ratio (rate ratio)
	Risk difference
	Zero-cells adjustments for two-sample case

	Effect sizes for estimating a single proportion
	Untransformed (raw) proportion
	Freeman--Tukey-transformed proportion
	Logit-transformed proportion
	Zero-cells adjustments for one-sample case

	Effect sizes for correlation data (StataNow)
	Untransformed (raw) correlation
	Fisher's z-transformed correlation

	Confidence intervals for effect sizes

	References
	Also see

	meta set
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Using meta set

	Stored results
	References
	Also see

	meta update
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	meta forestplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Using meta forestplot
	Plot columns

	Examples of using meta forestplot

	Methods and formulas
	References
	Also see

	meta summarize
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples of using meta summarize

	Stored results
	Methods and formulas
	Fixed-effects and common-effect methods for combining study estimates
	Inverse-variance method
	Mantel--Haenszel method for two-group comparison of binary outcomes
	Peto's method for odds ratios

	Random-effects methods for combining study estimates
	Iterative methods
	Noniterative methods
	Knapp--Hartung standard-error adjustment
	Prediction intervals

	Confidence intervals and significance test
	Heterogeneity measures
	Inverse Freeman--Tukey transformation
	Homogeneity test
	Subgroup meta-analysis
	Fixed-effects model
	Random-effects model

	Cumulative meta-analysis
	Leave-one-out meta-analysis

	References
	Also see

	meta galbraithplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	meta labbeplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	meta regress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples of using meta regress

	Stored results
	Methods and formulas
	Fixed-effects meta-regression
	Random-effects meta-regression
	Iterative methods for computing tau-hat-squared
	Noniterative methods for computing tau-hat-squared
	Knapp--Hartung standard-error adjustment

	Residual homogeneity test
	Residual heterogeneity measures

	References
	Also see

	meta regress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Random-effects meta-regression
	Fixed-effects meta-regression

	References
	Also see

	estat bubbleplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples of using estat bubbleplot

	Methods and formulas
	References
	Also see

	meta funnelplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Funnel plots
	Contour-enhanced funnel plots

	Using meta funnelplot
	Examples of using meta funnelplot

	Stored results
	Methods and formulas
	References
	Also see

	meta bias
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using meta bias
	Examples of using meta bias

	Stored results
	Methods and formulas
	Regression-based tests
	Egger's linear regression test
	Harbord's test for log odds-ratios or log risk-ratios
	Peters's test for log odds-ratios

	Begg's rank correlation test

	References
	Also see

	meta trimfill
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using meta trimfill
	Examples of using meta trimfill

	Stored results
	Methods and formulas
	Estimating the number of missing studies
	Trim-and-fill algorithm

	References
	Also see

	meta meregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Standard meta-analysis as a two-level model
	Three-level random-intercepts model
	Three-level model with random slopes
	Using meta meregress

	Examples of using meta meregress

	Stored results
	Methods and formulas
	Three-level meta-regression
	Methods for estimating Sigma
	Random-effects covariance structures

	Multilevel meta-analysis
	Residual homogeneity test

	References
	Also see

	meta multilevel
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples of using meta multilevel

	Stored results
	Methods and formulas
	References
	Also see

	meta me postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	meta mvregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples of using meta mvregress

	Stored results
	Methods and formulas
	Fixed-effects multivariate meta-regression
	Random-effects multivariate meta-regression
	Iterative methods for computing Sigma
	Noniterative method for computing Sigma
	Random-effects covariance structures
	Jackson--Riley standard-error adjustment

	Multivariate meta-analysis
	Residual homogeneity test

	References
	Also see

	meta mvregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Random-effects multivariate meta-regression
	Fixed-effects multivariate meta-regression

	References
	Also see

	estat group
	Description
	Menu for estat
	Syntax
	Remarks and examples
	Also see

	estat heterogeneity (me)
	Description
	Menu for estat
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	Multilevel heterogeneity statistics
	Cochran heterogeneity statistic
	Higgins--Thompson heterogeneity statistics

	References
	Also see

	estat heterogeneity (mv)
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Brief overview of heterogeneity statistics
	Cochran heterogeneity statistics
	Jackson--White--Riley heterogeneity statistics
	White heterogeneity statistics

	References
	Also see

	estat recovariance
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat sd
	Description
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	Glossary
	References

	[MI] Multiple Imputation
	Contents
	Intro substantive
	Description
	Remarks and examples
	Motivating example
	What is multiple imputation?
	Theory underlying multiple imputation
	How large should M be?
	Assumptions about missing data
	Patterns of missing data
	Proper imputation methods
	Analysis of multiply imputed data
	A brief introduction to MI using Stata
	Summary

	References
	Also see

	Intro
	Description
	Remarks and examples
	A simple example
	Suggested reading order

	Acknowledgments
	Also see

	Estimation
	Description
	Also see

	mi add
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	mi append
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Adding new observations
	Adding new observations and imputations
	Adding new observations and imputations, M unequal
	Treatment of registered variables

	Stored results
	Also see

	mi convert
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Using mi convert as a convenience tool
	Converting from flongsep
	Converting to flongsep

	Also see

	mi copy
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	mi describe
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	mi query
	mi describe

	Stored results
	Also see

	mi erase
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	mi estimate
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Using mi estimate
	Example 1: Completed-data logistic analysis
	Example 2: Completed-data linear regression analysis
	Example 3: Completed-data survival analysis
	Example 4: Panel data and multilevel models
	Example 5: Estimating transformations
	Example 6: Monte Carlo error estimates
	Potential problems that can arise when using mi estimate

	Stored results
	Methods and formulas
	Univariate case
	Multivariate case

	Acknowledgments
	References
	Also see

	mi estimate using
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	mi estimate postestimation
	Postestimation commands
	Remarks and examples
	Using the command-specific postestimation tools

	Also see

	mi expand
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi export
	Description
	Syntax
	Remarks and examples
	References
	Also see

	mi export ice
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	References
	Also see

	mi export nhanes1
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi extract
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi import
	Description
	Syntax
	Remarks and examples
	When to use which mi import command
	Import data into Stata before importing into mi
	Using mi import nhanes1, ice, flong, and flongsep

	References
	Also see

	mi import flong
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi import flongsep
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi import ice
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	mi import nhanes1
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Description of the nhanes1 format
	Importing nhanes1 data

	Also see

	mi import wide
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi impute
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Imputation methods
	Imputation modeling
	Model building
	Outcome variables
	Transformations
	Categorical variables
	The issue of perfect prediction during imputation of categorical data
	Convergence of iterative methods
	Imputation diagnostics

	Using mi impute
	Univariate imputation
	Multivariate imputation
	Imputing on subsamples
	Conditional imputation
	Imputation and estimation samples
	Imputing transformations of incomplete variables

	Stored results
	Methods and formulas
	References
	Also see

	mi impute chained
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Multivariate imputation using chained equations
	Compatibility of conditionals
	Convergence of MICE
	First use
	Using mi impute chained
	Default prediction equations
	Custom prediction equations
	Link between mi impute chained and mi impute monotone
	Examples

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	mi impute intreg
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using interval regression
	Using mi impute intreg
	Example

	Stored results
	Methods and formulas
	Reference
	Also see

	mi impute logit
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using logistic regression
	Using mi impute logit
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	mi impute mlogit
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using multinomial logistic regression
	Using mi impute mlogit

	Stored results
	Methods and formulas
	References
	Also see

	mi impute monotone
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Multivariate imputation when a missing-data pattern is monotone
	First use
	Using mi impute monotone
	Default syntax of mi impute monotone
	The alternative syntax of mi impute monotone---custom prediction equations
	Examples of using default prediction equations
	Examples of using custom prediction equations

	Stored results
	Methods and formulas
	References
	Also see

	mi impute mvn
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Incomplete continuous data with arbitrary pattern of missing values
	Multivariate imputation using data augmentation
	Convergence of the MCMC method
	Using mi impute mvn
	Examples

	Stored results
	Methods and formulas
	Data augmentation
	Prior distribution
	Initial values: EM algorithm
	 Worst linear function

	References
	Also see

	mi impute nbreg
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using negative binomial regression
	Using mi impute nbreg

	Stored results
	Methods and formulas
	Reference
	Also see

	mi impute ologit
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using ordered logistic regression
	Using mi impute ologit

	Stored results
	Methods and formulas
	References
	Also see

	mi impute pmm
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using predictive mean matching
	Using mi impute pmm
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	mi impute poisson
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using Poisson regression
	Using mi impute poisson

	Stored results
	Methods and formulas
	References
	Also see

	mi impute regress
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using linear regression
	Using mi impute regress
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	mi impute truncreg
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Univariate imputation using truncated regression
	Using mi impute truncreg

	Stored results
	Methods and formulas
	References
	Also see

	mi impute usermethod
	Description
	Syntax
	Options
	Remarks and examples
	Toy example: Naive regression imputation
	Steps for adding a new method to mi impute
	Writing an imputation parser
	Writing an initializer
	Writing an imputer
	Storing additional results
	Writing a cleanup program

	Examples
	Naive regression imputation
	Univariate regression imputation
	Multivariate monotone imputation

	Global macros

	Stored results
	Acknowledgment
	Also see

	mi merge
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Merging with non-mi data
	Merging with mi data
	Merging with mi data containing overlapping variables

	Stored results
	Also see

	mi misstable
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	mi passive
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	mi passive basics
	mi passive works with the by prefix
	mi passive works fastest with the wide style
	mi passive and super-varying variables
	Renaming passive variables
	Dropping passive variables
	Update passive variables when imputed values change
	Alternatives to mi passive

	Also see

	mi predict
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using mi predict and mi predictnl
	Example 1: Obtain MI linear predictions and other statistics
	Example 2: Obtain MI linear predictions for the estimation sample
	Example 3: Obtain MI estimates of probabilities
	Example 4: Obtain other MI predictions
	Example 5: Obtain MI predictions after multiple-equation commands

	Methods and formulas
	References
	Also see

	mi ptrace
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	mi rename
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Specifying the noupdate option
	What to do if you accidentally use rename
	What to do if you accidentally use rename on wide data
	What to do if you accidentally use rename on mlong data
	What to do if you accidentally use rename on flong data
	What to do if you accidentally use rename on flongsep data

	Also see

	mi replace0
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	mi reset
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Using mi reset
	Technical notes and relation to mi update

	Also see

	mi reshape
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi select
	Description
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	mi set
	Description
	Menu
	Syntax
	Option for mi unset
	Remarks and examples
	mi set style
	mi register and mi unregister
	mi set M and mi set m
	mi unset

	Also see

	mi stsplit
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	mi test
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Overview
	Example 1: Testing subsets of coefficients equal to zero
	Example 2: Testing linear hypotheses
	Example 3: Testing nonlinear hypotheses

	Stored results
	Methods and formulas
	References
	Also see

	mi update
	Description
	Menu
	Syntax
	Remarks and examples
	Purpose of mi update
	What mi update does
	mi update is run automatically

	Also see

	mi varying
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Detecting problems
	Fixing problems

	Stored results
	Also see

	mi xeq
	Description
	Syntax
	Remarks and examples
	Using mi xeq with reporting commands
	Using mi xeq with data-modification commands
	Using mi xeq with data-modification commands on flongsep data

	Stored results
	Also see

	mi XXXset
	Description
	Syntax
	Remarks and examples
	Also see

	noupdate option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	Styles
	Description
	Syntax
	Remarks and examples
	The four styles
	Style wide
	Style flong
	Style mlong
	Style flongsep
	How we constructed this example

	Using mi system variables
	Advice for using flongsep

	Also see

	Technical
	Description
	Remarks and examples
	Notation
	Definition of styles
	Style all
	Style wide
	Style mlong
	Style flong
	Style flongsep
	Style flongsep_sub

	Adding new commands to mi
	Outline for new commands
	Utility routines
	u_mi_assert_set
	u_mi_certify_data
	u_mi_no_sys_vars and u_mi_no_wide_vars
	u_mi_zap_chars
	u_mi_xeq_on_tmp_flongsep
	u_mi_get_flongsep_tmpname
	mata: u_mi_flongsep_erase()
	u_mi_sortback
	u_mi_save and u_mi_use
	mata: u_mi_wide_swapvars()
	u_mi_fixchars
	mata: u_mi_cpchars_get() and mata: u_mi_cpchars_put()
	mata: u_mi_get_mata_instanced_var()
	mata: u_mi_ptrace_*()

	How to write other set commands to work with mi

	Also see

	Workflow
	Description
	Remarks and examples
	Suggested workflow for original data
	Suggested workflow for data that already have imputations
	Example

	Also see

	Glossary
	Also see

	[MV] Multivariate Statistics
	Contents
	Intro
	Description
	Also see

	Multivariate
	Description
	Remarks and examples
	Cluster analysis
	Discriminant analysis
	Factor analysis and principal component analysis
	Rotation
	Multivariate analysis of variance, multivariate regression, and related techniques
	Structural equation modeling
	Multidimensional scaling and biplots
	Correspondence analysis
	Bayesian analysis
	Item response theory
	Multivariate time-series models
	Multivariate meta-regression

	Also see

	alpha
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	biplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	ca
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	A first example
	How many dimensions?
	Statistics on the points
	Normalization and interpretation of correspondence analysis
	Plotting the points
	Supplementary points
	Matrix input
	Crossed variables

	Stored results
	Methods and formulas
	References
	Also see

	ca postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Postestimation statistics
	Predicting new variables

	Stored results
	Methods and formulas
	References
	Also see

	ca postestimation plots
	Postestimation commands
	cabiplot
	Description for cabiplot
	Menu for cabiplot
	Syntax for cabiplot
	Options for cabiplot

	caprojection
	Description for caprojection
	Menu for caprojection
	Syntax for caprojection
	Options for caprojection

	Remarks and examples
	References
	Also see

	candisc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	canon
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	canon postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat

	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cluster
	Description
	Syntax
	Remarks and examples
	Introduction to cluster analysis
	Stata's cluster-analysis system
	Data transformations and variable selection
	Similarity and dissimilarity measures
	Partition cluster-analysis methods
	Hierarchical cluster-analysis methods
	Hierarchical cluster analysis applied to a dissimilarity matrix
	Postclustering commands
	Cluster-management tools

	References
	Also see

	clustermat
	Description
	Syntax
	Remarks and examples
	References
	Also see

	cluster dendrogram
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	cluster generate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	cluster kmeans and kmedians
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	cluster linkage
	Description
	Quick start
	Menu
	Syntax
	Options for cluster linkage commands
	Options for clustermat linkage commands
	Remarks and examples
	Methods and formulas
	Also see

	cluster notes
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	cluster programming subroutines
	Description
	Remarks and examples
	Adding a cluster subroutine
	Adding a cluster generate function
	Adding a cluster stopping rule
	Applying an alternate cluster dendrogram routine

	Reference
	Also see

	cluster programming utilities
	Description
	Syntax
	Options for cluster set
	Options for cluster delete
	Options for cluster measures
	Remarks and examples
	Stored results
	Also see

	cluster stop
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cluster utility
	Description
	Menu
	Syntax
	Options for cluster list
	Options for cluster renamevar
	Remarks and examples
	Also see

	discrim
	Description
	Syntax
	Remarks and examples
	Introduction
	A simple example
	Prior probabilities, costs, and ties

	Methods and formulas
	References
	Also see

	discrim estat
	Postestimation commands
	Description for estat
	Quick start for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat classtable
	Options for estat errorrate
	Options for estat grsummarize
	Options for estat list
	Options for estat summarize

	Remarks and examples
	Discriminating-variable summaries
	Discrimination listings
	Classification tables and error rates

	Stored results
	Methods and formulas
	References
	Also see

	discrim knn
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	A first example
	Mahalanobis transformation
	Binary data

	Stored results
	Methods and formulas
	References
	Also see

	discrim knn postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	Also see

	discrim lda
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Descriptive LDA
	Predictive LDA
	A classic example

	Stored results
	Methods and formulas
	Predictive LDA
	Descriptive LDA

	References
	Also see

	discrim lda postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat classfunctions
	Options for estat correlations
	Options for estat covariance
	Options for estat grdistances
	Options for estat grmeans
	Options for estat loadings
	Option for estat structure

	Remarks and examples
	Classification tables, error rates, and listings
	ANOVA, MANOVA, and canonical correlations
	Discriminant and classification functions
	Scree, loading, and score plots
	Means and distances
	Covariance and correlation matrices
	Predictions

	Stored results
	Methods and formulas
	References
	Also see

	discrim logistic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	discrim logistic postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Reference
	Also see

	discrim qda
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	discrim qda postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat correlations
	Options for estat covariance
	Options for estat grdistances

	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	factor
	Description
	Quick start
	Menu
	Syntax
	Options for factor and factormat
	Options unique to factormat
	Remarks and examples
	Introduction
	Factor analysis
	Factor analysis from a correlation matrix

	Stored results
	Methods and formulas
	References
	Also see

	factor postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Postestimation statistics
	Plots of eigenvalues, factor loadings, and scores
	Rotating the factor loadings
	Factor scores

	Stored results
	Methods and formulas
	estat
	rotate
	predict

	References
	Also see

	hotelling
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	manova
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	One-way MANOVA
	Reporting coefficients
	Two-way MANOVA
	N-way MANOVA
	MANCOVA
	MANOVA for Latin-square designs
	MANOVA for nested designs
	MANOVA for mixed designs
	MANOVA with repeated measures

	Stored results
	Methods and formulas
	References
	Also see

	manova postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	manovatest
	Description of manovatest
	Menu for manovatest
	Syntax for manovatest
	Options for manovatest

	test
	Description for test
	Menu for test
	Syntax for test
	Options for test

	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	matrix dissimilarity
	Description
	Syntax
	Options
	Remarks and examples
	References
	Also see

	mca
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Compare MCA on two variables and CA
	MCA on four variables
	CA of the indicator matrix
	CA of the Burt matrix
	Joint correspondence analysis

	Stored results
	Methods and formulas
	Notation
	Using ca to compute MCA
	CA of an indicator or Burt matrix
	JCA
	Supplementary variables
	predict

	References
	Also see

	mca postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat coordinates
	Options for estat summarize

	Remarks and examples
	Postestimation statistics
	Predicting new variables

	Stored results
	Methods and formulas
	References
	Also see

	mca postestimation plots
	Postestimation commands
	mcaplot
	Description for mcaplot
	Menu for mcaplot
	Syntax for mcaplot
	Options for mcaplot

	mcaprojection
	Description for mcaprojection
	Menu for mcaprojection
	Syntax for mcaprojection
	Options for mcaprojection

	Remarks and examples
	Methods and formulas
	References
	Also see

	mds
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Euclidean distances
	Non-Euclidean dissimilarity measures
	Introduction to modern MDS
	Protecting from local minimums

	Stored results
	Methods and formulas
	References
	Also see

	mds postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Postestimation statistics
	Predictions

	Stored results
	Methods and formulas
	References
	Also see

	mds postestimation plots
	Postestimation commands
	mdsconfig
	Description for mdsconfig
	Menu for mdsconfig
	Syntax for mdsconfig
	Options for mdsconfig

	mdsshepard
	Description for mdsshepard
	Menu for mdsshepard
	Syntax for mdsshepard
	Options for mdsshepard

	Remarks and examples
	References
	Also see

	mdslong
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Proximity data in long format
	Modern nonmetric MDS

	Stored results
	Methods and formulas
	References
	Also see

	mdsmat
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Proximity data in a Stata matrix
	Modern MDS and local minimums

	Stored results
	Methods and formulas
	Classical multidimensional scaling
	Modern multidimensional scaling
	Conversion of similarities to dissimilarities

	References
	Also see

	measure_option
	Description
	Syntax
	Options
	References
	Also see

	mvreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	mvreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	mvtest
	Description
	Syntax
	References
	Also see

	mvtest correlations
	Description
	Quick start
	Menu
	Syntax
	Options for multiple-sample tests
	Options for one-sample tests
	Remarks and examples
	One-sample tests for correlation matrices
	A multiple-sample test for correlation matrices

	Stored results
	Methods and formulas
	One-sample tests for correlation matrices
	A multiple-sample test for correlation matrices

	References
	Also see

	mvtest covariances
	Description
	Quick start
	Menu
	Syntax
	Options for multiple-sample tests
	Options for one-sample tests
	Remarks and examples
	One-sample tests for covariance matrices
	A multiple-sample test for covariance matrices

	Stored results
	Methods and formulas
	One-sample tests for covariance matrices
	A multiple-sample test for covariance matrices

	References
	Also see

	mvtest means
	Description
	Quick start
	Menu
	Syntax
	Options for multiple-sample tests
	Options with one-sample tests
	Remarks and examples
	One-sample tests for mean vectors
	Multiple-sample tests for mean vectors

	Stored results
	Methods and formulas
	One-sample tests for mean vectors
	Multiple-sample tests for mean vectors

	References
	Also see

	mvtest normality
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Mardia mSkewness and mKurtosis
	Henze--Zirkler
	Doornik--Hansen

	Acknowledgment
	References
	Also see

	pca
	Description
	Quick start
	Menu
	Syntax
	Options
	Options unique to pcamat
	Remarks and examples
	Stored results
	Methods and formulas
	Notation
	Inference on eigenvalues and eigenvectors
	More general tests for multivariate normal distributions

	References
	Also see

	pca postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Postestimation statistics
	Plots of eigenvalues, component loadings, and scores
	Rotating the components
	How rotate interacts with pca
	Predicting the component scores

	Stored results
	Methods and formulas
	References
	Also see

	procrustes
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction to Procrustes methods
	Orthogonal Procrustes analysis
	Is an orthogonal Procrustes analysis symmetric?
	Other transformations

	Stored results
	Methods and formulas
	Introduction
	Orthogonal transformations
	Oblique transformations
	Unrestricted transformations
	Reported statistics

	References
	Also see

	procrustes postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	procoverlay
	Description for procoverlay
	Menu for procoverlay
	Syntax for procoverlay
	Options for procoverlay

	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	rotate
	Description
	Quick start
	Menu
	Syntax
	Options
	Rotation criteria

	Remarks and examples
	Orthogonal rotations
	Oblique rotations
	Other types of rotation

	Stored results
	Methods and formulas
	References
	Also see

	rotatemat
	Description
	Menu
	Syntax
	Options
	Rotation criteria

	Remarks and examples
	Introduction
	Orthogonal rotations
	Oblique rotations
	Promax rotation

	Stored results
	Methods and formulas
	References
	Also see

	scoreplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	screeplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	Glossary
	References

	[P] Programming
	Contents
	Combined subject table of contents for programming
	Intro
	Description
	References
	Also see

	Automation
	Description
	Remarks and examples
	Also see

	break
	Description
	Syntax
	Remarks and examples
	Also see

	byable
	Description
	Syntax
	Option
	Remarks and examples
	byable(recall) programs
	Using sort in byable(recall) programs
	Byable estimation commands
	byable(onecall) programs
	Using sort in byable(onecall) programs
	Combining byable(onecall) with byable(recall)
	The by-group header

	Also see

	capture
	Description
	Syntax
	Remarks and examples
	Reference
	Also see

	char
	Description
	Syntax
	Option
	Remarks and examples
	How to program with characteristics

	Also see

	class
	Description
	Remarks and examples
	1. Introduction
	2. Definitions
	3. Version control
	4. Member variables
	5. Inheritance
	6. Member programs' return values
	7. Assignment
	8. Built-ins
	9. Prefix operators
	10. Using object values
	11. Object destruction
	12. Advanced topics
	Appendix A. Finding, loading, and clearing class definitions
	Appendix B. Jargon
	Appendix C. Syntax diagrams

	Also see

	class exit
	Description
	Syntax
	Remarks and examples
	Examples

	Also see

	classutil
	Description
	Syntax
	Options for classutil describe
	Options for classutil dir
	Option for classutil which
	Remarks and examples
	classutil drop
	classutil describe
	classutil dir
	classutil cdir
	classutil which

	Stored results
	Also see

	comments
	Description
	Remarks and examples
	Also see

	confirm
	Description
	Syntax
	Option
	Remarks and examples
	confirm existence
	confirm file
	confirm format
	confirm frame
	confirm names
	confirm number
	confirm matrix
	confirm scalar
	confirm variable

	Also see

	continue
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	creturn
	Description
	Menu
	Syntax
	Remarks and examples
	System values
	Directories and paths
	System limits
	Numerical and string limits
	Current dataset
	Memory settings
	Output settings
	Interface settings
	Graphics settings
	Network settings
	Update settings
	Trace (program debugging) settings
	Mata settings
	Java settings
	LAPACK settings
	putdocx settings
	putpdf settings
	Python settings
	RNG settings
	sort settings
	Unicode settings
	Other settings
	Other system values

	Also see

	_datasignature
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	#delimit
	Description
	Syntax
	Remarks and examples
	Also see

	Dialog programming
	Description
	Remarks and examples
	1. Introduction
	2. Concepts
	2.1 Organization of the .dlg file
	2.2 Positions, sizes, and the DEFINE command
	2.3 Default values
	2.4 Memory (recollection)
	2.5 I-actions and member functions
	2.6 U-actions and communication options
	2.7 The distinction between i-actions and u-actions
	2.8 Error and consistency checking

	3. Commands
	3.1 VERSION
	3.2 INCLUDE
	3.3 DEFINE
	3.4 POSITION
	3.5 LIST
	3.6 DIALOG
	3.6.1 CHECKBOX on/off input control
	3.6.2 RADIO on/off input control
	3.6.3 SPINNER numeric input control
	3.6.4 EDIT string input control
	3.6.5 VARLIST and VARNAME string input controls
	3.6.6 FILE string input control
	3.6.7 LISTBOX list input control
	3.6.8 COMBOBOX list input control
	3.6.9 BUTTON special input control
	3.6.10 TEXT static control
	3.6.11 TEXTBOX static control
	3.6.12 GROUPBOX static control
	3.6.13 FRAME static control
	3.6.14 COLOR input control
	3.6.15 EXP expression input control
	3.6.16 HLINK hyperlink input control
	3.6.17 TREEVIEW tree input control
	3.7 OK, SUBMIT, CANCEL, and COPY u-action buttons
	3.8 HELP and RESET helper buttons
	3.9 Special dialog directives

	4. SCRIPT
	5. PROGRAM
	5.1 Concepts
	5.1.1 Vnames
	5.1.2 Enames
	5.1.3 rstrings: cmdstring and optstring
	5.1.4 Adding to an rstring
	5.2 Flow-control commands
	5.2.1 if
	5.2.2 while
	5.2.3 call
	5.2.4 exit
	5.2.5 close
	5.3 Error-checking and presentation commands
	5.3.1 require
	5.3.2 stopbox
	5.4 Command-construction commands
	5.4.1 by
	5.4.2 bysort
	5.4.3 put
	5.4.4 varlist
	5.4.5 ifexp
	5.4.6 inrange
	5.4.7 weight
	5.4.8 beginoptions and endoptions
	5.4.8.1 option
	5.4.8.2 optionarg
	5.5 Command-execution commands
	5.5.1 stata
	5.5.2 clear
	5.6 Special scripts and programs

	6. Properties
	7. Child dialogs
	7.1 Referencing the parent
	8. Example
	Appendix A. Jargon
	Appendix B. Class definition of dialog boxes
	Appendix C. Interface guidelines for dialog boxes
	Frequently asked questions

	Also see

	discard
	Description
	Syntax
	Remarks and examples
	Also see

	display
	Description
	Syntax
	Remarks and examples
	Introduction
	Styles
	display used with quietly and noisily
	Columns
	display and SMCL
	Displaying variable names
	Obtaining input from the terminal

	Also see

	ereturn
	Description
	Syntax
	Options
	Remarks and examples
	Estimation-class programs
	Setting individual estimation results
	Posting estimation coefficient and variance--covariance matrices

	Stored results
	Also see

	error
	Description
	Syntax
	Remarks and examples
	Introduction
	Summary
	Other messages

	Also see

	estat programming
	Description
	Remarks and examples
	Standard subcommands
	Adding subcommands to estat
	Overriding standard behavior of a subcommand

	Also see

	_estimates
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	Estimation command
	Description
	Remarks and examples
	References
	Also see

	exit
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	file
	Description
	Syntax
	Options
	Text output specifications

	Remarks and examples
	Use of file
	Use of file with tempfiles
	Writing text files
	Reading text files
	Use of seek when writing or reading text files
	Writing and reading binary files
	Writing binary files
	Reading binary files
	Use of seek when writing or reading binary files
	Appendix A.1. Useful commands and functions for use with file
	Appendix A.2. Actions of binary output formats with out-of-range values

	Stored results
	Reference
	Also see

	File formats .dta
	Description
	Also see

	File formats .dtas
	Description
	Also see

	findfile
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	foreach
	Description
	Syntax
	Remarks and examples
	Introduction
	foreach ... of local and foreach ... of global
	foreach ... of varlist
	foreach ... of newlist
	foreach ... of numlist
	Use of foreach with continue
	The unprocessed list elements

	References
	Also see

	forvalues
	Description
	Syntax
	Remarks and examples
	References
	Also see

	frame post
	Description
	Syntax
	Remarks and examples
	Also see

	fvexpand
	Description
	Syntax
	Remarks and examples
	Stored results
	Also see

	gettoken
	Description
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	H2O intro
	Description

	if
	Description
	Syntax
	Remarks and examples
	Introduction
	Avoid single-line if and else with ++ and -/- macro expansion

	Reference
	Also see

	include
	Description
	Syntax
	Option
	Remarks and examples
	Use with do-files
	Use with Mata
	Warning

	Also see

	Java intro
	Description
	Also see

	Java integration
	Description
	Syntax
	Calling Java from Stata
	Instance commands

	Option
	Remarks and examples
	How the environment works
	Invoking Java interactively
	Executing Java in a do-file
	Executing Java in an ado-file
	Executing Java files
	Stata Function Interface examples
	Using JAR dependencies

	Also see

	Java plugin
	Description
	Remarks and examples
	References
	Also see

	Java utilities
	Description
	Syntax
	Remarks and examples
	Also see

	javacall
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	levelsof
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	References
	Also see

	macro
	Description
	Syntax
	Remarks and examples
	Formal definition of a macro
	Global and local macro names
	Macro assignment
	Macro functions
	Macro function for extracting program properties
	Macro function for extracting program results class
	Macro functions for extracting data attributes
	Macro functions for extracting attributes of alias variables
	Macro function for naming variables
	Macro functions for filenames and file paths
	Macro function for accessing operating-system parameters
	Macro functions for names of stored results
	Macro function for formatting results
	Macro function for manipulating lists
	Macro functions related to matrices
	Macro function related to time-series operators
	Macro function for copying a macro
	Macro functions for parsing
	Macro expansion operators and function
	The tempvar, tempname, and tempfile commands
	Manipulation of macros
	Macros as arguments

	References
	Also see

	macro lists
	Description
	Syntax
	Remarks and examples
	Treatment of adornment
	Treatment of duplicate elements in lists

	Also see

	makecns
	Description
	Syntax
	Options
	Remarks and examples
	Introduction
	Overview
	Mathematics
	Linkage of the mathematics to Stata

	Stored results
	Also see

	mark
	Description
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	matlist
	Description
	Syntax
	Style options
	General options
	Required options for the second syntax
	Remarks and examples
	All columns with the same format
	Different formats for each column
	Other output options

	Also see

	matrix
	Description
	Remarks and examples
	Overview of matrix commands
	Creating and replacing matrices
	Namespace
	Naming conventions in programs

	Reference
	Also see

	matrix accum
	Description
	Syntax
	Options
	Remarks and examples
	matrix accum
	matrix glsaccum
	matrix opaccum
	matrix vecaccum
	Treatment of user-specified weights

	Stored results
	Reference
	Also see

	matrix define
	Description
	Menu
	Syntax
	Remarks and examples
	Introduction
	Inputting matrices by hand
	Matrix operators
	Matrix functions returning matrices
	Matrix functions returning scalars
	Subscripting and element-by-element definition
	Name conflicts in expressions (namespaces)
	Macro functions

	Reference
	Also see

	matrix dissimilarity
	Description
	Syntax
	Options
	Remarks and examples
	References
	Also see

	matrix eigenvalues
	Description
	Menu
	Syntax
	Remarks and examples
	Methods and formulas
	References
	Also see

	matrix get
	Description
	Syntax
	Remarks and examples
	Also see

	matrix mkmat
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	mkmat
	svmat

	Acknowledgment
	References
	Also see

	matrix rowjoinbyname
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	matrix rownames
	Description
	Syntax
	Remarks and examples
	Also see

	matrix score
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	matrix svd
	Description
	Menu
	Syntax
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	matrix symeigen
	Description
	Menu
	Syntax
	Remarks and examples
	Methods and formulas
	References
	Also see

	matrix utility
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	more
	Description
	Syntax
	Remarks and examples
	Also see

	nopreserve option
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	numlist
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	pause
	Description
	Syntax
	Remarks and examples
	Also see

	plugin
	Description
	Syntax
	Options
	Remarks and examples
	References
	Also see

	postfile
	Description
	Syntax
	Options
	Remarks and examples
	References
	Also see

	_predict
	Description
	Syntax
	Options
	Methods and formulas
	Reference
	Also see

	preserve
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	program
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	program properties
	Description
	Option
	Remarks and examples
	Introduction
	Writing programs for use with nestreg and stepwise
	Writing programs for use with svy
	Writing programs for use with mi
	Properties for survival-analysis commands
	Properties for prefix commands
	Properties for disabling collection of results
	Properties for exponentiating coefficients
	Putting it all together
	Checking for program properties

	Also see

	Project Manager
	Description
	Remarks and examples
	Getting started with the Project Manager
	Editing projects
	Properties
	Relative versus absolute paths
	Filtering and searching

	Also see

	PyStata intro
	Description
	Also see

	PyStata integration
	Description
	Syntax
	Options
	Remarks and examples
	Invoking Python interactively
	The distinction between python and python:
	Embedding Python code in a do-file
	Running a Python script file
	Embedding Python code in an ado-file
	Stata Function Interface (sfi) module
	Configuring Python
	Locating modules
	Error codes

	Stored results
	Acknowledgment
	References
	Also see

	PyStata module
	Description
	Also see

	quietly
	Description
	Syntax
	Remarks and examples
	quietly used interactively
	quietly used in programs
	Note for programmers

	Also see

	_return
	Description
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	return
	Description
	Syntax
	Options
	Remarks and examples
	Introduction
	Storing results in r()
	Storing results in e()
	Storing results in s()
	Recommended names for stored results
	Using hidden and historical stored results
	Programming hidden and historical stored results

	Reference
	Also see

	_rmcoll
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	rmsg
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	_robust
	Description
	Syntax
	Options
	Remarks and examples
	Introduction
	Formulas and simple examples
	Clustered data
	Survey data
	Controlling the header display
	Maximum likelihood estimators
	Multiple-equation estimators

	Stored results
	Methods and formulas
	References
	Also see

	scalar
	Description
	Syntax
	Remarks and examples
	Naming scalars

	Reference
	Also see

	serset
	Description
	Syntax
	Options
	Options for serset create
	Options for serset create_xmedians
	Option for serset create_cspline
	Option for serset summarize
	Option for serset use

	Remarks and examples
	Introduction
	serset create
	serset create_xmedians
	serset create_cspline
	serset set
	serset sort
	serset summarize
	serset
	serset use
	serset reset_id
	serset drop
	serset clear
	serset dir
	file sersetwrite and file sersetread

	Stored results
	Also see

	set locale_functions
	Description
	Syntax
	Option
	Also see

	set locale_ui
	Description
	Syntax
	Also see

	set sortmethod
	Description
	Syntax
	Remarks and examples
	Overview and version control
	Controlling the sorter within a program
	Reproducibility

	Also see

	set sortrngstate
	Description
	Syntax
	Remarks and examples
	Holding and restoring the jumbler state
	Reproducibility

	Also see

	signestimationsample
	Description
	Syntax
	Remarks and examples
	Using signestimationsample and checkestimationsample
	Signing
	Checking
	Handling of weights
	Do not sign unnecessarily

	Stored results
	Also see

	sleep
	Description
	Syntax
	Remarks and examples

	smcl
	Description
	Remarks and examples
	Introduction
	SMCL modes
	Command summary---general syntax
	Help file preprocessor directive for substituting repeated material
	Formatting directives for use in line and paragraph modes
	Link directives for use in line and paragraph modes
	Formatting directives for use in line mode
	Formatting directives for use in paragraph mode
	Directive for entering the as-is mode
	Inserting values from constant and current-value class
	Displaying characters using ASCII and extended ASCII codes
	Advice on using display
	Advice on formatting help files

	Also see

	sortpreserve
	Description
	Syntax
	Option
	Remarks and examples
	Introduction
	sortpreserve
	The cost of sortpreserve
	How sortpreserve works
	Use of sortpreserve with preserve
	Use of sortpreserve with subroutines that use sortpreserve

	Also see

	syntax
	Description
	Syntax
	Syntax, continued
	Remarks and examples
	Introduction
	The args command
	The syntax command

	Also see

	sysdir
	Description
	Syntax
	Option
	Remarks and examples
	Introduction
	sysdir
	adopath
	set adosize

	Also see

	tabdisp
	Description
	Syntax
	Options
	Remarks and examples
	Limits
	Introduction
	Treatment of string variables
	Treatment of missing values

	Also see

	timer
	Description
	Syntax
	Remarks and examples
	Stored results
	Also see

	tokenize
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	trace
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	unab
	Description
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	unabcmd
	Description
	Syntax
	Remarks and examples
	Also see

	varabbrev
	Description
	Syntax
	Remarks and examples
	Also see

	version
	Description
	Syntax
	Option
	Remarks and examples
	Version
	Version a single command
	User version
	Version and random numbers

	Reference
	Also see

	viewsource
	Description
	Syntax
	Remarks and examples
	Also see

	while
	Description
	Syntax
	Remarks and examples
	Also see

	window programming
	Description
	Syntax
	Also see

	window fopen
	Description
	Syntax
	Remarks and examples
	Also see

	window manage
	Description
	Syntax
	Remarks and examples
	Minimizing or restoring the main window
	Windowing preferences
	Restoring file associations (Windows only)
	Resetting the main window title
	Setting Dock icon's label (Mac only)
	Bringing windows forward
	Commands to manage Graph windows
	Commands to manage Viewer windows

	Also see

	window menu
	Description
	Syntax
	Remarks and examples
	Overview
	Clear previously defined menu additions
	Define submenus
	Define menu items
	Define separator bars
	Activate menu changes
	Add files to the Open recent menu
	Keyboard shortcuts (Windows only)
	Examples
	Advanced features: Dialogs and built-in actions
	Advanced features: Creating checked menu items
	Putting it all together

	Also see

	window push
	Description
	Syntax
	Remarks and examples
	Also see

	window stopbox
	Description
	Syntax
	Remarks and examples
	Also see

	Glossary

	[PSS] Power, Precision, and Sample Size
	Contents
	Introduction to power, precision, and sample-size analysis
	Intro
	Description
	Also see

	Power and sample-size analysis
	Intro (power)
	Description
	Remarks and examples
	Power and sample-size analysis
	Hypothesis testing
	Components of PSS analysis
	Study design
	Statistical method
	Significance level
	Power
	Clinically meaningful difference and effect size
	Sample size
	One-sided test versus two-sided test
	Another consideration: Dropout

	Survival data
	Sensitivity analysis
	An example of PSS analysis in Stata
	Video example

	References
	Also see

	GUI (power)
	Description
	Menu
	Remarks and examples
	PSS Control Panel
	Example using PSS Control Panel

	Also see

	power
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Using the power command
	Specifying multiple values of study parameters

	One-sample tests
	Two-sample tests
	Paired-sample tests
	Analysis of variance models
	Linear regression
	Contingency tables
	Survival analysis
	Cluster randomized designs
	Tables of results
	Power curves
	Add your own methods to power

	Stored results
	Methods and formulas
	References
	Also see

	power usermethod
	Description
	Syntax
	Remarks and examples
	A quick example
	Steps for adding a new method to the power command
	Convention for naming options and storing results
	Allowing multiple values in method-specific options
	Customizing default tables
	Setting supported columns
	Modifying the default table columns
	Modifying the look of the default table
	Example continued

	Customizing default graphs
	Other settings
	Handling parsing more efficiently
	More examples: Adding two-sample methods
	Initializer's s() return settings

	References
	Also see

	power, graph
	Description
	Quick start
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Using power, graph
	Graph symbols
	Default graphs
	Changing default graph dimensions
	Changing the look of graphs
	Parallel plots

	Also see

	power, table
	Description
	Quick start
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Using power, table
	Default tables
	Modifying default tables
	Custom tables

	Stored results
	Also see

	power onemean
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power onemean
	Computing sample size
	Computing power
	Computing effect size and target mean
	Performing hypothesis tests on mean
	Video examples

	Stored results
	Methods and formulas
	Known standard deviation
	Unknown standard deviation
	Finite population size

	References
	Also see

	power onemean, cluster
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using power , table, cluster
	Computing number of clusters
	Computing cluster size
	Computing power
	Computing effect size and target mean
	Performing hypothesis tests on mean in a CRD

	Stored results
	Methods and formulas
	Equal cluster sizes
	Unequal cluster sizes

	References
	Also see

	power twomeans
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twomeans
	Computing sample size
	Computing power
	Computing effect size and experimental-group mean
	Testing a hypothesis about two independent means

	Stored results
	Methods and formulas
	Known standard deviations
	Unknown standard deviations
	Unequal standard deviations
	Equal standard deviations

	References
	Also see

	power twomeans, cluster
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using power , table, cluster
	Computing numbers of clusters
	Computing number of clusters in one group
	Computing cluster sizes
	Computing power
	Computing effect size and experimental-group mean
	Testing hypotheses about two means in a CRD

	Stored results
	Methods and formulas
	Introduction
	Equal cluster sizes
	Unequal cluster sizes

	References
	Also see

	power pairedmeans
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power pairedmeans
	Computing sample size
	Computing power
	Computing effect size and target mean difference
	Testing a hypothesis about two correlated means
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	power oneproportion
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power oneproportion
	Computing sample size
	Computing power
	Computing effect size and target proportion
	Performing hypothesis tests on proportion
	Video examples

	Stored results
	Methods and formulas
	Large-sample normal approximation
	Binomial test

	References
	Also see

	power oneproportion, cluster
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using power , table, cluster
	Computing number of clusters
	Computing cluster size
	Computing power
	Computing effect size and target proportion
	Performing hypothesis tests on proportion in a CRD

	Stored results
	Methods and formulas
	Equal cluster sizes
	Unequal cluster sizes

	References
	Also see

	power twoproportions
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twoproportions
	Alternative ways of specifying effect

	Computing sample size
	Computing power
	Computing effect size and experimental-group proportion
	Testing a hypothesis about two independent proportions
	Video examples

	Stored results
	Methods and formulas
	Effect size
	Pearsons chi2 test
	Likelihood-ratio test
	Fisher's exact conditional test

	References
	Also see

	power twoproportions, cluster
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using power , table, cluster
	Computing numbers of clusters
	Computing number of clusters in one group
	Computing cluster sizes
	Computing power
	Computing effect size and experimental-group proportion
	Testing hypotheses about two proportions in a CRD

	Stored results
	Methods and formulas
	References
	Also see

	power pairedproportions
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power pairedproportions
	Alternative ways of specifying effect

	Computing sample size
	Computing power
	Computing effect size and target discordant proportions
	Testing a hypothesis about two correlated proportions

	Stored results
	Methods and formulas
	References
	Also see

	power onevariance
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power onevariance
	Computing sample size
	Computing power
	Computing effect size and target variance
	Performing a hypothesis test on variance

	Stored results
	Methods and formulas
	Reference
	Also see

	power twovariances
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twovariances
	Computing sample size
	Computing power
	Computing effect size and experimental-group variance
	Testing a hypothesis about two independent variances

	Stored results
	Methods and formulas
	References
	Also see

	power onecorrelation
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power onecorrelation
	Computing sample size
	Computing power
	Computing effect size and target correlation
	Performing hypothesis tests on correlation

	Stored results
	Methods and formulas
	References
	Also see

	power twocorrelations
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twocorrelations
	Computing sample size
	Computing power
	Computing effect size and experimental-group correlation
	Testing a hypothesis about two independent correlations

	Stored results
	Methods and formulas
	References
	Also see

	power oneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power oneway
	Alternative ways of specifying effect

	Computing sample size
	Computing power
	Computing effect size and between-group variance
	Testing hypotheses about multiple group means
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	power twoway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power twoway
	Alternative ways of specifying effect

	Computing sample size
	Computing power
	Computing effect size and target variance explained by the tested effect
	Testing hypotheses about means from multiple populations

	Stored results
	Methods and formulas
	Main effects
	Interaction effects
	Hypothesis testing

	References
	Also see

	power repeated
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power repeated
	Computing sample size
	Computing power
	Computing effect size and target variance explained by the tested effect
	Testing hypotheses about means from multiple dependent populations

	Stored results
	Methods and formulas
	Hypothesis testing
	Computing power

	References
	Also see

	power oneslope
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power oneslope
	Computing sample size
	Computing power
	Computing effect size and target slope
	Performing hypothesis tests on the slope coefficient

	Stored results
	Methods and formulas
	References
	Also see

	power rsquared
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power rsquared
	Computing sample size
	Computing power
	Computing effect size and target R2
	Performing hypothesis tests on the coefficients

	Stored results
	Methods and formulas
	Introduction
	Testing all coefficients
	Testing a subset of coefficients: R2 of full versus reduced models
	Testing a subset of coefficients: Partial multiple correlation

	Reference
	Also see

	power pcorr
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power pcorr
	Computing sample size
	Computing power
	Computing effect size and target squared partial correlation
	Performing hypothesis tests on the partial correlation

	Stored results
	Methods and formulas
	Reference
	Also see

	power cmh
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power cmh
	Alternative ways of specifying probabilities

	Motivating example
	Computing sample size
	Computing power
	Computing effect size
	Testing hypotheses about association in 2 x 2 x K tables

	Stored results
	Methods and formulas
	References
	Also see

	power mcc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power mcc
	Computing sample size
	Computing power
	Computing target odds ratio
	Testing hypotheses in matched case{--}control studies

	Stored results
	Methods and formulas
	References
	Also see

	power trend
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power trend
	Alternative ways of specifying probabilities

	Computing sample size
	Computing power
	Testing hypotheses about a trend in J x 2 tables

	Stored results
	Methods and formulas
	Computing power
	Computing sample size

	References
	Also see

	power cox
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power cox
	Computing sample size
	Computing sample size in the absence of censoring
	Computing sample size in the presence of censoring
	Link to the sample-size and power computation for the log-rank test

	Computing power
	Computing effect size
	Performing analyses using a Cox PH model

	Stored results
	Methods and formulas
	References
	Also see

	power exponential
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power exponential
	Alternative ways of specifying effect

	Computing sample size
	Computing sample size in the absence of censoring
	Computing sample size in the presence of censoring
	Nonuniform accrual
	Exponential losses to follow-up

	The conditional versus unconditional approaches
	Link to the sample-size and power computation for the log-rank test
	Computing power
	Testing hypotheses about two exponential survivor functions

	Stored results
	Methods and formulas
	References
	Also see

	power logrank
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using power logrank
	Computing sample size
	Computing sample size in the absence of censoring
	Computing sample size in the presence of censoring

	Withdrawal of subjects from the study
	Including information about subject accrual
	Computing power
	Computing effect size
	Testing a hypothesis about two survivor functions using the log-rank test

	Stored results
	Methods and formulas
	References
	Also see

	power logrank, cluster
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using power , table, cluster
	Computing numbers of clusters
	Computing cluster sizes
	Computing power
	Computing effect size
	Compare two survivor functions with clustered data

	Stored results
	Methods and formulas
	References
	Also see

	Precision and sample-size analysis
	Intro (ciwidth)
	Description
	Remarks and examples
	Precision and sample-size analysis
	Confidence intervals
	Components of PrSS analysis
	Confidence level
	CI width
	Probability of CI width
	Sample size
	One-sided versus two-sided CIs

	Sensitivity analysis
	An example of PrSS analysis in Stata

	References
	Also see

	GUI (ciwidth)
	Description
	Menu
	Remarks and examples
	PSS Control Panel
	Example using PSS Control Panel

	Also see

	ciwidth
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Using the ciwidth command
	Specifying multiple values of study parameters

	PrSS analysis for CIs for one population parameter
	PrSS analysis for CIs comparing two independent samples
	PrSS analysis for CIs comparing paired samples
	Tables of results
	Sample-size and other curves
	Add your own methods to ciwidth

	Stored results
	Methods and formulas
	Also see

	ciwidth usermethod
	Description
	Syntax
	Remarks and examples
	A quick example
	Steps for adding a new method to the ciwidth command
	Convention for naming options and storing results
	Allowing multiple values in method-specific options
	Customizing default tables
	Setting supported columns
	Modifying the default table columns
	Modifying the look of the default table
	Example continued

	Customizing default graphs
	Other settings
	Handling parsing more efficiently
	More examples: Compute probability of CI width for a one-proportion CI
	Step 1: Program to simulate the data and compute the CI width
	Step 2: Estimating probability of CI width using simulation
	Step 3: Adding probability of CI width computation to ciwidth
	Step 4: Computing exact probability of CI width

	Initializer's s() return settings

	References
	Also see

	ciwidth, graph
	Description
	Quick start
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Using ciwidth, graph
	Graph symbols
	Default graphs
	Changing default graph dimensions
	Changing the look of graphs
	Parallel plots

	Also see

	ciwidth, table
	Description
	Quick start
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Using ciwidth, table
	Default tables
	Modifying default tables
	Custom tables

	Stored results
	Also see

	ciwidth onemean
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using ciwidth onemean
	Computing sample size
	Computing CI width
	Computing probability of CI width

	Stored results
	Methods and formulas
	Known standard deviation
	Unknown standard deviation
	Finite population size

	References
	Also see

	ciwidth twomeans
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using ciwidth twomeans
	Computing sample size
	Computing CI width
	Computing probability of CI width

	Stored results
	Methods and formulas
	Known equal and unequal standard deviations
	Unknown and equal standard deviations

	References
	Also see

	ciwidth pairedmeans
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using ciwidth pairedmeans
	Computing sample size
	Computing CI width
	Computing probability of CI width

	Stored results
	Methods and formulas
	References
	Also see

	ciwidth onevariance
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using ciwidth onevariance
	Computing sample size
	Computing CI width
	Computing probability of CI width

	Stored results
	Methods and formulas
	References
	Also see

	Design specification
	Unbalanced designs
	Description
	Syntax
	Options
	Remarks and examples
	Two samples
	Specifying total sample size and allocation ratio
	Specifying group sample sizes
	Specifying one of the group sample sizes and allocation ratio
	Specifying total sample size and one of the group sample sizes

	Fractional sample sizes

	Also see

	Glossary of common terms
	Glossary

	[R] Base Reference
	Contents
	Introduction
	Intro
	Description
	Remarks and examples
	Arrangement of the reference manuals
	Arrangement of each entry
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	Also see

	A
	about
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	ado update
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Using ado update
	Notes for developers

	Stored results
	Also see

	ameans
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	anova
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	One-way ANOVA
	Two-way ANOVA
	N-way ANOVA
	Weighted data
	ANCOVA
	Nested designs
	Mixed designs
	Latin-square designs
	Repeated-measures ANOVA
	Video examples

	Stored results
	References
	Also see

	anova postestimation
	Postestimation commands
	predict
	margins
	test
	Description for test
	Menu for test
	Syntax for test
	Options for test

	Remarks and examples
	Testing effects
	Obtaining symbolic forms
	Testing coefficients and contrasts of margins
	Video example

	References
	Also see

	areg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	areg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	References
	Also see

	B
	betareg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	betareg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	binreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	binreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	References
	Also see

	biprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	biprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	bitest
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	bitest
	bitesti

	Stored results
	Methods and formulas
	Reference
	Also see

	bootstrap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using bootstrap
	Regression coefficients
	Expressions
	Combining bootstrap datasets
	A note about macros
	Achieved significance level
	Bootstrapping a ratio
	Warning messages and e(sample)
	Bootstrapping statistics from data with a complex structure

	Stored results
	Methods and formulas
	References
	Also see

	bootstrap postestimation
	Postestimation commands
	predict
	margins
	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Also see

	boxcox
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Theta model
	Lambda model
	Left-hand-side-only model
	Right-hand-side-only model

	Stored results
	Methods and formulas
	References
	Also see

	boxcox postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	References
	Also see

	brier
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	bsample
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	bstat
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Bootstrap datasets
	Creating a bootstrap dataset

	Stored results
	References
	Also see

	C
	centile
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Default case
	Normal case
	meansd case

	Acknowledgment
	References
	Also see

	cfprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	cfprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Obtaining predicted values
	estat endogenous

	Stored results
	Methods and formulas
	Obtaining predicted values
	estat endogenous

	Also see

	cfregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	cfregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	churdle
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	churdle postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	ci
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for ci and cii means
	Options for ci and cii proportions
	Options for ci and cii variances

	Remarks and examples
	Confidence intervals for means
	Normal-based confidence intervals
	Poisson confidence intervals

	Confidence intervals for proportions
	Confidence intervals for variances
	Immediate form

	Stored results
	Methods and formulas
	Normal mean
	Poisson mean
	Binomial proportion
	Variance and standard deviation

	Acknowledgment
	References
	Also see

	clogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Matched case--control data
	Use of weights
	Fixed-effects logit

	Stored results
	Methods and formulas
	References
	Also see

	clogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Reference
	Also see

	cloglog
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction to complementary log--log regression
	Robust standard errors

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	cloglog postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	cls
	Description
	Syntax

	cnsreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cnsreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	constraint
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Reference
	Also see

	contrast
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	One-way models
	Estimated cell means
	Testing equality of cell means
	Reference category contrasts
	Reverse adjacent contrasts
	Orthogonal polynomial contrasts

	Two-way models
	Estimated interaction cell means
	Simple effects
	Interaction effects
	Main effects
	Partial interaction effects

	Three-way and higher-order models
	Contrast operators
	Differences from a reference level (r.)
	Differences from the next level (a.)
	Differences from the previous level (ar.)
	Differences from the grand mean (g.)
	Differences from the mean of subsequent levels (h.)
	Differences from the mean of previous levels (j.)
	Orthogonal polynomials (p. and q.)

	User-defined contrasts
	Empty cells
	Empty cells, ANOVA style
	Nested effects
	Multiple comparisons
	Unbalanced data
	Using observed cell frequencies
	Weighted contrast operators

	Testing factor effects on slopes
	Chow tests
	Beyond linear models
	Multiple equations
	Video example

	Stored results
	Methods and formulas
	Marginal linear predictions
	Contrast operators
	Reference level contrasts
	Adjacent contrasts
	Grand mean contrasts
	Helmert contrasts
	Reverse Helmert contrasts
	Orthogonal polynomial contrasts

	Contrasts within interactions
	Multiple comparisons

	References
	Also see

	contrast postestimation
	Postestimation commands
	Remarks and examples
	Also see

	copyright
	Description
	Syntax
	Remarks and examples
	Also see

	Copyright Apache
	Description
	Also see

	Copyright autolink
	Description
	Also see

	Copyright Boost
	Description
	Also see

	Copyright flexmark
	Description
	Also see

	Copyright Hamcrest
	Description
	Also see

	Copyright H2O
	Description
	Also see

	Copyright ICD-10
	Description
	Also see

	Copyright ICU
	Description
	Also see

	Copyright JAXB
	Description
	Source code
	Also see

	Copyright JGoodies Common
	Description
	Also see

	Copyright JGoodies Forms
	Description
	Also see

	Copyright JSON
	Description
	Also see

	Copyright jsoup
	Description
	Also see

	Copyright LAPACK
	Description
	Also see

	Copyright libHaru
	Description
	Also see

	Copyright libpng
	Description
	Also see

	Copyright Mersenne Twister
	Description
	Also see

	Copyright MiG Layout
	Description
	Also see

	Copyright Parsington
	Description
	Also see

	Copyright PolyHook
	Description
	Also see

	Copyright ReadStat
	Description
	Also see

	Copyright Scintilla
	Description
	Also see

	Copyright slf4j
	Description
	Also see

	Copyright ttf2pt1
	Description
	Also see

	Copyright Win32 Dark Mode
	Description
	Also see

	Copyright zlib
	Description
	Also see

	correlate
	Description
	Quick start
	Menu
	Syntax
	Options for correlate
	Options for pwcorr
	Remarks and examples
	correlate
	pwcorr
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	cpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	cumul
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgment
	References
	Also see

	cusum
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgment
	Reference
	Also see

	D
	db
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	demandsys
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Some notation
	Cobb{--}Douglas
	Linear expenditure system (LES)
	Translog
	Basic translog
	Generalized translog

	AIDS
	QUAIDS
	Controlling for demographic factors
	Demographic translation
	Demographic scaling
	Epilogue

	Stored results
	Methods and formulas
	Introduction
	LES
	Generalized translog
	QUAIDS with demographic translation
	QUAIDS with demographic scaling
	Estimation

	Acknowledgment
	References
	Also see

	demandsys postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat elasticities

	Remarks and examples
	Introduction
	Elasticities
	Evaluating elasticities
	Compensating and equivalent variation

	References
	Also see

	Diagnostic plots
	Description
	Quick start
	Menu
	Syntax
	Options for symplot, quantile, and qqplot
	Options for qnorm and pnorm
	Options for qchi and pchi
	Remarks and examples
	symplot
	quantile
	qqplot
	qnorm
	pnorm
	qchi
	pchi

	Methods and formulas
	Acknowledgments
	References
	Also see

	display
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	do
	Description
	Quick start
	Menu
	Syntax
	Option
	Reference
	Also see

	doedit
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	dotplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	Reference

	dstdize
	Description
	Quick start
	Menu
	Syntax
	Options for dstdize
	Options for istdize
	Remarks and examples
	Direct standardization
	Indirect standardization

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	dtable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	A first example
	Describe variables across groups
	Survey data
	Save your style choices for next time
	Composite results
	The default style

	Methods and formulas
	Appendix
	Colors
	Underline patterns
	Shading patterns

	Acknowledgments
	References
	Also see

	dydx
	Description
	Quick start
	Menu
	Syntax
	Options for dydx
	Options for integ
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	Reference
	Also see

	E
	eform_option
	Description
	Remarks and examples
	Reference
	Also see

	eivreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	eivreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	Epitab
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Incidence-rate data
	Stratified incidence-rate data
	Standardized estimates with stratified incidence-rate data
	Cumulative incidence data
	Stratified cumulative incidence data
	Standardized estimates with stratified cumulative incidence data
	Case--control data
	Stratified case--control data
	Case--control data with multiple levels of exposure
	Case--control data with confounders and possibly multiple levels of exposure
	Standardized estimates with stratified case--control data
	Matched case--control data
	Video examples
	Glossary

	Stored results
	Methods and formulas
	Unstratified incidence-rate data (ir and iri)
	Unstratified cumulative incidence data (cs and csi)
	Unstratified case--control data (cc and cci)
	Unstratified matched case--control data (mcc and mcci)
	Stratified incidence-rate data (ir with the by() option)
	Stratified cumulative incidence data (cs with the by() option)
	Stratified case--control data (cc with by() option, mhodds, tabodds)

	Acknowledgments
	References
	Also see

	Error messages
	Description
	Also see

	esize
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Estimating effect sizes
	Immediate form
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	estat
	Description
	Syntax

	estat classification
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estat gof
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Introduction
	Samples other than the estimation sample

	Stored results
	Methods and formulas
	References
	Also see

	estat ic
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estat summarize
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat vce
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estimates
	Description
	Syntax
	Remarks and examples
	Saving and using estimation results
	Storing and restoring estimation results
	Comparing estimation results
	Jargon

	Also see

	estimates describe
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	estimates for
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	estimates notes
	Description
	Quick start
	Syntax
	Remarks and examples
	Also see

	estimates replay
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	estimates save
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Setting e(sample)
	Resetting e(sample)
	Determining who set e(sample)

	Stored results
	Also see

	estimates selected
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estimates stats
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	estimates store
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	References
	Also see

	estimates table
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estimates title
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	Estimation options
	Description
	Syntax
	Options
	Also see

	etable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	A first example
	Table comparing regression results
	Multiple-equation models

	Appendix
	Colors
	Underline patterns
	Shading patterns

	Acknowledgments
	References
	Also see

	exit
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	exlogistic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Sufficient statistics
	Conditional distribution and CMLE
	MUEs and exact confidence intervals
	Conditional hypothesis tests
	Sufficient-statistic p-value

	References
	Also see

	exlogistic postestimation
	Postestimation commands
	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat predict
	Option for estat se

	Remarks and examples
	Stored results
	Reference
	Also see

	expoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Conditional distribution

	References
	Also see

	expoisson postestimation
	Postestimation commands
	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat

	Remarks and examples
	Also see

	F
	fp
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for fp
	Options for fp generate

	Remarks and examples
	Fractional polynomial regression
	Scaling
	Centering
	Examples

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	fp postestimation
	Postestimation commands
	predict
	margins
	fp plot and fp predict
	Description for fp plot and fp predict
	Menu for fp plot and fp predict
	Syntax for fp plot and fp predict
	Options for fp plot
	Options for fp predict

	Remarks and examples
	Examples

	Methods and formulas
	Acknowledgment
	Reference
	Also see

	fracreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	fracreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Obtaining predicted values
	Performing hypothesis tests

	Also see

	frontier
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	frontier postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Reference
	Also see

	fvrevar
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	fvset
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results

	G
	gllamm
	Description
	Remarks and examples
	References
	Also see

	glm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	General use
	Variance estimators
	User-defined functions

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	glm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Predictions
	Other postestimation commands

	Methods and formulas
	References
	Also see

	gmm
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Substitutable expressions
	The weight matrix and two-step estimation
	Obtaining standard errors
	Factor-variable coefficients in multiple residual functions
	Parameter interpretation using margins
	Exponential (Poisson) regression models
	Specifying derivatives
	Exponential regression models with panel data
	Rational-expectations models
	System estimators
	Dynamic panel-data models
	Details of moment-evaluator programs

	Stored results
	Methods and formulas
	Initial weight matrix
	Weight matrix
	Variance--covariance matrix
	Hansen's J statistic
	Panel-style instruments
	Marginal predictions with unconditional standard errors

	References
	Also see

	gmm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Option for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Stored results
	References
	Also see

	grmeanby
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References

	H
	hausman
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	heckman
	Description
	Quick start
	Menu
	Syntax
	Options for Heckman selection model (ML)
	Options for Heckman selection model (two-step)
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	heckman postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Reference
	Also see

	heckoprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	heckoprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	heckpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	heckpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	heckprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	heckprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	help
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Video examples

	Reference
	Also see

	hetoprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	hetoprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	hetprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Robust standard errors

	Stored results
	Methods and formulas
	References
	Also see

	hetprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	hetregress
	Description
	Quick start
	Menu
	Syntax
	Options for maximum likelihood estimation
	Options for two-step GLS estimation
	Remarks and examples
	Introduction
	Maximum likelihood estimation
	Two-step GLS estimation

	Stored results
	Methods and formulas
	Maximum likelihood estimation
	Two-step GLS estimation

	References
	Also see

	hetregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	histogram
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for use in the continuous case
	Options for use in the discrete case
	Options for use in the continuous and discrete cases

	Remarks and examples
	Histograms of continuous variables
	Overlaying normal and kernel density estimates
	Histograms of discrete variables
	Use with by()
	Video example

	References
	Also see

	I
	IC note
	Description
	Remarks and examples
	Background
	The problem of determining N
	The problem of conformable likelihoods
	The first problem does not arise with AIC; the second problem does
	Calculating BIC, AICc, and CAIC correctly

	Methods and formulas
	References
	Also see

	icc
	Description
	Quick start
	Menu
	Syntax
	Options for one-way RE model
	Options for two-way RE and ME models
	Remarks and examples
	Introduction
	One-way random effects
	Two-way random effects
	Two-way mixed effects
	Adoption study
	Relationship between ICCs
	Tests against nonzero values

	Stored results
	Methods and formulas
	Mean squares
	One-way random effects
	Two-way random effects
	Two-way mixed effects

	References
	Also see

	Inequality
	Description
	Remarks and examples
	References

	intreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	intreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	ivfprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Model setup
	Model identification

	Stored results
	Methods and formulas
	References
	Also see

	ivfprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Marginal effects
	Obtaining predicted values

	Stored results
	Methods and formulas
	Also see

	ivpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	GMM estimator for additive model
	GMM estimator for multiplicative model
	CF estimator for multiplicative model

	Stored results
	Methods and formulas
	References
	Also see

	ivpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	ivprobit
	Description
	Quick start
	Menu
	Syntax
	Options for ML estimator
	Options for two-step estimator
	Remarks and examples
	Model setup
	Model identification

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	ivprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Marginal effects
	Obtaining predicted values

	Stored results
	Methods and formulas
	References
	Also see

	ivqregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	When quantile regression matters
	Examples

	Stored results
	Methods and formulas
	The model
	The IQR estimator
	The IQR algorithm
	The IQR default grid algorithm

	The SEE estimator
	The bandwidth selection algorithm

	The robust standard errors

	Acknowledgments
	References
	Also see

	ivqregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat coefplot
	Options for estat endogeffects
	Options for estat dualci
	Options for estat waldplot

	Remarks and examples
	Stored results
	Methods and formulas
	Tests of effects of endogenous variables
	Dual CI

	References
	Also see

	ivregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	2SLS and LIML estimators
	GMM estimator
	Video example

	Stored results
	Methods and formulas
	Notation
	2SLS and LIML estimators
	GMM estimator

	References
	Also see

	ivregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat
	Options for estat endogenous
	Options for estat firststage
	Options for estat overid
	Options for estat weakrobust (StataNow)

	Remarks and examples
	estat endogenous
	estat firststage
	estat overid
	estat weakrobust (StataNow)

	Stored results
	Methods and formulas
	Notation
	estat endogenous
	estat firststage
	estat overid
	estat weakrobust (StataNow)
	Homoskedastic errors
	Nonhomoskedastic errors
	Confidence intervals

	Acknowledgments
	References
	Also see

	ivtobit
	Description
	Quick start
	Menu
	Syntax
	Options for ML estimator
	Options for two-step estimator
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	ivtobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Marginal effects
	Obtaining predicted values

	Stored results
	Methods and formulas
	References
	Also see

	J
	jackknife
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using jackknife
	Jackknifed standard deviation
	Collecting multiple statistics
	Collecting coefficients

	Stored results
	Methods and formulas
	References
	Also see

	jackknife postestimation
	Postestimation commands
	predict
	margins
	Also see

	K
	kappa
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Two raters
	More than two raters

	Stored results
	Methods and formulas
	kap: m=2
	kappa: m>2, k=2
	kappa: m>2, k>2

	References

	kdensity
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	ksmirnov
	Description
	Quick start
	Menu
	Syntax
	Options for two-sample test
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	kwallis
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	L
	ladder
	Description
	Quick start
	Menu
	Syntax
	Options for ladder
	Options for gladder
	Options for qladder
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	level
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	Limits
	Description
	Remarks and examples
	Maximum size limits
	Determining which edition of Stata you are running

	Also see

	lincom
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using lincom
	Odds ratios and incidence-rate ratios
	Multiple-equation models

	Stored results
	References
	Also see

	linktest
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	lnskew0
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	Reference
	Also see

	log
	Description
	Quick start
	Menu
	Syntax
	Options for use with both log and cmdlog
	Options for use with log
	Option for use with set logtype
	Remarks and examples
	Stored results
	Reference
	Also see

	logistic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	logistic and logit
	Robust estimate of variance
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	logistic postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	predict without options
	predict with the xb and stdp options
	predict with the residuals option
	predict with the number option
	predict with the deviance option
	predict with the rstandard option
	predict with the hat option
	predict with the dx2 option
	predict with the ddeviance option
	predict with the dbeta option

	Methods and formulas
	References
	Also see

	logit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic usage
	Model identification

	Stored results
	Methods and formulas
	References
	Also see

	logit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	loneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	The one-way ANOVA model
	R-squared
	The random-effects ANOVA model
	Intraclass correlation
	Estimated reliability of the group-averaged score

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	lowess
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Acknowledgment
	References
	Also see

	lpoly
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Local polynomial smoothing
	Choice of a bandwidth
	Confidence bands

	Stored results
	Methods and formulas
	References
	Also see

	lroc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Samples other than the estimation sample
	Models other than the last fitted model

	Stored results
	Methods and formulas
	References
	Also see

	lrtest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Nested models
	Composite models

	Stored results
	Methods and formulas
	References
	Also see

	lsens
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Models other than the last fitted model

	Stored results
	Methods and formulas
	Reference
	Also see

	lv
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	M
	makespline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	margins
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Obtaining margins of responses
	Example 1: A simple case after regress
	Example 2: A simple case after logistic
	Example 3: Average response versus response at average
	Example 4: Multiple margins from one command
	Example 5: Margins with interaction terms
	Example 6: Margins with continuous variables
	Example 7: Margins of continuous variables
	Example 8: Margins of interactions
	Example 9: Decomposing margins
	Example 10: Testing margins---contrasts of margins
	Example 11: Margins of a specified prediction
	Example 12: Margins of a specified expression
	Example 13: Margins with multiple outcomes (responses)
	Example 14: Margins with multiple equations
	Example 15: Margins evaluated out of sample

	Obtaining margins of derivatives of responses (a.k.a. marginal effects)
	Use at() freely, especially with continuous variables
	Expressing derivatives as elasticities
	Derivatives versus discrete differences
	Example 16: Average marginal effect (partial effects)
	Example 17: Average marginal effect of all covariates
	Example 18: Evaluating marginal effects over the response surface

	Obtaining margins with survey data and representative samples
	Example 19: Inferences for populations, margins of response
	Example 20: Inferences for populations, marginal effects
	Example 21: Inferences for populations with svyset data

	Standardizing margins
	Obtaining margins as though the data were balanced
	Balancing using asbalanced
	Balancing by standardization
	Balancing nonlinear responses
	Treating a subset of covariates as balanced
	Balancing in the presence of continuous covariates
	Using fvset design
	Balancing in the presence of empty cells

	Obtaining margins with nested designs
	Introduction to nested designs
	Margins with nested designs as though the data were balanced
	Coding of nested designs

	Special topics
	Requirements for model specification
	Estimability of margins
	Manipulability of tests
	Using margins after the estimates use command
	Syntax of at()
	Estimation commands that may be used with margins

	Video examples
	Glossary

	Stored results
	Methods and formulas
	Notation
	Marginal effects
	Fixing covariates and balancing factors
	Estimable functions
	Standard errors conditional on the covariates
	Unconditional standard errors

	References
	Also see

	margins postestimation
	Postestimation commands
	Remarks and examples
	Also see

	margins, contrast
	Description
	Quick start
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Contrasts of margins
	Contrasts and the over() option
	The overjoint suboption
	The marginswithin suboption

	Contrasts and the at() option
	Estimating treatment effects with margins
	Conclusion

	Stored results
	Methods and formulas
	Reference
	Also see

	margins, pwcompare
	Description
	Quick start
	Menu
	Syntax
	Suboptions
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	marginsplot
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Dataset
	Profile plots
	Interaction plots
	Contrasts of margins---effects (discrete marginal effects)
	Three-way interactions
	Continuous covariates
	Plots at every value of a continuous covariate
	Contrasts of at() groups---discrete effects
	Controlling the graph's dimensions
	Pairwise comparisons
	Horizontal is sometimes better
	Marginal effects
	Plotting a subset of the results from margins
	Advanced usage
	Plots with multiple terms
	Plots with multiple at() options
	Adding scatterplots of the data

	Video examples

	Addendum: Advanced uses of dimlist
	Acknowledgments
	References
	Also see

	Maximize
	Description
	Syntax
	Maximization options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	mean
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	The mean estimator
	Survey data
	The survey mean estimator
	The standardized mean estimator
	The poststratified mean estimator
	The standardized poststratified mean estimator
	Subpopulation estimation

	References
	Also see

	mean postestimation
	Postestimation commands
	estat sd
	Description for estat sd
	Menu for estat sd
	Syntax for estat sd
	Option for estat sd
	Stored results for estat sd

	Also see

	mfp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Iteration report
	Estimation algorithm
	Methods of FP model selection
	Zeros and zero categories

	Stored results
	Acknowledgments
	References
	Also see

	mfp postestimation
	Postestimation commands
	fracplot and fracpred
	Description for fracplot and fracpred
	Menu for fracplot and fracpred
	Syntax for fracplot and fracpred
	Options for fracplot
	Options for fracpred

	Remarks and examples
	Methods and formulas
	Also see

	misstable
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for misstable summarize
	Options for misstable patterns
	Options for misstable tree
	Option for misstable nested
	Common options

	Remarks and examples
	misstable summarize
	misstable patterns
	misstable tree
	misstable nested
	Execution time of misstable nested

	Stored results
	Also see

	ml
	Description
	Syntax
	Syntax of subroutines for use by evaluator programs
	Syntax of user-written evaluator

	Options
	Options for use with ml model in interactive or noninteractive mode
	Options for use with ml model in noninteractive mode
	Options for use when specifying equations
	Options for use with ml search
	Option for use with ml plot
	Options for use with ml init
	Options for use with ml maximize
	Option for use with ml graph
	Options for use with ml display
	Options for use with mleval
	Option for use with mlsum
	Option for use with mlvecsum
	Option for use with mlmatsum
	Options for use with mlmatbysum
	Options for use with ml score

	Remarks and examples
	Survey options and ml

	Stored results
	Methods and formulas
	References
	Also see

	mlexp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Substitutable expressions
	Parameter interpretation using margins
	Parameter constraints
	Specifying derivatives

	Stored results
	Methods and formulas
	References
	Also see

	mlexp postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	mlogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Description of the model
	Fitting unconstrained models
	Fitting constrained models

	Stored results
	Methods and formulas
	References
	Also see

	mlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Obtaining predicted values
	Calculating marginal effects
	Testing hypotheses about coefficients

	Reference
	Also see

	more
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	mprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	mprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	References
	Also see

	N
	nbreg
	Description
	Quick start
	Menu
	Syntax
	Options for nbreg
	Options for gnbreg
	Remarks and examples
	Introduction to negative binomial regression
	nbreg
	gnbreg

	Stored results
	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	References
	Also see

	nbreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	Reference
	Also see

	nestreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Estimation commands
	Wald tests
	Likelihood-ratio tests
	Programming for nestreg

	Stored results
	Acknowledgment
	References
	Also see

	net
	Description
	Syntax
	Options
	Remarks and examples
	Definition of a package
	The purpose of the net and ado commands
	Content pages
	Package-description pages
	Where packages are installed
	A summary of the net command
	A summary of the ado command
	Relationship of net and ado to the point-and-click interface
	Creating your own site
	Format of content and package-description files
	Example 1
	Example 2
	Additional package directives
	SMCL in content and package-description files
	Error-free file delivery

	Also see

	net search
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Topic searches
	Author searches
	Command searches
	Where does net search look?
	How does net search work?

	Also see

	netio
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	nl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Substitutable expressions
	Substitutable expression programs
	Built-in functions
	Lognormal errors
	Other uses
	Weights
	Potential errors
	General comments on fitting nonlinear models
	Function evaluator programs

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	nl postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	nlcom
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Basics
	Using the post option
	Reparameterizing ML estimates for univariate data
	nlcom versus eform

	Stored results
	Methods and formulas
	References
	Also see

	nlsur
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Substitutable expression programs
	Function evaluator programs

	Stored results
	Methods and formulas
	References
	Also see

	nlsur postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	npregress intro
	Description
	Remarks and examples
	Overview
	Nonparametric series regression
	Runge's phenomenon
	Piecewise polynomial splines and B-splines

	Nonparametric kernel regression
	Limitations of nonparametric methods

	References
	Also see

	npregress kernel
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Estimation and effects
	Visualizing covariate effects

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	npregress kernel postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins
	Options for margins

	npgraph
	Description for npgraph
	Syntax for npgraph
	Options for npgraph

	Remarks and examples
	Methods and formulas
	References
	Also see

	npregress series
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Estimation and effects

	Stored results
	Methods and formulas
	Overview
	Polynomials
	Piecewise polynomial splines
	B-splines
	Model selection
	Cross-validation
	Generalized cross-validation
	Mallows's C$_p$
	AIC and BIC

	References
	Also see

	npregress series postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins
	Options for margins

	Remarks and examples
	Methods and formulas
	Reference
	Also see

	nptrend
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Cochran--Armitage test
	Jonckheere--Terpstra test
	Linear-by-linear trend test
	Cuzick's test

	Stored results
	Methods and formulas
	Overview
	Cochran--Armitage test for trend
	Jonckheere--Terpstra test for trend
	Linear-by-linear test for trend
	Cuzick's test with rank scores
	Exact p-values

	Acknowledgments
	References
	Also see

	O
	ologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	ologit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Reference
	Also see

	oneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Obtaining observed means
	Multiple-comparison tests
	Weighted data
	Video example

	Stored results
	Methods and formulas
	One-way analysis of variance
	Bartlett's test
	Multiple-comparison tests

	References
	Also see

	oprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	oprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	orthog
	Description
	Quick start
	Menu
	Syntax
	Options for orthog
	Options for orthpoly
	Remarks and examples
	Methods and formulas
	References
	Also see

	P
	pcorr
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	permute
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Monte Carlo permutation tests
	Two-sided p-values from permutation tests
	One-sided permutation test
	Enumeration
	Efficiency considerations for Monte Carlo permutations
	Efficiency considerations for enumeration

	Stored results
	Methods and formulas
	References
	Also see

	pk
	Description
	Remarks and examples
	References
	Also see

	pkcollapse
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Also see

	pkcross
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	pkequiv
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	pkexamine
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	pkshape
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	References
	Also see

	pksumm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Also see

	poisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	poisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat

	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	postest
	Description
	Menu
	Syntax
	Remarks and examples
	Overview
	Video example

	Also see

	predict
	Description
	Quick start
	Menu for predict
	Syntax
	Options
	Remarks and examples
	Estimation-sample predictions
	Out-of-sample predictions
	Residuals
	Single-equation (SE) models
	SE model scores
	Multiple-equation (ME) models
	ME model scores

	Methods and formulas
	References
	Also see

	predictnl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Nonlinear transformations and standard errors
	Using xb() and predict()
	Multiple-equation (ME) estimators
	Test statistics and p-values
	Manipulability
	Confidence intervals

	Methods and formulas
	References
	Also see

	probit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Robust standard errors
	Model identification
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	probit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Obtaining predicted values
	Performing hypothesis tests

	Methods and formulas
	Also see

	proportion
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Confidence intervals
	Survey data and sampling weights

	References
	Also see

	proportion postestimation
	Postestimation commands
	Remarks and examples
	Also see

	prtest
	Description
	Quick start
	Menu
	Syntax
	Options for prtest
	Options for prtesti
	Remarks and examples
	Tests of proportions
	Adjust for clustering
	Immediate form

	Stored results
	Methods and formulas
	One-sample test
	Two-sample test

	References
	Also see

	pwcompare
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Pairwise comparisons of means
	Marginal means
	All pairwise comparisons

	Overview of multiple-comparison methods
	Fisher's protected least-significant difference (LSD)
	Bonferroni's adjustment
	Sidak's adjustment
	Scheffe's adjustment
	Tukey's HSD adjustment
	Student--Newman--Keuls's adjustment
	Duncan's adjustment
	Dunnett's adjustment

	Example adjustments using one-way models
	Fisher's protected LSD
	Tukey's HSD
	Dunnett's method for comparisons to a control

	Two-way models
	Pairwise comparisons of slopes
	Nonlinear models
	Multiple-equation models
	Unbalanced data
	Empty cells

	Stored results
	Methods and formulas
	Notation
	Unadjusted comparisons
	Bonferroni's method
	Sidak's method
	Scheffe's method
	Tukey's method
	Student--Newman--Keuls's method
	Duncan's method
	Dunnett's method

	References
	Also see

	pwcompare postestimation
	Postestimation commands
	Remarks and examples
	Also see

	pwmean
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Group means
	Pairwise differences of means
	Group output
	Adjusting for multiple comparisons
	Tukey's method
	Dunnett's method

	Multiple over() variables
	Equal variance assumption

	Stored results
	Methods and formulas
	Reference
	Also see

	pwmean postestimation
	Postestimation commands
	Remarks and examples
	Also see

	Q
	QC
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	qreg
	Description
	Quick start
	Menu
	Syntax
	Options for qreg
	Options for iqreg
	Options for sqreg
	Options for bsqreg
	Remarks and examples
	Median regression
	Quantile regression
	Estimated standard errors
	Interquantile and simultaneous-quantile regression
	What are the parameters?

	Stored results
	Methods and formulas
	Introduction
	Linear programming formulation of quantile regression
	Standard errors when residuals are i.i.d.
	Pseudo-R-squared

	References
	Also see

	qreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Also see

	query
	Description
	Syntax
	Remarks and examples
	Also see

	R
	ranksum
	Description
	Quick start
	Menu
	Syntax
	Options for ranksum
	Options for median
	Remarks and examples
	Stored results
	Methods and formulas
	ranksum
	median

	References
	Also see

	ratio
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	The ratio estimator
	Survey data
	The survey ratio estimator
	The standardized ratio estimator
	The poststratified ratio estimator
	The standardized poststratified ratio estimator
	Subpopulation estimation

	References
	Also see

	ratio postestimation
	Postestimation commands
	Remarks and examples
	Also see

	reg3
	Description
	Nomenclature

	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	reg3 postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Reference
	Also see

	regress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Ordinary least squares
	Treatment of the constant
	Robust standard errors
	Weighted regression
	Video examples

	Stored results
	Methods and formulas
	Coefficient estimation and ANOVA table
	Weighted regression
	A general notation for the robust variance calculation
	Robust calculation for regress
	Multiway clustering

	Acknowledgments
	References
	Also see

	regress postestimation
	Postestimation commands
	Predictions
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict
	Remarks and examples for predict
	Terminology
	Fitted values and residuals
	Prediction standard errors
	Prediction with weighted data
	Leverage statistics
	Standardized and Studentized residuals
	DFITS, Cook's Distance, and Welsch Distance
	COVRATIO

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	DFBETA influence statistics
	Description for dfbeta
	Menu for dfbeta
	Syntax for dfbeta
	Option for dfbeta
	Remarks and examples for dfbeta

	Tests for violation of assumptions
	Description for estat hettest
	Menu for estat
	Syntax for estat hettest
	Options for estat hettest
	Description for estat imtest
	Menu for estat
	Syntax for estat imtest
	Options for estat imtest
	Description for estat ovtest
	Menu for estat
	Syntax for estat ovtest
	Option for estat ovtest
	Description for estat szroeter
	Menu for estat
	Syntax for estat szroeter
	Options for estat szroeter
	Remarks and examples for estat hettest, estat imtest, estat ovtest, and estat szroeter
	Stored results for estat hettest, estat imtest, and estat ovtest

	Variance inflation factors
	Description for estat vif
	Menu for estat
	Syntax for estat vif
	Option for estat vif
	Remarks and examples for estat vif

	Measures of effect size
	Description for estat esize
	Menu for estat
	Syntax for estat esize
	Options for estat esize
	Remarks and examples for estat esize
	Stored results for estat esize

	Methods and formulas
	predict
	Special-interest postestimation commands

	Acknowledgments
	References
	Also see

	regress postestimation diagnostic plots
	Description
	rvfplot
	Description for rvfplot
	Menu for rvfplot
	Syntax for rvfplot
	Options for rvfplot
	Remarks and examples for rvfplot

	avplot
	Description for avplot
	Menu for avplot
	Syntax for avplot
	Options for avplot
	Remarks and examples for avplot

	avplots
	Description for avplots
	Menu for avplots
	Syntax for avplots
	Options for avplots
	Remarks and examples for avplots

	cprplot
	Description for cprplot
	Menu for cprplot
	Syntax for cprplot
	Options for cprplot
	Remarks and examples for cprplot

	acprplot
	Description for acprplot
	Menu for acprplot
	Syntax for acprplot
	Options for acprplot
	Remarks and examples for acprplot

	rvpplot
	Description for rvpplot
	Menu for rvpplot
	Syntax for rvpplot
	Options for rvpplot
	Remarks and examples for rvpplot

	lvr2plot
	Description for lvr2plot
	Menu for lvr2plot
	Syntax for lvr2plot
	Options for lvr2plot
	Remarks and examples for lvr2plot

	Methods and formulas
	References
	Also see

	regress postestimation time series
	Postestimation commands
	estat archlm
	Description for estat archlm
	Menu for estat
	Syntax for estat archlm
	Options for estat archlm

	estat bgodfrey
	Description for estat bgodfrey
	Menu for estat
	Syntax for estat bgodfrey
	Options for estat bgodfrey

	estat durbinalt
	Description for estat durbinalt
	Menu for estat
	Syntax for estat durbinalt
	Options for estat durbinalt

	estat dwatson
	Description for estat dwatson
	Menu for estat
	Syntax for estat dwatson

	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	reri
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Additive versus multiplicative interactions
	Incidence-rate ratios, hazard ratios, and odds ratios

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	#review
	Description
	Syntax
	Remarks and examples

	roc
	Description
	References

	roccomp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Comparing areas under the ROC curve
	Correlated data
	Independent data
	Comparing areas with a gold standard

	Stored results
	Methods and formulas
	References
	Also see

	rocfit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	rocfit postestimation
	Postestimation commands
	rocplot
	Description for rocplot
	Menu for rocplot
	Syntax for rocplot
	Options for rocplot

	Remarks and examples
	Using lincom and test
	Using rocplot

	Also see

	rocreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for nonparametric ROC estimation, using bootstrap
	Options for parametric ROC estimation, using bootstrap
	Options for parametric ROC estimation, using maximum likelihood

	Remarks and examples
	Introduction
	ROC statistics
	Covariate-adjusted ROC curves
	Parametric ROC curves: Estimating equations
	Parametric ROC curves: Maximum likelihood

	Stored results
	Methods and formulas
	ROC statistics
	Covariate-adjusted ROC curves
	Parametric ROC curves: Estimating equations
	Parametric ROC curves: Maximum likelihood

	Acknowledgments
	References
	Also see

	rocreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat nproc
	Options for estat nproc

	Remarks and examples
	Using predict after rocreg
	Using estat nproc

	Stored results
	Methods and formulas
	Parametric model: Summary parameter definition
	Maximum likelihood estimation
	Estimating equations estimation

	References
	Also see

	rocregplot
	Description
	Quick start
	Menu
	Syntax
	probit_options
	common_options
	boot_options
	Remarks and examples
	Plotting covariate-specific ROC curves
	Plotting marginal ROC curves

	Methods and formulas
	Parametric model: Summary parameter definition
	Maximum likelihood estimation
	Estimating equations estimation

	References
	Also see

	roctab
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Nonparametric ROC curves
	Lorenz-like curves

	Stored results
	Methods and formulas
	References
	Also see

	rreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	rreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	runtest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References

	S
	scobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Skewed logistic model
	Robust standard errors

	Stored results
	Methods and formulas
	References
	Also see

	scobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	sdtest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic form
	Immediate form
	Robust test

	Stored results
	Methods and formulas
	References
	Also see

	search
	Description
	Quick start
	Menu
	Syntax
	Options for search
	Option for set searchdefault
	Remarks and examples
	Introduction
	Internet searches
	Author searches
	Entry ID searches
	Return codes

	Acknowledgment
	Also see

	serrbar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgment
	Also see

	set
	Description
	Syntax
	Remarks and examples
	Also see

	set cformat
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set_defaults
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set emptycells
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set iter
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set rng
	Description
	Syntax
	Remarks and examples
	Introduction
	Random-number generators in Stata

	Reference
	Also see

	set rngstream
	Description
	Syntax
	Remarks and examples
	References
	Also see

	set seed
	Description
	Syntax
	Remarks and examples
	Examples
	Setting the seed
	How to choose a seed
	Do not set the seed too often
	Preserving and restoring the random-number generator state

	Reference
	Also see

	set showbaselevels
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	signrank
	Description
	Quick start
	Menu
	Syntax
	Option for signrank
	Remarks and examples
	Stored results
	Methods and formulas
	signrank
	signtest

	References
	Also see

	simulate
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	References
	Also see

	sj
	Description
	Remarks and examples
	Installing the Stata Journal software

	Also see

	sktest
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	slogit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	One-dimensional model
	Higher-dimension models

	Stored results
	Methods and formulas
	References
	Also see

	slogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	smooth
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Methods and formulas
	Running median smoothers of odd span
	Running median smoothers of even span
	Repeat operator
	Endpoint rule
	Splitting operator
	Hanning smoother
	Twicing

	Acknowledgments
	References
	Also see

	spearman
	Description
	Quick start
	Menu
	Syntax
	Options for spearman
	Options for ktau
	Remarks and examples
	Stored results
	Methods and formulas
	Spearman's rank correlation
	Exact p-values
	Kendall's tau

	Acknowledgment
	References
	Also see

	spikeplot
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgments
	References
	Also see

	ssc
	Description
	Command overview

	Quick start
	Syntax
	Options
	Options for use with ssc new
	Options for use with ssc hot
	Option for use with ssc describe
	Options for use with ssc install
	Option for use with ssc type
	Options for use with ssc copy

	Remarks and examples
	Acknowledgments
	References
	Also see

	stem
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	stepwise
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Search logic for a step
	Full search logic
	Examples
	Estimation sample considerations
	Messages
	Programming for stepwise

	Stored results
	Methods and formulas
	References
	Also see

	Stored results
	Description
	Syntax
	Option
	Remarks and examples
	References
	Also see

	suest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Using suest
	Remarks on regress
	Testing the assumption of the independence of irrelevant alternatives
	Testing proportionality
	Testing cross-model hypotheses

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	summarize
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	sunflower
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgments
	References

	sureg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	sureg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	swilk
	Description
	Quick start
	Menu
	Syntax
	Options for swilk
	Options for sfrancia
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	symmetry
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Asymptotic tests
	Exact symmetry test

	References
	Also see

	T
	table intro
	Description
	Remarks and examples
	Overview
	Tabulations
	Tables of summary statistics
	Tables of results from other commands
	Flexible tables combining results
	Formatting, customizing, and exporting tables

	Reference
	Also see

	table oneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Tabulation of one variable
	Tabulation, including percentages
	Customizing results
	Advanced customization

	Stored results
	References
	Also see

	table twoway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Tabulation of two variables
	Tabulation, including percentages
	Customizing results

	Stored results
	References
	Also see

	table multiway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Tables with columns defined by multiple variables
	Appending tables
	Multiple tables with specified totals

	Stored results
	Reference
	Also see

	table summary
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic summary statistic tables
	Classic Table 1

	Stored results
	References
	Also see

	table hypothesis tests
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Creating tables from scalars
	Creating tables from matrices

	Stored results
	Reference
	Also see

	table regression
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Tables with results from a single command
	Tables with results from multiple estimation commands
	Regression results with factor variables

	Stored results
	References
	Also see

	table
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Specifying the table layout
	Advanced table customization

	Stored results
	Methods and formulas
	Reference
	Also see

	tabstat
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Acknowledgments
	Reference
	Also see

	tabulate oneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Limits

	Remarks and examples
	tabulate
	tab1
	Video example

	Stored results
	References
	Also see

	tabulate twoway
	Description
	Quick start
	Menu
	Syntax
	Options
	Limits

	Remarks and examples
	tabulate
	Measures of association
	N-way tables
	Weighted data
	Tables with immediate data
	tab2
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	tabulate, summarize()
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	One-way tables
	Two-way tables

	Also see

	test
	Description
	Quick start
	Menu
	Syntax
	Options for testparm
	Options for test
	Remarks and examples
	Introductory examples
	Special syntaxes after multiple-equation estimation
	Constrained coefficients
	Multiple testing

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	testnl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using testnl to perform linear tests
	Specifying constraints
	Dropped constraints
	Multiple constraints
	Manipulability

	Stored results
	Methods and formulas
	References
	Also see

	tetrachoric
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Association in 2-by-2 tables
	Factor analysis of dichotomous variables
	Tetrachoric correlations with simulated data

	Stored results
	Methods and formulas
	References
	Also see

	tnbreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	Acknowledgment
	References
	Also see

	tnbreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	Also see

	tobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Reference
	Also see

	total
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	The total estimator
	Survey data
	The survey total estimator
	The poststratified total estimator
	Subpopulation estimation

	References
	Also see

	total postestimation
	Postestimation commands
	Remarks and examples
	Also see

	tpoisson
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	tpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	translate
	Description
	Quick start
	Syntax
	Options for print
	Options for translate
	Remarks and examples
	Overview
	Printing files
	Printing files, Mac and Windows
	Printing files, Unix
	Translating files from one format to another

	Stored results
	Also see

	truncreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	truncreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	ttest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	One-sample t test
	Two-sample t test
	Paired t test
	Two-sample t test compared with one-way ANOVA
	Immediate form
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	U
	update
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	V
	vce_option
	Description
	Syntax
	Options
	Remarks and examples
	Prefix commands
	Passing options in vce()

	Methods and formulas
	Also see

	view
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	vwls
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	vwls postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	W
	which
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	wildbootstrap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	CIs for linear combinations of coefficients
	Constructing a CI inverting the hypothesis test

	Acknowledgments
	References
	Also see

	X
	xi
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Background
	Indicator variables for simple effects
	Controlling the omitted dummy
	Categorical variable interactions
	Interactions with continuous variables
	Using xi: Interpreting output
	How xi names variables
	xi as a command rather than a command prefix
	Warnings

	Stored results
	Also see

	Z
	zinb
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	zinb postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Methods and formulas
	References
	Also see

	ziologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	ziologit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Reference
	Also see

	zioprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	zioprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	zip
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	zip postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	ztest
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	One-sample z test
	Two-sample z test
	Paired z test
	Adjust for clustering
	Immediate form

	Stored results
	Methods and formulas
	One-sample z test
	Two-sample unpaired z test
	Paired z test

	References
	Also see

	[RPT] Reporting
	Contents
	Intro
	Description
	Remarks and examples
	Introduction
	Exporting to a Word (.docx) file
	Exporting to a PDF file
	Exporting to an Excel file
	Creating dynamic documents
	Converting file types

	docx2pdf
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	Dynamic documents intro
	Description
	Remarks and examples
	Also see

	Dynamic tags
	Description
	Remarks
	Descriptions of dynamic tags
	Version control
	Execute and include output from a block of Stata code
	Include strings and values of scalar expressions in text
	Include values of scalar expressions and formatted text in a .docx file
	Export and include a Stata graph
	Include a text file
	Disable dynamic text processing
	Process contents based on condition
	Skip contents based on condition
	Remove contents

	Also see

	dyndoc
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	References
	Also see

	dyntext
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	References
	Also see

	html2docx
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	markdown
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	References
	Also see

	putdocx intro
	Description
	Remarks and examples
	Introduction
	A first example
	Create a document
	Add a paragraph with text
	Add an image to a paragraph
	Add a table of estimation results

	Automating a report
	Workflow options for report building
	Create a complete document in Stata
	Create a document from Stata and Word
	Append files in Stata
	Append files in Word

	References
	Also see

	putdocx begin
	Description
	Quick start
	Syntax
	Options
	Options for putdocx begin
	Options for putdocx save
	Options for putdocx append

	Remarks and examples
	Creating and formatting a .docx file
	Including headers and footers
	Describing the document
	Saving or clearing the .docx file
	Appending .docx files

	Reference
	Also see

	putdocx collect
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Introduction
	Export a collection
	Specify the style for a collection

	Stored results
	References
	Also see

	putdocx pagebreak
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	putdocx paragraph
	Description
	Quick start
	Syntax
	Options
	Options for putdocx paragraph
	Options for putdocx text
	Options for putdocx textblock begin
	Options for putdocx textblock append
	Options for putdocx pagenumber
	Options for putdocx textfile
	Options for putdocx image

	Remarks and examples
	Adding a paragraph
	Formatting text
	Working with blocks of text
	Adding an image to the document
	Adding a bookmark to the document
	Inserting text files in the document

	Also see

	putdocx table
	Description
	Quick start
	Syntax
	Output types for tables

	Options
	table_options
	cell_options
	row_col_options
	cell_fmt_options
	exp_options
	image_options
	Option for set docx_maxtable

	Remarks and examples
	Introduction
	Creating basic tables
	Exporting summary statistics
	Exporting estimation results

	Creating advanced tables
	Customizing headers and footers with tables

	Stored results
	Reference
	Also see

	Appendix for putdocx
	Description
	Border patterns
	Chapter styles
	Colors
	Page number formats
	Paragraph styles
	Shading patterns
	Underline patterns
	Unsupported estimation commands

	Also see

	putexcel
	Description
	Quick start
	Menu
	Syntax
	Output types

	Options
	Remarks and examples
	Introduction
	Writing expressions and formatting cells
	Exporting summary statistics to Excel
	Exporting estimation results
	Exporting a table from a collection
	Exporting graphs and other images

	Appendix
	Codes for numeric formats
	Colors
	Border styles
	Background patterns

	Stored results
	References
	Also see

	putexcel advanced
	Description
	Quick start
	Menu
	Syntax
	Output types

	Options
	Remarks and examples
	Writing expressions and formatting cells
	Using formulas
	Exporting estimation results

	References
	Also see

	putpdf intro
	Description
	Remarks and examples
	Introduction
	Create a PDF file
	Add a paragraph with text
	Add an image to a paragraph
	Add table of estimation results

	Also see

	putpdf begin
	Description
	Quick start
	Syntax
	Options
	Options for putpdf begin
	Options for putpdf save

	Remarks and examples
	Creating and formatting a PDF file
	Describing the document
	Saving or clearing the PDF file

	References
	Also see

	putpdf collect
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Introduction
	Export a table with items from a collection

	Stored results
	References
	Also see

	putpdf pagebreak
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Also see

	putpdf paragraph
	Description
	Quick start
	Syntax
	Options
	Options for putpdf paragraph
	Options for putpdf text
	Options for putpdf image

	Remarks and examples
	Adding a paragraph
	Adding an image to the document

	Also see

	putpdf table
	Description
	Quick start
	Syntax
	Output types for tables

	Options
	table_options
	cell_options
	row_col_options
	cell_fmt_options
	Option for set pdf_maxtable

	Remarks and examples
	Creating basic tables
	Exporting summary statistics
	Exporting estimation results

	Creating advanced tables

	Stored results
	Reference
	Also see

	Appendix for putpdf
	Description
	Colors
	Unsupported estimation commands

	Also see

	set docx
	Description
	Syntax
	Remarks and examples
	Reference
	Also see

	Glossary

	[SEM] Structural Equation Modeling
	Contents
	Acknowledgments
	Reference
	Also see

	Intro 1
	Description
	Remarks and examples
	Also see

	Intro 2
	Description
	Remarks and examples
	Using path diagrams to specify standard linear SEMs
	Specifying correlation
	Using the command language to specify standard linear SEMs
	Specifying generalized SEMs: Family and link
	Specifying generalized SEMs: Family and link, multinomial logistic regression
	Specifying generalized SEMs: Family and link, paths from response variables
	Specifying generalized SEMs: Multilevel mixed effects (2 levels)
	Specifying generalized SEMs: Multilevel mixed effects (3 levels)
	Specifying generalized SEMs: Multilevel mixed effects (4+ levels)
	Specifying generalized SEMs: Multilevel mixed effects with random intercepts
	Specifying generalized SEMs: Multilevel mixed effects with random slopes
	Specifying generalized SEMs: Latent class analysis (LCA)
	Specifying generalized SEMs: Latent class analysis, class predictors
	Specifying generalized SEMs: Latent class analysis, two latent variables

	Reference
	Also see

	Intro 3
	Description
	Remarks and examples
	Specifying indicator variables
	Specifying interactions with indicator variables
	Specifying categorical variables
	Specifying interactions with categorical variables
	Specifying endogenous variables

	Also see

	Intro 4
	Description
	Remarks and examples
	Differences in assumptions between sem and gsem
	sem: Choice of estimation method
	gsem: Choice of estimation method

	Treatment of missing values
	Variable types: Observed, latent, endogenous, exogenous, and error
	Constraining parameters
	Constraining path coefficients to specific values
	Constraining intercepts to specific values (suppressing the intercept)
	Constraining path coefficients or intercepts to be equal
	Constraining covariances to be equal (or to specific values)
	Constraining variances to specific values (or to be equal)

	Identification 1: Substantive issues
	Not all models are identified
	How to count parameters
	What happens when models are unidentified
	How to diagnose and fix the problem

	Identification 2: Normalization constraints (anchoring)
	Why the problem arises
	How the problem would manifest itself
	How sem (gsem) solves the problem for you
	Overriding sem's (gsem's) solution

	References
	Also see

	Intro 5
	Description
	Remarks and examples
	Single-factor measurement models
	Item response theory (IRT) models
	Multiple-factor measurement models
	Confirmatory factor analysis (CFA) models
	Structural models 1: Linear regression
	Structural models 2: Gamma regression
	Structural models 3: Binary-outcome models
	Structural models 4: Count models
	Structural models 5: Ordinal models
	Structural models 6: Multinomial logistic regression
	Structural models 7: Survival models
	Structural models 8: Dependencies between response variables
	Structural models 9: Unobserved inputs, outputs, or both
	Structural models 10: MIMIC models
	Structural models 11: Seemingly unrelated regression (SUR)
	Structural models 12: Multivariate regression
	Structural models 13: Mediation models
	Correlations
	Higher-order CFA models
	Correlated uniqueness model
	Latent growth models
	Models with reliability
	Multilevel mixed-effects models
	Latent class models
	Finite mixture models

	References
	Also see

	Intro 6
	Description
	Remarks and examples
	Comparing groups with sem
	The generic SEM model
	sem: Fitting the model for different groups of the data
	sem: Which parameters vary by default, and which do not
	sem: Specifying which parameters are allowed to vary in broad, sweeping terms
	sem: Adding constraints for path coefficients across groups
	sem: Adding constraints for means, variances, or covariances across groups
	sem: Adding constraints for some groups but not others
	sem: Adding paths for some groups but not others
	sem: Relaxing constraints

	Comparing groups with gsem
	gsem: Fitting the model for different groups of the data
	gsem: Which parameters vary by default, and which do not
	gsem: Specifying which parameters are allowed to vary in broad, sweeping terms
	gsem: Adding constraints for path coefficients across groups
	gsem: Adding constraints for means, variances, or covariances across groups
	gsem: Adding constraints for some groups but not others
	gsem: Adding paths for some groups but not others
	gsem: Relaxing constraints

	Reference
	Also see

	Intro 7
	Description
	Remarks and examples
	Replaying the model (sem and gsem)
	Displaying odds ratios, incidence-rate ratios, etc. (gsem only)
	Obtaining goodness-of-fit statistics (sem and gsem)
	Performing tests for including omitted paths and relaxing constraints (sem only)
	Performing tests of model simplification (sem and gsem)
	Displaying other results, statistics, and tests (sem and gsem)
	Obtaining predicted values (sem)
	Obtaining predicted values (gsem)
	Using contrast, pwcompare, and margins (sem and gsem)
	Accessing stored results

	Reference
	Also see

	Intro 8
	Description
	Options
	Remarks and examples
	Also see

	Intro 9
	Description
	Options
	Remarks and examples
	Reference
	Also see

	Intro 10
	Description
	Remarks and examples
	Also see

	Intro 11
	Description
	Remarks and examples
	Background
	How to use sem with SSD
	What you cannot do with SSD
	Entering SSD
	Entering SSD for multiple groups
	What happens when you do not set all the summary statistics
	Labeling SSD
	Making summary statistics from data for use by others

	Reference
	Also see

	Intro 12
	Description
	Remarks and examples
	Is your model identified?
	Convergence solutions generically described
	Temporarily eliminate option reliability()
	Use default normalization constraints
	Temporarily eliminate feedback loops
	Temporarily simplify the model
	Try other numerical integration methods (gsem only)
	Get better starting values (sem and gsem)
	Get better starting values (gsem)

	Also see

	Builder
	Description
	Remarks and examples
	Video example

	Reference

	Builder, generalized
	Description
	Remarks and examples
	Video example

	Reference

	estat eform
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	estat eqgof
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	estat eqtest
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat framework
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	estat ggof
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	estat ginvariant
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estat gof
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estat lcgof
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	References
	Also see

	estat lcmean
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat lcprob
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat mindices
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estat residuals
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estat scoretests
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	References
	Also see

	estat sd
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	estat stable
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	estat stdize
	Description
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	estat summarize
	Description
	Menu
	Syntax
	Options
	Stored results
	Also see

	estat teffects
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	Example 1
	Description
	Remarks and examples
	Single-factor measurement model
	Satorra--Bentler scaled chi-squared test
	Fitting the same model with gsem
	Fitting the same model with the Builder
	The measurement-error model interpretation

	References
	Also see

	Example 2
	Description
	Remarks and examples
	Background
	Creating the SSD
	At this point, we could save the dataset and stop
	Labeling the SSD
	Listing the SSD

	Reference
	Also see

	Example 3
	Description
	Remarks and examples
	Fitting multiple-factor measurement models
	Displaying standardized results
	Fitting the model with the Builder
	Obtaining equation-level goodness of fit by using estat eqgof

	References
	Also see

	Example 4
	Description
	Remarks and examples
	Reference
	Also see

	Example 5
	Description
	Remarks and examples
	Reference
	Also see

	Example 6
	Description
	Remarks and examples
	Fitting linear regression models
	Displaying standardized results
	Fitting the model with the Builder

	Also see

	Example 7
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder
	Checking stability with estat stable
	Reporting total, direct, and indirect effects with estat teffects

	References
	Also see

	Example 8
	Description
	Remarks and examples
	Using test to evaluate adding constraints
	Refitting the model with added constraints
	Using estat scoretests to test whether constraints can be relaxed

	Also see

	Example 9
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder
	Evaluating omitted paths with estat mindices
	Refitting the model

	References
	Also see

	Example 10
	Description
	Remarks and examples
	Fitting the MIMIC model
	Fitting the MIMIC model with the Builder
	Evaluating the residuals with estat residuals
	Performing likelihood-ratio tests with lrtest

	Reference
	Also see

	Example 11
	Description
	Remarks and examples
	Also see

	Example 12
	Description
	Remarks and examples
	Fitting the seemingly unrelated regression model
	Fitting the model with the Builder

	Also see

	Example 13
	Description
	Remarks and examples
	Also see

	Example 14
	Description
	Remarks and examples
	Also see

	Example 15
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder

	Reference
	Also see

	Example 16
	Description
	Remarks and examples
	Using sem to obtain correlation matrices
	Fitting the model with the Builder
	Testing correlations with estat stdize and test

	Also see

	Example 17
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder

	Reference
	Also see

	Example 18
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder

	Reference
	Also see

	Example 19
	Description
	Remarks and examples
	Reference
	Also see

	Example 20
	Description
	Remarks and examples
	Background
	Fitting the model with all the data
	Fitting the model with the group() option
	Fitting the model with the Builder

	Reference
	Also see

	Example 21
	Description
	Remarks and examples
	Also see

	Example 22
	Description
	Remarks and examples
	Also see

	Example 23
	Description
	Remarks and examples
	Background
	Fitting the constrained model

	Also see

	Example 24
	Description
	Remarks and examples
	Baseline model (reliability ignored)
	Model with reliability
	Model with two measurement variables and reliability

	Also see

	Example 25
	Description
	Remarks and examples
	Preparing data for conversion
	Converting to summary statistics form
	Publishing SSD
	Creating SSD with multiple groups

	Also see

	Example 26
	Description
	Remarks and examples
	Fitting the model with method(ml)
	Fitting the model with method(mlmv)
	Fitting the model with the Builder

	Also see

	Example 27g
	Description
	Remarks and examples
	Single-factor pass/fail measurement model
	Single-factor pass/fail + continuous measurement model
	Fitting the model with the Builder

	Also see

	Example 28g
	Description
	Remarks and examples
	1-PL IRT model with unconstrained variance
	1-PL IRT model with variance constrained to 1
	Obtaining item characteristic curves
	Fitting the model with the Builder

	References
	Also see

	Example 29g
	Description
	Remarks and examples
	Fitting the 2-PL IRT model
	Obtaining predicted difficulty and discrimination
	Using coeflegend to obtain the symbolic names of the parameters
	Graphing item characteristic curves
	Fitting the model with the Builder

	References
	Also see

	Example 30g
	Description
	Remarks and examples
	Fitting the two-level model
	Fitting the variance-components model
	Fitting the model with the Builder

	References
	Also see

	Example 31g
	Description
	Remarks and examples
	Fitting the two-factor model
	Fitting the model with the Builder

	Also see

	Example 32g
	Description
	Remarks and examples
	Structural model with measurement component
	Fitting the model with the Builder

	Also see

	Example 33g
	Description
	Remarks and examples
	Fitting the logit model
	Obtaining odds ratios
	Fitting the model with the Builder

	Reference
	Also see

	Example 34g
	Description
	Remarks and examples
	Fitting the combined model
	Obtaining odds ratios and incidence-rate ratios
	Fitting the model with the Builder

	Reference
	Also see

	Example 35g
	Description
	Remarks and examples
	Ordered probit
	Ordered logit
	Fitting the model with the Builder

	Reference
	Also see

	Example 36g
	Description
	Remarks and examples
	Fitting the MIMIC model
	Fitting the model with the Builder

	Reference
	Also see

	Example 37g
	Description
	Remarks and examples
	Simple multinomial logistic regression model
	Multinomial logistic regression model with constraints
	Fitting the simple multinomial logistic model with the Builder
	Fitting the multinomial logistic model with constraints with the Builder

	Reference
	Also see

	Example 38g
	Description
	Remarks and examples
	Random-intercept model, single-equation formulation
	Random-intercept model, within-and-between formulation
	Random-slope model, single-equation formulation
	Random-slope model, within-and-between formulation
	Fitting the random-intercept model with the Builder
	Fitting the random-slope model with the Builder

	Reference
	Also see

	Example 39g
	Description
	Remarks and examples
	Three-level negative binomial model
	Three-level Poisson model
	Testing for overdispersion
	Fitting the models with the Builder

	References
	Also see

	Example 40g
	Description
	Remarks and examples
	The crossed model
	Fitting the model with the Builder

	Reference
	Also see

	Example 41g
	Description
	Remarks and examples
	Two-level multinomial logistic model with shared random effects
	Two-level multinomial logistic model with separate but correlated random effects
	Fitting the model with the Builder

	References
	Also see

	Example 42g
	Description
	Remarks and examples
	One-level model with sem
	One-level model with gsem
	Two-level model with gsem
	Fitting the models with the Builder

	References
	Also see

	Example 43g
	Description
	Remarks and examples
	Fitting tobit regression models
	Fitting the model with the Builder

	Also see

	Example 44g
	Description
	Remarks and examples
	Fitting interval regression models
	Fitting the model with the Builder

	Also see

	Example 45g
	Description
	Remarks and examples
	The Heckman selection model as an SEM
	Fitting the Heckman selection model as an SEM
	Transforming results and obtaining rho
	Fitting the model with the Builder

	References
	Also see

	Example 46g
	Description
	Remarks and examples
	Fitting the treatment-effects model
	Fitting the model with the Builder

	References
	Also see

	Example 47g
	Description
	Remarks and examples
	Fitting the exponential model
	Obtaining hazard ratios
	Fitting the model with the Builder

	Also see

	Example 48g
	Description
	Remarks and examples
	Censoring and truncation
	Using stset to declare survival characteristics
	Fitting the loglogistic model
	Fitting the model with the Builder

	Reference
	Also see

	Example 49g
	Description
	Remarks and examples
	Fitting the multiple-group model
	Fitting the model with the Builder

	Also see

	Example 50g
	Description
	Remarks and examples
	References
	Also see

	Example 51g
	Description
	Remarks and examples
	Likelihood-ratio test
	Comparing models

	Reference
	Also see

	Example 52g
	Description
	Remarks and examples
	Fitting the two-class model
	Comparing models
	Fitting the three-class model with covariances

	References
	Also see

	Example 53g
	Description
	Remarks and examples
	References
	Also see

	Example 54g
	Description
	Remarks and examples
	References
	Also see

	gsem
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Default normalization constraints
	Default covariance assumptions
	How to solve convergence problems

	Stored results
	References
	Also see

	gsem estimation options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	gsem family-and-link options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	gsem group options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	gsem lclass options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	gsem model description options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	gsem path notation extensions
	Description
	Syntax
	Options
	Remarks and examples
	Specifying family and link
	Specifying multilevel nested latent variables
	Specifying multilevel crossed latent variables
	Specifying paths for a specific group
	Specifying paths for a specific latent class
	Specifying paths for a specific group and latent class

	Also see

	gsem postestimation
	Postestimation commands
	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	gsem reporting options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	lincom
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	lrtest
	Description
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	Methods and formulas for gsem
	Description
	Remarks and examples
	Introduction
	Families of distributions
	The Bernoulli family
	The beta family
	The binomial family
	The ordinal family
	The multinomial family
	The Poisson family
	The negative binomial family
	The Gaussian family
	Reliability
	Point mass

	Link functions
	The logit link
	The probit link
	The complementary log--log link
	The log link
	The identity link

	Survival distributions
	The exponential distribution
	The Weibull distribution
	The gamma distribution
	The loglogistic distribution
	The lognormal distribution

	Models with continuous latent variables
	Continuous latent variables likelihood
	Gauss--Hermite quadrature
	Adaptive quadrature
	Laplacian approximation
	Continuous latent variables survey data
	Continuous latent variables predictions

	Models with categorical latent variables
	Categorical latent variables likelihood
	The EM algorithm
	Categorical latent variables survey data
	Categorical latent variables predictions

	References
	Also see

	Methods and formulas for sem
	Description
	Remarks and examples
	Variable notation
	Model and parameterization
	Summary data
	Maximum likelihood
	Weighted least squares
	Groups
	Fitted parameters
	Satorra{--}Bentler variance estimation
	Standardized parameters
	Reliability
	Postestimation

	References
	Also see

	nlcom
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	predict after gsem
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	predict after sem
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	sem
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Default normalization constraints
	Default covariance assumptions
	How to solve convergence problems

	Stored results
	References
	Also see

	sem and gsem option constraints()
	Description
	Syntax
	Remarks and examples
	Use with sem
	Use with gsem

	Also see

	sem and gsem option covstructure()
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	sem and gsem option from()
	Description
	Syntax
	Option
	Remarks and examples
	Syntax 1, especially useful when dealing with convergence problems
	Syntax 2, seldom used

	Also see

	sem and gsem option reliability()
	Description
	Syntax
	Option
	Remarks and examples
	Background
	Dealing with measurement error of exogenous variables
	Dealing with measurement error of endogenous variables
	What can go wrong

	Also see

	sem and gsem path notation
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem and gsem syntax options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem estimation options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem group options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem model description options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem option method()
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem option noxconditional
	Description
	Syntax
	Option
	Remarks and examples
	What is x conditional?
	When to specify noxconditional
	Option forcexconditional (a technical note)

	Also see

	sem option select()
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	sem path notation extensions
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	sem postestimation
	Postestimation commands
	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Reference
	Also see

	sem reporting options
	Description
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	sem ssd options
	Description
	Syntax
	Options
	Remarks and examples
	Also see

	ssd
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	test
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	testnl
	Description
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	Glossary
	Reference

	[SP] Spatial Autoregressive Models
	Contents
	Intro
	Description
	Remarks and examples
	References for learning SAR models
	Technical references on the development and fitting of SAR models

	Acknowledgments
	References

	Intro 1
	Description
	Remarks and examples
	Also see

	Intro 2
	Description
	Remarks and examples
	Understanding the W matrix
	Missing values, dropped observations, and the W matrix

	Reference
	Also see

	Intro 3
	Description
	Remarks and examples
	Three types of Sp data
	Type 1: Data with shapefiles
	Type 2: Data without shapefiles but including location information
	Type 3: Data without shapefiles or location information

	Sp can be used with cross-sectional data or panel data
	ID variables for cross-sectional data
	ID variables for panel data

	Also see

	Intro 4
	Description
	Remarks and examples
	Overview
	How to find and download shapefiles on the web
	Standard-format shapefiles
	Stata-format shapefiles
	Creating Stata-format shapefiles
	Step 1: Find and download a shapefile
	Step 2: Translate the shapefile to Stata format
	Step 3: Look at the translated data
	Step 4: Create a common ID variable for use with other data
	Step 5: Optionally, tell Sp to use the common ID variable
	Step 6: Set the units of the coordinates, if necessary

	Preparing your data
	Step 7a: Merge your cross-sectional data with the Stata-format shapefiles
	Step 7b: Merge your panel data with the Stata-format shapefiles

	Rules for working with Sp data, whether cross-sectional or panel

	Also see

	Intro 5
	Description
	Remarks and examples
	Preparation of cross-sectional data
	Preparation of panel data
	There are no rules as there are with shapefiles

	Also see

	Intro 6
	Description
	Remarks and examples
	Nongeographic spatial data
	Preparation of cross-sectional data
	Preparation of panel data
	There are no rules as there are with shapefiles

	Also see

	Intro 7
	Description
	Remarks and examples
	Research plan
	Finding and preparing data
	Finding a shapefile for Texas counties
	Creating the Stata-format shapefile
	Merging our data with the Stata-format shapefile

	Analyzing texas_ue.dta
	Testing whether ordinary regression is adequate
	spregress can reproduce regress results
	Fitting models with a spatial lag of the dependent variable
	Interpreting models with a spatial lag of the dependent variable
	Fitting models with a spatial lag of independent variables
	Interpreting models with a spatial lag of the independent variables
	Fitting models with spatially autoregressive errors
	Models can have all three kinds of spatial lag terms

	Also see

	Intro 8
	Description
	Remarks and examples
	spregress, gs2sls
	spregress, ml
	spivregress
	spxtregress
	spxtregress, re
	spxtregress, fe

	References
	Also see

	estat moran
	Description
	Quick start
	Menu for estat
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	grmap
	Description
	Quick start
	Menu
	Remarks and examples
	References
	Also see

	spbalance
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Balancing by dropping spatial units

	Stored results
	Also see

	spcompress
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Introduction
	Using the force option

	Stored results
	Also see

	spdistance
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Are coordinates really planar and not latitude and longitude?
	Reverse engineering planar distances
	More than you want to know about coordinates
	Planar coordinates
	Latitude and longitude coordinates

	Stored results
	Methods and formulas
	Reference
	Also see

	spgenerate
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Use with Sp data
	Use with other datasets

	Also see

	spivregress
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	spivregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins
	Remarks for margins

	estat impact
	Description for estat impact
	Syntax for estat impact
	Options for estat impact
	Remarks for estat impact
	Stored results for estat impact

	Methods and formulas
	Predictions
	Reduced-form mean
	Direct and indirect means
	Limited-information mean
	Full-information mean
	Naive-form predictor
	Linear predictor
	Residuals
	Uncorrelated residuals

	Impacts

	References
	Also see

	spmatrix
	Description
	Reference
	Also see

	spmatrix copy
	Description
	Quick start
	Menu
	Syntax
	Also see

	spmatrix create
	Description
	Quick start
	Menu
	Syntax
	Options for spmatrix create contiguity
	Option for spmatrix create idistance
	Options for both contiguity and idistance
	Remarks and examples
	Creating contiguity matrices
	Creating inverse-distance matrices
	Creating inverse-distance contiguity matrices
	The normalize() option
	Panel data

	Also see

	spmatrix drop
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	spmatrix dir
	Save and drop matrices you are not using

	Stored results
	Also see

	spmatrix export
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Using spmatrix export
	The spmatrix export text-file format

	Also see

	spmatrix fromdata
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	spmatrix import
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	spmatrix matafromsp
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Getting W and id
	Using W without involving the data in memory
	Using W involving the data in memory

	Also see

	spmatrix normalize
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Using spmatrix normalize after spmatrix import
	Using spmatrix normalize after other commands
	Using spmatrix normalize to change normalization

	Also see

	spmatrix note
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Also see

	spmatrix save
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	spmatrix spfrommata
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	W and v
	Simple use
	Advanced use

	References
	Also see

	spmatrix summarize
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	spmatrix use
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	spmatrix userdefined
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Sfcnname() versus Afcnname()
	Programming style
	Advanced programs
	Mixed approaches

	Also see

	spregress
	Description
	Quick start
	Menu
	Syntax
	Options for spregress, gs2sls
	Options for spregress, ml
	Remarks and examples
	Introduction
	Choosing weighting matrices and their normalization
	Weighting matrices
	Normalization of weighting matrices
	Direct and indirect effects and normalization

	Examples

	Stored results
	Methods and formulas
	Model
	GS2SLS estimator
	2SLS estimator of delta
	GMM estimator of rho based on 2SLS residuals
	GS2SLS estimator of delta
	Efficient GMM estimator of rhob based on GS2SLS residuals

	ML estimator
	Log-likelihood function

	Pseudo-R-squared

	References
	Also see

	spregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins
	Remarks for margins

	estat impact
	Description for estat impact
	Syntax for estat impact
	Options for estat impact
	Remarks for estat impact
	Stored results for estat impact

	Methods and formulas
	Predictions
	Reduced-form mean
	Direct and indirect means
	Limited-information mean
	Full-information mean
	Naive-form predictor
	Linear predictor
	Residuals
	Uncorrelated residuals

	Impacts

	References
	Also see

	spset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Determining whether and how data are spset
	Setting data for the first time
	Setting data with a standard-format shapefile
	Setting data with a Stata-format shapefile
	Setting data without a shapefile but with coordinates
	Setting data without a shapefile

	Modifying settings
	Modifying coordinates
	Modifying how coordinates are interpreted
	Modifying the ID variable
	Modifying whether the data are linked to a shapefile

	Converting cross-sectional data to panel data and vice versa

	Stored results
	Also see

	spshape2dta
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	spxtregress
	Description
	Quick start
	Menu
	Syntax
	Options for spxtregress, fe
	Options for spxtregress, re
	Remarks and examples
	Sp panel models
	The fixed-effects model
	The random-effects model
	The random-effects model with autoregressive panel effects
	Differences among models
	Examples

	Stored results
	Methods and formulas
	Fixed-effects estimators
	Random-effects estimators

	References
	Also see

	spxtregress postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins
	Remarks for margins

	estat impact
	Description for estat impact
	Syntax for estat impact
	Option for estat impact
	Remarks for estat impact
	Stored results for estat impact

	Methods and formulas
	Predictions
	Reduced-form mean
	Direct and indirect means
	Linear predictor

	Impacts in random-effects models
	Impacts in fixed-effects models

	Reference
	Also see

	Glossary

	[ST] Survival Analysis
	Contents
	Intro
	Description
	Also see

	Survival analysis
	Description
	Remarks and examples
	Introduction
	Declaring and converting count data
	Converting snapshot data
	Declaring and summarizing survival-time data
	Manipulating survival-time data
	Obtaining summary statistics, confidence intervals, tables, etc.
	Fitting regression models
	Prediction and model selection
	Sample size and power determination for survival analysis
	Converting survival-time data
	Programmer's utilities

	References
	Also see

	ct
	Description
	Also see

	ctset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Examples
	Data errors flagged by ctset

	Also see

	cttost
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	Discrete
	Description
	Acknowledgment
	References
	Also see

	estat gofplot
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	ltable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Methods and formulas
	Acknowledgments
	References
	Also see

	PH plots (interval-censored)
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for stintphplot
	Options for stintcoxnp

	Remarks and examples
	Methods and formulas
	References
	Also see

	PH plots (right-censored)
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for stphplot
	Options for stcoxkm
	Options for estat phtest

	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	snapspan
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Snapshot and time-span datasets
	Specifying varlist

	Also see

	st
	Description
	Also see

	st_is
	Description
	Syntax
	Remarks and examples
	Definitions of characteristics and st variables
	Outline of an st command
	Using the st_ct utility
	Comparison of st_ct with sttoct
	Verifying data
	Converting data

	Also see

	stbase
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	stbase without the at() option
	stbase with the at() option
	Single-failure st data where all subjects enter at time 0
	Single-failure st data where some subjects enter after time 0
	Single-failure st data with gaps and perhaps delayed entry
	Multiple-failure st data

	Also see

	stci
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Single-failure data
	Multiple-failure data

	Stored results
	Methods and formulas
	References
	Also see

	stcox
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Cox regression with uncensored data
	Cox regression with censored data
	Treatment of tied failure times
	Cox regression with time-varying covariates in multiple-record data
	Cox regression with time-varying covariates using option tvc()
	Robust estimate of variance
	Cox regression with multiple-failure data
	Stratified estimation
	Cox regression as Poisson regression
	Cox regression with shared frailty

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	stcox postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Baseline functions
	Making baseline reasonable
	Residuals and diagnostic measures
	Multiple records per subject
	Predictions after stcox with the tvc() option
	Predictions after stcox with the shared() option
	estat concordance

	Stored results
	Methods and formulas
	estat concordance

	References
	Also see

	stcrreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	The case for competing-risks regression
	Using stcrreg
	Multiple competing-event types
	stcrreg as an alternative to stcox
	Multiple records per subject
	Option tvc() and testing the proportional-subhazards assumption

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	stcrreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Baseline functions
	Null models
	Measures of influence

	Methods and formulas
	References
	Also see

	stcurve
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	stcurve after stcox
	stcurve after streg
	stcurve after stcrreg
	stcurve after stintreg and stintcox
	stcurve after stmgintcox (StataNow)
	Using at() with stcurve

	References
	Also see

	stdescribe
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Reference
	Also see

	stfill
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	stgen
	Description
	Quick start
	Menu
	Syntax
	Functions
	Remarks and examples
	Also see

	stintcox
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Single- versus multiple-record interval-censored data formats
	Case II interval-censored data
	Time-varying covariates
	Standard error estimation with interval-censored data
	Current status or case I interval-censored data
	Testing the proportional-hazards assumption using the tvc() option

	Stored results
	Methods and formulas
	Data and model
	EM algorithm for computing parameter estimates
	Variance estimation using the profile log-likelihood function
	Stratified estimation
	Option tvc()

	Acknowledgments
	References
	Also see

	stintcox postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Baseline functions
	Residuals and diagnostic measures
	Postestimation after stintcox with the tvc() option
	Survivor curves for multiple-record-per-subject data with time-varying covariates

	Methods and formulas
	Predictions for single-record interval-censored data
	Predictions for multiple-record interval-censored data
	Survivor curves for interval-censored data

	References
	Also see

	stintreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Types of interval-censoring
	Case II interval-censored data
	Case I interval-censored data

	Parameterization of ancillary parameters
	Stratified estimation

	Stored results
	Methods and formulas
	Introduction
	Distributions and parameterizations
	Parameter estimation using interval-censored data

	References
	Also see

	stintreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Predicted values
	Residuals and diagnostic measures

	Methods and formulas
	References
	Also see

	stir
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	Reference
	Also see

	stmc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	Reference
	Also see

	stmgintcox
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Single- versus multiple-record-per-event interval-censored data formats
	Flexible ways to specify the model
	Single-record-per-event interval-censored data
	Incorporating time-varying covariates using the tvc() option
	Multiple-record-per-event interval-censored data

	Stored results
	Methods and formulas
	Data and model
	EM algorithm for computing parameter estimates
	Variance estimation using the profile log-pseudolikelihood function
	Clustered data estimation

	Acknowledgments
	References
	Also see

	stmgintcox postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat common
	Menu for estat
	Syntax for estat common
	Options for estat common

	Remarks and examples
	Estimating the average effect using estat common
	Baseline functions
	Residuals and diagnostic measures

	Stored results
	Methods and formulas
	References
	Also see

	stmh
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	References
	Also see

	stptime
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Stored results
	References
	Also see

	strate
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgments
	Reference
	Also see

	streg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Distributions
	Examples
	Parameterization of ancillary parameters
	Stratified estimation
	(Unshared-) frailty models
	Shared-frailty models

	Stored results
	Methods and formulas
	Parameter estimation

	References
	Also see

	streg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	References
	Also see

	sts
	Description
	Syntax
	Remarks and examples
	Listing, graphing, and generating variables
	Comparing survivor or cumulative hazard functions
	Testing equality of survivor functions
	Covariate-adjusted estimates
	Counting the number lost to censoring
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	sts generate
	Description
	Quick start
	Menu
	Syntax
	Functions
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	sts graph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Including the number lost on the graph
	Graphing the Nelson{--}Aalen cumulative hazard function
	Graphing the hazard function
	Adding an at-risk table
	On boundary bias for smoothed hazards
	Video example

	Methods and formulas
	Smoothed hazard estimate

	References
	Also see

	sts list
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Video example

	Methods and formulas
	References
	Also see

	sts test
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	The log-rank test
	The Wilcoxon (Breslow--Gehan) test
	The Tarone--Ware test
	The Peto--Peto--Prentice test
	The generalized Fleming--Harrington tests
	The ``Cox'' test
	The trend test
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	stset
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for use with stset and streset
	Options unique to streset
	Options for st

	Remarks and examples
	What are survival-time data?
	Key concepts
	Survival-time datasets
	Using stset
	Two concepts of time
	The substantive meaning of analysis time
	Setting the failure event
	Setting multiple failures
	First entry times
	Final exit times
	Intermediate exit and reentry times (gaps)
	if() versus if exp
	Past and future records
	Using streset
	Performance and multiple-record-per-subject datasets
	Sequencing of events within t
	Weights
	Data warnings and errors flagged by stset
	Using survival-time data in Stata
	Video example

	References
	Also see

	stsplit
	Description
	Quick start
	Menu
	Syntax
	Options for stsplit
	Option for stjoin
	Remarks and examples
	What stsplit does and why
	Using stsplit to split at designated times
	Time versus analysis time
	Splitting data on recorded ages
	Using stsplit to split at failure times

	Acknowledgments
	References
	Also see

	stsum
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Single-failure data
	Multiple-failure data
	Video example

	Stored results
	Methods and formulas
	Also see

	sttocc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Acknowledgments
	References
	Also see

	sttoct
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Case 1: entvar not specified
	Case 2: entvar specified

	Also see

	stvary
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Video example

	Stored results
	Reference
	Also see

	adjustfor_option
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Using adjustfor() with sts, stphplot, and stintphplot
	Syntax of at()

	Also see

	Glossary

	[SVY] Survey Data
	Contents
	Intro
	Description
	Also see

	Survey
	Description
	Remarks and examples
	Introduction
	Survey design tools
	Survey data analysis tools
	Survey data concepts
	Tools for programmers of new survey commands
	Video examples

	Acknowledgments
	References
	Also see

	bootstrap_options
	Description
	Syntax
	Options
	Also see

	brr_options
	Description
	Syntax
	Options
	Also see

	Calibration
	Description
	Remarks and examples
	Methods and formulas
	References
	Also see

	Direct standardization
	Description
	Remarks and examples
	Methods and formulas
	References
	Also see

	estat
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for estat effects
	Options for estat lceffects
	Options for estat size
	Options for estat sd
	Options for estat cv
	Options for estat gof
	Options for estat vce

	Remarks and examples
	Stored results
	Methods and formulas
	Design effects
	Linear combinations
	Misspecification effects
	Population and subpopulation standard deviations
	Coefficient of variation
	Goodness of fit for binary response models

	References
	Also see

	jackknife_options
	Description
	Syntax
	Options
	Also see

	ml for svy
	Remarks and examples
	Reference
	Also see

	Poststratification
	Description
	Remarks and examples
	Methods and formulas
	References
	Also see

	sdr_options
	Description
	Syntax
	Options
	Also see

	Subpopulation estimation
	Description
	Remarks and examples
	Methods and formulas
	Subpopulation totals
	Subpopulation estimates other than the total
	Subpopulation with replication methods

	References
	Also see

	svy
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	svy bootstrap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	svy brr
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	svy estimation
	Description
	Menu
	Remarks and examples
	Overview of survey analysis in Stata
	Descriptive statistics
	Regression models
	Health surveys

	References
	Also see

	svy jackknife
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	svy postestimation
	Postestimation commands
	predict
	margins
	Remarks and examples
	References
	Also see

	svy sdr
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	svy: tabulate oneway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	svy: tabulate twoway
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	The Rao and Scott correction
	Wald statistics
	Properties of the statistics

	Stored results
	Methods and formulas
	The table items
	Confidence intervals
	The test statistics

	References
	Also see

	svydescribe
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	svymarkout
	Description
	Syntax
	Remarks and examples
	Stored results
	Also see

	svyset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction to survey design characteristics
	Finite population correction (FPC)
	Multiple-stage designs and with-replacement sampling
	Replication-weight variables
	Combining datasets from multiple surveys
	Video example

	Stored results
	References
	Also see

	Variance estimation
	Description
	Remarks and examples
	Variance of the total
	Variance for census data
	Certainty sampling units
	Strata with one sampling unit
	Ratios and other functions of survey data
	Linearized/robust variance estimation
	The bootstrap
	BRR
	The jackknife
	Successive difference replication
	Confidence intervals

	References
	Also see

	Glossary

	[TABLES] Customizable Tables
	Contents
	Intro
	Description
	Remarks and examples
	What is in this manual?
	What are collections?
	Do you need collections?
	The dtable and etable commands
	The table command

	Acknowledgments
	Reference

	Intro 1
	Description
	Remarks and examples
	Also see

	Intro 2
	Description
	Remarks and examples
	Tags, dimensions, and levels
	Introducing collect:
	Introducing collect layout
	Introducing collect recode

	Using collect layout
	Selecting specific levels of a dimension

	What is in my collection?
	Introducing collect levelsof
	Introducing collect label list
	Where do result labels come from?
	Introducing collect label levels
	Introducing collect label save
	Introducing collect label use

	Interactions in collect layout
	Introducing collect style cell
	Introducing collect preview
	Reordering columns
	More layout
	Introducing collect style autolevels

	What is in my collection, regression edition
	The result levels _r_b, _r_se, ...
	The colname dimension
	Labels on levels of dimension colname
	collect layout with regression results
	Introducing collect style showbase
	Tables of model statistics

	What is in my collection, multiple-equation models (dimension coleq)
	What is in my collection, collecting results from multiple commands (dimension cmdset)
	Seeing what is my collection
	Introducing collect dims
	Factor variables in regressions and other commands

	Special dimensions created by table
	Dimension variables
	Variables from statistic() option---dimension var
	Dimension colname and matching to regressions
	Index of command() options---dimension command
	Index of command() and statistic() options---dimension statcmd
	Other dimensions

	Let's talk styles
	Overview
	Basic targeting
	Advanced targeting
	Saving and using

	Exporting
	Saving collections
	Managing collections

	Also see

	Intro 3
	Description
	Remarks and examples
	Outline of basic steps and key commands

	References
	Also see

	Intro 4
	Description
	Remarks and examples
	Introduction
	Prepare to collect results
	Collect results
	Combine collections
	Explore the collection
	Modify the collection
	Lay out rows and columns of the table
	Preview the table
	Modify labels in row and column headers
	Control display of zero coefficients in regression results
	Change styles{---}formats, bolding, colors, and more
	Add a title and notes
	Query collection style properties
	Export the table
	Save styles and labels
	Save the collection
	Manage collections

	Also see

	Intro 5
	Description
	Remarks and examples
	Also see

	Tables Builder
	Description
	Menu
	Remarks and examples
	Overview
	Laying out a table
	Laying out a multiway table
	Modifying the layout
	Laying out stacked dimensions
	Placing multiple results in a cell
	Multiple tables
	Changing row and column headers
	Changing cell/results appearance
	Adding significance stars
	Adding a custom table title
	Changing table title appearance
	Adding table notes
	Changing table note appearance
	Exporting a table
	Advanced tools

	collect get
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Support for other prefix commands
	Fully supported
	Partially supported
	Not supported

	Collecting results from margins, contrast, and pwcompare
	Results not collected by default

	Also see

	collect addtags
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	collect clear
	Description
	Syntax
	Remarks and examples
	Also see

	collect combine
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	collect composite
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Example 1: Table of means and standard deviations
	Example 2: Table of means, medians, standard deviations, and confidence intervals
	Example 3: Table of regression results

	Reference
	Also see

	collect copy
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	collect create
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	collect dims
	Description
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	collect dir
	Description
	Syntax
	Remarks and examples
	Also see

	collect drop
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	collect label
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for collect label dim
	Options for collect label levels
	Options for collect label save
	Options for collect label use
	Option for collect label drop
	Options for collect label list

	Remarks and examples
	Stored results
	References
	Also see

	collect levelsof
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	collect notes
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Adding notes to a table
	Removing notes

	Stored results
	Reference
	Also see

	collect query
	Description
	Quick start
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	collect recode
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	collect remap
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	collect rename
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	collect save
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	collect set
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	collect stars
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	collect title
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	collect use
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	collect layout
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	collect preview
	Description
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	collect export
	Description
	Quick start
	Menu
	Syntax
	Options
	export_options
	docx_options
	html_options
	pdf_options
	excel_options
	tex_options
	smcl_option
	txt_option
	md_option

	Remarks and examples
	Introduction
	Styles for different documents
	Creating more extensive documents

	Stored results
	Also see

	collect style autolevels
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	collect style cell
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	collect style clear
	Description
	Syntax
	Remarks and examples
	Stored results
	Also see

	collect style column
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	collect style _cons
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	collect style header
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	collect style html
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	collect style notes
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	collect style putdocx
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	collect style putpdf
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	collect style row
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	collect style save
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	collect style showbase
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	References
	Also see

	collect style showempty
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	collect style showomit
	Description
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	collect style table
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	collect style tex
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	collect style title
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	collect style use
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	Appendix
	Description
	Border patterns
	Diagonal border patterns
	Colors
	Shading patterns
	Underline patterns

	Also see

	Collection principles
	Description
	Remarks and examples
	Basic concepts
	Basics in practice
	How collect layout processes tag specifications
	The process in practice

	Also see

	Predefined styles
	Description
	Remarks and examples
	Creating a new style
	Styles provided by Stata
	default
	dtable
	etable
	table
	coef-table
	coef-table_halign
	coef-table_headers
	default_borders
	default_cidelimiter
	default_halign
	default_headers
	default_margins
	default_nformats
	default_smcl
	default_tex
	dtable_borders
	dtable_composites
	dtable_font
	dtable_halign
	dtable_headers
	dtable_nformats
	etable_borders
	etable_etable
	etable_font
	etable_halign
	etable_headers
	etable_nformats
	etable_showitem
	etable_stars
	table-1
	table-reg1
	table-reg1-fv1
	table-reg2
	table-reg2-fv1
	table-reg3
	table-reg3-fv1
	table-right
	table-tab2
	table_cidelimiter
	table_headers
	table_nformats

	Modifying the default style

	Also see

	set collect_double
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set collect_label
	Description
	Syntax
	Option
	Remarks and examples
	Overview
	Labels for e-class results
	Labels for r-class results
	Labels for other results

	Also see

	set collect_style
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set collect_warn
	Description
	Syntax
	Option
	Remarks and examples

	set dtable_style
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set etable_style
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	set table_style
	Description
	Syntax
	Option
	Remarks and examples
	Also see

	Example 1
	Description
	Remarks and examples
	Table of correlations
	Table of correlations, means, and standard deviations

	Reference
	Also see

	Example 2
	Description
	Remarks and examples
	Computing and collecting statistics
	Customizing the table

	Reference
	Also see

	Example 3
	Description
	Remarks and examples
	Computing statistics with the table command
	Customizing the table

	Reference
	Also see

	Example 4
	Description
	Remarks and examples
	Collecting statistics
	Customizing the table

	Reference
	Also see

	Example 5
	Description
	Remarks and examples
	Collecting regression results and creating a table
	Customizing the table

	Reference
	Also see

	Example 6
	Description
	Remarks and examples
	Collecting regression results and creating a table
	Customizing the table

	Reference
	Also see

	Example 7
	Description
	Remarks and examples
	Introduction
	Table of regression results with complex survey data

	Reference
	Also see

	Glossary

	[TS] Time Series
	Contents
	Intro
	Description
	Also see

	Time series
	Description
	Remarks and examples
	Data management tools and time-series operators
	Univariate time series: Estimators
	Univariate time series: Time-series smoothers and filters
	Univariate time series: Diagnostic tools
	Multivariate time series: Estimators
	Multivariate time series: Diagnostic tools
	Forecasting models
	Additional resources

	References
	Also see

	arch
	Description
	Quick start
	Menu
	Syntax
	Details of syntax
	Common models
	Reading arch output

	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Priming values
	Likelihood from prediction error decomposition
	Missing data

	References
	Also see

	arch postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	arfima
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	The likelihood function
	The autocovariance function
	The profile likelihood
	The MPL

	References
	Also see

	arfima postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Forecasting after ARFIMA
	IRF results for ARFIMA

	Methods and formulas
	References
	Also see

	arfimasoc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	arima
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	ARIMA models
	Multiplicative seasonal ARIMA models
	ARMAX models
	Dynamic forecasting
	Video example

	Stored results
	Methods and formulas
	ARIMA model
	Kalman filter equations
	Kalman filter or state-space representation of the ARIMA model
	Kalman filter recursions
	Kalman filter initial conditions
	Likelihood from prediction error decomposition
	Missing data

	References
	Also see

	arima postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Forecasting after ARIMA
	IRF results for ARIMA

	Reference
	Also see

	arimasoc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	corrgram
	Description
	Quick start
	Menu
	Syntax
	Options for corrgram
	Options for ac and pac
	Remarks and examples
	Basic examples
	Video example

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	cumsp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	dfactor
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	An introduction to dynamic-factor models
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	dfactor postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	Also see

	dfgls
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	dfuller
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estat acplot
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	estat aroots
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	estat sbcusum
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Introduction
	Cusum of recursive residuals
	Cusum of OLS residuals

	Stored results
	Methods and formulas
	References
	Also see

	estat sbknown
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estat sbsingle
	Description
	Quick start
	Menu for estat
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	fcast compute
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Predictions after var and svar
	Dynamic forecasts after vec

	References
	Also see

	fcast graph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Also see

	forecast
	Description
	Quick start
	Syntax
	Remarks and examples
	Video example

	References
	Also see

	forecast adjust
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Reference
	Also see

	forecast clear
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	forecast coefvector
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Simulations with coefficient vectors

	Methods and formulas
	Also see

	forecast create
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	forecast describe
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	forecast drop
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	forecast estimates
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	The advise option
	Using saved estimation results
	The predict option
	Forecasting with ARIMA models

	References
	Also see

	forecast exogenous
	Description
	Menu
	Syntax
	Remarks and examples
	Also see

	forecast identity
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	forecast list
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	forecast query
	Description
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	forecast solve
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Performing conditional forecasts
	Using simulations to measure forecast accuracy

	Stored results
	Methods and formulas
	References
	Also see

	irf
	Description
	Quick start
	Syntax
	Remarks and examples
	References
	Also see

	irf add
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	irf cgraph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf create
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introductory examples
	Technical aspects of IRF files
	IRFs and FEVDs
	IRF results for VAR models
	IRF results for VEC models
	IRF results for ARIMA and ARFIMA
	IRF results for panel VAR models

	Methods and formulas
	Impulse--response function formulas for VAR models
	Dynamic-multiplier function formulas for VAR models
	Forecast-error variance decomposition formulas for VAR models
	Impulse{--}response function formulas for VEC models
	Algorithms for bootstrapping the VAR IRF and FEVD standard errors
	Impulse--response function formulas for ARIMA and ARFIMA

	References
	Also see

	irf ctable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf describe
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf drop
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Also see

	irf graph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf ograph
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf rename
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	irf set
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	irf table
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	ivlpirf
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	ivlpirf postestimation
	Postestimation commands
	Remarks and examples
	Also see

	lpirf
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	lpirf postestimation
	Postestimation commands
	Remarks and examples
	Methods and formulas
	References
	Also see

	mgarch
	Description
	Syntax
	Remarks and examples
	An introduction to MGARCH models
	Diagonal vech MGARCH models
	Conditional correlation MGARCH models
	Constant conditional correlation MGARCH model
	Dynamic conditional correlation MGARCH model
	Varying conditional correlation MGARCH model

	Error distributions and quasimaximum likelihood
	Treatment of missing data

	References
	Also see

	mgarch ccc
	Description
	Quick start
	Menu
	Syntax
	Options
	Eqoptions

	Remarks and examples
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	mgarch ccc postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mgarch dcc
	Description
	Quick start
	Menu
	Syntax
	Options
	Eqoptions

	Remarks and examples
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	mgarch dcc postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mgarch dvech
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	mgarch dvech postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mgarch vcc
	Description
	Quick start
	Menu
	Syntax
	Options
	Eqoptions

	Remarks and examples
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	mgarch vcc postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	mswitch
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Markov-switching dynamic regression
	Markov-switching AR
	Video example

	Stored results
	Methods and formulas
	Markov-switching regression models
	Markov chains
	Specification of Markov-switching models
	Markov-switching dynamic regression
	Markov-switching AR

	Likelihood function with latent states
	Smoothed probabilities
	Unconditional probabilities

	References
	Also see

	mswitch postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat

	Remarks and examples
	One-step predictions
	Dynamic predictions
	Model fit and state predictions

	Stored results
	Methods and formulas
	References
	Also see

	newey
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	newey postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	pergram
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	pperron
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	prais
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	prais postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	psdensity
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	The frequency-domain approach to time series
	Some ARMA examples

	Methods and formulas
	Introduction
	Spectral density after arima or arfima
	Spectral density after ucm

	References
	Also see

	rolling
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Acknowledgment
	References
	Also see

	sspace
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	An introduction to state-space models
	Some stationary state-space models
	Some nonstationary state-space models

	Stored results
	Methods and formulas
	References
	Also see

	sspace postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Methods and formulas
	References
	Also see

	threshold
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	Model with more than two regions

	References
	Also see

	threshold postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Also see

	tsappend
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Using tsappend with time-series data
	Using tsappend with panel data

	Stored results
	Also see

	tsfill
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Introduction
	Using tsfill with time-series data
	Using tsfill with panel data
	Video example

	Also see

	tsfilter
	Description
	Syntax
	Remarks and examples
	An example dataset
	A baseline method: Symmetric moving-average (SMA) filters
	An overview of filtering in the frequency domain
	SMA revisited: The Baxter--King filter
	Filtering a random walk: The Christiano--Fitzgerald filter
	A one-parameter high-pass filter: The Hodrick--Prescott filter
	A two-parameter high-pass filter: The Butterworth filter

	Methods and formulas
	Acknowledgments
	References
	Also see

	tsfilter bk
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tsfilter bw
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tsfilter cf
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tsfilter hp
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tsline
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic examples
	Advanced example
	Video example

	References
	Also see

	tsreport
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Basic examples
	Video example

	Stored results
	Also see

	tsrevar
	Description
	Quick start
	Syntax
	Options
	Remarks and examples
	Stored results
	Also see

	tsset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Panel data
	Video example

	Stored results
	References
	Also see

	tssmooth
	Description
	Syntax
	Remarks and examples
	References
	Also see

	tssmooth dexponential
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tssmooth exponential
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Examples
	Treatment of missing values

	Stored results
	Methods and formulas
	References
	Also see

	tssmooth hwinters
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	tssmooth ma
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	Reference
	Also see

	tssmooth nl
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	tssmooth shwinters
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Holt{--}Winters seasonal multiplicative method
	Holt{--}Winters seasonal additive method

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	ucm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	An introduction to UCMs
	A random-walk model example
	Frequency-domain concepts used in the stochastic-cycle model
	Another random-walk model example
	Comparing UCM and ARIMA
	A local-level model example
	Comparing UCM and ARIMA, revisited
	Models for the trend and idiosyncratic components
	Seasonal component

	Stored results
	Methods and formulas
	Introduction
	State-space formulation
	Cyclical component extensions

	References
	Also see

	ucm postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat period

	Remarks and examples
	Methods and formulas
	Also see

	var intro
	Description
	Remarks and examples
	Introduction to VAR models
	Introduction to SVAR models
	Short-run SVAR models
	Long-run restrictions
	Instrumental-variables SVAR models (StataNow)
	IRFs and FEVDs

	References
	Also see

	var
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Fitting models with some lags excluded
	Fitting models with exogenous variables
	Fitting models with constraints on the coefficients

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	var postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Model selection and inference
	Forecasting

	Methods and formulas
	Also see

	var ivsvar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Structural VAR models with external instruments
	Multiple target shocks

	Stored results
	Methods and formulas
	GMM
	Minimum distance

	References
	Also see

	var ivsvar postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Model selection and inference
	Forecasting
	Predictions

	Also see

	var svar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Short-run SVAR models
	Long-run SVAR models

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	var svar postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	Remarks and examples
	Model selection and inference
	Forecasting

	Also see

	varbasic
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varbasic postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	vargranger
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varlmar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varnorm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varsoc
	Description
	Quick start
	Menu
	Syntax
	Preestimation options
	Postestimation option
	Remarks and examples
	Stored results
	Methods and formulas
	Likelihood-ratio statistic
	Model-order statistics
	Lutstats

	References
	Also see

	varstable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varwle
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	vec intro
	Description
	Remarks and examples
	Introduction to cointegrating VEC models
	VEC model estimation in Stata

	References
	Also see

	vec
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Specification of constants and trends
	Collinearity

	Stored results
	Methods and formulas
	General specification of the VEC model
	The log-likelihood function
	Estimation with Johansen identification
	Estimation with constraints: beta identified
	Estimation with constraints: beta not identified
	Formulas for the information criteria
	Formulas for predict

	References
	Also see

	vec postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Model selection and inference
	Forecasting

	Also see

	veclmar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	vecnorm
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	vecrank
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	The trace statistic
	The maximum-eigenvalue statistic
	Minimizing an information criterion

	Stored results
	Methods and formulas
	References
	Also see

	vecstable
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	wntestb
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	wntestq
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xcorr
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	Glossary
	References

	[XT] Longitudinal Data/Panel Data
	Contents
	Intro
	Description
	Also see

	xt
	Description
	Remarks and examples
	References
	Also see

	quadchk
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	What makes a good random-effects model fit?
	How do I know whether I have a good quadrature approximation?
	What can I do to improve my results?

	vce_options
	Description
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	xtabond
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtabond postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat abond

	Remarks and examples
	estat abond
	estat sargan

	Methods and formulas
	Reference
	Also see

	xtcloglog
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	xtcloglog, re and the robust VCE estimator

	References
	Also see

	xtcloglog postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtcointtest
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for xtcointtest kao
	Options for xtcointtest pedroni
	Options for xtcointtest westerlund

	Remarks and examples
	Overview
	Test details
	Kao tests
	Pedroni tests
	Westerlund tests

	Stored results
	Methods and formulas
	Overview
	Kao tests
	Pedroni tests
	Westerlund tests
	Long-run variance

	References
	Also see

	xtdata
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Methods and formulas
	Also see

	xtdescribe
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Reference
	Also see

	xtdidregress
	Description
	Quick start
	Menu
	Syntax
	Reference

	xtdpd
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	xtdpd postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat abond

	Remarks and examples
	estat abond
	estat sargan

	Methods and formulas
	Reference
	Also see

	xtdpdsys
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	xtdpdsys postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Option for estat abond

	Remarks and examples
	estat abond
	estat sargan

	Methods and formulas
	Reference
	Also see

	xteintreg
	Description
	Quick start
	Menu
	Syntax

	xteoprobit
	Description
	Quick start
	Menu
	Syntax

	xteprobit
	Description
	Quick start
	Menu
	Syntax

	xteregress
	Description
	Quick start
	Menu
	Syntax

	xtfrontier
	Description
	Quick start
	Menu
	Syntax
	Options for time-invariant model
	Options for time-varying decay model
	Remarks and examples
	Introduction
	Time-invariant model
	Time-varying decay model

	Stored results
	Methods and formulas
	References
	Also see

	xtfrontier postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	xtgee
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	Calculating GEE for GLM
	Correlation structures
	Independent
	Exchangeable
	Autoregressive and stationary
	Nonstationary and unstructured

	References
	Also see

	xtgee postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	estat
	Description for estat
	Menu for estat
	Syntax for estat
	Options for estat

	Remarks and examples
	Also see

	xtgls
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Heteroskedasticity across panels
	Correlation across panels (cross-sectional correlation)
	Autocorrelation within panels

	Stored results
	Methods and formulas
	References
	Also see

	xtgls postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xthdidregress
	Description
	Quick start
	Menu
	Syntax

	xtheckman
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtheckman postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xthtaylor
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xthtaylor postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	References
	Also see

	xtintreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtintreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	xtivreg
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for BE model
	Options for FE model
	Options for FD model
	Remarks and examples
	Stored results
	Methods and formulas
	xtivreg, fd
	xtivreg, fe
	xtivreg, be
	xtivreg, re

	Acknowledgment
	References
	Also see

	xtivreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtline
	Description
	Quick start
	Menu
	Syntax
	Options for graph by panel
	Options for overlaid panels
	Remarks and examples
	References
	Also see

	xtlogit
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for FE model
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	xtlogit, re and the robust VCE estimator

	References
	Also see

	xtlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtmlogit
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for FE model
	Remarks and examples
	Introduction
	The random-effects estimator
	The conditional fixed-effects estimator
	Curse of dimensionality

	Examples

	Stored results
	Methods and formulas
	References
	Also see

	xtmlogit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtnbreg
	Description
	Quick start
	Menu
	Syntax
	Options for RE/FE models
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtnbreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Methods and formulas
	Also see

	xtologit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	xtologit and the robust VCE estimator

	References
	Also see

	xtologit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtoprobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	xtoprobit and the robust VCE estimator

	References
	Also see

	xtoprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtpcse
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	xtpcse postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtpoisson
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for FE model
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	xtpoisson, re and the robust VCE estimator

	References
	Also see

	xtpoisson postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	xtprobit
	Description
	Quick start
	Menu
	Syntax
	Options for RE model
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	xtprobit, re and the robust VCE estimator

	References
	Also see

	xtprobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Also see

	xtrc
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtrc postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Options for RE model
	Options for CRE model
	Options for BE model
	Options for FE model
	Options for MLE model
	Options for PA model

	Remarks and examples
	Assessing goodness of fit
	xtreg and associated commands

	Stored results
	Methods and formulas
	xtreg, fe
	Absorbed variables with xtreg, fe (StataNow)

	xtreg, be
	xtreg, re
	xtreg, cre (StataNow)
	xtreg, mle
	xtreg, pa

	Acknowledgments
	References
	Also see

	xtreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	xttest0
	Description for xttest0
	Menu for xttest0
	Syntax for xttest0

	estat mundlak
	Description for estat mundlak
	Menu for estat
	Syntax for estat mundlak
	Options for estat mundlak

	Remarks and examples
	Stored results
	Methods and formulas
	Predictions for fixed-effects model with absorbed variables (StataNow)
	xttest0
	estat mundlak (StataNow)

	References
	Also see

	xtregar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	The fixed-effects model
	The random-effects model

	Stored results
	Methods and formulas
	Estimating rho
	Transforming the data to remove the AR(1) component
	The within estimator of the fixed-effects model
	The Baltagi--Wu GLS estimator
	The test statistics

	Acknowledgment
	References
	Also see

	xtregar postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Also see

	xtset
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	References
	Also see

	xtstreg
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Survival models
	xtstreg and the robust VCE estimator

	References
	Also see

	xtstreg postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	xtsum
	Description
	Quick start
	Menu
	Syntax
	Remarks and examples
	Stored results
	Also see

	xttab
	Description
	Quick start
	Menu
	Syntax
	Option
	Remarks and examples
	Stored results
	Also see

	xttobit
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xttobit postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	margins
	Description for margins
	Menu for margins
	Syntax for margins

	Remarks and examples
	Methods and formulas
	Also see

	xtunitroot
	Description
	Quick start
	Menu
	Syntax
	Options
	LLC_options
	HT_options
	Breitung_options
	IPS_options
	Fisher_options
	Hadri_options

	Remarks and examples
	Overview
	Levin--Lin--Chu test
	Harris--Tsavalis test
	Breitung test
	Im--Pesaran--Shin test
	Fisher-type tests
	Hadri LM test

	Stored results
	Methods and formulas
	Levin--Lin--Chu test
	Harris--Tsavalis test
	Breitung test
	Im--Pesaran--Shin test
	Fisher-type tests
	Hadri LM test

	Acknowledgments
	References
	Also see

	xtvar
	Description
	Quick start
	Menu
	Syntax
	Options
	Remarks and examples
	Introduction
	Panel-data VAR model formulation
	Fitting a panel-data VAR model with xtvar
	Modifying lags
	Reducing moment conditions by collapsing the instrument matrix
	Lag-order selection
	Including endogenous covariates
	Lag exclusion tests
	Granger causality test
	Verifying the stability condition of the VAR
	IRFs

	Stored results
	Methods and formulas
	Introduction
	Eliminating the fixed effect
	Constructing the instrument matrix
	Dealing with gaps and missing data
	Restricting instrument lags
	Collapsing the instrument matrix
	Adding other covariates
	Exogenous regressors
	Endogenous regressors
	Predetermined regressors
	The number of instruments revisited

	A concise representation of the GMM estimator
	Estimators
	One-step estimator
	Two-step estimator

	Hansen's J statistic

	Acknowledgment
	References
	Also see

	xtvar postestimation
	Postestimation commands
	predict
	Description for predict
	Menu for predict
	Syntax for predict
	Options for predict

	xtvarsoc
	Description for xtvarsoc
	Menu for xtvarsoc
	Syntax for xtvarsoc
	Options for xtvarsoc

	Remarks and examples
	Model stability and hypothesis testing
	IRFs
	MMSC

	Stored results
	Methods and formulas
	predict
	irf create
	xtvarsoc

	References
	Also see

	Glossary

	[I] Index
	Contents
	Combined subject table of contents
	Acronym glossary
	Vignette index
	Author index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Subject index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

