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+These features are part of StataNow.

Description Remarks and examples References Also see

Description
Machine learningmethods are commonly used to solve various research and business problems. These

methods can be used to predict the probability of a patient having a disease based on their symptoms,

forecast customer churn for the coming year, determine whether a customer is likely to default on a loan

based on their background characteristics, predict changes in house prices in the coming month, and

identify important factors in predicting the outcome of an election. And these are just a few examples.

These types of problems often require more sophisticated modeling approaches than, for instance, a

linear regression or generalized linear models. Ensemble decision tree methods, which combine multiple

decision trees to improve model predictive performance, have emerged as some of the more popular

and more effective methods for solving such problems because they perform well in practice (Shmuel,

Glickman, and Lazebnik 2024; Shwartz-Ziv and Armon 2022; and Borisov et al. 2024 ).

This entry provides a software-free introduction to ensemble decision tree methods. In particular, we

focus on two popular methods: gradient boostingmachine (GBM) and random forest. See [H2OML] h2oml

for the Stata implementation.

Remarks and examples
Remarks are presented under the following headings:

Why machine learning?
Preliminaries
Fundamentals of machine learning
Decision trees

Classification trees
Regression trees
Pros and cons of decision trees

Ensemble methods
Bagging
Random forest
Boosting
GBM
Trees with monotonicity constraints

Model selection in machine learning
Three-way and two-way holdout methods
k-fold cross-validation
Hyperparameter tuning
Method comparison

Interpretation and explanation
Global surrogate models

1
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Why machine learning?
Linear and generalized linear models are among the most widely used models in various fields. How-

ever, they may not always capture more complex patterns in the data well and thus may lead to poor

prediction. As an example, consider a fictional dataset used to predict employee attrition based on salary

and performance. Figure 1 provides the scatterplot of the data, with blue dots representing employees

who stayed with the company and red dots representing those who left.
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Figure 1.

The data-generating mechanism is complex, and there is no one line that can separate the blue and

red dots. That is, the dataset is not linearly separable. To illustrate this point further, figure 2 shows

the decision surface, the predicted attrition based on performance and salary, for the logistic regression.

It predicts that an employee will leave (attrition = 1) for observations on the orange surface and

that an employee will stay for observations on the light-blue surface. As we can see, the linear decision

boundary misclassifies many blue dots as red and vice versa.
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Figure 2. Logistic regression decision surface
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On the other hand, machine learning methods can capture the complex structure better. Figure 3 dis-

plays the decision surface for the random forest. Here we can easily see that the random forest performs

much better, with predictions more closely matching the observed attrition values.
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Figure 3. Random forest decision surface

Preliminaries
Before describing ensemble decision trees, we introduce the machine learning terminology that we

will use throughout this manual.

Predictors. The inputs for a machine learning model. In classical statistics, these may be referred to

as independent variables, covariates, 𝑥 variables, or predictors. In the machine learning literature,

they are also referred to as features.

Responses. The outputs for a machine learning model. In classical statistics, these may be referred to

as dependent variables, 𝑦 variables, or outcomes. In the machine learning literature, they are also
referred to as targets.

Learning, training. In the machine learning context, learning refers to the process when a model

uses data to adjust its parameters to increase prediction accuracy.

Learner. A model that is used for learning.

Supervised learning. A type of machine learning in which a method is trained on data where there

is an associated response for each observation.

Unsupervised learning. A type of machine learning where there is no response variable.

Hyperparameter. A parameter whose value is adjusted to control and improve a training process.

Tuning. A process where the hyperparameters of a model are optimized to improve model perfor-

mance.

Training data. A subset of the data that a model uses to learn.

Validation data. A subset of the data used to evaluate model performance during training as hyper-

parameters change.

Testing data. A subset of the data that is used to evaluate the performance of a trained model.

Performance metric. A quantitative measure or metric used to evaluate model performance.
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Hyperparameter space. Possible values and ranges of the hyperparameters.

Grid search. A process of evaluating different hyperparameter configurations in the hyperparameter

space to find the best configuration that improves model performance.

Generalization. A concept that a model performs well not only on the training data but also on the

new (testing) data.

Generalization error, test error. A quantitative measure of how well a machine learning model can

predict responses for new (testing) data.

Overfitting. Fitting a model too well to the training data.

Metric scoring. A process of evaluating the performance of a machine learning method by using a

specified performance metric.

In a typical machine learning scenario, the goal is to predict a response based on a set of predictors. To

achieve this goal, a researcher uses training data to build (or train) a prediction model. A good model, or

learner, is one that accurately predicts the response for new or testing data and minimizes a generalization

error or test error. A generalization error of a learning model is a quantitative measure of how well a

machine learning model can predict responses for new data or, more formally, an expected error on any

testing data sampled from the data-generating distribution. In other words, the focus is on predictive

modeling, which is the process of “developing a mathematical tool or model that generates accurate

prediction” (Kuhn and Johnson 2013). Intuitively, success in predictive modeling depends on finding a

model that 1) has low generalization error, 2) is simple, and 3) can be used on a sufficiently large training

dataset.

Most machine learning problems can be divided into two categories: supervised learning and unsu-

pervised learning. In supervised learning, there is an associated response for each observation of the

predictors. Most types of regression and many tree-based methods are examples of supervised learning.

In contrast, in unsupervised learning, there is no response variable, and only the predictors are observed.

Cluster analysis is an example of unsupervised learning.

In what follows, we provide a more technical introduction to machine learning, including decision

trees and ensemble decision trees. For a brief and more gentle exposition of a machine learning workflow

by using the h2oml command, see h2oml in a nutshell in [H2OML] h2oml.

Fundamentals of machine learning
One of themain issues in machine learning, also known as a fundamental problem ofmachine learning

(Chollet 2021), is balancing learning and generalization. Recall that learning refers to the process of

adjusting a model to achieve the best performance on the training data, whereas generalization refers to

evaluating the performance of the model on the data it has never seen before such as the testing data.

Unfortunately, generalization cannot be fully controlled by a researcher because we observe only the

training data, and overfitting (fitting a model too well on the training data) can hurt the generalization of

the model. This is why it is important to “mimic” the presence of testing data by splitting the observed

training data, as we discuss in Three-way and two-way holdout methods.
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The tradeoff between learning and generalization is related to the well-known bias–variance tradeoff,

where the aim is to lower the generalization error by reducing the bias and variance of the proposed

method. Suppose we have a supervised learning problem, where the relationship between predictors and

the response is described by some unknown function 𝑓(⋅) plus an additive error,

𝑦𝑖 = 𝑓(x𝑖) + 𝜀𝑖 𝑖 = 1, 2, . . . , 𝑛

where 𝐸(𝜀𝑖) = 0 and Var(𝜀𝑖) = 𝜎2.

The goal is to estimate 𝑓(⋅) by ̂𝑓(⋅) using a specific machine learning method on training data. How-
ever, if we use different training data, the learned ̂𝑓(⋅) is likely to be different. The amount by which ̂𝑓(⋅)
changes as we use different training data is the variance. Machine learning methods, like other statistical

estimation methods, often introduce bias because they typically impose simplifying assumptions during

the estimation of 𝑓(⋅).
The generalization error for training data 𝐷 = {(x1, 𝑦1), (x2, 𝑦2), . . . , (x𝑛, 𝑦𝑛)} and test observation

(x, 𝑦), sampled from the data-generating distribution, can be written as the sum of the error variance and

the squared bias and the variance of the estimate:

𝐸(x,𝑦,𝐷) [{ ̂𝑓(x) − 𝑓(x)}
2
] = 𝜎2 + Bias2{ ̂𝑓(x)} + Var{ ̂𝑓(x)}

The error variance 𝜎2 is inherited from the data and cannot be reduced. However, the bias, which is the

average difference between ̂𝑓(⋅) and 𝑓(⋅), is a result of underfitting and can be reduced. And the variance,
which is inextricably linked to overfitting, where the model fits the training data too well and thus the

variance of the model increases for new data, can also be reduced. Thus, an ideal machine learning

method reduces the bias without increasing the variance or reduces the variance without increasing the

bias. In practice, decreasing one will necessarily increase the other, so the preferred method strives to

achieve the best tradeoff between the bias and the variance.

Consider a hypothetical example below that shows two methods, Method 1 and Method 2. The red
points correspond to the training data and blue points to the testing data. From the left graph, Method 2
predicts the training points very well with possibly small bias and mean squared error (MSE). However,

compared with Method 1, the prediction of Method 2 deteriorates on the testing data because of the high
variance. Method 2 predicts the testing data poorly because it overfits the training data.
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The above example demonstrated the generalization of machine learning methods in just one dimen-

sion. In general, the ability of these methods, such as ensemble decision trees, to generalize well to

high-dimensional data can be explained by the so-called manifold hypothesis (Chollet 2021; Wyner et al.

2017 ; and Belkin et al. 2019 ). According to this hypothesis, the observed high-dimensional data can be

approximated by a low-dimensional manifold, or subspace. Informally, this means that a complex struc-

ture of the high-dimensional data can be represented by a simpler, lower-dimensional structure, which

machine learning methods tend to capture well.

Decision trees
Decision trees are versatile and powerful supervised machine learning methods that can be used for

both regression and classification. Decision trees repeatedly partition the data based on values of the

predictors by asking a series of Boolean-type (“yes” or “no”) questions. For each question, the data are

partitioned into two branches such that the response observations in each branch are more homogeneous.

Then a simple regression model is fit to each partition. Such repeated partitioning creates a treelike

structure with the branches based on the values of the predictors. Some popular methods for building

decision trees are CART (Breiman et al. 1984) and C4.5 (Quinlan 1993).

The hierarchical structure of a tree is inherently designed to capture and represent the interactions

between predictors. Decision trees are insensitive to outliers and can easily handle missing data in pre-

dictors. In practice, decision trees are grown using greedy-type methods that make locally optimal splits

at each step, instead of finding the globally optimal tree. Even though this can potentially lead to subopti-

mal trees, decision trees are effective in many applications. Decision trees are fast to train and can handle

high-dimensional data with many predictors. They are also easy to interpret and visualize, making them

a popular choice for many machine learning tasks. Decision trees have been widely used in scientific

fields such as biomedicine, genetics, and marketing, among many other fields.

We first focus on introducing decision trees for classification, where the dependent variable is cate-

gorical. Then we describe decision trees for regression, where the dependent variable is continuous.
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Classification trees

To motivate the concept of a decision tree, we consider a toy dataset where the goal is to predict

whether a mushroom is edible or poisonous, coded as e and p, respectively, based on two predictors: cap
diameter and season. The cap diameter is a continuous variable and season is categorical, where s and w
denote summer and winter, respectively.

. list capdiam season class

capdiam season class

1. 7.3 s e
2. 7.68 s e
3. 8.4 s e
4. 8.86 w p
5. 9.03 s e

6. 9.1 s e
7. 9.59 w p
8. 9.59 s e
9. 10.42 w e

10. 10.5 s e

11. 12.85 s e
12. 13.55 w p
13. 14.07 w p
14. 14.17 s p
15. 14.64 s p

16. 14.85 s p
17. 14.86 s p
18. 15.26 w p
19. 15.34 s p
20. 16.6 w p

Based on the training data, a classification tree learns an ordered sequence of questions, where the

answer to each question in the sequence affects the type of question asked in the next step. The tree

diagram below shows the decision tree for our toy example. The method starts at the top of the tree,

called the root node, and uses the entire training dataset. In this example, the root node splits the dataset

into two parts based on the cap diameter predictor. By convention, the “yes” answer to the question at

the node splits to the left, and the “no” answer splits to the right. A node is a subset of predictors. It

can be classified as a terminal or nonterminal. A nonterminal node or parent node splits the data into

two regions using the predictor that results in the best fit. (We will describe later how such a predictor is

selected.) A terminal node or leaf node does not split the data further.
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capdiam <= 13.2

capdiam <= 10

yes

0e, 9p

no

winter == 1

yes

3e, 0p

no

0e, 2p

yes

6e, 0p

no

Figure 5.

For example, at the root node, the best split occurs for the predictor 𝑥𝑖 = capdiam at the split point

𝑡1 = 13.2. This split partitions the data into the {x|𝑥𝑖 ≤ 𝑡1} and {x|𝑥𝑖 > 𝑡1} regions. Throughout this
entry, we will denote the split points by 𝑡𝑠, where 𝑠 denotes the number of the split, counted from top to

bottom and left to right on the above tree. The partition of the predictor space continues recursively until

some stopping criterion is applied or there are no more splits. The set of all terminal nodes is called a

partition of the data. Each observation from the training data falls into one of the terminal nodes.

Below, we show the partition of the predictor space into the regions that correspond to the above

tree diagram. The red and yellow vertical lines correspond to the capdiam ≤ 13.2 and capdiam ≤ 10

conditions, and the horizontal line depicts the winter = 1 condition. The green and blue dots correspond

to the observations with classes p and e, respectively.
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Figure 6.

We can now classify observations by first determining to which terminal node they belong based

on their predictor values and then finding the most common class in that terminal node. Thus, for an

observation in the terminal node 𝑗 with the corresponding region 𝑅𝑗, an observation is predicted to be

in the class with the largest proportion of observations from the training data, max𝑘𝑝𝑗𝑘, where 𝑝𝑗𝑘 is the

proportion of training observations in 𝑅𝑗 belonging to class 𝑘 and 𝑘 = 1, 2, . . . , 𝐾. Suppose we have
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a new observation for which capdiam = 8.32 and season = winter. If we “put” this observation in
the classification tree above, it will end up in the terminal node 4 in the region 𝑅4 with 0 edible and 2

poisonous mushrooms. Therefore, our tree will classify the new observation as a poisonous mushroom.

We now discuss how to choose which predictor to split on and how to determine the best split in

each nonterminal node in a decision tree. To choose the predictor and split point, we need to introduce

impurity measures that quantify the splitting criteria. One suchmeasure is the misclassification error rate.

For a terminal node 𝑗 with the corresponding region 𝑅𝑗, the misclassification error rate is the fraction of

training observations that do not belong to the most common class, that is, 1− max𝑘 ̂𝑝𝑗𝑘, where ̂𝑝𝑗𝑘 is an

estimate of 𝑝𝑗𝑘. Unfortunately, the misclassification error rate is not very sensitive to changes in the class

probabilities of each node, meaning that multiple splits may correspond to the same class probabilities,

making it difficult to select the best splits. Thus, the misclassification error rate is not recommended for

growing a classification tree.

Instead, the following measures are used: The Gini index,

𝐾
∑
𝑘=1

̂𝑝𝑗𝑘(1 − ̂𝑝𝑗𝑘)

and cross-entropy,

−
𝐾

∑
𝑘=1

̂𝑝𝑗𝑘 ln ̂𝑝𝑗𝑘

TheGini index and cross-entropy are close to zerowhen all proportions ̂𝑝𝑗𝑘’s are close to zero or one. This

explains the name “impurity measure”—a small value indicates that the node contains many observations

from the same class.

Here we focus on cross-entropy. When the number of groups 𝐾 = 2, cross-entropy is

𝚤𝑗 = − ̂𝑝𝑗1 ln ̂𝑝𝑗1 − (1 − ̂𝑝𝑗1) ln(1 − ̂𝑝𝑗1)

The goal of classification trees is to partition the predictor space into regions 𝑅1, 𝑅2, . . . , 𝑅𝐽 that

minimize cross-entropy. In practice, the consideration of every possible partition of the predictor space

into 𝐽 rectangles is computationally infeasible. A typical remedy for such problems is to use a greedy

approach and successively split the predictor space into two new regions through binary splitting. The

binary splitting is performed by first selecting the predictor 𝑥𝑖 and the split point 𝑡 such that it leads to
the greatest possible reduction in cross-entropy. In other words, the method examines all predictors 𝑥1
through 𝑥𝑝 and considers all possible values of the split point 𝑡 such that the selected predictor 𝑥𝑖 and

cutpoint 𝑡 result in the lowest cross-entropy. Once we have determined the best split point for a given
predictor, we can use this information to split the data into two sets and repeat the process for each of the

two new sets, continuing until we reach a terminal node or until a stopping criterion is reached.
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We start by considering a possible split for the root node. Because the variable season is binary, we
can tabulate it to determine the possible split point 𝑡.

. tabulate class season, column

Key

frequency
column percentage

season
class s w Total

e 8 1 9
61.54 14.29 45.00

p 5 6 11
38.46 85.71 55.00

Total 13 7 20
100.00 100.00 100.00

From the above table, season splits the dataset into two nodes: summer, s, and winter, w. The summer
node contains 8 edible and 5 poisonous mushrooms, and the winter node contains 1 edible and 6 poi-

sonous mushrooms, respectively. The cross-entropy for the summer and winter nodes can be computed

as

𝚤(summer) = − 8
13

ln
8
13

− 5
13

ln
5
13

≈ 0.666

and

𝚤(winter) = −1
7
ln

1
7

− 6
7
ln

6
7

≈ 0.410

The summer and winter nodes contain different numbers of observations. Thus, to find the cross-entropy

for the split, we take the weighted average of the entropies in each region:

𝚤(season) = −13
20

0.666 − 7
20

0.410 ≈ 0.576

We can also find the importance or the goodness of fit of the split by measuring the improvement of the

impurity measure gained from splitting the parent node into the summer and winter children nodes,

𝚤(summer,winter) = 𝚤(season𝑏) − 𝚤(season) (1)

where season𝑏 indicates the cross-entropy before the split. Here

𝚤(season𝑏) = − 9
20

ln
9
20

− 11
20

ln
11
20

≈ 0.688

Therefore, 𝚤(summer,winter) = 0.112. This value indicates the improvement attributed to this split and

can be used as a measure of the predictor’s importance.

Next we consider splits for the cap diameter predictor. Conventionally, to estimate the cross-entropy

for a continuous variable, we first need to sort the data and consider all possible cutpoints (Breiman

et al. 1984). For example, for the cap diameter, a possible cutpoint 𝑡 between the respective 1st and 2nd
values of 7.3 and 7.68 is selected as 𝑡 = (7.3+ 7.68)/2, between the 2nd and 3rd values of 7.68 and 8.4,
𝑡 = (7.68+8.4)/2, and so on. However, for high-dimensional data such an approach is computationally
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expensive. To overcome this, some software packages, such as H2O, divide the data into discrete equal-

size sections by using histogram bins and then estimate the best split among those sections (Ben-Haim

and Tom-Tov 2010; Chen and Guestrin 2016; and Ke et al. 2017 ).
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Figure 7.

For illustration purposes, we considered five bins for the histogram of capdiam. The number of splits
to be evaluated is then determined by the number of bins in the histogram. In practice, the number

of bins is a hyperparameter, that is, a parameter that we learn or tune using the training data such that

the tuned parameters minimize the generalization error; see Hyperparameter tuning. After binning, the

number of possible split points reduces to five. For example, because the 1st bin contains 6 observa-

tions, a potential split point can be computed by averaging the 6th and 7th observations for capdiam
in the dataset: 𝑡 = (9.1 + 9.59)/2 = 9.345. Similarly, we can compute all 5 split points, which are

{9.345, 11.68, 13.2, 14.75, 16.6}.
We show the calculation of the cross-entropy only for the split point 𝑡 = 13.2, which is the best split

point. You can calculate the cross-entropy for the other split points similarly. The criterion (capdiam ≤
13.2) splits the data into two regions, where the left region contains 9 edible and 2 poisonous mushrooms

and the right region contains 0 edible and 9 poisonous mushrooms. The right region, which contains

observations for which (capdiam > 13.2), is called pure because it is homogeneous and is a terminal

node. Analogously to the splits for the season predictor, we can compute the cross-entropy for the left

and right regions as

𝚤(left) = − 9
11

ln
9
11

− 2
11

ln
2
11

≈ 0.474

and

𝚤(right) = 0

Therefore, the cross-entropy for the split is equal to

𝚤(capdiam ≤ 13.2) = 11
20

0.474 + 9
20

0 ≈ 0.261

The cross-entropy before the split can be computed by using the actual class distribution of class:

𝚤(capdiam𝑏) = −11
20

ln
11
20

− 9
20

ln
9
20

≈ 0.688
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From the above, the importance of the capdiam split is

𝚤(capdiam ≤ 13.2, capdiam > 13.2) ≈ 0.688 − 0.261 = 0.427

Thus, in the root node we select the cap diameter with the best split 𝑡 = 13.2, because the gain from

the cap diameter split (0.427) is larger than the gain from the season split (0.112). The next best split is

found following the same steps but by considering only the subset of the dataset that satisfies the criterion

(capdiam ≤ 13.2). The tree grows recursively until all observations are classified.

In the last recursive split (winter = 1), the left region contains only two observations. Splits with few

observations may lead to overfitting. To avoid overfitting, we recommend to limit the minimum number

of observations that a leaf node may have for the node to be considered for splitting. For example, if we

limit the minimum number of observations in the leaf nodes to three, then the last split (winter = 1)

will not occur because this criterion requires that both branches have at least three observations.

In general, each split increases the depth of the decision tree, and large trees usually overfit the data.

On the other hand, small trees may not capture a complex structure hidden in the data. Thus, the tree size

is treated as a hyperparameter, and its optimal value is chosen from the data.

For the multiclass classification with𝐾 classes, the preferred approach is to compare each class 𝑘with
the rest (Rifkin and Klautau 2004). That is, we grow 𝐾 different trees and for each 𝑘 find the probability
of class 𝑘, 𝑝𝑘. Then the final class prediction is computed as max𝑘𝑝𝑘.

Regression trees

The general idea for growing a regression tree is similar to a classification tree. The main goal

is to partition the predictor space into distinct and nonoverlapping regions by using binary splits.

However, because in regression trees the response is continuous, we use the residual sum of squares

RSS = ∑𝑁
𝑖=1(𝑦𝑖 − ̂𝑦𝑖)2 as an impurity measure instead of the cross-entropy to determine the best split at

each node. Then, for each terminal node, the prediction is computed as the mean of the response values

y in the region corresponding to the terminal node. For example, if the mean response of the training

observations in the first region 𝑅1 is ̂𝑐1 = 5, then for a given observation x𝑖 ∈ 𝑅1, the regression tree

will predict a value of ̂𝑐1 = 5. Thus, the regression model prediction for 𝐽 distinct and nonoverlapping

regions, which correspond to 𝐽 terminal nodes, can be represented as

̂𝑓(x) =
𝐽

∑
𝑗=1

̂𝑐𝑗𝐼{x ∈ 𝑅𝑗}

where ̂𝑐𝑗 = Mean(𝑦𝑖|x𝑖 ∈ 𝑅𝑗).
In general, growing a regression tree can be summarized by the following two steps (James et al.

2021):

1. Partition the predictor space into 𝐽 distinct and nonoverlapping regions 𝑅1, 𝑅2, . . . , 𝑅𝐽.

2. For each observation that belongs to the region𝑅𝑗, predict the response as themean of the response

values for the training observations in 𝑅𝑗.

Therefore, the goal of a regression tree is to partition the predictor space into rectangles

𝑅1, 𝑅2, . . . , 𝑅𝐽 that minimize the RSS:

𝐽
∑
𝑗=1

∑
𝑖∈𝑅𝑗

(𝑦𝑖 − ̂𝑐𝑗)2
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Similar to a classification tree, the binary splitting is performed by first selecting the predictor 𝑥𝑖
and the cutpoint 𝑡 such that it leads to the greatest possible reduction in RSS. Mathematically, in each

nonterminal node, a regression tree tries to select the predictor 𝑥𝑖 and cutpoint 𝑡 such that the following
expression is minimized,

min𝑖,𝑡 { ∑
x𝑖∈𝑅1(𝑖,𝑡)

(𝑦𝑖 − ̂𝑐1)2 + ∑
x𝑖∈𝑅2(𝑖,𝑡)

(𝑦𝑖 − ̂𝑐2)2}

where 𝑅1(𝑖, 𝑡) = {x|𝑥𝑖 ≤ 𝑡} and 𝑅2(𝑖, 𝑡) = {x|𝑥𝑖 > 𝑡}. Then the above process is repeated recursively
to minimize the RSS within each region. As for a classification tree, the importance of the split 𝚤(⋅) is
defined as the difference between the RSS before and after the split.

It is recommended to apply a stopping criterion to avoid overfitting. For example, the node splitting

may be terminated if the method reaches some predetermined tree depth or the terminal regions contain

no more than a prespecified number of observations.

After the terminal nodes and the corresponding regions are determined, we obtain predictions for the

test observations by first identifying to which terminal nodes the test observations belong. Then the

predicted response is computed as the mean of the training observations in the corresponding terminal

node. This is in contrast with classification trees, where the predicted response is determined by the most

common class among the training observations in the terminal node.

One issue with decision trees is that the partitioning of a categorical predictor can take different but

equally justifiable paths. For example, we can decompose categories into binary predictors and include

them individually in the model (also known as one-hot encoding) or implement more dynamic splits,

such as groups of two or more categories. The best approach depends on the specific data and model.

In general, the partitioning algorithm tends to favor categorical predictors with many levels, leading

to severe overfitting when the number of categories is large; see, for instance, Effect of categorical

predictors in [H2OML] h2oml. Therefore, it is recommended to avoid such predictors.

Pros and cons of decision trees

One of the key advantages of decision trees is that they represent information in an intuitive and easy-

to-visualize way. In a decision tree, predictors can be of any type: numeric, binary, categorical, etc. A

monotone transformation or different scales of measurements among predictors do not change the model

outcome.

Another advantage of decision trees is that they can handle missing data. For instance, missing val-

ues are often treated as containing information, which does not require the common missing-at-random

assumption. For categorical predictors, missing values are treated as a separate category that can split

left or right; for other types of predictors, the missing values split to the left. Then, for the testing or val-

idation data, the missing values follow the path on the tree that was determined during training. If there

are no missing values in the training data, then missing values in the testing or validation data follow the

path of the most training observations. Missing values in the response are also allowed, but nothing will

be learned from observations containing those missing values.

Despite their advantages, decision trees are notoriously unstable and have a high variance. Even

though a deep tree (with many terminal nodes) has a small bias, a small change in the data can lead to a

completely different set of splits and obscure its interpretation. Moreover, decision trees have difficulties

with modeling simple smooth functions; see, for instance, Introduction in [H2OML] h2oml gbm.

One solution is to use ensemble methods, which we introduce next.
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Ensemble methods
The basis for ensemble methods can be summarized as a mechanism that forms a smart committee

of incompetent but carefully selected members to solve a machine learning problem. As we discussed

in the previous section, despite their advantages such as efficiency and interpretability, decision trees

suffer from high variance and instability. Specifically, if we slightly modify the data by splitting them

or introducing nuisance predictors, the new results may differ substantially from the original results. In

contrast, the low-variance methods are more robust to small changes and tend to yield similar results.

Bagging and boosting are two methods used to improve the accuracy of a machine learning method

by combining unstable learners. Using unstable learners is important because they provide more variable

outcomes than stable learners and thus aid in generalization. Both methods perturb the original dataset

to generate an ensemble of various base learners and combine them into one method. The usefulness of

ensemble methods is established for unstable base learners, but these methods may produce contradictory

results for stable base learners such as a linear regression.

Both bagging and boostingmethods are general-purpose procedures and are not tied to a specific learn-

ing estimation method, but in this entry, our main focus is on bagging and boosting for decision trees.

The main difference between bagging and boosting is in how they perturb and generate new datasets.

Bagging, which was first introduced in Breiman (1996), generates the perturbations by random and inde-

pendent drawings (bootstrap samples) from the training data. In contrast, boosting, introduced by Freund

and Schapire (1997) to solve classification problems, has a deterministic approach and generates pertur-

bations by sequentially reweighting the dataset. In particular, at any step, the weights of the observations

that were misclassified in the previous step increase, whereas the weights for the correctly classified

observations decrease. Thus, boosting forces each successive classifier to focus on those observations

that were missed by the previous ones in the sequence. By design, bagging reduces variance, whereas

boosting tends to control the generalization error by reducing bias. The difference is summarized in the

figure below.

Training sample

Bootstrap sampleBootstrap sampleBootstrap sample

Bagging

𝑓3(𝑥)𝑓2(𝑥)𝑓1(𝑥)

Training sample

Boosting

Weighted sample Weighted sample Weighted sample

𝑓3(𝑥)𝑓2(𝑥)𝑓1(𝑥)

Figure 8.

Bagging

Bagging or bootstrap aggregation relies on a bootstrap procedure (Efron 1979) that combines an en-

semble of learners to improve the performance of the prediction. The main idea of bagging can be

motivated by the fact that the variance of the mean of 𝑛 independent observations x1, x2, . . . , x𝑛 with
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variance 𝜎2 is 𝜎2/𝑛. Consequently, averaging a set of independent observations reduces the variance. A
natural extension of this idea to the machine learning is to independently sample many training datasets

from the population, build a separate prediction model ̂𝑓𝑏(x) for each sample, and take the average.

Unfortunately, this approach is not viable because, in practice, we observe only one training dataset.

However, we can use bootstrap to generate samples from the training dataset. Thus, after building the

{ ̂𝑓𝑏(x) , 𝑏 = 1, 2, . . . , 𝐵} learners from the bootstrap samples, for the observation x, the bagging proce-

dure returns

̂𝑓bag(x) = 1
𝐵

𝐵
∑
𝑏=1

̂𝑓𝑏(x)

The bias of a bagged tree is the same as that of a single tree, because each tree generated from the

bootstrapped data is identically distributed and has the same expected value.

To apply bagging to regression trees, we grow 𝐵 deep regression trees using 𝐵 bootstrap samples

and take the average of the resulting predictions. Each deep regression tree has a high variance and low

bias. Therefore, averaging these 𝐵 trees substantially reduces the variance and improves the prediction

accuracy; see Fundamentals of machine learning for details about the bias–variance tradeoff.

There are several approaches for extending bagging to classification trees. The most common one is

the majority-vote rule. For the 𝑖th observation of the testing data, we can record the predicted class for
each of the 𝐵 classification trees. The majority-vote rule returns the most frequent class among these 𝐵
predictions.

A salient feature of bagging is its ability to estimate the test error of a bagged model. This feature

helps avoid arduous computations and is especially useful for large datasets. Bagging repeatedly builds

trees on bootstrap samples, and about 37% of the observations in the training data will not be selected

for each bootstrap sample (Izenman 2008, chap. 5). Therefore, each bagged tree is grown only on the

remaining two-thirds of observations. The 37% of observations that are not used to grow the tree serve

as an independent testing set. Such observations are called out-of-bag observations. Now, to predict the

response for the 𝑖th observation, we use each of the trees for which the 𝑖th observation was out of bag.
The average (or the majority vote in the case of classification) of those predicted responses yields a single

prediction for the 𝑖th observation. The estimated generalization error from the out-of-bag approach is a

valid estimate of the test error and is equivalent to using an independent testing set of the same size.

Random forest

Recall that bagging averages an ensemble of unstable decision trees to reduce the variance, which

leads to the improvement of the generalization error. However, this reduction may not be sufficient if the

trees in the ensemble are correlated with each other. For example, if the training data have one strong

and several moderately strong predictors, then in the ensemble of bagged decision trees, the majority of

the trees will have this strong predictor as the top split. Therefore, most of the bagged trees will have a

similar structure, resulting in predictors that are highly correlated.

Although historically a variety of tree ensembles have been referred to as a random forest (Lin and

Jeon 2006), nowadays, a random forest is associated with the random forest proposed in Breiman (2001),

which is a tree ensemble that uses both bagging and subsampling of predictors. It is a modification of the

bagging procedure that generates an ensemble of decorrelated trees and then averages them. To overcome

the shortcomings of the bagging procedure and achieve decorrelation, for each split in the tree, instead

of the full set of 𝑝 predictors, random forest selects a random sample of 𝑚 predictors as potential split

candidates. With this strategy, the strong predictors, on average, (𝑝 − 𝑚)/𝑝 times are not considered
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as potentially the best predictors to split on, which increases the chance that other predictors can be

considered for splitting. Below, we summarize the main steps of a random forest. For 𝑏 = 1, 2, . . . , 𝐵,
do the following:

1. Generate a bootstrap sample 𝐷𝑏 from the training data.

2. Until the stopping criterion is reached, recursively grow a tree 𝑇𝑏 by implementing the following

steps:

i. Randomly choose 𝑚 ≤ 𝑝 predictors.
ii. Select the predictor with the best split point from 𝑚 potential predictors.

iii. Split the selected node.

Similar to bagging, to make a prediction for a new test point x, random forest estimates ̂𝑓rf(𝑥) =
(1/𝐵) ∑𝐵

𝑏=1
̂𝑓𝑏(𝑥) for regression, where ̂𝑓𝑏(⋅) is a prediction model from the tree 𝑇𝑏, and uses the

majority-vote rule for classification. In practice, it is recommended to select 𝑚 = ⌊√𝑝⌋ for classifi-
cation and 𝑚 = ⌊𝑝/3⌋ for regression, where ⌊⋅⌋ is a floor function. The size of the bootstrap sample 𝐷𝑏

controls the bias–variance tradeoff of the random forest.

A smaller bootstrap sample size lowers the probability of a particular training observation to be in-

cluded in the bootstrap sample, which decreases similarity among the individual trees. The latter helps

reduce overfitting. Analogously, a larger bootstrap sample size increases the degree of overfitting.

The above approach describes a random forest as a complex black-box model. We find it helpful to

also describe a random forest from a different perspective that connects it to the existing well-understood

statistical methods. Specifically, the prediction from a random forest can be viewed as an adaptive neigh-

borhood classification or regression procedure (Lin and Jeon 2006). Recall from decision trees that every

terminal node 𝑗 = 1, 2, . . . , 𝐽 of a tree corresponds to a rectangular subspace 𝑅𝑗 of a predictor space

such that for every observation x𝑖, there is only one terminal node 𝑗 such that x𝑖 ∈ 𝑅𝑗. Let’s focus on

a prediction from a single tree 𝑇𝑏 at a new data point x0. Suppose that in the tree 𝑇𝑏, x0 belongs to the

terminal node 𝑗 with the corresponding region 𝑅𝑗(x0, 𝑏), where we make the dependence of the region
on x0 and tree 𝑇𝑏 explicit. Then the prediction is obtained by averaging the observed values 𝑦𝑖’s in the

region 𝑅𝑗(x0, 𝑏). Let’s assign the weight 𝑤𝑖(x0, 𝑏) a positive constant if the observation x𝑖 is in the

region 𝑅𝑗(x0, 𝑏) and 0 otherwise, such that

𝑤𝑖(x0, 𝑏) =
1{x𝑖 ∈ 𝑅𝑗(x0, 𝑏)}

|{𝑘∶ x𝑘 ∈ 𝑅𝑗(x0, 𝑏)}|

where | ⋅ | denotes the number of observations in the region 𝑅𝑗(x0, 𝑏) and 1(𝐴) is the identity func-
tion, which is equal to 1 if the condition 𝐴 holds and 0 otherwise. Note that the weights sum to one:

∑𝑛
𝑖=1 𝑤𝑖(x0, 𝑏) = 1. Thus, the prediction from a single tree given a new point x0 is the weighted aver-

age of the original observations 𝑦𝑖’s for 𝑖 = 1, 2, . . . , 𝑛:

̂𝑓𝑏(x0) =
𝑛

∑
𝑖=1

𝑤𝑖(x0, 𝑏)𝑦𝑖
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For a random forest, where 𝐵 trees are ensembled, the prediction at observation x0 can be written as

̂𝑓rf(x0) = 1
𝐵

𝐵
∑
𝑏=1

̂𝑓𝑏(x0) = 1
𝐵

𝐵
∑
𝑏=1

𝑛
∑
𝑖=1

𝑤𝑖(x0, 𝑏)𝑦𝑖 =
𝑛

∑
𝑖=1

𝑊𝑖(x0)𝑦𝑖

where 𝑊𝑖(x0) is the average of the weights 𝑤𝑖’s over 𝐵 trees:

𝑊𝑖(x0) = 1
𝐵

𝐵
∑
𝑏=1

𝑤𝑖(x0, 𝑏)

Consequently, a random forest prediction can be viewed as a weighted average of the observations

𝑦𝑖’s because ∑𝑛
𝑖=1 𝑊𝑖(x0) = 1, which makes a random forest an adaptive smoother (Curth, Jeffares,

and van der Schaar 2024). For most observations, the weight 𝑊𝑖 will be zero; see Lin and Jeon (2006),

Meinshausen (2006), and Biau and Scornet (2016).

Wager and Athey (2018) rely on the above approach to prove the consistency of the random forest

estimator. In figure 9, we use a toy example to visualize this approach. Here, for a new data point x0
(denoted by+), each tree assigns a positive weight to the observations in the same terminal node (denoted

in red) and zero weight to the rest of the observations. The random forest prediction averages the weights

from the three trees and measures how frequent each observation falls into the same terminal node as x0.

Tree 1 prediction Tree 2 prediction

Tree 3 prediction Random forest prediction

Figure 9.
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Boosting

Boosting is a powerful idea that can be applied to any regression or classification problem. In contrast

to bagging, where each tree in an ensemble is built on a bootstrap training dataset and independent of the

other trees, boosting grows trees sequentially. One of the first boosting methods, AdaBoost (Freund and

Schapire 1997), was introduced to solve classification problems. AdaBoost repeatedly applies weights

to the observations to produce a sequence of classifiers. The observations that are poorly modeled get

higher weights and vice versa. This way, each successive classifier is focused on those observations that

received higher weights in the previous iteration. The figure below summarizes the steps of AdaBoost.

Training data ƒ1(x)

ƒ2(x) ƒ 3(x)

Figure 10.

Here we have three classifiers or base learners, 𝑓1(x), 𝑓2(x), and 𝑓3(x), which can be classification
trees. The observations are classified based on +’s and 𝑜’s. AdaBoost starts by assigning the same

weight 1/𝑛 to all observations, where 𝑛 is the number of observations. 𝑓1(x) incorrectly classified three
+ observations, which are displayed in red. In the next iteration, those three observations were assigned

higher weights, and 𝑓2(x) classified those observations correctly. Similarly, 𝑓3(x) assigned more weight
to the three previously misclassified 𝑜 observations and classified them correctly. The final ensemble or

boosted classifier is obtained based on those three classifiers as 𝐹(x) = ∑𝑀
𝑚=1 𝛼𝑚𝑓𝑚(x), where 𝛼𝑚

measures the importance of the classifier 𝑓𝑚(⋅) and 𝑀 is the number of classifiers.

This approach tends to explain boosting in terms of updating weights, which makes it difficult to eval-

uate its performance (Schapire 2003). To establish a connection with the statistical framework, in their

seminal paper, Friedman, Hastie, and Tibshirani (2000) propose a different view of AdaBoost. In partic-

ular, the authors use a gradient-descent-based formulation to reformulate AdaBoost as an optimization

problem and show that it is a greedy procedure that minimizes the exponential loss,

𝐿{𝑦𝑖, 𝐹 (x𝑖)} = 1
𝑛

𝑛
∑
𝑖=1

𝑒−𝑦𝑖𝐹(x𝑖)

where𝐹(x𝑖) = ∑𝑀
𝑚=1 𝛼𝑚𝑓𝑚(x𝑖). They proposed the following coordinate descent algorithm to achieve

the minimization.
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1. Initialize: 𝐹0(x) = 0.

2. For 𝑚 = 1, 2, . . . , 𝑀:

i. Choose a classifier 𝑓𝑚(⋅) and 𝛼𝑚 to minimize

1
𝑛

𝑛
∑
𝑖=1

exp[−𝑦𝑖{𝐹𝑚−1(x𝑖) + 𝛼𝑚𝑓𝑚(x𝑖)}]

ii. Update: 𝐹𝑚(x) = 𝐹𝑚−1(x) + 𝛼𝑚𝑓𝑚(x).

3. Output: 𝐹𝑀(x).

Thus,AdaBoost minimizes its loss function by iteratively descending toward one coordinate direction

at each iteration.

The important feature of this loss-function formulation is that, instead of the exponential loss, one

can use any other loss function and extend AdaBoost from solving a classification problem to solving

a regression problem. For details, see Friedman, Hastie, and Tibshirani (2000), Schapire and Freund

(2012), and Hastie, Tibshirani, and Friedman (2009).

GBM

The formulation discussed in the previous section and the corresponding models are called GBMs.

GBM is one of the popular methods to implement boosting. Although the original method, proposed in

Friedman, Hastie, and Tibshirani (2000), can work with any base learner, in practice, decision trees are

some of the main choices.

In the previous section, we viewed AdaBoost as an optimization problem with some loss function

𝐿(𝐹). In Decision trees, we parameterized a decision tree as a model 𝑓(x) = ∑𝐽
𝑗=1 𝑐𝑗𝐼{x ∈ 𝑅𝑗}, where

𝐽 is the number of terminal nodes, 𝑅𝑗’s are nonoverlapping regions of the predictor space, and 𝑐𝑗 is the

prediction (the mean for regression and the most probable class for classification) in the terminal node 𝑗.
The main idea behind GBM is to parameterize the estimate of the ensemble function 𝐹(x) as

̂𝐹 (x) =
𝑀

∑
𝑖=0

̂𝐹𝑚(x)

where 𝑀 is the number of iterations, ̂𝐹0(⋅) is an initial guess, and { ̂𝐹𝑚(⋅)}𝑀
𝑚=1 are the function incre-

ments, also known as boosts.

Parameterizing the tree by Θ = {𝑅𝑗, 𝑐𝑗}𝐽
𝑗=1 and following the coordinatewise approach presented in

the previous section, for some loss function 𝐿(⋅), in the stage 𝑚, we can write the minimization of the

tree-boosting method as

(𝛼𝑚, Θ𝑚) = argmin𝛼,Θ

𝑛
∑
𝑖=1

𝐿{𝑦𝑖, ̂𝐹𝑚−1(x𝑖) + 𝛼𝑓(x𝑖, Θ)}

where 𝑛 is the number of observations in the training dataset, 𝛼 is a learning rate, and

̂𝐹𝑚(x) = ̂𝐹𝑚−1(x) + 𝛼𝑓(x, Θ𝑚)
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Unfortunately, such minimization is practically infeasible to solve. To alleviate the issue, it was pro-

posed, at stage 𝑚, to choose a new function 𝑓(x, 𝜃) to be the most correlated with the negative gradient

𝑔𝑚(x𝑖) = [𝜕𝐿{𝑦𝑖, 𝐹 (x𝑖)}
𝜕𝐹(x𝑖)

]
𝐹(x𝑖)=𝐹𝑚−1(x𝑖)

by solving a classical least-squares minimization problem:

(𝛼𝑚, Θ𝑚) = argmin𝛼,Θ

𝑛
∑
𝑖=1

{−𝑔𝑚(x𝑖) + 𝛼𝑓(x𝑖, Θ)}

For example, if the loss function is the squared error loss 𝐿{𝑦𝑖, 𝐹 (x𝑖)} = (1/2){𝑦𝑖 − 𝐹(x𝑖)}2, then

the gradient 𝑔𝑚(x𝑖) = −{𝑦𝑖 − 𝐹(x𝑖)}.
Below, we summarize the gradient-tree boosting method for the squared error loss 𝐿(⋅) and fixed

learning rate 𝛼, with the number of iterations, that is, the number of trees in this context, equal to 𝑀.

1. Initialize: 𝐹0(x) and 𝑔𝑖 = 𝑦𝑖 for all 1 ≤ 𝑖 ≤ 𝑛.

2. For 𝑚 = 1, 2, . . . , 𝑀:

i. Compute 𝑔𝑚(x𝑖) = −{𝑦𝑖 − 𝐹𝑚−1(x𝑖)} for all 1 ≤ 𝑖 ≤ 𝑛.

ii. Fit a tree ̂𝑓𝑚(⋅) with 𝐽 splits to the training data {x𝑖, −𝑔𝑚(x𝑖)} for 𝑖 = 1, 2, . . . , 𝑛.

iii. Update ̂𝐹: ̂𝐹𝑚(x) = ̂𝐹𝑡−1(x) + 𝛼 ̂𝑓𝑚(x).

3. Output: ̂𝐹 (x) = ∑𝑀
𝑚=1

̂𝐹𝑚(x) = ∑𝑀
𝑚=1 𝛼𝑓𝑚(x).

The learning rate 𝛼 reduces the contribution of each tree as it is added to the model, which prevents

overfitting. The simulation studies indicate that a smaller 𝛼 reduces overfitting and provides a lower

generalization error. The relationship between the learning rate and the number of trees 𝑀 is reciprocal.

That is, decreasing the learning rate increases the required number of trees.

Historically, researchers suggested using a stump (decision tree with depth equal to one) as a base

learner in each iteration. However, current research on ensemble methods suggests that if the noise in

the data is small, it is preferable to use deeper trees as base learners to improve generalization (Wyner

et al. 2017). This is related to the idea that the ensemble methods are local interpolators. The depth of a

tree affects the selection of the optimal number of trees. For a given learning rate, fitting more complex

(deeper) trees results in a fewer number of trees being selected. Typically, the learning rate and tree

complexity are inversely related: doubling the tree depth should be matched with halving the learning

rate to provide roughly the same number of trees (Elith, Leathwick, and Hastie 2008).

Trees with monotonicity constraints

In some applications, it is reasonable to assume that the response is a monotone function of the predic-

tors. For example, in economic theory the price elasticity of the normal good is assumed to be positive, or

in hedonic price analysis, in which price is a function of the characteristics of the product, it is expected

that some of the characteristics will always have a positive or negative effect on the price. The original

decision trees and ensemble decision tree methods, described above, do not support such a constraint and

may violate the monotonicity assumption. However, there are modifications to the above methods that

incorporate the monotonicity constraints (Potharst and Feelders 2002).
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Model selection in machine learning
Most machine learning models are defined by a set of model parameters and hyperparameters. A

model parameter is initialized and computed during the learning process. A hyperparameter cannot be

directly estimated from the learning process and must be prespecified before training a machine learning

model (Kuhn and Johnson 2013). For example, in decision trees, the parameters correspond to the split

decisions and regions, and the hyperparameters include the tree depth, impurity measures, the minimum

number of observations in each terminal node, and more. The goal of machine learning models is to

make accurate predictions on future data. To build an optimal model, we need to explore a wide range

of values for hyperparameters and select the ones that improve the model performance the most. This

process is also known as model selection. So we are interested in selecting the best-performing model

from the set of potential models. That is, we want to evaluate the performances of the models and

compare them with each other. The process of designing an effective machine learning model with

an optimal hyperparameter configuration is called hyperparameter tuning. The material in this section

closely follows Raschka (2020) and Yang and Shami (2020).

The steps for selecting the best-performing model are summarized in table 1 below.

Table 1. Steps for selecting the best-performing model

To minimize the generalization error, which measures the predictive model performance on

new data, do the following:

1. Split the data for training and evaluating a model; see Three-way and two-way holdout

methods.

2. Optimize hyperparameters to select the best-performing model; see Hyperparameter tun-

ing.

3. Compare different machine learning methods and select the one that performs the best;

see Method comparison.

In the rest of this section, we will discuss different approaches to accomplish the above steps.

Three-way and two-way holdout methods

The simplest approach to evaluating a model is the two-way holdout method, in which we take the

observed data and split them into two parts: training data and testing data. A model is fit to the training

data, and the prediction is obtained on the testing data. It is important to perform the training and eval-

uation steps using different data. Otherwise, if a sufficiently complex model fits the training data too

well, it will be difficult to distinguish whether the model is memorizing the training data or generalizing

well to the “new” data. Thus, the model performance will suffer from the optimism bias. Even after we

randomly sample and split the data, it is essential to prevent the leakage of information from the testing

data into the training process (Raschka 2020 and Lones 2021). Common, seemingly innocuous mistakes

include using the information about the means and ranges of the predictors from the entire dataset to scale

the predictors or performing predictor selection before partitioning the data and using the same data as

testing data to evaluate the generality of multiple models. The best practical way to prevent informa-

tion leakage is to partition the data at the beginning of the analysis and use the testing data only once to

measure the generality of a final model at the end of the analysis (Cawley and Talbot 2010).
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The two-way holdout method addresses only the first generalization step from table 1 and cannot be

used to sequentially train multiple models for hyperparameter optimization, which we discuss later. In

contrast, the three-way holdout method partitions the dataset into training, validation, and testing data.

Model selection and hyperparameter tuning are performed on training and validation data and model

evaluation on testing data. This procedure avoids repeated use of the testing data and prevents informa-

tion leakage. Another advantage of including validation data is that we can impose early stopping rules,

in which the model performance is measured against validation data at each iteration, and stop training

when the performance score starts deteriorating or does not change over a sequence of iterations. In

general, to obtain a generalization error, which is independent from how we split the data into train-

ing, validation, and testing, we recommend to repeat the holdout method multiple times with different

random-number seeds and report the average performance over these repetitions. Alternatively, one can

use the leave-one-out bootstrap technique and evaluate the generalization error by using the out-of-bag

samples instead of the training data (Efron and Tibshirani 1993).

The steps for selecting the best-performing model with the three-way holdout method are summarized

in table 2.

Table 2. Steps for selecting the best-performing model with the three-way holdout method

1. Randomly partition the data into three parts: training for model fitting, validation for

model selection, and testing for the final evaluation of the selected model.

2. Hyperparameter tuning: define a grid of various hyperparameter configurations to fit

models to the training data; see Hyperparameter tuning.

3. Model selection: evaluate and compare the estimated performance metrics on the vali-

dation data, and choose hyperparameter values that provide the best-performing metrics.

4. Use independent testing data to estimate the generalization error by comparing various

metrics of the best-performing model.

In step 2, tuning can be performed by using either a Cartesian grid search (as described in table 4) or a

random grid search. We treat the splitting of a dataset into training, validation, and testing data as random

subsampling and assume that each observation has been drawn from the same probability distribution.

However, when the dataset is imbalanced, random subsampling is not recommended. A better approach

is to divide the dataset in a way that preserves the original class proportions in the resulting subsets

(training, validation, and testing). This approach is called stratification.

k-fold cross-validation

For small datasets, the three-way holdout method of splitting the data is not recommended because the

validation and testing data may not be representative. In such cases, 𝑘-fold cross-validation is the most
common model evaluation and selection technique. It starts by splitting the data into training and testing

data. For the training data, 𝑘-fold cross-validation splits them into 𝑘 parts or folds. In each 𝑘th iteration,
it uses one part for validation and the remaining 𝑘 − 1 parts as a training subset for model fitting. The

figure below illustrates 3-fold cross-validation for a toy example. The dataset is randomly split into three

folds, and red, blue, and green observations correspond to observations in folds 1, 2, and 3, respectively.

In the first cross-validation iteration, the method uses observations in folds 2 and 3 as a training set and
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observations in fold 1 as a validation set. The next two iterations follow a similar procedure but use

observations from folds 2 and 3, respectively, as validation sets. For example, for 𝑘 = 3, four models

are fit. The first three cross-validation models are fit using 2/3 of the training data, as described above,

and a different 1/3 of the training data is held out for validation for each of the three models. Then the

main fourth model is fit using the entire training data, and the cross-validation metrics are reported. Also

see [H2OML] h2omlestat cvsummary.
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Figure 11.

Hyperparameter tuning

A typical process to build an effective machine learning model is complicated and time consuming.

It involves choosing an appropriate method and selecting a model by tuning hyperparameters (see step 2

in table 1). The choice of optimal hyperparameters directly affects the model performance on the testing

data. The hyperparameter tuning depends on a machine learning method and the type of hyperparam-

eter, such as continuous, discrete, or categorical. Setting and testing hyperparameters manually is time

consuming and inefficient. Therefore, there exist automatic optimization techniques for hyperparameter

tuning.
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Themain goal of hyperparameter optimization is to achieve optimalmodel performancewithin a given

budget, where budget refers to computational resources or the time allocated to tuning. We summarize

the hyperparameter optimization process following Yang and Shami (2020) in table 3.

Table 3. Steps for hyperparameter optimization

1. Select the machine learning method and the performance metrics.

2. Select the hyperparameters that require tuning.

3. Determine the baseline or referencemodel by training themachine learningmethod using

the default hyperparameter configuration.

4. Start with a large search space such as the hyperparameter feasible domain.

5. Refine the search space using well-performing hyperparameter values, or explore new

areas if needed.

6. Select the best-performing hyperparameter configuration as the final result.

Some researchers often neglect the baseline determination step 3 and spend most of their time devel-

oping complex models, which may not outperform the simplest model. For example, if the task is binary

classification or regression, then the baseline method can be the simplest known method such as logistic

or linear regression. Or if our data are highly imbalanced with one of the classes containing 95% of

observations, then this 95% can serve as our baseline, because the method that always predicts this class

already has 95% accuracy and the preferred machine learning model should outperform this baseline.

The simplest hyperparameter tuning method is a so-called babysitting or trial and error approach,

where a researchermanually experiments with various hyperparameter values using experience, intuition,

or prior knowledge (Abreu 2019 and Elsken, Metzen, and Hutter 2019). Manual tuning is infeasible

for most machine learning methods because they are complex and require many hyperparameters. The

methods we describe next are more suitable for complex machine learning methods.

Decision-theoretical methods are one of the common techniques for hyperparameter optimization.

The most popular ones are a Cartesian grid search (Bergstra et al. 2011) and a random grid search

(Bergstra and Bengio 2012). A Cartesian grid search performs an exhaustive grid search of hyperpa-

rameter configurations and evaluates the Cartesian product of possible hyperparameter combinations.

Its search is limited to the grid specified by the user and cannot explore other regions. To achieve good

results, Yang and Shami (2020) suggest the steps that we summarize in table 4.

Table 4. Steps for Cartesian grid search

1. Choose a broad search space and a large step size.

2. Based on the results from step 1, refine the search space and step size using well-

performing hyperparameter configurations.

3. Repeat step 2 until there is no substantive improvement in the performance metric.
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ACartesian grid search is exhaustive, which makes it infeasible for a high-dimensional hyperparam-

eter configuration space. A random grid search overcomes this drawback by randomly choosing a set

number of samples within the upper and lower bounds as candidate hyperparameter values. Those values

are used to evaluate the model. The rest of the steps are the same as in table 4. Moreover, if the configu-

ration space is large enough, then the global optimum of the tuning metric can be achieved. On a limited

budget, a random grid search explores a larger search space than a Cartesian grid search. However, both

Cartesian and random grid search methods share the same drawback: each hyperparameter evaluation

is independent of the others, leading to wasted computational time and resources on poorly performing

areas of the search space. For a review of hyperparameter optimization techniques, see Yang and Shami

(2020).

Method comparison

Comparing evaluation results for different machine learning methods is fundamental to model selec-

tion (step 3 in table 1). This process typically includes a comparison of different performance metrics,

visualization, and statistical analysis. The performance metrics of various machine learning methods are

compared using testing data, and the best method is chosen based on the results. Visualization, such as

receiver operating characteristics curves and precision–recall curves, are commonly used for compari-

son during binary classification. For details, see [H2OML] h2omlgraph roc and [H2OML] h2omlgraph

prcurve and, more generally, [H2OML] h2oml postestimation. Depending on the research question, in

addition to performance metrics, it may be important to also explore the explainability of the method.

See the next section for details.

Interpretation and explanation
Machine learning models are ubiquitous in many fields. Despite their widespread use, they are often

treated as black boxes that do not explain their predictions in a way that practitioners can understand.

The misuse of black-box predictive models can lead to serious consequences, for instance, incorrectly

denying parole, releasing dangerous criminals because of inadequate bail decisions, mispredicting air

pollution level, and more (Rudin 2019). One of the concerns with deploying machine learning methods

is whether their models and predictions can be trusted. And it is difficult to trust something that cannot

be interpreted or explained. Traditionally, machine learning models are evaluated by comparing perfor-

mance metrics using validation data. This may be unreliable because validation data may not always be

fully representative of real-world data.

The use of interpretable models and explainable methods sheds light on model performance and en-

courages a transparent usage of black-box models. In machine learning, an interpretable model has

the ability to explain its results in an understandable and transparent way without the need for addi-

tional methods (Doshi-Velez and Kim 2017). Commonly used interpretable models are linear and logis-

tic regressions, decision trees, decision-set and rule-based methods and their extensions (Friedman and

Popescu 2008; Letham et al. 2015 ; Lakkaraju, Bach, and Leskovec 2016; Rudin and Ustun 2018; and

Chen et al. 2018 ). An interpretable model is judged based on several criteria, including interpretability

and accuracy (Guidotti et al. 2018).

In contrast with interpretable models, explainable methods rely on external models and methods to

make their predictions presentable and understandable to a human. In general, they do not create models

that are inherently interpretable, but provide post hoc models that explain the prediction of the original

black-box models (Goldstein et al. 2015 ; Ribeiro, Singh, and Guestrin 2016; Bastani, Kim, and Bastani

2017; and Lundberg and Lee 2017). It is not recommended to heavily rely on explainable models for

high-stake decisions, such as in medicine, criminal justice, social bias, and other fields (Rudin 2019
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and Ghassemi, Oakden-Rayner, and Beam 2021), but to use those techniques as a tool for analysis and

algorithmic audit (Raji et al. 2020). For more information, see Slack et al. (2020), Lakkaraju and Bastani

(2020), and Krishna et al. (2022).

In machine learning literature, explainable methods are divided into model specific and model agnos-

tic. A model-specific explainable method is inherently connected to the used machine learning model

such as a random forest or a deep neural network and cannot be used for other models. With a model-

agnostic explainable method, a user is free to use any black-box model for data analysis, and the explain-

able method can be applied to that model. There are two types of model-agnostic methods: local and

global. Local methods explain individual predictions and approximate a black-box model in the vicinity

of an individual observation. The popular methods include local surrogate models (Ribeiro, Singh, and

Guestrin 2016), individual conditional expectation curves (Goldstein et al. 2015), and Shapley values

(Lundberg and Lee 2017). A global method describes the average behavior of a black-box model. Partial

dependence plots (Friedman 2001), variable importance plots (Breiman 2001; Fisher, Rudin, and Do-

minici 2019), and global surrogate models (Bastani, Kim, and Bastani 2017) are some of the popular

choices.

See [H2OML] h2omlgraph ice, [H2OML] h2omlgraph shapvalues, and [H2OML] h2omlgraph shap-

summary for a few local model-agnostic methods and [H2OML] h2omlgraph pdp and [H2OML] h2oml-

graph varimp for global model-agnostic methods. We also describe the global surrogate models in the

next section.

Global surrogate models

Global surrogate models (Bastani, Kim, and Bastani 2017 and Craven and Shavlik 1995) are explain-

able models that approximate the predictions of a black-box model. In other words, a surrogate model

uses an interpretable model to explain a black-box model. The steps for obtaining a global surrogate

model are straightforward:

1. Obtain predictions from a well-tuned black-box model fit to the testing data.

2. Select and train an interpretable model (for example, a decision tree) for predictions on the testing

data.

3. Measure the goodness of fit of the surrogate model for the predictions, and interpret the model.

One way to measure the goodness of fit of a surrogate model for predictions is by using the 𝑅2 for

regression and accuracy or log loss for classification,

𝑅2 = 1 −
∑𝑛

𝑖=1{ ̂𝑔(x𝑖) − ̂𝑓(x𝑖)}2

∑𝑛
𝑖=1{ ̂𝑓(x𝑖) − 𝑓}2

where ̂𝑔(⋅) and ̂𝑓(⋅) are the respective predictions from the surrogate and black-box models and 𝑓 is

the mean of the black-box predictions. The larger the 𝑅2, the better the surrogate model replicates the

black-box model.

For example, suppose we used a GBM to obtain predictions of housing prices. We could then apply

the above method to explain its predictions by using a decision tree as a surrogate model. We show one

such tree below. We can easily see how the predictors explain the predicted log sales prices. The terminal

nodes of the tree show the predicted logarithm of the sales prices. For example, the houses with overall

quality (overallqual) greater than 7.5 and with the lot area (lotarea) greater than 12,332.5 square
feet have the highest predicted price of 12.74.
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+These features are part of StataNow.

Description Remarks and examples References Also see

Description
This entry describes commands for performing predictive analysis using H2Omachine learning meth-

ods, specifically ensemble decision tree methods, in Stata. H2O is a scalable and distributed ma-

chine learning and predictive analytics platform that allows you to perform data analysis and ma-

chine learning. It provides parallelized implementations of many widely used supervised and unsu-

pervised machine learning methods. For more details, see [H2OML] H2O setup, [P] H2O intro, and

https://www.stata.com/h2o/h2o18/h2o_intro.html#what-is-h2o. For a software-free introduction to ma-

chine learning, see [H2OML] Intro.

Supervised learning

h2oml gbm gradient boosting machine

h2oml gbregress gradient boosting regression

h2oml gbbinclass gradient boosting binary classification

h2oml gbmulticlass gradient boosting multiclass classification

h2oml rf random forest

h2oml rfregress random forest regression

h2oml rfbinclass random forest binary classification

h2oml rfmulticlass random forest multiclass classification

Estimation results and postestimation frame

h2omlest store catalog H2O estimation results

h2omlpostestframe specify frame for postestimation analysis

Tuning and estimation summaries

h2omlestat metrics display performance metrics

h2omlgof goodness of fit for machine learning methods

h2omlestat cvsummary display cross-validation summary

h2omlestat gridsummary display grid-search summary

h2omlexplore explore models after grid search

h2omlselect select model after grid search

h2omlgraph scorehistory produce score history plot
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Performance after binary classification

h2omlestat threshmetric display threshold-based metrics

h2omlestat confmatrix display confusion matrix

h2omlgraph prcurve produce precision–recall curve plot

h2omlgraph roc produce ROC curve plot

Performance after multiclass classification

h2omlestat aucmulticlass display AUC and AUCPR summary

h2omlestat confmatrix display confusion matrix

h2omlestat hitratio display hit-ratio table

Prediction

h2omlpredict prediction of continuous responses, probabilities,
and classes

Machine learning explainability

h2omlgraph varimp produce variable importance plot

h2omlgraph pdp produce partial dependence plot

h2omlgraph ice produce individual conditional expectation plot

h2omlgraph shapvalues produce SHAP values plot for individual observations
after regression and binary classification

h2omlgraph shapsummary produce SHAP beeswarm plot after regression and
binary classification

Save decision tree

h2omltree save decision tree DOT file and display rule set

Remarks and examples
This entry describes Stata commands to perform predictive analysis using H2O machine learning en-

semble decision tree methods.

Remarks and examples are presented under the following headings:

Brief overview
h2oml in a nutshell
Tour of machine learning commands

Prepare your data for H2O machine learning in Stata
End-to-end binary classification analysis
Regression analysis
Effect of categorical predictors
Detecting nuisance predictors
Gradient boosting Poisson regression
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Brief overview
The h2oml suite of Stata commands provides end-to-end support for H2O machine learning analysis

using ensemble decision tree methods. In addition to h2oml, the h2oframe command provides several
key subcommands that connect Stata to an H2O cluster, import a Stata dataset into an H2O frame, and

provide various H2O data management; see [H2OML] H2O setup.

h2oml gbm and h2oml rf provide the suite of estimation commands that implement gradient boosting

and random forest regression, binary classification, and multiclass classification. h2oml gbregress and
h2oml rfregress perform respective gradient boosting and random forest regressions for continuous

and count responses, h2oml gbbinclass and h2oml rfbinclass perform gradient boosting and ran-

dom forest classifications for binary responses, and h2oml gbmulticlass and h2oml rfmulticlass
perform gradient boosting and random forest classifications for categorical responses (with more than

two categories).

All commands provide the validframe() and cv() options to specify a validation frame and to per-
form cross-validation to control for overfitting, the tune() and stop() options to tune hyperparameters
and stop early for better model performance, the h2orseed() option to reproduce results, and many

more. Many commands also offer specialized options such as the loss() option of h2oml gbregress,
which specifies various loss functions, including quantile, Huber, and Tweedie. See [H2OML] h2oml

gbm and [H2OML] h2oml rf for details.

After estimation, the h2omlest suite of commands can be used to manage estimation results. For

instance, h2omlest store can be used to store the current estimation results for later use.

Several postestimation commands are available to obtain tuning and estimation summaries. For in-

stance, h2omlestat gridsummary is useful to view the results after tuning and select an alternative

model that is more parsimonious. And h2omlgraph scorehistory can be used to display various val-
idation curves to help monitor overfitting.

For binary and multiclass classifications, several commands can be used to explore model perfor-

mance such as the h2omlestat confmatrix command, which displays the confusion matrix. Addi-

tionally, h2omlgraph prcurve and h2omlgraph roc can be used to plot precision–recall and receiver

operating characteristic (ROC) curves after binary classification, and h2omlestat hitratio can be used
to produce a hit-ratio table after multiclass classification.

The ultimate goal of machine learning is to obtain accurate prediction of the response on the new data.

To achieve this goal, the model predictive performance is often evaluated by using an external, testing

dataset. The h2omlpostestframe command provides a convenient way to specify the desired testing

frame to be used in all subsequent postestimation analyses.

Depending on the estimation method, regression or classification, the h2omlpredict command pro-
duces predictions of continuous and count responses or class probabilities and classes.

Machine learning methods are often treated as a black box, meaning that little attempt is made to

understand the obtained predictions. To rectify this, h2oml provides several postestimation commands

to help explain predictions. The h2omlgraph varimp command can be used to assess the overall impor-
tance of predictors in the model, whereas the h2omlgraph shapvalues and h2omlgraph shapsummary
commands can be used to explore the impact of predictors on individual predictions.

Finally, the h2omltree command can be used to save a specific decision tree in a DOT file and plot it
by using the open source software Graphviz; see [H2OML] DOT extension.

For more details about postestimation commands, see [H2OML] h2oml postestimation.
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h2oml in a nutshell
In the previous section, we briefly described the functionality of the h2oml command. Here we will

provide a quick overview of some of the more common usages of this command in practice.

As we mentioned earlier, machine learning is primarily used to develop a model that accurately pre-

dicts a response of interest on the new data. In practice, several general steps are often performed to

build such a model.

At the beginning of the analysis, the data are often split into training data used for estimation and

validation data used for evaluating the model performance. Additionally, external testing data are also

available for assessing the model final predictive performance and comparing it with other models that

use a different machine learning method such as gradient boosting machine (GBM) or random forest. For

each method, models with different sets of hyperparameters are evaluated using a validation dataset (or

cross-validation), and the best model is chosen. The chosen models are further evaluated based on their

predictive performance on the testing data, and the final model is selected for later prediction on the

future new data.

Below, we describe several h2oml commands that can be used to perform the above steps.

Setup. To use the h2oml command, we must first initialize an H2O cluster and import our data to an H2O

frame; see Prepare your data for H2O machine learning in Stata and [H2OML] H2O setup. Here we load

the current Stata dataset into the H2O data frame and make it the current H2O frame.

. h2o init

. _h2oframe put, into(data)

. _h2oframe change data

Alternatively, we could replace the last two commands with h2oframe put, into(data) current
to put the dataset into an H2O frame and make this frame current in a single step.

Next we split the data frame into training and validation with, say, 80% of observations in the training

sample. We also specify the random-number seed for reproducibility and make the train frame be the

current H2O frame for estimation.

. _h2oframe split data, into(train valid) split(0.8 0.2) rseed(19)

. _h2oframe change train

Depending on the type of a response and the desired machine learning method, we can choose one

of the six h2oml commands to perform estimation: h2oml gbregress, h2oml gbbinclass, h2oml
gbmulticlass, h2oml rfregress, h2oml rfbinclass, and h2oml rfmulticlass.

Reference or baseline model. Suppose we have a binary response and we want to use GBM. We can

start with a simple reference model with default hyperparameters:

. h2oml gbbinclass response predictors, h2orseed(19) validframe(valid)

We specified the h2orseed(19) option to ensure H2O reproducibility; see [H2OML] H2O repro-

ducibility.

If we do not have sufficient observations to split the data into training and validation, we can use

cross-validation instead such as a 3-fold cross-validation with the default random splitting of the data

below:

. h2oml gbbinclass response predictors, h2orseed(19) cv(3)
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We store the current estimation results to use as a benchmark later.

. h2omlest store gbm_ref

User-specified hyperparameters and tuning. Next we can explore models with values of hyperparam-

eters other than the default ones. For instance, we can specify 200 trees instead of the default 50 and a

0.2 learning rate instead of the default 0.1. And we can specify different values for any of the other nine

hyperparameters; see Options in [H2OML] h2oml gbm.

. h2oml gbbinclass response predictors, h2orseed(19) cv(3)
> ntrees(200) lrate(0.2) ...

We store this model as

. h2omlest store gbm_user

In practice, it is difficult to know the actual hyperparameter values that provide the best model per-

formance, so an iterative procedure known as hyperparameter tuning is used to explore different ranges

of various hyperparameters to select the best set of values. To incorporate tuning, the h2oml estima-

tion commands allow you to specify the ranges (numlist) in options for hyperparameters and provide the

tune() option to control the tuning procedure.

Which hyperparameters should be tuned and what ranges should be explored will be specific to each

application. Here, for illustration purposes and continuing with our example, we will tune the number of

trees and the learning rate:

. h2oml gbbinclass response predictors, h2omlrseed(19) cv(3)
> ntrees(20(10)200) lrate(0.1(0.1)1)

We store this tuned model as

. h2omlest store gbm_tuned

If desired, we can change the default tuning metric (from log loss to, say, accuracy) and grid-search

method (from Cartesian to random) as well as specify other suboptions in the tune() option:

. h2oml gbbinclass response predictors, h2omlrseed(19) cv(3)
> ntrees(20(10)200) lrate(0.1(0.1)1)
> tune(metric(accuracy) grid(random) ...)

Checking for overfitting or underfitting. Before we proceed with model selection, we can check

for model overfitting or underfitting. We can use the h2omlgraph scorehistory command to plot

the metric values against the number of trees to compare the training and validation or cross-validation

curves:

. h2omlgraph scorehistory

The number of trees at which the two curves start noticeably diverging provides a tradeoff between

underfitting and overfitting.

Because we performed cross-validation, it is also useful to evaluate its performance. We can check

the variability of the metric values across the folds with

. h2omlestat cvsummary

High variation may indicate overfitting.

Our current model is gbm tuned, but we can repeat the above steps for the other two models by first
using the h2omlest restore command to restore their estimation results.
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Selecting the “best” model. Our current gbm tunedmodel uses the hyperparameter values that resulted
in the smallest value of the default log loss metric. We can evaluate alternative models that may be more

parsimonious and thus may run faster:

. h2omlestat gridsummary

We can also explore the performance of additional metrics for different models before deciding on a

model. For instance, we can explore the top 10 models:

. h2omlexplore id = 1(1)10

If we find an alternative model that we think is best, we can switch to it by using

. h2omlselect id = #

where # is an index of the corresponding model from h2omlestat gridsummary.

To select between all the considered models with different hyperparameters such as gbm tuned and

gbm user, we select the one with the most optimal metric value, which is reported in the output of the
h2oml estimation commands. We can also use

. h2omlestat metrics

to report the performance metrics for the current estimation model.

And we can compare different metrics side by side for all models more easily by using

. h2omlgof gbm_tuned gbm_user gbm_ref

Evaluate predictive performance and compare differentmethods. Predictive performance of amodel

is typically evaluated on an external testing dataset. The h2omlpostestframe command provides a

convenient way of specifying a testing frame for all postestimation analyses:

. h2omlpostestframe test

Here test is our H2O testing frame. This command does not physically change the current frame

from train to test. It instead specifies that all relevant postestimation commands use the test frame

in the computations instead of their specific default frames, which may be training, validation, or cross-

validation depending on the estimation.

After binary or multiclass classification, we can evaluate model predictive performance by using the

confusion matrix:

. h2omlestat confmatrix

After binary classification, we can also explore thresholds that are optimal for various metrics

. h2omlestat threshmetric

Here we chose to use a GBM method. We can also consider using a random forest method. We would

repeat all the above steps but now using the rfbinclass command for estimation to select the best

random forest model, say rf tuned. We would then use the above commands to compare the predictive

performances of the two models or use

. h2omlgof gbm_tuned rf_tuned

to compare different performance metrics side by side. We can compare different methods using

precision–recall and ROC curves:

. h2omlgraph prcurve, models(gbm_tuned rf_tuned)

. h2omlgraph roc, models(gbm_tuned rf_tuned)
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Obtain predictions. Once the best model is chosen, we can use it to compute predictions. Depending on

the research question, we can compute predictions for an entirely new dataset, or we can use the original

data. Here we obtain predictions for our original data frame.

. _h2oframe change data

. h2omlpredict

Explain predictions. The h2oml suite provides several commands for explaining predictions. We can

evaluate overall predictors’ importance that quantifies the effect of each predictor on the model’s predic-

tions:

. h2omlgraph varimp

We can also use the partial dependence plot (PDP) and the individual conditional expectation (ICE)

plot to visually explore predictor dependence on the response:

. h2omlgraph pdp predictors

. h2omlgraph ice predictor

And, after regression and binary classification, we can use Shapley additive explanations (SHAP)

values to explore predictor contributions to the prediction of the response:

. h2omlgraph shapvalues

. h2omlgraph shapsummary

Tour of machine learning commands
In this section, we illustrate the usage of the h2oml command with applications to several real-world

datasets. We start by showing how to start an H2O cluster and convert your Stata dataset into an H2O

frame. We then illustrate the basic steps for training machine learning methods and provide predictions

for binary classification and for regression. We also explore the effect of categorical predictors on the

performance of ensemble decision tree methods and demonstrate how to use these methods to detect

important predictors. We also show a quick analysis of a count response by using a gradient boosting

Poisson regression.

Examples are presented under the following headings:

Prepare your data for H2O machine learning in Stata
End-to-end binary classification analysis

Example 1: Data setup
Example 2: Reference binary classification using GBM
Example 3: Model selection and hyperparameter tuning
Example 4: Method selection and prediction
Example 5: Classification prediction on new data
Example 6: Explaining classification prediction
Example 7: Shutting down the H2O cluster

Regression analysis
Example 8: Data setup
Example 9: Regression using random forest
Example 10: Hyperparameter tuning using random forest

Effect of categorical predictors
Example 11: Data setup
Example 12: Effect of categorical predictors on ensemble decision tree methods

Detecting nuisance predictors
Example 13: Detecting nuisance predictors with ensemble decision tree methods

Gradient boosting Poisson regression
Example 14: Explaining Poisson regression predictions
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Prepare your data for H2O machine learning in Stata

Before using any of the H2O machine learning methods in Stata, you need to connect to or initialize

an H2O server by using the h2o init command. The command first checks whether an H2O cluster is

already running on the local machine and uses that cluster if so; otherwise, it attempts to start a new

cluster. For details, see [H2OML] H2O setup.

We first use the h2o init command to start an H2O cluster.

. h2o init

Suppose we have an external data.csv file saved in Stata’s current directory. We can import it as an

H2O frame by typing

. _h2oframe import data.csv, into(data)

or if we already have our data loaded into Stata, we can store it as an H2O frame by typing

. _h2oframe put, into(data)

In the above, we put our data into the H2O cluster as an H2O frame and called it data. To be able to
work with the data frame, we need to change it to be the current working frame:

. _h2oframe change data

Before starting any H2O analysis, we recommend that you describe the data to ensure that the H2O

variable types are as expected. This is important because the implementation of H2O machine learning

methods can vary depending on the types of the response and predictors.

. _h2oframe describe

Suppose our data have two variables: y and x. To run a regression for y on x using GBM with default

settings, we can now type

. h2oml gbregress y x

Or we can use random forest with default settings by typing

. h2oml rfregress y x

After estimation, we can use any postestimation command from [H2OML] h2oml postestimation.

End-to-end binary classification analysis

In this section, we provide an end-to-end analysis for a binary classification problem using gradient

boosting binary classification. The examples comprise tuning, performance analysis, and prediction

explainability.

Example 1: Data setup
Consider data from a fictional company, Telco, that provides home phone and Internet services in

California. The data have been made available by IBM. We want to build a predictive model to predict

the behavior of a customer who is more likely to churn. churn.dta contains 7,043 observations and 26
variables. The binary response churn indicates whether a customer left within the last month or is still

using Telco’s services. The predictors include customers’ demographic information such as gender and

age, customers’ account information such as payment period and duration of services, customers’ service

types such as whether a customer signed up for Internet, phone, device protection, etc.
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The goal of this example is to build a predictive model that will predict the behavior of a customer

who is more likely to churn or retain the company’s services.

As we described in Prepare your data for H2O machine learning in Stata, we start by reading the

dataset as an H2O frame. We then describe the frame to make sure that variables (H2O columns) have

the intended data types by using the h2oframe describe command. Recall that h2o init initiates

an H2O cluster and h2oframe put loads the current Stata dataset into an H2O frame. For details, see

[H2OML] H2O setup.

. use https://www.stata-press.com/data/r18/churn
(Telco customer churn data)
. h2o init
(output omitted )

. _h2oframe put, into(churn)
Progress (%): 0 100
. _h2oframe change churn
. _h2oframe describe

Rows: 7043
Cols: 26

Column Type Missing Zeros +Inf -Inf Cardinality

zipcode int 0 0 0 0
latitude real 0 0 0 0
longitude real 0 0 0 0
tenuremonths int 0 11 0 0
monthlycharges real 0 0 0 0
totalcharges real 11 0 0 0
country enum 0 7043 0 0 1
state enum 0 7043 0 0 1
city enum 0 4 0 0 1129
gender enum 0 3488 0 0 2
seniorcitizen enum 0 5901 0 0 2
partner enum 0 3641 0 0 2
dependents enum 0 5416 0 0 2
phoneservice enum 0 682 0 0 2
multiplelines enum 0 3390 0 0 3
internetserv enum 0 2421 0 0 3
onlinesecurity enum 0 3498 0 0 3
onlinebackup enum 0 3088 0 0 3
deviceprotect enum 0 3095 0 0 3
techsupport enum 0 3473 0 0 3
streamtv enum 0 2810 0 0 3
streammovie enum 0 2785 0 0 3
contract enum 0 3875 0 0 3
paperlessbill enum 0 2872 0 0 2
paymethod enum 0 1544 0 0 4
churn enum 0 5174 0 0 2

For definitions of data types in H2O, see https:/www.stata.com/h2o/h2oframe_intro.html. Specifi-

cally, enum refers to categorical or factor columns in an H2O frame, real to numeric columns with

float or double values, and int to numeric columns with integer values. For example, here churn
has the expected type enum. If the data types are incorrect, h2oframe provides commands to convert

an H2O frame column to the desired data type; see https://www.stata.com/h2o/h2oframe.html. You may

notice that the predictor totalcharges has 11 missing values. As we discussed in Decision trees of

[H2OML] Intro, tree-based methods naturally handle missing values.

https:/www.stata.com/h2o/h2oframe_intro.html
https://www.stata.com/h2o/h2oframe.html
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Next we split our data into training and testing frames with 80% of observations in the training sample.

We will use cross-validation on training data during estimation to control for overfitting.

. _h2oframe split churn, into(train test) split(0.8 0.2) rseed(19)

. _h2oframe change train

Example 2: Reference binary classification using GBM
As we discussed in Model selection in machine learning of [H2OML] Intro, the analysis should start

by defining a baseline or reference performance.

For classification problems, it is recommended to first check whether the dataset is imbalanced.

. tabulate churn
Churning

status Freq. Percent Cum.

No 5,174 73.46 73.46
Yes 1,869 26.54 100.00

Total 7,043 100.00

Our dataset suffers from imbalance. Therefore, we will use the stratification method for cross-

validation to ensure that the cross-validation samples maintain the same data imbalance. Following the

literature on measuring performance for imbalanced data (Davis and Goadrich 2006), we will use area

under the precision–recall curve (AUCPR) as a performance metric in our analysis.

Next, for convenience, let’s create a global macro, predictors, in Stata to store the names of pre-
dictors.

. global predictors latitude longitude tenuremonths monthlycharges totalcharges
> gender seniorcitizen partner dependents phoneservice multiplelines
> internetserv onlinesecurity onlinebackup streamtv techsupport streammovie
> contract paperlessbill paymethod deviceprotect
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As a reference model, we fit a GBM model with a 3-fold stratified cross-validation and default values

for other settings. We specify the h2orseed(19) option for reproducibility; see [H2OML] H2O repro-

ducibility.

. h2oml gbbinclass churn $predictors, h2orseed(19) cv(3, stratify)
Progress (%): 0 10.4 48.5 82.4 100
Gradient boosting binary classification using H2O
Response: churn
Loss: Bernoulli
Frame: Number of observations:

Training: train Training = 5,643
Cross-validation = 5,643

Cross-validation: Stratify Number of folds = 3
Model parameters
Number of trees = 50 Learning rate = .1

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 5 No. of bins cat. = 1,024
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .3293387 .411338
Mean class error .1603572 .2338787

AUC .9163226 .8500772
AUCPR .8023966 .6584908

Gini coefficient .8326452 .7001545
MSE .1034999 .1350446

RMSE .321714 .3674841

For detailed interpretation of the output, see example 1 of [H2OML] h2oml gbm.

Although we are mainly interested in cross-validation metrics, we still need to examine the training

metrics to make sure that we slightly overfit the training data to avoid underfitting. The latter can be

checked by exploring the difference between training and cross-validation metrics, which should be

positive for the AUCPR metric. However, if the difference between the validation and training metrics is

large, it indicates that the model is too tailored to the training data and may not generalize well to new

data. In the literature, there is no clear recommendation on how large the difference between training and

validation metrics should be to indicate severe overfitting. Each case should be evaluated individually

and with caution. For details, see Valdenegro-Toro and Sabatelli (2023). In our example, the positive

difference between the training and cross-validation AUCPR values suggests that our model does overfit

the training data. The cross-validation AUCPR for the reference model is approximately 0.658.

We store the reference estimation results for later comparison using the h2omlest store command.

. h2omlest store gbm_default
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It is helpful to assess the variance of each metric over the folds to ensure that the model performance

does not depend on the specific split of the data. Large variation of the cross-validation metrics over the

folds may lead to poor generalization of the model to new data. In such cases, it is recommended to adjust

the number of folds or examine the data to identify the sources of variability. We can use h2omlestat
cvsummary to display cross-validation summary.

. h2omlestat cvsummary
Cross-validation summary using H2O

Metric Mean Std. dev. Fold 1 Fold 2

Log loss .4113427 .0038855 .4085804 .4157856
F1 .6401071 .0044256 .6358885 .6397188
F2 .6954293 .0055981 .6891994 .6970509

F0.5 .5929428 .0039657 .5902329 .591101
Accuracy .7806169 .0012531 .7793031 .7817988

Precision .5651822 .0039084 .5632716 .5625966
Recall .7379531 .0069124 .73 .7413442

Specificity .7959458 .0011321 .7969871 .7961095
Misclassification .2193831 .0012531 .2206969 .2182012
Mean class error .2330506 .0029933 .2365065 .2312731
Max. class error .2620469 .0069124 .27 .2586558

Mean class accuracy .7669494 .0029933 .7634935 .7687268
Misclassification count 412.6667 4.618802 418 410

AUC .8505131 .0040418 .8526636 .8458507
AUCPR .6597555 .0045358 .6628664 .654551

MSE .1350454 .0017733 .1340862 .1370917
RMSE .3674799 .0024083 .3661779 .370259

Metric Fold 3

Log loss .4096621
F1 .6447141
F2 .7000377

F0.5 .5974944
Accuracy .7807487

Precision .5696784
Recall .742515

Specificity .7947407
Misclassification .2192513
Mean class error .2313722
Max. class error .257485

Mean class accuracy .7686278
Misclassification count 410

AUC .8530251
AUCPR .6618491

MSE .1339582
RMSE .3660029

In our example, the variation of the cross-validation metrics across folds, that is,AUCPR, is small. The

mean value of the cross-validation AUCPR is around 0.660, which is slightly different from the cross-

validation AUCPR of 0.658 reported by h2oml gbbinclass. This difference is expected because of how
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the two commands compute cross-validation metrics. h2omlestat cvsummary computes metrics sepa-
rately for each fold and reports their average value, whereas h2oml gbbinclass combines all folds into
one and computes a single AUCPR value.

Example 3: Model selection and hyperparameter tuning
Hyperparameters, such as the number of trees and learning rate, control the performance of a ma-

chine learning model. Choosing the “right” hyperparameters can substantively improve both the model

performance and its ability to be generalized to new data. Poorly selected hyperparameters, on the other

hand, can lead to underfitting or overfitting. The process of selecting hyperparameters to achieve optimal

model performance is known as hyperparameter tuning.

In example 5 of [H2OML] h2oml gbm, we demonstrated the detailed steps of hyperparameter tuning

for this example. Here we use the final selected model:

. h2oml gbbinclass churn $predictors, h2orseed(19) cv(3, stratify)
> ntrees(100) lrate(0.05) predsamprate(0.15)
Progress (%): 0 28.7 57.2 78.7 96.4 100
Gradient boosting binary classification using H2O
Response: churn
Loss: Bernoulli
Frame: Number of observations:

Training: train Training = 5,643
Cross-validation = 5,643

Cross-validation: Stratify Number of folds = 3
Model parameters
Number of trees = 100 Learning rate = .05

actual = 100 Learning rate decay = 1
Tree depth: Pred. sampling rate = .15

Input max = 5 Sampling rate = 1
min = 5 No. of bins cat. = 1,024
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .3531063 .4026141
Mean class error .1784776 .2313897

AUC .8992847 .8565935
AUCPR .7610732 .673929

Gini coefficient .7985693 .7131869
MSE .1126847 .1314475

RMSE .3356854 .3625569

By tuning, we increased the cross-validation AUCPR from 0.658 to 0.674. The improvement is small,

because we explored only a small portion of the hyperparameter space in this example. Hyperparameter

tuning is an iterative process that requires many iterations to sufficiently explore the hyperparameter

space.
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Let’s compare the best model, which we store as gbm tuned, with the reference model from the

previous example based on other metrics by using the h2omlgof command.

. h2omlest store gbm_tuned

. h2omlgof gbm_default gbm_tuned
Performance metrics for model comparison using H2O
Training frame: train

gbm_def~t gbm_tuned

Training
No. of observations 5,643 5,643

Log loss .3293387 .3531063
Mean class error .1603572 .1784776

AUC .9163226 .8992847
AUCPR .8023966 .7610732

Gini coefficient .8326452 .7985693
MSE .1034999 .1126847

RMSE .321714 .3356854

Cross-validation
No. of observations 5,643 5,643

Log loss .411338 .4026141
Mean class error .2338787 .2313897

AUC .8500772 .8565935
AUCPR .6584908 .673929

Gini coefficient .7001545 .7131869
MSE .1350446 .1314475

RMSE .3674841 .3625569

In the output, the first section reports the training results, and the second section reports the cross-

validation results. Looking at the cross-validation results, we see that tuning improved the model per-

formance for all metrics. The log loss, mean of per-class error rates, mean squared error (MSE), and root

mean squared error (RMSE) are all smaller for the tuned model, whereas area under the curve (AUC),

AUCPR, and the Gini coefficient are larger for the tuned model, all of which indicate better performance.

In addition to tuning, we may also refine the list of predictors based on variable importance.

. h2omlgraph varimp

onlinebackup

monthlycharges

techsupport

paymethod

dependents

internetserv

onlinesecurity

totalcharges

contract

tenuremonths

.05 .1 .15
Proportion importance

Variable importance plot using H2O

Based on the above graph, we may decide to drop the predictor onlinebackup.
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Variable selection with cross-validation requires careful implementation to avoid so-called data leak-

age, where the training data contain information that would not be available during prediction on the

testing data; see Raschka (2020) for details.

Example 4: Method selection and prediction
In example 5 of [H2OML] h2oml gbm, we used hyperparameter tuning to select the best GBM model.

Instead of GBM, we may consider other methods such as random forest or logistic regression. In this

example, we compare GBM and random forest.

Instead of tuning the random forest model following similar steps from example 5 of [H2OML] h2oml

gbm, for simplicity, we pretend that the following model is our tuned model for random forest. We also

store the working model as rf tuned by using the h2omlest store command.

. h2oml rfbinclass churn $predictors, h2orseed(19) cv(3, stratify)
> ntrees(200) minobsleaf(2)
Progress (%): 0 3.5 10.2 15.1 20.0 36.5 52.9 70.1 75.0 78.6 82.4 86.5 90.4 96.2
> 100
Random forest binary classification using H2O
Response: churn
Frame: Number of observations:

Training: train Training = 5,643
Cross-validation = 5,643

Cross-validation: Stratify Number of folds = 3
Model parameters
Number of trees = 200

actual = 200
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 16 No. of bins cat. = 1,024
avg = 19.6 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 2 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .4153088 .416142
Mean class error .2396365 .230295

AUC .8507327 .8453018
AUCPR .6526923 .6452846

Gini coefficient .7014654 .6906036
MSE .1335578 .1358418

RMSE .3654556 .3685673

. h2omlest store rf_tuned

To choose the best method, we compute performance metrics using the testing frame. To compute

AUCPR for the testing frame, we use the h2omlpostestframe command to specify the name of the

frame, test in our case, to be used by a subset of postestimation commands for computations.

. h2omlpostestframe test
(testing frame test is now active for h2oml postestimation)
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By default, the specified frame is considered to be a testing frame and is labeled as “Testing” in the

output, but you can specify your own label by using the framelabel() option. To report the metrics for
the selected testing frame, we use the h2omlestat metrics command.

. h2omlestat metrics
Performance metrics using H2O
Random forest binary classification
Response: churn
Testing frame: test
Number of observations = 1,400

Metric Testing

Log loss .4101135
Mean class error .2241742

AUC .85292
AUCPR .6847162

Gini coefficient .70584
MSE .1328891

RMSE .3645396

We next compute the metrics for the testing frame for the GBM model after restoring its estimation

results.

. h2omlest restore gbm_tuned
(results gbm_tuned are active now)
. h2omlpostestframe test
(testing frame test is now active for h2oml postestimation)
. h2omlestat metrics
Performance metrics using H2O
Gradient boosting binary classification
Response: churn
Loss: Bernoulli
Testing frame: test
Number of observations = 1,400

Metric Testing

Log loss .3964014
Mean class error .2030941

AUC .8649185
AUCPR .6963289

Gini coefficient .7298371
MSE .1284349

RMSE .3583782
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We can compare the results side by side more easily by using the h2omlgof command.

. h2omlgof rf_tuned gbm_tuned
Performance metrics for model comparison using H2O
Testing frame: test

rf_tuned gbm_tuned

Testing
No. of observations 1,400 1,400

Log loss .4101135 .3964014
Mean class error .2241742 .2030941

AUC .85292 .8649185
AUCPR .6847162 .6963289

Gini coefficient .70584 .7298371
MSE .1328891 .1284349

RMSE .3645396 .3583782

Based on this example, GBM outperforms random forest because AUCPR for GBM is higher. Thus,

we choose GBM as our selected best method. We can also compare methods (or models) based on ROC

curves, which plots the true-positive rate versus false-positive rate for different thresholds. The closer

the curve to the upper left corner, the better the model fit. Because the test frame has been set for both
models, the reported results correspond to the testing frame. For details, see [H2OML] h2omlgraph roc.

. h2omlgraph roc, models(gbm_tuned rf_tuned)
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Based on the ROC results, as we expected, the GBM method slightly outperforms the random forest

method.
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Another popular approach to compare classification predictions between different methods and mod-

els is by using a confusion matrix, which reports the numbers of correctly and incorrectly predicted

outcomes. Below, we use h2omlestat confmatrix to produce the confusion matrix after the GBM

estimation for the testing frame we selected earlier with h2omlpostestframe.

. h2omlestat confmatrix
Confusion matrix using H2O
Testing frame: test

Predicted
churn No Yes Total Error Rate

No 754 269 1,023 269 .263
Yes 54 323 377 54 .143

Total 808 592 1,400 323 .231
Note: Probability threshold .2378 that maximizes F1

metric used for classification.

In H2O, the “positive” class corresponds to the second label in lexicographical order, which in our

case is Yes. To see the levels of the categorical variable, type

. _h2oframe levelsof churn
‘”No”’ ‘”Yes”’

From the output, 323 and 754 correspond to true-positive and true-negative responses, respectively,

and the misclassification error rate is 0.231. By default, the threshold for binary classification of 0.2378

is selected based on maximizing the F1 metric. Observations with predicted values above this threshold

will be classified as “Yes”, and the remaining observations will be classified as “No”. You may want

to see the results based on a different metric. For instance, consider a scenario where a company uses

predictions to offer additional discounts or free services to customers who are likely to churn. If these

benefits are costly, the company would prioritize predictions that maximize precision. To report the

confusion matrix using a different metric, use the metric() option.

We encourage you to perform the same analysis for the rf tuned model to verify that GBM indeed

outperforms random forest on the testing frame.
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Example 5: Classification prediction on new data
Continuing with example 4, suppose the company collected new data stored in newchurn.dta. It

wants to predict the probability of churn for these new customers based on the GBM model gbm tuned.

Let’s read the new dataset as an H2O frame and list the first two observations to see some of the new

data by using the h2oframe list command.

. use https://www.stata-press.com/data/r18/newchurn
(Telco customer churn new data)
. _h2oframe put, into(newchurn) replace
Progress (%): 0 100
. _h2oframe change newchurn
. _h2oframe list in 1/2

zipcode latitude longitude tenure~s monthlyc~s totalcharges
1 95670 38.6027222 -121.2799149 49 75.1999969 3678.3000488
2 91737 34.2452888 -117.6425018 4 88.8499985 372.4500122

country state city gender senior~n partner
1 United States California Rancho Cordova Male No No
2 United States California Rancho Cucamonga Female Yes No

depend~s phones~e multip~s internets~v online~y online~p device~t
1 No Yes Yes Fiber optic No No No
2 No Yes Yes Fiber optic No No Yes

techsu~t streamtv stream~e contract paperl~l paymethod
1 No No No Month to month No Credit card
2 No No Yes Month to month Yes Electronic check
[2 rows x 25 columns]

The probabilities of churning and the corresponding classes can be predicted by using the

h2omlpredict command. By default, this command predicts classes after classification. To predict

probabilities instead, we need to specify the pr option with h2omlpredict. In example 4, we used

h2omlpostestframe to set the postestimation frame to test for the gbm tuned model. To obtain pre-

dictions for the new dataset, specify the frame(newchurn) option with h2omlpredict. Below, we

predict both classes and probabilities for the new dataset using the gbm tuned model.

. h2omlest restore gbm_tuned
(results gbm_tuned are active now)
. h2omlpredict churnhat, frame(newchurn)
(option class assumed; predicted class)
Progress (%): 0 100
. h2omlpredict churnprob*, frame(newchurn) pr
Progress (%): 0 100
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By default, the threshold that maximizes the F1metric is used to predict classes based on the predicted

probabilities. You can specify a different value for the threshold using the threshold() option. To

display the threshold values that maximize or minimize different classification metrics, we type

. h2omlestat threshmetric
Maximum or minimum metrics using H2O
Testing frame: test

Metric Max/Min Threshold

F1 .6667 .2378
F2 .7816 .1496

F0.5 .6659 .5142
Accuracy .8171 .5142

Precision 1 .9081
Recall 1 .0236

Specificity 1 .9081
Min. class accuracy .7849 .2905
Mean class accuracy .7969 .2378

True negatives 1023 .9081
False negatives 0 .0236 +
True positives 377 .0236

False positives 0 .9081 +
True-negative rate 1 .9081

False-negative rate 0 .0236 +
True-positive rate 1 .0236

False-positive rate 0 .9081 +
MCC .5332 .2378

+ identifies minimum metrics.

The table above displays the set of classification metrics with the corresponding best thresholds; see

[H2OML] h2omlestat threshmetric. In the reported table, the thresholds provide the best cutpoints for

the classification based on the predicted probabilities such that the corresponding metric is optimal. For

example, for Precision, the best threshold is 0.9081. For the definition of metrics, see [H2OML] met-

ric option.

The generated variables for the classes and class probabilities are available in the newchurn frame,

because we specified frame(newchurn). Let’s list a few values for the predicted classes and probabili-

ties.

. _h2oframe list churnhat churnprob*
churnhat churnp~1 churnp~2

1 No .7780746 .2219254
2 Yes .2161581 .7838419
3 No .9001728 .0998272
4 No .8937768 .1062232
5 No .8101463 .1898537
6 Yes .2203342 .7796658
7 No .8987335 .1012665
8 Yes .4977883 .5022117
[8 rows x 3 columns]
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The variables (H2O columns) churnhat, churnprob1, and churnprob2 contain the predicted classes
and the corresponding predicted probabilities of not churning or churning. In our example, for instance,

there is only a 22% chance that the first customer will churn compared with a 78% chance of churning

for the second customer.

Example 6: Explaining classification prediction
In this example, we try to answer one of the fundamental questions of machine learning: Why does

my model predict what it predicts? In machine learning, explainability refers to the ability of the method

to describe how a model arrives at a specific prediction in a way that is understandable to humans.

This is important to ensure that, under certain conditions, predictions are not only accurate but also

understandable and justifiable.

From Interpretation and explanation in [H2OML] Intro, there are two types of explainability methods:

local and global. Local models explain individual predictions and approximate the machine learning

model in the vicinity of one observation. The popular methods include ICE curves and SHAP values,

which can be obtained by using the h2omlgraph ice and h2omlgraph shapvalues commands. A

global model describes an average behavior of a machine learning model. PDPs, variable importance,

and global surrogate models are some of the popular choices.

We start with global methods and then switch to local methods. In example 4, we selected gbm tuned
as the best model. In this example, we want to explore predictions for the original churn dataset (without
splitting it into training and testing frames). We start by restoring the gbm tuned model:

. h2omlest restore gbm_tuned
(results gbm_tuned are active now)

Now we use h2omlpredict to predict classes for the entire churn dataset. We specify the

frame() option to obtain predictions for the churn frame instead of the test frame we selected with

h2omlpostestframe earlier in example 4.

. h2omlpredict churnhat, frame(churn)
(option class assumed; predicted class)

We use these predictions to build global surrogate models, which are some of the simplest global

explainable methods. They approximate the prediction of a machine learning model, churnhat in our

case, using a model that is easier to interpret such as a decision tree. See Global surrogate models in

[H2OML] Intro.

To demonstrate, we use a classification tree with maximum depth equal to, say, 3 and other parameters

at their default values as a global surrogate model. In practice, the depth of the tree and other parameters

should be treated as hyperparameters and learned from data. To obtain one classification tree, we use the

ntrees(1) option with h2oml rfbinclass.
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In example 1, we set our working frame as train. Thus, before running the estimation command
h2oml rfbinclass on the churn dataset, we need to physically change the working frame to churn by
using the h2oframe change command.

. _h2oframe change churn

. h2oml rfbinclass churnhat $predictors, h2orseed(19) ntrees(1) maxdepth(3)
Progress (%): 0 100
Random forest binary classification using H2O
Response: churnhat
Frame: Number of observations:

Training: churn Training = 2,523
Model parameters
Number of trees = 1

actual = 1
Tree depth: Pred. sampling value = -1

Input max = 3 Sampling rate = .632
min = 3 No. of bins cat. = 1,024
avg = 3.0 No. of bins root = 1,024
max = 3 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Log loss .4182261
Mean class error .1828537

AUC .8678704
AUCPR .727738

Gini coefficient .7357409
MSE .1378874

RMSE .3713319
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It is easier to interpret the results from a classification tree visually. The steps on how to obtain an

image from the DOT file are provided in [H2OML] DOT extension. We follow those steps to display

the classification tree below; see [H2OML] h2omltree. The dotsaving() option of the h2omltree
command generates and saves a DOT file, which can be used to plot the classification tree using the

Graphviz software, see https://graphviz.org.

. h2omltree, dotsaving(churntree.dot, replace
> title(Surrogate tree for class ”No”))

Surrogate tree for class "No"
onlinebackup

onlinesecurity

No

onlinesecurity

[NA]
No Internet service

Yes

paperlessbill

[NA]
No

No Internet service

tenuremonths

Yes

tenuremonths

No

contract

[NA]
No Internet service

Yes

0.23

[NA]
Yes

0.364

No

0.541

< 21.5

0.88

[NA]
>= 21.5

0.357

[NA]
< 43.5

0.798

>= 43.5

0.798

Month to month

0.997

[NA]
One year
Two year

The NA’s on the tree indicate the split for the missing values, if any. The values of the terminal nodes

can be interpreted as probabilities of class No. For example, the highest-predicted probability of not

churning (0.997) or the lowest probability of churning (1−0.997 = 0.003) occurs for the customers who

have a one- or two-year contract with the company and are either not subscribed to any Internet services

or use online backup and online security services.

In example 3, we used h2omlgraph varimp to display important predictors for the gbm tunedmodel.
We use some of these important predictors to produce PDP. PDP is a global explainable method that shows

the marginal effect that the specified predictors have on the predicted outcome of a machine learning

model (gbm tuned here); see [H2OML] h2omlgraph pdp.

https://graphviz.org
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Our current estimation results are from the h2oml rfbinclass command, so we first use h2omlest
restore to restore the gbm tuned estimation results. Next we use h2omlpostestframe with the

notest option to specify that the churn frame be used by the subsequent postestimation commands

but not considered a testing frame.

. h2omlest restore gbm_tuned
(results gbm_tuned are active now)
. h2omlpostestframe churn, notest
(frame churn is now active for h2oml postestimation)
. h2omlgraph pdp contract tenuremonths onlinesecurity techsupport, combine
Progress (%): 0 75.0 100
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Frame: churn

Partial dependence plot using H2O

The PDP pattern (red line in the plot) agrees with the results from the surrogate tree. For instance, the

probability of churning (shown on the 𝑦 axis) decreases for customers with a one- or two-year contract
(contract) and for customers who use the company’s services longer (tenuremonths).

For local explainability, we can use SHAP values. A SHAP value estimates the contribution of each

predictor to the prediction for an individual observation. Let’s consider observation 19 and explain its

prediction from the gbm tuned model. Below, we list some of the predictors for this observation, which
corresponds to a female customer who used a month-to-month contract service for 9 months and has both

the observed churn and predicted churnhat values of Yes.

. _h2oframe list churn churnhat contract totalcharges onlinesecurity
> tenuremonths gender in 19

churn churnhat contract totalc~s online~y tenure~s gender
1 Yes Yes Month to month 857.25 No 9 Female
[1 row x 7 columns]
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We now use h2omlgraph shapvalues to produce SHAP values for observation 19 for the top 10

SHAP-important predictors.

. h2omlgraph shapvalues, obs(19) top(10) xlabel(-2.5(0.5)2)

+.7785

-.1307

+.1485

+.1646

+.1755

+.1796

+.228

+.3337

+.3859

+.4896

-.9538

ƒ(x) = .2063

E[ƒ(x)] = -1.593
Remaining predictors

paperlessbill = No

streamtv = Yes

onlinesecurity = No

latitude = 34.06395

paymethod = Electronic check

partner = No

tenuremonths = 9

internetserv = Fiber optic

contract = Month to month

dependents = Yes
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or

-2.5 -2 -1.5 -1 -.5 0 .5 1 1.5 2
SHAP contribution

Obs. = 19; prediction = Yes
Frame: churn

SHAP values using H2O

The blue bars show predictors that increase probability of churn, and red bars indicate the opposite.

The SHAP values agree with previous findings. Month-to-month contract, small tenuremonths, and
not using online security services contribute positively to this particular customers’ churning. On the

other hand, having a dependent contributes to retaining this particular customer to continue using the

company’s services.

We can also display the SHAP summary plot, also known as a beeswarm plot, for all observations and

predictors. The beeswarm plot shows both the magnitudes of SHAP values, which represent the contribu-

tion of a predictor to a particular prediction, and the SHAP-value distribution across many observations.

This allows you to quickly see which predictors are most important and how they influence the response.

For illustration purposes, we plot SHAP values for the top 4 SHAP-important predictors.

. h2omlgraph shapsummary, top(4) rseed(19)
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In the figure, the color map, titled as “Normalized predictor value”, indicates colors of the normalized

values of the predictors. For example, if a variable is not of the data type enum, such as tenuremonths,
then the smallest normalized variable value will be given a lighter blue color, and, as the values increase,

the color gradient will change from blue to red for the largest value of 1. Similarly, for a categorical

variable (enum), such as contract, the base level of the predictor will be given a lighter blue color,
and the color will change from blue to red according to the categories. Within each level, the observa-

tions are jittered for presentational purposes. To check the levels of a categorical variable (for example,

contract), type

. _h2oframe levelsof contract
‘”Month to month”’ ‘”One year”’ ‘”Two year”’

The predictors displayed on the 𝑦 axis are ranked based on SHAP predictor importance: predictors

with large absolute SHAP values are listed in descending order. From the SHAP summary plot, for the

contract predictor, a smaller value, which corresponds to the month-to-month option, increases the

probability of churn, and this probability decreases for the other contract options. Similarly, smaller

values of tenuremonths increase the probability of churn and vice versa.

Example 7: Shutting down the H2O cluster
Once you are finished with your analysis, you can disconnect from the H2O cluster by using

. h2o disconnect

This command closes the H2O session between Stata and the cluster. However, the H2O cluster con-

tinues running in the background. Later in the same Stata session, you can type h2o connect to rebuild
the connection to it and reaccess the resources it contains. If you want to force shutting down the cluster,

you can type

. h2o shutdown, force

The above completely shuts down the cluster, and all resources within the cluster are lost, including

any data (H2O frames) it contained.

If you want the H2O cluster to remain connected but would like to clear everything in memory, in-

cluding all data in H2O frames, you can type

. h2o clear
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Regression analysis

In this section, we demonstrate analysis for the regression problem using random forest.

Example 8: Data setup
Consider the Ames housing dataset (De Cock 2011), ameshouses.dta, also used in a Kaggle com-

petition, which describes residential houses sold in Ames, Iowa, between 2006 and 2010. It contains

about 80 housing (and related) characteristics such as home size, amenities, and location. This dataset is

often used for building predictive models for home sale price, saleprice. We will use random forest to

model home sale price and evaluate its predictive performance. Here we will use just a few predictors to

demonstrate some of the h2oml features.

Before putting the dataset into an H2O frame, we do several data transformations in Stata. In particular,

because saleprice is right-skewed (type histogram saleprice), we perform logarithmic transforma-

tion. We also generate the houseage variable, which records the age of the house at the time of a sales

transaction.

. use https://www.stata-press.com/data/r18/ameshouses
(Ames house data)
. generate logsaleprice = log(saleprice)
. generate houseage = yrsold - yearbuilt
. drop saleprice yearbuilt yrsold

We put the dataset into an H2O frame by using the h2oframe put command. We split the data into

training and validation frames (without a testing frame) with 75% of observations in the training frame.

. h2o init
(output omitted )

. _h2oframe put, into(house)
Progress (%): 0 100
. _h2oframe change house

. _h2oframe split house, into(train valid) split(0.75 0.25) rseed(19)

. _h2oframe change train

The steps of method selection and prediction for the regression are the same as for binary classifica-

tion, discussed in example 3 and example 4. Therefore, in this example, we focus only on tuning.
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Example 9: Regression using random forest
As we discussed in Model selection in machine learning of [H2OML] Intro, we start by defining a

reference model, which in our case is a random forest with default parameters. We use the MSE metric,

computed on validation frame, to evaluate the performance of the model.

The dataset has a total of 46 predictors, but for simplicity, we include only 10 and create a global

macro, predictors, in Stata to store the names of these predictors.

. global predictors overallqual grlivarea exterqual houseage garagecars
> totalbsmtsf stflrsf garagearea kitchenqual bsmtqual
. h2oml rfregress logsaleprice $predictors, h2orseed(19) validframe(valid)
Progress (%): 0 21.9 100
Random forest regression using H2O
Response: logsaleprice
Frame: Number of observations:

Training: train Training = 1,099
Validation: valid Validation = 361

Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 18 No. of bins cat. = 1,024
avg = 19.9 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Deviance .0283991 .0218303
MSE .0283991 .0218303

RMSE .1685202 .1477508
RMSLE .0130751 .0114914

MAE .1163998 .1042066
R-squared .8240197 .8577693

The description and interpretation of the output of random forest is provided in example 1 of

[H2OML] h2oml rf. The definitions of metrics can be found in [H2OML] metric option.
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The MSE for the validation frame is 0.022, which is our reference value for later. We also need to

make sure that we are slightly overfitting the training dataset. The above model does not overfit the

training dataset, because the training MSE is larger than the validation MSE. To visualize this, we plot the

validation curve using the h2omlgraph scorehistory command.

. h2omlgraph scorehistory
Training frame: train
Validation frame: valid
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Score history using H2O

We observe that the training error is higher than the validation error. This means that either the default

model is not complex enough to overfit the training dataset or we need more training data. In our case,

the former reason is more likely, because we used a simpler model with default hyperparameters, which

is sufficient for a reference model.

Example 10: Hyperparameter tuning using random forest
In this example, we explore different configurations of the hyperparameters to tune the random forest

model. In general, a well-tuned model substantially improves the model performance and generalizes

well to new data.

To demonstrate, we tune only two hyperparameters, the number of trees, ntrees(), and the minimum
number of observations required for splitting a leaf node, minobsleaf(), and use a small grid space with
a random grid search. In practice, hyperparameter tuning is an iterative process and often requires tuning

many more hyperparameters; see table 3 in [H2OML] Intro. When the number of hyperparameters and

the grid space are large, you can use the parallel() option to specify the number of models to build in
parallel during the grid search. Beware that the H2O results for models built in parallel may not always

be reproducible; see [H2OML]H2O reproducibility. By default, the models are built sequentially, which

may take some time for complicated tuning models.
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. h2oml rfregress logsaleprice $predictors, h2orseed(19) validframe(valid)
> ntrees(400(50)500) minobsleaf(3(2)7)
> tune(grid(random, h2orseed(19)) metric(mse))
Progress (%): 0 100
Random forest regression using H2O
Response: logsaleprice
Frame: Number of observations:

Training: train Training = 1,099
Validation: valid Validation = 361

Tuning information for hyperparameters
Method: Random
Metric: MSE

Grid values
Hyperparameters Minimum Maximum Selected

Number of trees 400 500 450
Min. obs. leaf split 3 7 3

Model parameters
Number of trees = 450

actual = 450
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 12 No. of bins cat. = 1,024
avg = 15.1 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 3 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Deviance .0269402 .0208756
MSE .0269402 .0208756

RMSE .1641346 .144484
RMSLE .0127415 .0112297

MAE .1113531 .0995714
R-squared .83306 .8639893

To ensure H2O reproducibility, we specified h2orseed(19) for both the random forest model and

grid search. Despite tuning only a couple hyperparameters, we were able to reduce the validation MSE

metric from 0.022 to 0.021. To explore tuning further, you may try to include more hyperparameters and

consider a larger grid space.
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To compare different configurations of hyperparameters with their respective metric values sorted

from the most to least optimal, we can use the h2omlestat gridsummary command.

. h2omlestat gridsummary
Grid summary using H2O

Min. obs.
Number of leaf

ID trees split MSE

1 450 3 .0208756
2 500 3 .0209012
3 400 3 .020924
4 400 5 .021525
5 450 5 .0215336
6 500 5 .0215765
7 500 7 .0221419
8 400 7 .022142
9 450 7 .0221425

Here the hyperparameter values are listed from the smallest to largest MSE. If you want to reduce

execution time in favor of a slightly lower model performance, you may select the third model instead

of the first (top) model. For this model, the number of trees is 400 compared with 450 for the top model,

but the MSE value is only slightly higher. We can select the third model for further analysis by typing

. h2omlselect id = 3

Effect of categorical predictors

As we discussed in Decision trees of [H2OML] Intro, the ensemble decision tree methods are biased

toward categorical predictors with many levels. In this example, we explore the effect of a categorical

predictor with many levels on performance of tree-based methods. Even though we focus on a GBM here,

similar results should also hold for a random forest.

Example 11: Data setup
We use a subset of the Lending Club dataset available in Kaggle to explore this phenomenon. Kaggle

is a platform for the machine learning community that provides datasets and other resources; see https:

//kaggle.com.

We start by initializing an H2O cluster and importing the dataset as an H2O frame by using the h2o
init and h2oframe put commands.

. h2o init

. use https://www.stata-press.com/data/r18/loan
(Lending club data)
. _h2oframe put, into(loan)
Progress (%): 0 100

Next we use the h2oframe split command to split the dataset into training and validation frames

with 80% of observations in the training frame.

. _h2oframe split loan, into(train valid) split(0.8 0.2) rseed(19)

. _h2oframe change train

https://kaggle.com
https://kaggle.com
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Example 12: Effect of categorical predictors on ensemble decision tree methods
Consider the categorical predictor addr state with 50 levels that records the state where the loan

applicant lives. To show the importance of carefully treating categorical variables when performing

ensemble decision tree methods, we first run a GBM without paying special attention to categorical pre-

dictors.

Let’s define a global macro, predictors, to store the names of the predictors.

. global predictors loan_amnt int_rate emp_length annual_inc dti delinq_2yrs
> revol_util total_acc credit_lngth term home_owner purpose addr_state
> verification

Next we use h2oml gbbinclass to perform gradient boosting binary classification. We perform

validation using the valid frame and specify the h2orseed() option for H2O reproducibility. We use

200 trees, and, to avoid overfitting, we request an early stopping based on the AUC metric. We also

specify scoreevery(1) to score the AUC metric after each tree is added to the model to ensure H2O

reproducibility in the presence of early stopping.

. h2oml gbbinclass bad_loan $predictors, h2orseed(19) validframe(valid)
> ntrees(200) stop(5, metric(auc)) scoreevery(1)
Progress (%): 0 0.4 1.4 3.9 8.5 14.0 100
Gradient boosting binary classification using H2O
Response: bad_loan
Loss: Bernoulli
Frame: Number of observations:

Training: train Training = 131,294
Validation: valid Validation = 32,693

Model parameters
Number of trees = 200 Learning rate = .1

actual = 39 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 5 No. of bins cat. = 1,024
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Stopping criteria: No. of iterations = 5

Metric: AUC Tolerance = .001
Metric summary

Metric Training Validation

Log loss .4256225 .4381805
Mean class error .3405512 .3471389

AUC .7264524 .7081155
AUCPR .3827862 .3495525

Gini coefficient .4529049 .4162309
MSE .1337261 .1384392

RMSE .3656858 .3720742

Note: Metric is scored after every tree.
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Let’s plot the variable importance by using the h2omlgraph varimp command.

. h2omlgraph varimp
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Variable importance plot using H2O

The variable addr state is one of the important variables.
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Now to account for the many categories in addr state, we tune the hyperparameter binscat() on
a grid of values [16, 50].

. h2oml gbbinclass bad_loan $predictors, h2orseed(19) validframe(valid)
> ntrees(200) binscat(16(5)50) stop(5, metric(auc)) scoreevery(1)
> tune(grid(cartesian) metric(auc))
Progress (%): 0 100
Gradient boosting binary classification using H2O
Response: bad_loan
Loss: Bernoulli
Frame: Number of observations:

Training: train Training = 131,294
Validation: valid Validation = 32,693

Tuning information for hyperparameters
Method: Cartesian
Metric: AUC

Grid values
Hyperparameters Minimum Maximum Selected

No. of bins cat. 16 46 46

Model parameters
Number of trees = 200 Learning rate = .1

actual = 46 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 5 No. of bins cat. = 46
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Stopping criteria: No. of iterations = 5

Metric: AUC Tolerance = .001
Metric summary

Metric Training Validation

Log loss .4274797 .4368557
Mean class error .3422759 .3435895

AUC .7210886 .7100941
AUCPR .3725785 .3557051

Gini coefficient .4421772 .4201882
MSE .1344013 .1379741

RMSE .3666078 .3714487

Note: Metric is scored after every tree.

Based on the tuning information, the value of 46 for binscat() provides the highest AUC value.
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The variable importance graph for the selected best model, displayed below, shows that after account-

ing for the many levels of the categorical variable addr state, its importance has decreased substan-
tially.

. h2omlgraph varimp
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Detecting nuisance predictors

Example 13: Detecting nuisance predictors with ensemble decision tree methods
Let’s use ensemble decision trees to detect important and nuisance predictors in the dataset. Here we

use a random forest, but the results should be similar for a GBM as well. We use a simulated dataset,

in which predictors important1 through important5 are important and noise1 through noise5 are

nuisance (random noise). For the data-generation details, see Wright, Ziegler, and König (2016).

We start by initializing an H2O cluster and importing the dataset as an h2oframe.
. use https://www.stata-press.com/data/r18/effect
(Simulated data with many nuisance predictors)
. h2o init
(output omitted )

. _h2oframe put, into(sim)
Progress (%): 0 100
. _h2oframe change sim
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Next we run a random forest binary classification with default hyperparameter values and plot the

variable importance.

. h2oml rfbinclass y important1-important5 noise1-noise45, h2orseed(19)
Progress (%): 0 23.9 100
Random forest binary classification using H2O
Response: y
Frame: Number of observations:

Training: sim Training = 1,000
Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 15 No. of bins cat. = 1,024
avg = 18.6 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Log loss .6693054
Mean class error .3711672

AUC .689691
AUCPR .6739805

Gini coefficient .3793821
MSE .2227112

RMSE .4719228

. h2omlgraph varimp
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Variable importance plot using H2O

All important predictors are in the top five, but the separation between the important and nuisance

predictors is not drastic. We can improve this by tuning the model.
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We use a 3-fold modulo cross-validation and 500 trees. For illustration purposes, we train only hy-

perparameters that control the depth or complexity of the tree, maxdepth(), and the number of training
samples used to build a tree, samprate(). We use the AUC metric for training.

. h2oml rfbinclass y important1-important5 noise1-noise45, h2orseed(19)
> cv(3,modulo) ntrees(500) maxdepth(5(1)7) samprate(0.4(0.1)0.6)
> tune(metric(auc))
Progress (%): 0 100
Random forest binary classification using H2O
Response: y
Frame: Number of observations:

Training: sim Training = 1,000
Cross-validation = 1,000

Cross-validation: Modulo Number of folds = 3
Tuning information for hyperparameters
Method: Cartesian
Metric: AUC

Grid values
Hyperparameters Minimum Maximum Selected

Max. tree depth 5 7 6
Sampling rate .4 .6 .5

Model parameters
Number of trees = 500

actual = 500
Tree depth: Pred. sampling value = -1

Input max = 6 Sampling rate = .5
min = 6 No. of bins cat. = 1,024
avg = 6.0 No. of bins root = 1,024
max = 6 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .6169953 .6233988
Mean class error .3141157 .340729

AUC .7528826 .7385296
AUCPR .7392935 .7251183

Gini coefficient .5057653 .4770591
MSE .2130054 .2160959

RMSE .4615251 .4648612
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From the tuning output, the respective selected best values for maxdepth() and samprate() are 6

and 0.5. Let’s plot the variable importance again.
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Variable importance plot using H2O

Now there is a clearer separation between the important and nuisance predictors.

Gradient boosting Poisson regression

Example 14: Explaining Poisson regression predictions
In example 7 of [H2OML] h2oml gbm, we demonstrated how to perform a gradient boosting Poisson

regression. In this example, we want to explain the Poisson regression predictions using that model. We

repeat some of the steps from that example below and fit the final model.

We start by initializing an H2O cluster, opening the dataset in Stata, and importing the dataset to an

H2O frame.

. h2o init
(output omitted )

. use https://www.stata-press.com/data/r18/runshoes
(Running shoes)
. _h2oframe put, into(runshoes)
Progress (%): 0 100
. _h2oframe change runshoes
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To perform a Poisson regression with h2oml gbregress, we specify the loss(poisson) option.

. h2oml gbregress shoes rpweek mpweek male age married trunning, h2orseed(19)
> loss(poisson)
Progress (%): 0 100
Gradient boosting regression using H2O
Response: shoes
Loss: Poisson
Frame: Number of observations:

Training: runshoes Training = 60
Model parameters
Number of trees = 50 Learning rate = .1

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 2 No. of bins cat. = 1,024
avg = 2.9 No. of bins root = 1,024
max = 4 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training

Deviance .3649675
MSE 1.064175

RMSE 1.031589
RMSLE .2691122

MAE .7149171
R-squared .4885824

Next we explain the prediction for the first observation in the runshoes frame by using the

h2omlgraph shapvalues command; see [H2OML] h2omlgraph shapvalues. You can follow the same

steps to explain predictions for other observations.

. h2omlgraph shapvalues, obs(1) xlabel(0.6(0.1)1.5)
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SHAP values using H2O

The blue bars represent predictors that increase the probability of purchasing running shoes, whereas

the red bars represent predictors that decrease it. For this observation, running 42.5 miles per week has

a positive effect on the number of shoes purchased, whereas an age of 29.5 has a negative effect.



h2oml — Introduction to commands for Stata integration with H2O machine learning+ 70

We continue our analysis and produce a PDP for the predictors mpweek and age by using the

h2omlgraph pdp command.

. h2omlgraph pdp mpweek age, combineopts(cols(2))
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Partial dependence plot using H2O

The PDP (red line) supports the previous result. Specifically, in the graph for age on the right, we

observe a noticeable decrease in PDP roughly between ages 25 and 30, which implies a negative effect of

age on buying running shoes. But after age 30, the effect is positive.
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+These features are part of StataNow.

Description Remarks and examples Also see

Description
In this entry, we provide an introduction to the H2O integration with Stata. We introduce commands

for initiating H2O and working with data frames in H2O, both of which are necessary before you can use

h2oml commands described in [H2OML] h2oml and throughout this manual.

Remarks and examples
Remarks are presented under the following headings:

What is H2O?
How does H2O work from Stata?

Start a local H2O cluster
Connect to an existing H2O cluster

Interact with the H2O cluster
Close and disconnect the H2O cluster

What is H2O?
H2O is a scalable and distributed machine learning and predictive platform. It is an open-source

platform, and its core code is written in Java. Stata uses H2O’s REST API to connect to H2O. You can

perform in-memory data analysis and machine learning using this framework. More information about

the H2O framework can be found on the H2O website at https://docs.h2o.ai/. We also refer you to H2O’s

User Guide.

We separate H2O related commands in Stata into two categories:

1. Commands to establish connection with H2O and work with H2O frames. For details, see [P] H2O

intro and https://www.stata.com/h2o/.

2. Commands for machine learning (h2oml). For the Stata examples, see [H2OML] h2oml.

How does H2O work from Stata?
You can either start a new H2O cluster or connect to an existing H2O cluster from within Stata. Then

you use the suite of Stata commands (h2o, h2oframe, and h2oml) to interact with the H2O cluster.

Start a local H2O cluster

You can start a local H2O cluster by typing in Stata

. h2o init

h2o init will look for the existence of an h2o.jar file, a Java Archive (JAR) file that is used to start
H2O. This file is distributed by H2O. Stata does not distribute h2o.jar with its installation.
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https://docs.h2o.ai/h2o/latest-stable/h2o-docs/additional-resources.html#api-reference
https://docs.h2o.ai/
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/index.html
https://www.stata.com/h2o/
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Downloading and placing an h2o.jar

To download the h2o.jar file and place it in the local directory so that Stata can locate it, you can

follow the steps below. Note that these steps need to be completed only once.

You can obtain the h2o.jar file from H2O’s download page.

1. Go to https://h2o.ai/resources/download/.

2. Click on the tab H2O Open Source Platform.

3. Go to Latest Stable Release or Prior Releases. Stata’s H2OML documentation is written using

Version 3.46.0.6.

4. Click on Download H2O.

5. After downloading the file (for example, h2o-3.46.0.6.zip), unzip it and look for the h2o.jar
file. This is the only file from within the zip file that you will need.

After downloading the h2o.jar file, place the file in a directory included in Stata’s system directories

(ado-path). To view directories on the ado-path, you can use the adopath command. For details, see

[P] sysdir. For example, the following is a typical Stata output on a Windows computer:

. adopath
[1] (BASE) ”C:\Program Files\Stata18\ado\base”
[2] (SITE) ”C:\Program Files\Stata18\ado\site”
[3] ”.”
[4] (PERSONAL) ”C:\ado\personal”
[5] (PLUS) ”C:\ado\plus”
[6] (OLDPLACE) ”C:\ado”

We recommend using the SITE, PERSONAL, or PLUS directory. When h2o.jar is placed along the

ado-path, h2o init will use it directly to start a new local H2O cluster. If multiple copies of h2o.jar
exist along the ado-path, Stata will prioritize based on the order that the adopath command presents

and will use the first h2o.jar it locates. Because we are looking for a .jar file, h2o init can locate

h2o.jar if it is placed in a jar/ subdirectory. Please create the jar/ subdirectory if it does not exist in
any of the defined ado-path locations. If h2o.jar cannot be located, h2o init will produce an error.

After h2o.jar is located, h2o init will determine whether a cluster is already running on your local
machine.

https://h2o.ai/resources/download/
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When the cluster has been successfully initialized, Stata will automatically connect to this cluster, and

a summary of the H2O cluster status similar to the following will be displayed:

. h2o init
Connecting to the H2O cluster running at http://127.0.0.1:54321.....not found.
Starting a new cluster running at http://127.0.0.1:54321.
Connecting to the H2O cluster running at http://127.0.0.1:54321..... Successful.

H2O cluster uptime: 1 sec
H2O cluster timezone: America/Chicago
H2O data parsing timezone: UTC
H2O cluster version: 3.46.0.6
H2O cluster version age: 3 months and 7 days
H2O cluster total nodes: 1
H2O cluster free memory: 15.73 Gb
H2O cluster total cores: 32
H2O cluster allowed cores: 32
H2O cluster status: accepting new members, healthy
H2O connection url: http://127.0.0.1:54321

h2o init allows some options for customizing the initialization of the H2O cluster. For example, we

can specify the nthreads() option to set the maximum number of parallel threads to use when launching

the H2O cluster. For details, see https://www.stata.com/h2o/h2o18/h2o.html.

Technical note
h2o init uses the address of localhost:54321, where the IP of localhost is 127.0.0.1 and the port is

54321. If a cluster is not already running, h2o init will attempt to create one at this location, and by

default, the new cluster will allow connections only from the local machine.

Connect to an existing H2O cluster

Another way to interact with H2O is to connect to an existing H2O cluster by using the h2o connect
command. For example, an existing H2O cluster can be a cluster previously started by h2o init. For
details, see https://www.stata.com/h2o/h2o18/h2o.html.

To connect to an existing H2O cluster, we can type h2o connect in Stata. If the connection is built

successfully, Stata will report a summary of the cluster status similar to the following:

. h2o connect
Connecting to the H2O cluster running at http://localhost:54321. Successful.

H2O cluster uptime: 29 mins 58 secs
H2O cluster timezone: America/Chicago
H2O data parsing timezone: UTC
H2O cluster version: 3.46.0.6
H2O cluster version age: 3 months and 7 days
H2O cluster total nodes: 1
H2O cluster free memory: 15.70 Gb
H2O cluster total cores: 32
H2O cluster allowed cores: 32
H2O cluster status: locked, healthy
H2O connection url: http://localhost:54321

You can also connect to an H2O cluster running on a remote machine by specifying its IP and port in

the ip() and port() options in the h2o connect command. For details, see Options for h2o connect.

https://www.stata.com/h2o/h2o18/h2o.html
https://www.stata.com/h2o/h2o18/h2o.html
https://www.stata.com/h2o/h2o18/h2o.html#ref-h2o-connect-options
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Technical note
By default, h2o connectwill attempt to connect to a cluster running at localhost:54321 on your local

machine; if you started a local cluster with h2o init, then credentials will automatically be used.

When you connect to an existing H2O cluster, a new Stata H2O session is created between Stata (the

client) and the H2O cluster. Multiple clients can be connecting to the H2O cluster at the same time, and

they will all share its resources, such as the data and models within the cluster.

Interact with the H2O cluster
Once a connection with an H2O cluster has been established, you can interact with it directly from

within Stata.

For example, you can import data from the local drive to the cluster as an H2O frame or put data

currently in Stata into an H2O frame. The following code will load the iris dataset to the cluster into an
H2O frame h2oiris. For details, see https://www.stata.com/h2o/h2o18/.

. use https://www.stata-press.com/data/r18/iris
(Iris data)
. _h2oframe put, into(h2oiris)

To load a subset of the data, you can specify varlist and the if and in qualifiers. For more details,

see https://www.stata.com/h2o/h2o18/h2oframe_put.html.

You can type h2oframe dir to list all H2O frames in the cluster, along with the dimensions of the

data and the amount of memory the data consume in the cluster.

. _h2oframe dir
Name Rows Cols Size

h2oiris 150 5 1.773 Kb
Total: 1

For more information about H2O frames, see https://www.stata.com/h2o/h2o18/h2oframe.html.

You can set or change to the h2oiris frame as the current workingH2O frame by using the h2oframe
change command. Then to perform, for instance, gradient boosting multiclass classification using the

dataset on this frame, type

. _h2oframe change h2oiris

. h2oml gbmulticlass iris seplen sepwid petlen petwid
(output omitted )

Instead of separate h2oframe put and h2oframe change commands, it is often convenient to put
data into an H2O frame and make that frame current in a single step by typing, for instance,

h2oframe put, into(h2oiris) current

https://www.stata.com/h2o/h2o18/
https://www.stata.com/h2o/h2o18/h2oframe_put.html
https://www.stata.com/h2o/h2o18/h2oframe.html
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Close and disconnect the H2O cluster
Once you have finished the analysis on the H2O cluster, you can type

. h2o disconnect

to close the connection from the H2O session between Stata and the cluster or

. h2o shutdown

to shut down the cluster.

The h2o disconnect command will close the H2O connection between Stata and the cluster, leaving

the H2O cluster running. Later in the same Stata session, you can type h2o connect to rebuild the

connection to it and reaccess the resources it contains.

The h2o shutdown command will destroy the cluster you are currently connected to along with all

its resources. By default, h2o shutdown will exit with an error and give a warning about its destructive
nature. To override this warning and actually shut down the cluster, use the force option. This will force
the cluster to shut down, and everything in the cluster will be destroyed regardless of whether the cluster

was created from Stata or outside of Stata.

Note that if the cluster was created by Stata using the h2o init command, then by exiting a Stata

session, it will be automatically shut down. We recommend to ensure that all the necessary resources

within the cluster are saved before exiting. To prevent a cluster that Stata created from automatically

getting shut down, use h2o disconnect before closing Stata. If the cluster was created outside of Stata
and a connection was made using h2o connect, then exiting Stata will close only the connection, leaving
all resources within the cluster intact.

The table below summarizes the alternatives to close or disconnect an H2O frame.

Option Cluster created by Stata Cluster created outside of Stata

h2o disconnect close H2O session without close H2O session without

loss of information loss of information

h2o shutdown, force close H2O session and discard close H2O session and discard

information in the cluster information in the cluster

Exit Stata session same as h2o shutdown, force same as h2o disconnect

In practice, if you are certain that all necessary results have been saved, it is preferable to use h2o
shutdown to shut down the H2O cluster. Putting all H2O-related commands between h2o init and h2o
shutdown, force is the recommended practice.

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[P] H2O intro — Introduction to integration with H2O
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+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
The h2oml gbm commands implement the gradient boosting machine (GBM) method for regression,

binary classification, and multiclass classification. h2oml gbregress implements gradient boosting re-
gression for continuous and count responses; h2oml gbbinclass implements gradient boosting classi-

fication for binary responses; and h2oml gbmulticlass implements gradient boosting classification for
multiclass responses (categorical responses with more than two categories).

The h2oml gbm commands provide only measures of performance. See [H2OML] h2oml postestima-

tion for commands to compute and explain predictions, examine variable importance, and perform other

postestimation analyses.

For an introduction to decision trees and GBM, see [H2OML] Intro.

Quick start
Before running the h2oml gbm commands, an H2O cluster must be initialized and data must be im-

ported to an H2O frame; see [H2OML] H2O setup and Prepare your data for H2O machine learning in

Stata in [H2OML] h2oml.

Perform gradient boosting regression of response y1 on predictors x1 through x100
h2oml gbregress y1 x1-x100

As above, but perform classification for binary response y2, report measures of fit for the validation
frame named valid, and set an H2O random-number seed for reproducibility

h2oml gbbinclass y2 x1-x100, validframe(valid) h2orseed(123)

As above, but for categorical response y3 and instead of a validation frame, use 3-fold cross-validation
h2oml gbmulticlass y3 x1-x100, cv(3) h2orseed(123)

As above, but set the number of trees to 30, the maximum tree depth to 10, the learning rate to 0.01, and

the predictor sampling rate to 0.6

h2oml gbmulticlass y3 x1-x100, cv(3) h2orseed(123) ntrees(30) ///
maxdepth(10) lrate(0.01) predsamprate(0.6)

As above, but for binary response y2, and use the default exhaustive grid search to select the optimal
number of trees and the maximum tree depth that minimize the log-loss metric

h2oml gbbinclass y2 x1-x100, cv(3) h2orseed(123) lrate(0.01) ///
predsamprate(0.6) ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss))
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As above, but use a random grid search, set an H2O random-number seed for this search, and limit the

maximum search time to 200 seconds

h2oml gbbinclass y2 x1-x100, cv(3) h2orseed(123) lrate(0.01) ///
predsamprate(0.6) ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss) grid(random, h2orseed(456)) maxtime(200))

As above, but specify a learning-rate decay of 0.9, and tune the number of bins for the categorical and

continuous predictors

h2oml gbbinclass y2 x1-x100, cv(3) h2orseed(123) lrate(0.01) ///
lratedecay(0.9) predsamprate(0.6) ntrees(10(5)100) ///
maxdepth(3(1)10) binscont(15(5)50) binscat(500(50)1100) ///
tune(metric(logloss) grid(random, h2orseed(456)) maxtime(200))

As above, but for continuous response y1, and use the mean squared error (MSE) as the metric for early

stopping and grid search

h2oml gbregress y1 x1-x100, cv(3) h2orseed(123) lrate(0.01) ///
lratedecay(0.9) predsamprate(0.6) ntrees(10(5)100) ///
maxdepth(3(1)10) binscont(15(5)50) binscat(500(50)1100) ///
tune(metric(mse) grid(random, h2orseed(456)) maxtime(200)) ///
stop(metric(mse))

Menu
Statistics > H2O machine learning

Syntax
Gradient boosting regression

h2oml gbregress response reg predictors [ , gbmopts ]

Gradient boosting binary classification for binary response

h2oml gbbinclass response bin predictors [ , gbmopts ]

Gradient boosting multiclass classification for categorical response

h2oml gbmulticlass response mult predictors [ , gbmopts ]

response reg, response bin, response mult, and predictors correspond to column names of the current

H2O frame.
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gbmopts Description

Model

loss(losstype) specify the loss function with h2oml gbregress; default is
loss(gaussian)

validframe(framename) specify the name of the H2O frame containing the validation
dataset that will be used to evaluate the performance
of the model

cv[ (# [ , cvmethod ]) ] specify the number of folds and method for cross-validation

cv(colname) specify the name of the variable (H2O column) for
cross-validation that identifies the fold to which each
observation is assigned

balanceclasses balance the distribution of classes (categories of
the response variable) by oversampling minority classes
with h2oml gbbinclass or h2oml gbmulticlass

h2orseed(#) set H2O random-number seed for GBM

encode(encode type) specify H2O encoding type for categorical predictors; default
is encode(enum)

auc enable potentially time-consuming calculation of the area
under the curve (AUC) and area under the precision–recall
curve (AUCPR) and metrics for multiclass classification with
h2oml gbmulticlass

stop[ (# [ , stop opts ]) ] specify the number of training iterations and other criteria
for stopping GBM training if the stopping metric does
not improve

maxtime(#) specify the maximum run time in seconds for GBM;
by default, no time restriction is imposed

scoreevery(#) specify that metrics be scored after every # trees during training

monotone(predictors[ , mon opts ]) specify monotonicity constraints on the relationship between
the response and the specified predictors with h2oml
gbregress or h2oml gbbinclass

Hyperparameter

ntrees(# | numlist) specify the number of trees to build the GBM model; default
is ntrees(50)

lrate(# | numlist) specify the learning rate of each tree; default is lrate(0.1)
lratedecay(# | numlist) specify the rate by which the learning rate specified in

lrate() is decaying after adding each tree to the GBM;
default is lratedecay(1)

maxdepth(# | numlist) specify the maximum depth of each tree; default is
maxdepth(5)

minobsleaf(# | numlist) specify the minimum number of observations per child for
splitting a leaf node; default is minobsleaf(10)

predsamprate(# | numlist) specify the sampling rate for randomly selecting a fraction of
predictors to build a tree; default is predsamprate(1)

samprate(# | numlist) specify the sampling rate for randomly selecting a fraction of
observations to build a tree; default is samprate(1)
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minsplitthreshold(# | numlist) specify the threshold for the minimum relative improvement
needed for a node split; default is
minsplitthreshold(1e-05)

binscat(# | numlist) specify the number of bins to build the histogram for node
splits for categorical predictors (enum columns in H2O);
default is binscat(1024)

binsroot(# | numlist) specify the number of bins to build the histogram for root
node splits for continuous predictors (real and int
columns in H2O); default is binsroot(1024)

binscont(# | numlist) specify the number of bins to build the histogram for node
splits for continuous predictors (real and int columns
in H2O); default is binscont(20)

Tuning

tune(tune opts) specify hyperparameter tuning options for selecting the
best-performing model

Only one of validframe() or cv[ () ] is allowed.
If neither validframe() nor cv[ () ] is specified, the performance metrics are reported for the training dataset.
monotone() can be specified with h2oml gbregress only with loss(gaussian), loss(tweedie), or loss(quantile)

and with h2oml gbbinclass.
When numlist is specified in one or more hyperparameter options, tuning is performed for those hyperparameters.

collect is allowed; see [U] 11.1.10 Prefix commands.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

losstype Description

gaussian Gaussian loss; the default

tweedie[ , power(#) ] Tweedie loss; response must be nonnegative

poisson Poisson loss; response must be nonnegative

laplace Laplace loss

huber[ , alpha(#) ] Huber loss

quantile[ , alpha(#) ] quantile loss

cvmethod Description

random randomly split the training dataset into folds; the default

modulo evenly split the training dataset into folds using the modulo
operation

stratify evenly distribute observations from the different classes of
the response to all folds

stop opts Description

metric(metric option) specify stopping metric for training or grid search

tolerance(#) specify the tolerance value by which a model must improve
before the training or grid search stops; default is
tolerance(1e-3)
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tune opts Description

metric(metric option) specify metric for selecting the best-performing model

grid(gridspec) specify whether to perform an exhaustive or random search
for all hyperparameter combinations

maxmodels(#) specify the maximum number of models considered in the
grid search; default is all configurations

maxtime(#) specify the maximum run time for the grid search in seconds;
default is no time limit

stop[ (#[ , stop opts ]) ] specify the number of iterations and other criteria for
stopping GBM training if the stopping metric does not
improve in the grid search

parallel(#) specify the number of models to build in parallel during
the grid search; default is parallel(1), sequential
model building

nooutput suppress the table summarizing hyperparameter tuning

If any of maxmodels(), maxtime(), or stop[ () ] is specified, then grid(random) is implied.

Options

� � �
Model �

loss(losstype) specifies the loss function for h2oml gbregress; see Introduction. For h2oml
gbbinclass, the Bernoulli loss function is used, and for h2oml gbmulticlass the multinomial loss
function is used.

loss(gaussian) specifies the Gaussian loss function. This is the default with h2oml gbregress.

loss(tweedie[ , power(#) ]) specifies the Tweedie loss function. This function is useful for mod-
eling a nonnegative response that has exact zeros. The Tweedie loss function is parameterized

by the variance power, specified via option power(#). power() is a number between 1 and 2,

exclusive. The default is power(1.5).

loss(poisson) specifies the Poisson loss function for a nonnegative response.

loss(laplace) specifies the Laplace loss function, which is an absolute loss function. It is useful

for predicting the median percentile.

loss(huber[ , alpha(#) ]) specifies the Huber loss function, which is useful when the response

has outliers. For the Huber loss function, alpha() is a number between 0 and 1, exclusive,

and indicates the top percentiles of residuals that should be considered as outliers. The default

is alpha(0.9).

loss(quantile[ , alpha(#) ]) specifies the quantile loss function, which is useful for predicting a
specified percentile. For the quantile loss function, alpha() is a number between 0 and 1, exclu-
sive, that specifies the desired quantile for quantile regression. For example, to predict the 60th

percentile of the response conditional on predictors, use alpha(0.6). The default is alpha(0.5),
which corresponds to the median.

validframe(framename) specifies the H2O frame name of the validation dataset used to evaluate the

performance of the model. This option is often used when the number of observations is large and the

data-splitting approach is the three-way (training-validation-testing) or two-way (training-validation)
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holdout method. For definitions of different data-splitting approaches, see The three-way holdout

method in [H2OML] Intro. If neither validframe() nor cv[ () ] is specified, the model is evaluated
using the training dataset. Only one of validframe() or cv[ () ] may be specified.

cv(cvspec) and cv use cross-validation to evaluate model performance. cvspec is one of # [ , cvmethod ]
or colname. Only one of cv() or validframe() may be specified.

cv[ (# [ , cvmethod ]) ] specifies the number of folds for cross-validation and, optionally, the cross-
validation method. This option is preferred when the number of observations is small for the training-

validation-testing split method.

cv is a synonym for cv(10).

cvmethod specifies the cross-validationmethod andmay be one of random, modulo, or stratify.

random specifies that training data be randomly split into the specified number of folds. It is

recommended for large datasets and may lead to imbalanced folds. This is the default.

modulo specifies that a deterministic assignment approach that evenly splits data into the spec-
ified number of folds be used. For example, if cv(3, modulo) is specified, then training

observations 1, 4, 7, . . . are assigned to fold 1; observations 2, 5, 8, . . . to fold 2, etc.

stratify specifies to try to evenly distribute observations from the different classes of the

response across all folds. This approach is useful when the number of classes is large and

the available dataset is small. stratify is not allowed when the response is H2O type real.

cv(colname) specifies the name of the variable (H2O column) that is used to split the data into subsets
according to colname. It provides a custom grouping index for the cross-validation split. This option

is suitable when the data are non-i.i.d. or for comparing different models using cross-validation. The

variable should be categorical (H2O data type enum).

balanceclasses is used with h2oml gbbinclass and h2oml gbmulticlass. It specifies to oversam-
ple the minority classes of the response to balance the class distribution. The imbalanced data can lead

to wrong performance evaluation, and oversampling tries to balance data by increasing the minority

classes. This can increase the size of the dataset. Minority classes are not oversampled by default.

h2orseed(#) sets the H2O random-number seed for H2O model reproducibility of the GBM estimation.

This option is not equivalent to the rseed() option available with other commands or the set seed
command. For reproducibility in H2O, see [H2OML] H2O reproducibility and H2O’s reproducibility

page.

encode(encode type) specifies the H2O encoding type to handle categorical variables, which in H2O are
supported as the data type enum. See https://www.stata.com/h2o/h2o18/h2oframe_describe.html for
information on the H2O data types. encode type may be one of enum, enumfreq, onehotexplicit,
binary, eigen, label, or sortbyresponse. For details, see [H2OML] encode option. The default

is encode(enum).

auc is used with h2oml gbmulticlass. It enables calculation of AUC and AUCPR metrics. Because

the computation of these metrics requires a large amount of memory and computational cost, by

default, H2O does not calculate these metrics. This option must be specified if you plan to use the

postestimation command h2omlestat aucmulticlass or to use one of these metrics for the early

stopping. When the number of classes in the response variable is greater than 50, H2O disables this

option.

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm-faq/reproducibility.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm-faq/reproducibility.html
https://www.stata.com/h2o/h2o18/h2oframe_describe.html
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stop and stop(# [ , metric(metric option) tolerance(#) ]) specify the rules for early stopping for
GBM. Early-stopping rules help prevent the overfitting of machine learning methods and may reduce

the generalization error, which measures how well a model predicts outcome for new data; see Pre-

liminaries in [H2OML] Intro. stop(#) specifies the number of stopping rounds or training iterations
needed to stop model training when the selected stopping metric does not improve by tolerance().
For example, if metric(logloss) is used and the specified number of training iterations is 3, the

model will stop training after the performance has been scored three consecutive times without any

improvement in logloss by the specified tolerance(). For reproducibility, it is recommended to
use stop() with option scoreevery(#).

stop is a synonym for stop(5).

metric(metric option) specifies the metric used for early stopping. The list of allowed metrics

is provided in [H2OML] metric option. The default is metric(deviance) for regression and

metric(logloss) for binary and multiclass classification.

tolerance(#) specifies the tolerance value by which metric() must improve during training. If

the metric() does not improve by # after the number of consecutive training iterations specified

in stop(#), the training stops. The default is tolerance(1e-3).

maxtime(#) specifies the maximum run time in seconds for the GBM. No time limitation is imposed by

default.

scoreevery(#) specifies that metrics be scored after every # trees during model training. This option is

useful in combination with stop() for reproducibility. When used with early stopping, the specified

number of iterations needed to stop applies to the number of scoring iterations that H2O has performed.

The default is to use H2O’s assessment of a reasonable ratio of training iterations to scoring time,

which may not always guarantee reproducibility. For details on reproducibility, see [H2OML] H2O

reproducibility.

monotone(predictors[ , mon opts ]) imposes a monotonicity constraint on the specified predictors.

The data type of predictors should be continuous (H2O type int or real). mon opts can be

one of increasing or decreasing. The default is increasing. monotone() may be repeated

to specify both increasing constraints for some predictors and decreasing constraints for others.

For example, h2oml gbregress ..., monotone(predlist1, increasing) monotone(predlist2,
decreasing) would specify an increasing constraint for the first list of predictors and a decreasing

constraint for the second list. The option can be used with h2oml gbbinclass and h2oml gbregress
when the loss function is loss(gaussian), loss(tweedie), or loss(quantile). By default, no
constraint is imposed.

� � �
Hyperparameter �

When numlist is specified in one or more hyperparameter options below, tuning is performed for those

hyperparameters.

ntrees(# | numlist) specifies the number of trees to build the model. The default is ntrees(50). The
specified number of trees and the actual number of trees used during estimation can differ. This can

happen if the early-stopping rules have been specified or the performance of the model is not changing

after adding an additional tree.

lrate(# | numlist) specifies the learning rate of the GBM. The specified number must be in the range

(0, 1]. The relationship between the learning rate and the number of trees is reciprocal: a lower rate
requires a larger number of trees and vice versa. A well-tuned learning rate helps avoid overfitting.

The default is lrate(0.1).
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lratedecay(# | numlist) specifies the factor by which the learning rate will be reduced after adding

each tree. The specified number must be in (0, 1]. The default is lratedecay(1). For example,
with 10 trees, the GBM starts with the learning rate lrate(), and the final 10th tree has a learning
rate equal to lrate() × lratedecay()10. Iteratively decreasing the learning rate implies that trees

contain more information (that is, have higher weights) at the beginning than at the end. When the

specified number is less than 1, it is recommended to initialize lrate() to a larger value, which leads
to faster convergence.

maxdepth(# | numlist) specifies the maximum depth of each tree. The default is maxdepth(5). The
splitting is stopped when the tree’s depth reaches the specified number. A deeper tree provides a

better training accuracy but may overfit the data.

minobsleaf(# | numlist) specifies the minimum number of observations required for splitting a leaf

node. The default is minobsleaf(10). For example, if we specify minobsleaf(50), then the node
will split if the training samples in each of the left and right children are at least 50.

predsamprate(# | numlist) specifies the sampling rate for the predictors. The sampling is without re-

placement. The sampling rate must be in the range (0, 1]. The default is predsamprate(1). The
predictor sampling rate reduces the correlation among trees and introduces an additional randomness

that might improve generalization of the model to the new data.

samprate(# | numlist) specifies the sampling rate for the observations. The sampling is without replace-
ment. The sampling rate must be in the range (0, 1]. The default is samprate(1). The observation
sampling introduces an additional randomization to the estimation method that might improve gener-

alization of the model to the new data.

minsplitthreshold(# | numlist) specifies the threshold for the required minimum relative improve-

ment in the impurity measure in order for a split to occur. The default is minsplitthreshold(1e-
05). A well-tuned minsplitthreshold() increases generalization because it precludes splits that

lead to overfitting.

binscat(# | numlist) specifies the number of bins to be included in the histogram for each categor-

ical (H2O type enum) predictor. The specified number should be greater than 1. The default is

binscat(1024). The histogram is used to split the tree node at the optimal point. Categorical

predictors are split by first assigning an integer to each distinct level. Then the method bins the

ordered integers according to the specified number of bins. Finally, the optimal split point is selected

among the bins. For details, see https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-

params/nbins_cats.html. For categorical predictors with many levels, a larger value of binscat()
leads to overfitting, and a smaller value adds randomness to the split decisions. Therefore, binscat()
is an important tuning parameter for datasets that contain categorical variables with many levels.

binsroot(# | numlist) specifies the number of bins to use at the root node of each tree for splitting

continuous (H2O type real or int) predictors. For the subsequent nodes, the specified # is divided

by 2, and the resulting number is used for splitting. The default is binsroot(1024). This option is
used in combination with binscont(), which controls the point when the method stops dividing by
2. The histogram is used to split the node at the optimal point. As the tree gets deeper, each subsequent

node includes predictors with a smaller range, and the bins are uniformly spread over this range. If the

number of observations in a node is smaller than the specified value, then the method creates empty

bins. If the number of bins is large, the method evaluates each individual observation as a potential

split point, which may increase the computation time. The number specified in binscont() must be
smaller than the number specified in binsroot().

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-params/nbins_cats.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-params/nbins_cats.html
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binscont(# | numlist) specifies the minimum number of bins in the histogram for the continuous (H2O

type real or int) predictors. The default is binscont(20). This option is used in combination with
binsroot(). The number specified in binsroot() must be greater than the number specified in

binscont().

In practice, a model is more generalizable to other datasets if binsroot() and binscat() are small and
tends to overfit for large values of binscont(), binsroot(), and binscat().

� � �
Tuning �

tune(tune opts) specifies options for the grid search method for tuning hyperparameters. In machine

learning, hyperparameter tuning is an important step in selecting a model that can be generalized

to other datasets. Because of the high dimensionality of hyperparameters and their types (continu-

ous, discrete, and categorical), manually setting and testing hyperparameters is time consuming and

inefficient. Grid search methods are designed to achieve optimal model performance within spec-

ified constraints such as time allocated for tuning or computational resources. Tuning begins with

the selection of the predetermined hyperparameters that you want to tune. Below, we describe the

available suboptions for controlling the tuning procedure. tune opts may be metric(), grid(),
maxmodels(), maxtime(), stop[ () ], or nooutput.

metric(metric option) specifies the metric for tuning. Allowed metrics are provided in

[H2OML] metric option. The default is metric(deviance) for regression and metric(log-
loss) for classification.

grid(gridspec) specifies whether to implement an exhaustive search or a random search for all hy-

perparameter combinations. gridspec is one of cartesian or random[ , h2orseed(#) ].
grid(cartesian) implements an exhaustive search for every possible combination in the search
space. This approach is recommended if the number of hyperparameters or the search space is

small. The default is grid(cartesian).

grid(random[ , h2orseed(#) ]) implements a random search for all hyperparameter combi-

nations. It is recommended to use grid(random) with maxmodels() and maxtime() to

reduce the computation time. If maxtime(), maxmodels(), or stop() is specified, then

grid(random) is implied.

h2orseed(#) sets an H2O random-number seed for the random grid search for reproducibility.

See [H2OML]H2O reproducibility and H2O’s reproducibility page for details. The behavior

of h2orseed() is different from the rseed() option allowed by many commands and the

set seed command.

maxmodels(#) specifies the maximum number of models to be considered in a grid search. By

default, all possible configurations are considered. If this option is specified, grid(random) is

implied.

maxtime(#) specifies the maximum run time for the grid search in seconds. By default, there is no

time limitation. If this option is specified, grid(random) is implied. This option can be specified
with option maxmodels() during the grid search. If maxtime() is also specified for the model

training, then each model building starts with a limit equal to the minimum of the maxtime() for
the model training, and the remaining time is used for the grid search.

stop and stop(# [ , metric(metric option) tolerance(#) ]) specify the rules for early stopping
for the grid search. This option implies grid(random). stop(#) specifies the number of grid

value configurations needed to stop the grid search when the selected metric does not improve

by tolerance(). For example, if the selected metric is the default for the binary and multiclass

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm-faq/reproducibility.html
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classification (metric(logloss)) and we specify stop(3), the grid search will stop after three
consecutive grid values chosen by the grid search do not lead to the improvement of the logloss
by the specified tolerance().

stop is a synonym for stop(5).

metric(metric option) specifies the metric used for early stopping. Allowed metrics are pro-

vided in [H2OML] metric option. The default is metric(deviance) for regression and

metric(logloss) for classification.

tolerance(#) specifies the tolerance value by which metric() must improve during the grid

search. If the metric() does not improve by # after the number of consecutive grid value

configurations specified in stop(#), the grid search stops. The default is tolerance(1e-3).

parallel(#) specifies the number of models to build in parallel during the grid search. This option
enables parallel model building, which reduces computational time. The default, parallel(1),
specifies sequential model building. parallel(0) enables adaptive parallelism, in which the

number of models to be built in parallel is automatically determined by H2O. Any integer greater

than 1 specifies the exact number of models to be built in parallel. This option is particularly

useful for improving speed when tuning many hyperparameters. However, results for models built

in parallel may not be reproducible; see [H2OML] H2O reproducibility for details.

nooutput suppresses the table summarizing hyperparameter tuning.

Remarks and examples
We assume you have read the introduction to decision trees and ensemble methods in [H2OML] Intro.

Remarks are presented under the following headings:

Introduction
Tuning hyperparameters
Examples of using GBM

Example 1: Gradient boosting linear regression using default settings
Example 2: Using validation data and early stopping
Example 3: Using cross-validation
Example 4: User-specified hyperparameters
Example 5: Binary classification and hyperparameter tuning
Example 6: Multiclass classification
Example 7: Poisson regression
Example 8: Quantile regression and monotonicity constraint
Example 9: Handling imbalanced data with binary and multiclass classification

Introduction
The GBM (Friedman 2001) is a machine learning method that is useful for prediction, model selection,

and explaining the impact of predictors. Even though GBM works with any learner, in H2O it is based

on decision trees. A single decision tree is an easily interpretable method for predicting a response;

it repeatedly partitions the data into branches based on values of predictors so that responses within

each branch are as homogeneous as possible. Despite the advantages, such as interpretability and easy

implementation, single decision trees are prone to instability and can struggle to model some types of

functions. For example, in the figure below, a single decision tree fails to model simple data generated

from the sin(𝑥) function, where 𝑥 is generated from a uniform distribution. GBM (Friedman 2001) uses

boosting, which fits a series of decision trees that build on each other and gradually increase focus on
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observations that are not predicted well by the existing ensemble of decision trees. This boosting process

leads to a more stable and better predictive model than a single decision tree. From the figure below,

GBM accurately recovers the true data-generation process.
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In GBM, boosting can be thought of as a numerical optimization technique that minimizes a given loss

function by adding a tree in each stage that best reduces the loss function. The list of loss functions for

regression and classification in the h2oml gbm commands is provided below, where 𝑦 denotes response
and 𝑓 is a link function.

Loss 𝐿(𝑦, 𝑓)

Gaussian 1
2 (𝑦 − 𝑓)2

Tweedie(𝜃) 2𝑦
(2−𝜃)

(1−𝜃)(2−𝜃) − 𝑦𝑒𝑓(1−𝜃)

1−𝜃 + 𝑒𝑓(2−𝜃)

2−𝜃 , for 1 < 𝜃 < 2

Poisson −2(𝑦𝑓 − 𝑒𝑓)

Laplace |𝑦 − 𝑓|

Huber(𝛼) (𝑦 − 𝑓)2, for |𝑦 − 𝑓| < 𝛼 and (2|𝑦 − 𝑓| − 𝛼)𝛼 otherwise

Quantile(𝛼) 𝛼(𝑦 − 𝑓), for 𝑦 > 𝑓 and (1 − 𝛼)(𝑓 − 𝑦) otherwise

Bernoulli −2(𝑦𝑓 − ln(1 + 𝑒𝑓)

Multinomial − ∑𝐾
𝑘=1 𝐼(𝑦 = 𝐶𝑘)𝑓𝑘 + ln(∑𝐾

𝑗=1 𝑒𝑓𝑗), where 𝐶𝑘 is the 𝑘th class

Gaussian, Laplace, Huber, and quantile loss functions use the identity link 𝐸[𝑦|𝑥] = 𝑓(𝑥). Tweedie,
Poisson, and multinomial use the log link function log(𝐸[𝑦|𝑥]) = 𝑓(𝑥). Finally, Bernoulli uses the logit
link function log(𝐸[𝑦|𝑥]/{1 − 𝐸[𝑦|𝑥]}) = 𝑓(𝑥). For details about GBM, see GBM in [H2OML] Intro.

Depending on the type of response, you can use one of the h2oml gbregress, h2oml gbbinclass,
or h2oml gbmulticlass commands to perform GBM. h2oml gbregress performs gradient boosting

regression for continuous and count responses. h2oml gbbinclass performs gradient boosting binary

classification for binary responses. h2oml gbmulticlass performs gradient boosting multiclass clas-

sification for categorical responses. In h2oml gbbinclass and h2oml gbmulticlass, the loss is set
to Bernoulli and multinomial, respectively. In h2oml gbregress, the loss() option is used to spec-

ify the loss, which can be one of Gaussian (the default), Tweedie, Poisson, Laplace, Huber, or quantile.
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The commands have many common options. To perform GBM using a validation dataset, you can use the

validframe() option to specify the name of a validation frame. To perform GBM using cross-validation,

you can use the cv() option. You can choose between three cross-validation methods for splitting data

among folds by specifying the random, modulo, or stratify suboption within the cv() option. Al-

ternatively, you can specify a variable in the cv() option that defines how observations are split into

different folds.

For reproducibility, you can use the h2orseed() option to specify a random-number seed for H2O.

This option is different from Stata’s rseed() option and the set seed command. For early stopping,

you can use the stop[ () ] option. We highly recommend that you always specify the scoreevery()
option with early stopping to ensure reproducibility. For details, see [H2OML] H2O reproducibility and

H2O’s reproducibility page.

Tuning hyperparameters
All h2oml gbm commands provide default values for hyperparameters, but you can also specify your

own in the corresponding options. For instance, you can specify the number of trees for GBM in the

ntrees() option or the learning rate of a tree in the lrate() option. In practice, however, you would

want to tune your GBM model, that is, let the GBM method select the values of the model parameters that

correspond to the best-fitting model according to some metric. You can do this by specifying a possible

range of grid values for each hyperparameter you intend to tune and controlling the grid search by using

the tune() option. Currently, h2oml gbm provides two grid search strategies: an exhaustive (Cartesian)

grid search with tune(grid(cartesian)) and a random grid search with tune(grid(random)). And
several performance metrics are available in tune(metric()).

Tuning hyperparameters of the machine learning method is a complex and iterative procedure. Under-

standing the steps is important for the correct specification of the options provided. A brief overview

of these steps is provided below, and a deeper treatment can be found in Hyperparameter tuning in

[H2OML] Intro.

Step 1: Choose the data-splitting approach

Use either a three-way holdout method in which data are separated into training, validation, and testing

datasets or, if the number of observations is low, a two-way holdout method (training and testing) with

𝑘-fold cross-validation. Recall that the optimal hyperparameters are selected using the results of the
metric on the validation set (validframe()) or cross-validation (cv()), not on the training set.

Step 2: Select the hyperparameters and performance metric

From the list of hyperparameters such as ntrees() or maxdepth(), select the ones that require tuning
for your application. When numlist is specified in one or more of the hyperparameter options, tuning

is implemented based on the specified grid search suboptions in the tune() option. For instance,

you can specify the desired performance metric in the tune(metric()) option; see [H2OML] met-

ric option for supported metrics. The default metric is specific to each command. There is no sys-

tematic guidance on how many and which hyperparameters to choose: the inclusion of tuning hyper-

parameters depends on the data, machine learning method, and prior knowledge of the researcher.

The performance metric should be selected carefully because it may affect the estimation results. For

example, for the classification problem, if the data are imbalanced, metric accuracy is not recom-

mended and a more appropriate metric, such as aucpr, is preferred. For more details, see metric

options.

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm-faq/reproducibility.html


h2oml gbm — Gradient boosting machine for regression and classification+ 88

Step 3: Select the grid search strategy and search space

If the number of hyperparameters is large, then a random grid search specified via the

tune(grid(random)) option is a better choice than an exhaustive grid search that is performed

by default or when the tune(grid(cartesian)) option is specified. For the first run, it is recom-

mended that you specify a large search space and try to overfit the model. Then, on subsequent runs,

you should narrow the search space on high-performance hyperparameters and apply early-stopping

rules by specifying the tune(stop()) option to avoid overfitting.

Step 4: Use the best-performing hyperparameter configuration

Depending on your research problem, use the best-performing hyperparameter configuration to fit the

final model on the testing dataset.

Below, we demonstrate the use of options in various applications. In this entry, we focus on the syntax

and output of commands. For a more research-focused exposition, see [H2OML] h2oml.

Examples of using GBM
In this section, we demonstrate some of the uses of h2oml gbm. The examples are presented under

the following headings.

Example 1: Gradient boosting linear regression using default settings
Example 2: Using validation data and early stopping
Example 3: Using cross-validation
Example 4: User-specified hyperparameters
Example 5: Binary classification and hyperparameter tuning
Example 6: Multiclass classification
Example 7: Poisson regression
Example 8: Quantile regression and monotonicity constraint
Example 9: Handling imbalanced data with binary and multiclass classification

Examples 1 through 4 demonstrate gradient boosting regression, but their discussion applies to all

h2oml gbm commands. Similarly, example 5 demonstrates binary classification, but the steps for tuning

hyperparameters are applicable to all commands. Example 6 demonstrates multiclass classification. Ex-

amples 7 and 8 show how to specify a different loss function with h2oml gbregress to perform Poisson

and quantile gradient boosting. Example 8 also shows monotonicity constraints, which can also be ac-

commodated with binary classification. Finally, example 9 shows how to handle imbalanced data during

binary classification but is equally applicable to multiclass classification.

Example 1: Gradient boosting linear regression using default settings
For demonstration purposes, we start with gradient boosting linear regression using the default set-

tings. In practice, however, you would rarely use the default settings because the performance of the

model is improved during training by specifying options that allow optimization or tuning of hyperpa-

rameters.
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We start by opening the 1978 automobile data (auto.dta) in Stata and then putting the data into an
H2O frame. Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset
into an H2O frame, and h2oframe changemakes the specified frame the current H2O frame. For details,
see Prepare your data for H2O machine learning in Stata in [H2OML] h2oml and [H2OML] H2O setup.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
(output omitted )

. _h2oframe put, into(auto)
Progress (%): 0 100
. _h2oframe change auto

We use gradient boosting linear regression of the response price on just a few predictors—weight,
length, and foreign—and we specify the h2orseed(19) option for reproducibility.

. h2oml gbregress price weight length foreign, h2orseed(19)
Progress (%): 0 100
Gradient boosting regression using H2O
Response: price
Loss: Gaussian
Frame: Number of observations:

Training: auto Training = 74
Model parameters
Number of trees = 50 Learning rate = .1

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 3 No. of bins cat. = 1,024
avg = 3.7 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training

Deviance 1692396
MSE 1692396

RMSE 1300.921
RMSLE .1739734

MAE 893.7925
R-squared .8027962

The header provides information about the model characteristics and data. Because we used h2oml
gbregress, the loss is Gaussian by default. The Frame section contains information about the

H2O training frame. In this example, our training frame is auto with 74 observations. The Model
parameters portion reports the information about hyperparameters. Multiple values are reported for

some hyperparameters. For example, there are two values for the number of trees. One reports the

number of trees as specified by the user. In our case, it is the default 50. The actual value shows the

number of trees actually used during training. These numbers may differ when an early stopping rule

is applied such as when the stop() option is specified. Similarly, for the Tree depth there are four

values. The Input max reports the user-specified value, and min and max report the actual minimum

and maximum depths achieved during training. The last two may be different from the default value of

5 because maxdepth() enforces a possible maximum depth the tree can achieve, but the method can



h2oml gbm — Gradient boosting machine for regression and classification+ 90

stop splitting earlier. The Metric summary table reports the six regression performance metrics for the

training frame. In general, metrics values are used to compare different models. Depending on whether

the method implements regression, binary classification, or multiclass classification, the reported metrics

change. For the definition of metrics, see [H2OML] metric option.

Even though the above output is for regression, a similar interpretation applies to binary andmulticlass

classification using the h2oml gbbinclass and h2oml gbmulticlass commands, respectively.

Example 2: Using validation data and early stopping
Example 1 illustrates the simple use of the h2oml gbregress command. In practice, we want a model

that minimizes overfitting. As we discussed in Model selection in machine learning in [H2OML] In-

tro, there are two main approaches to check for overfitting: by using a validation dataset or by cross-

validation. The former is recommended when the number of observations is large and the latter otherwise

(see example 3).

Continuing with example 1, we use the h2oframe split command to randomly split the auto frame
into a training frame (80% of observations) and validation frame (20% of observations), which we name

train and valid, respectively. We also change the current frame to train.

. _h2oframe split auto, into(train valid) split(0.8 0.2) rseed(19)

. _h2oframe change train

We now use the validframe() option with h2oml gbregress to specify the validation frame:

. h2oml gbregress price weight length foreign, h2orseed(19) validframe(valid)
Progress (%): 0 100
Gradient boosting regression using H2O
Response: price
Loss: Gaussian
Frame: Number of observations:

Training: train Training = 63
Validation: valid Validation = 11

Model parameters
Number of trees = 50 Learning rate = .1

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 3 No. of bins cat. = 1,024
avg = 3.1 No. of bins root = 1,024
max = 4 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Deviance 2235364 2391512
MSE 2235364 2391512

RMSE 1495.114 1546.451
RMSLE .1954448 .2578085

MAE 1013.616 1058.391
R-squared .7634879 .2253408
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Compared with example 1, the output contains additional information about the validation frame.

There are 63 training and 11 validation observations. The important information here is the performance

metrics for the validation frame, the Validation column of the Metric summary table. The validation
frame is used during tuning to select the best model and control for overfitting. See example 5 for tuning.

In some cases, we can greatly improve the generalization of the model, that is, improve model predic-

tion on the new testing dataset, by using early stopping. Early stopping allows you to stop adding trees

when the metric computed on the validation sample (or on the cross-validation sample if the cv[ () ]
option was specified) does not improve after a prespecified number of iterations. This prevents overfit-

ting. In this example, we use stop(5) to halt the training of GBM when the stopping metric does not

improve after 5 iterations. By default, the stopping metric is Deviance. For reproducibility, we specify
the scoreevery() option together with the stop() option. The scoreevery() option controls how

frequently the metric score is updated. For example, scoreevery(1) means the score is updated after

adding each tree to the ensemble. For details, see [H2OML] H2O reproducibility.

. h2oml gbregress price weight length foreign, h2orseed(19) validframe(valid)
> stop(5) scoreevery(1)
Progress (%): 0 100
Gradient boosting regression using H2O
Response: price
Loss: Gaussian
Frame: Number of observations:

Training: train Training = 63
Validation: valid Validation = 11

Model parameters
Number of trees = 50 Learning rate = .1

actual = 26 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 3 No. of bins cat. = 1,024
avg = 3.1 No. of bins root = 1,024
max = 4 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Stopping criteria: No. of iterations = 5

Metric: Deviance Tolerance = .001
Metric summary

Metric Training Validation

Deviance 3094539 2288930
MSE 3094539 2288930

RMSE 1759.13 1512.921
RMSLE .2247564 .251828

MAE 1199.072 1044.42
R-squared .6725832 .2585691

Note: Metric is scored after every
tree.

We see several differences compared with the first output in this example. First, as expected, now

the actual number of trees is less than the specified number of trees (26 versus 50). In addition, the

RMSE for the training frame increased, and the RMSE for the validation frame decreased from 1546.451

to 1512.921, which means there is less overfitting.
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Example 3: Using cross-validation
In this example, we illustrate the use of h2oml gbregress with the default parameters and cross-

validation.

Continuing with example 2, we keep the frame train as our current training data. In the h2oml
gbm commands, cross-validation is performed by specifying the cv() option. This option supports three
methods for folds assignment: random, modulo, and stratified. The random method is the default and

is preferred with large datasets. Here, to demonstrate, we use 5-fold cross-validation with modulo fold

assignment, which assigns each observation to a fold based on the modulo operation. We type

. h2oml gbregress price weight length foreign, h2orseed(19) cv(5, modulo)
Progress (%): 0 72.6 99.6 100
Gradient boosting regression using H2O
Response: price
Loss: Gaussian
Frame: Number of observations:

Training: train Training = 63
Cross-validation = 63

Cross-validation: Modulo Number of folds = 5
Model parameters
Number of trees = 50 Learning rate = .1

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 3 No. of bins cat. = 1,024
avg = 3.1 No. of bins root = 1,024
max = 4 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Deviance 2235364 3641968
MSE 2235364 3641968

RMSE 1495.114 1908.394
RMSLE .1954448 .2603751

MAE 1013.616 1391.129
R-squared .7634879 .6146625

The output now provides information about the cross-validation assignment method, the number of

folds, and, in the second column of the Metric summary table, the cross-validated metrics.

The three fold-assignment methods are useful when the data are i.i.d. If the dataset requires a spe-

cific grouping for cross-validation, then a new categorical variable can be created and specified in the

cv(colname) option. GBM then uses those variable values to split the data into folds. To demonstrate,

in our H2O frame, we generate a new column named foldvar, which contains a hypothetical grouping
for the fold assignment.

. _h2oframe generate foldvar = 1

. _h2oframe replace foldvar = 2 in 20/35

. _h2oframe replace foldvar = 3 in 36/63

. _h2oframe factor foldvar, replace
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The last command converts the type of foldvar into H2O’s enum type, which is required by the cv()
option. Now we can perform cross-validation with the fold assignment determined by foldvar.

. h2oml gbregress price weight length foreign, h2orseed(19) cv(foldvar)
Progress (%): 0 100
Gradient boosting regression using H2O
Response: price
Loss: Gaussian
Frame: Number of observations:

Training: train Training = 63
Cross-validation: foldvar Cross-validation = 63
Model parameters
Number of trees = 50 Learning rate = .1

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 3 No. of bins cat. = 1,024
avg = 3.1 No. of bins root = 1,024
max = 4 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Deviance 2235364 7785926
MSE 2235364 7785926

RMSE 1495.114 2790.327
RMSLE .1954448 .3791052

MAE 1013.616 1883.424
R-squared .7634879 .1762122
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Example 4: User-specified hyperparameters
In examples 2 and 3, we used validation and cross-validation with default values for all hyperparam-

eters. Continuing with example 3, suppose we now want to try some specific values of several hyperpa-

rameters (the number of trees, learning rate, and predictor sampling rate) by including the ntrees(50),
lrate(0.2), and predsamprate(0.7) options.

. h2oml gbregress price weight length foreign, h2orseed(19) cv(5, modulo)
> ntrees(50) lrate(0.2) predsamprate(0.7)
Progress (%): 0 100
Gradient boosting regression using H2O
Response: price
Loss: Gaussian
Frame: Number of observations:

Training: train Training = 63
Cross-validation = 63

Cross-validation: Modulo Number of folds = 5
Model parameters
Number of trees = 50 Learning rate = .2

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = .7

Input max = 5 Sampling rate = 1
min = 2 No. of bins cat. = 1,024
avg = 3.1 No. of bins root = 1,024
max = 4 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Deviance 1605800 3398097
MSE 1605800 3398097

RMSE 1267.202 1843.393
RMSLE .1736271 .2622264

MAE 863.7136 1357.606
R-squared .8300987 .6404653

The output is similar to previous examples, except that it now reports our specified values of 50 for

the number of trees, 0.2 for the learning rate, and 0.7 for the predictor sampling rate.
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Example 5: Binary classification and hyperparameter tuning
In example 1 of [H2OML] h2oml, we used the churn dataset to show steps for building a predictive

model to predict whether a customer will churn. In particular, we used a GBM binary classification model

with 3-fold stratified cross-validation and the following tuning specification as a baseline model:

. h2oml gbbinclass churn $predictors, h2orseed(19) cv(3, stratify)
> ntrees(100) lrate(0.05) predsamprate(0.15)
(output omitted )

In this example, we demonstrate a process of tuning model parameters to arrive to the model above.

As we discussed in Model selection in machine learning in [H2OML] Intro, the analysis should start

by defining the baseline or reference performance. The baseline model has been defined in exam-

ple 2 of [H2OML] h2oml. For simplicity and computational purposes, we will tune only hyperparame-

ters—number of trees and predictor sampling rate—on a small hyperparameter search space. Remember

that hyperparameter tuning is an iterative procedure and the considered examples are only for illustration

purposes. In practice, you should follow the steps in table 3 in [H2OML] Intro.

We read the churn dataset as an H2O frame and split it into train and test H2O frames.

. use https://www.stata-press.com/data/r18/churn
(Telco customer churn data)
. h2o init
(output omitted )

. _h2oframe put, into(churn)
Progress (%): 0 100
. _h2oframe change churn
. _h2oframe split churn, into(train test) split(0.8 0.2) rseed(19) replace
. _h2oframe change train

Next we create a global macro predictors in Stata to store the names of predictors.

. global predictors latitude longitude tenuremonths monthlycharges
> totalcharges gender seniorcitizen partner dependents phoneservice
> multiplelines internetserv onlinesecurity onlinebackup streamtv
> techsupport streammovie contract paperlessbill paymethod deviceprotect
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In the h2oml gbm commands, the grid values of a hyperparameter are passed using numlist in a

hyperparameter option. For example, for the predsamprate() option, we pass a list of numbers

{0.05, 0.15, 0.25} as numlist specification 0.05(0.1)0.25. For the lrate() option, we pass a fixed

value of 0.05. As a grid search method for tuning, we use the Cartesian exhaustive search method. We

also use the AUCPR metric for tuning.

. h2oml gbbinclass churn $predictors, h2orseed(19) cv(3, stratify)
> lrate(0.05) ntrees(50(50)150) predsamprate(0.05(0.1)0.25)
> tune(metric(aucpr))
Progress (%): 0 100
Gradient boosting binary classification using H2O
Response: churn
Loss: Bernoulli
Frame: Number of observations:

Training: train Training = 5,643
Cross-validation = 5,643

Cross-validation: Stratify Number of folds = 3
Tuning information for hyperparameters
Method: Cartesian
Metric: AUCPR

Grid values
Hyperparameters Minimum Maximum Selected

Number of trees 50 150 100
Pred. sampling rate .05 .25 .15

Model parameters
Number of trees = 100 Learning rate = .05

actual = 100 Learning rate decay = 1
Tree depth: Pred. sampling rate = .15

Input max = 5 Sampling rate = 1
min = 5 No. of bins cat. = 1,024
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .3531063 .4026141
Mean class error .1784776 .2313897

AUC .8992847 .8565935
AUCPR .7610732 .673929

Gini coefficient .7985693 .7131869
MSE .1126847 .1314475

RMSE .3356854 .3625569

The output interpretation of h2oml gbbinclass is similar to that of h2oml gbregress. Because we
perform binary classification, the Bernoulli loss function is used. Also, the metrics specific to binary

classification are reported in the metrics table.
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The tuning information is displayed in the header. It includes the tuning method and metric and grid

search ranges and the selected values for the hyperparameters. The grid search ranges are the speci-

fied minimum and maximum values for hyperparameters. The select values are optimal selected by the

algorithm. These are the values we used in our final GBM model in example 3 in [H2OML] h2oml.

In this example, we tuned only two hyperparameters and allowed only three possible values for each

one, so the grid search was limited to a small space. When the number of hyperparameters and the grid

space are large, the grid search can become computationally intensive. You can use the parallel() op-
tion to specify the number of models to build in parallel during the grid search, thereby improving com-

putational time. However, results for models built in parallel may not be reproducible; see [H2OML]H2O

reproducibility. By default, the models are built sequentially.

Example 6: Multiclass classification
In this example, we show how to implement multiclass classification and which performance metrics

to use to measure the performance of the model. For this example, we will use a well-known iris dataset,

where the goal is to predict a class of iris plant. This dataset was used in Fisher (1936) and originally col-

lected by Anderson (1935). We start by initializing a cluster, opening the dataset in Stata, and importing

the dataset as an H2O frame.

. h2o init
(output omitted )

. use https://www.stata-press.com/data/r18/iris
(Iris data)
. _h2oframe put, into(iris)
Progress (%): 0 100
. _h2oframe split iris, into(train valid) split(0.8 0.2) rseed(19)
. _h2oframe change train
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We use the h2oframe split command to split the dataset into training and validation frames. Next
we run gradient boosting multiclass classification using 500 trees and default values for other hyperpa-

rameters.

. h2oml gbmulticlass iris seplen sepwid petlen petwid, validframe(valid)
> ntrees(500) h2orseed(19)
Progress (%): 0 9.7 36.8 63.5 90.2 100
Gradient boosting multiclass classification using H2O
Response: iris Number of classes = 3
Loss: Multinomial
Frame: Number of observations:

Training: train Training = 125
Validation: valid Validation = 25

Model parameters
Number of trees = 500 Learning rate = .1

actual = 500 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 1 No. of bins cat. = 1,024
avg = 4.8 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Log loss 7.19e-08 1.277958
Mean class error 0 .0740741

MSE 7.52e-14 .0775579
RMSE 2.74e-07 .2784921

The output is almost identical to the output for regression we described in detail in examples 1 and 2,

except we have a multinomial loss and different performance metrics.
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Two popular metrics to measure the performance after classification are AUC and AUCPR. Their com-

putation may be time consuming, so they are not reported by default. But we can specify the auc option
to request them.

. h2oml gbmulticlass iris seplen sepwid petlen petwid, validframe(valid)
> ntrees(500) h2orseed(19) auc
Progress (%): 0 34.2 43.3 44.6 56.5 100
Gradient boosting multiclass classification using H2O
Response: iris Number of classes = 3
Loss: Multinomial
Frame: Number of observations:

Training: train Training = 125
Validation: valid Validation = 25

Model parameters
Number of trees = 500 Learning rate = .1

actual = 500 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 1 No. of bins cat. = 1,024
avg = 4.8 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Log loss 7.19e-08 1.277958
Mean class error 0 .0740741

AUC 1 .9930556
AUCPR 1 .9890377

MSE 7.52e-14 .0775579
RMSE 2.74e-07 .2784921

Note: AUC and AUCPR computed using macro
average OVR.

The table now reports two additional metrics. From the note, h2oml gbmulticlass computes AUC

and AUCPR using macro average OVR, which is a uniform weighted average of all AUC scores calculated

for each class versus the rest of classes.

With more than two classes, as in this example, you need to decide whether to report AUC and

AUCPR based on pairwise combinations of classes or to compare one class with the rest of classes; see

[H2OML]metric option for definitions of allAUC-based metrics. If you wish to reportAUC-based metrics

other than the ones reported by h2oml gbmulticlass, you can use the h2omlestat aucmulticlass
postestimation command; see example 1 of [H2OML] h2omlestat aucmulticlass.

Example 7: Poisson regression
In example 1, we used the default Gaussian loss function for GBM regression. Depending on the type

of response and research problem, we may specify other loss functions. In this example, we consider the

data on running shoes for a sample of runners who registered an online running log (Simonoff 1996).

Suppose a running-shoe marketing executive is interested in knowing how predictors such as gender,

marital status, age, education, income, typical number of runs per week, average miles run per week, and
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the preferred type of running explain the number of pairs of running shoes purchased. For this task, we

use the GBM with Poisson regression. Because our goal is to simply demonstrate the use of the loss()
option, we do not tune our model.

We start by initializing the cluster, opening the dataset in Stata, and importing the dataset to an H2O

frame.

. use https://www.stata-press.com/data/r18/runshoes
(Running shoes)
. h2o init
. _h2oframe put, into(runshoes)
Progress (%): 0 100
. _h2oframe change runshoes

To perform a Poisson regression with h2oml gbregress, we specify the loss(poisson) option.

. h2oml gbregress shoes rpweek mpweek male age married trunning, h2orseed(19)
> loss(poisson)
Progress (%): 0 100
Gradient boosting regression using H2O
Response: shoes
Loss: Poisson
Frame: Number of observations:

Training: runshoes Training = 60
Model parameters
Number of trees = 50 Learning rate = .1

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 2 No. of bins cat. = 1,024
avg = 2.9 No. of bins root = 1,024
max = 4 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training

Deviance .3649675
MSE 1.064175

RMSE 1.031589
RMSLE .2691122

MAE .7149171
R-squared .4885824

The output is similar to that of h2oml gbregress from example 1, but the loss function is Poisson
here.

For prediction explainability of this model, see example 14 of [H2OML] h2oml.
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Example 8: Quantile regression and monotonicity constraint
In example 10 of [H2OML] h2oml, we used a random forest regression to estimate the conditional mean

of house prices. Sometimes, wemay be interested in estimating different characteristics of the conditional

distribution of house prices other than the mean. Quantile regression, introduced in Koenker and Bassett

(1978), predicts conditional quantiles of the response. For an introduction to quantile regression, see

Koenker (2005).

In this example, we use GBM quantile regression and the entire house dataset without splitting it

into training and validation frames. For simplicity, we do not tune hyperparameters and show the

model with predetermined values for hyperparameters. These values are borrowed from example 10 of

[H2OML] h2oml, which are not necessarily optimal for the quantile regression. Before putting the dataset

into an H2O frame, we perform some data manipulation in Stata. Because saleprice is right-skewed

(for example, type histogram saleprice), we use its log. We also generate a variable, houseage, that
calculates the age of the house at the time of a sales transaction.

. use https://www.stata-press.com/data/r18/ameshouses
(Ames house data)
. gen logsaleprice = log(saleprice)
. gen houseage = yrsold - yearbuilt
. drop saleprice yearbuilt yrsold

The dataset has a total of 46 predictors, but for simplicity we include only 10. We create a global

macro, predictors, that contains the names of our predictor variables.

. global predictors overallqual grlivarea exterqual houseage garagecars
> totalbsmtsf stflrsf garagearea kitchenqual bsmtqual

Next we initialize a cluster and put the data into an H2O frame.

. h2o init
(output omitted )

. _h2oframe _put, into(house)

. _h2oframe _change house
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To perform GBM quantile regression with h2oml gbmregress, we specify the loss(quantile) op-
tion with the alpha(0.25) suboption for the desired quantile. We also prespecify values for some

hyperparameters.

. h2oml gbregress logsaleprice $predictors, loss(quantile, alpha(0.25))
> h2orseed(19) ntrees(500) minobsleaf(1) binscat(115) samprate(0.8)
Progress (%): 0 2.4 14.5 34.0 55.1 78.2 100
Gradient boosting regression using H2O
Response: logsaleprice
Loss: Quantile .25
Frame: Number of observations:

Training: house Training = 1,460
Model parameters
Number of trees = 500 Learning rate = .1

actual = 500 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = .8
min = 5 No. of bins cat. = 115
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Deviance .0256034
MSE .0145046

RMSE .1204352
RMSLE .0092806

MAE .0773586
R-squared .9090348

Here, because we estimated the conditional 25th percentile (or 0.25 quantile) of the log price, the

header reports the loss as Quantile .25.

Sometimes, we may want to impose monotonicity constraints on predictors. For instance, let’s use

the h2omlgraph ice postestimation command to check for monotonicity of the overallqual predic-

tor. This command visualizes the relationship between a predictor, overallqual in our case, and the

predicted response for deciles of the data.
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. h2omlgraph ice overallqual
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Individual conditional expectation using H2O

The relationship between the response and predictor overallqual is monotonic for all deciles. Let’s
impose a monotonicity constraint on this predictor. To apply increasing or decreasing monotonicity

constraint, we can use the monotone() option.

. h2oml gbregress logsaleprice $predictors, loss(quantile, alpha(0.25))
> h2orseed(19) ntrees(500) minobsleaf(1) binscat(155) samprate(0.8)
> monotone(overallqual, increasing)
Gradient boosting regression using H2O
Response: logsaleprice
Loss: Quantile .25
Frame: Number of observations:

Training: house Training = 1,460
Model parameters
Number of trees = 500 Learning rate = .1

actual = 500 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = .8
min = 0 No. of bins cat. = 155
avg = 0.1 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Deviance 2.521312
MSE 108.0305

RMSE 10.39377
RMSLE .

MAE 10.08525
R-squared -676.5092

Monotone increasing: overallqual

The note at the bottom of the table describes specified monotonicity constraints.
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The monotone() option is available only with h2oml gbregress with loss function Gaussian, quan-
tile, or Tweedie and with h2oml gbbinclass.

Example 9: Handling imbalanced data with binary and multiclass classification
In this example, we study how to handle imbalanced data in categorical responses such as those having

rare events or rare outcomes. We use a popular credit card dataset available in Kaggle (Pozzolo et al.

2015, 2018) to predict whether a given credit card transaction is fraudulent.

The dataset contains 28 predictors v1 through v28, which are obtained after a principal component
analysis transformation. Because of confidentiality issues, the original predictors are not available. The

response fraud is a binary variable that takes value 1 if the transaction is fraudulent and 0 otherwise.

. use https://www.stata-press.com/data/r18/creditcard
(Credit card data)
. tabulate fraud

Is
fraudulent Freq. Percent Cum.

No 284,315 99.83 99.83
Yes 492 0.17 100.00

Total 284,807 100.00

The data are highly imbalanced. We should practice caution when analyzing such data.

Similar to other examples, we start by converting the dataset in Stata’s memory to an H2O frame and

splitting it into training and validation frames.

. _h2oframe put, into(credit)
Progress (%): 0 2.5 100
. _h2oframe split credit, into(train valid) split(0.8 0.2) rseed(19)
. _h2oframe change train
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For illustration purposes, we do not implement tuning in this example, but we use 500 trees instead

of the default 50. We also specify an H2O random-number seed for reproducibility.

. h2oml gbbinclass fraud v1-v28 amount, validframe(valid) h2orseed(19)
> ntrees(500)
Progress (%): 0 0.2 0.4 0.9 4.6 10.0 15.3 21.4 26.6 32.4 38.4 44.4 49.5 56.1
> 62.8 68.4 74.8 81.8 88.5 94.1 100
Gradient boosting binary classification using H2O
Response: fraud
Loss: Bernoulli
Frame: Number of observations:

Training: train Training = 228,083
Validation: valid Validation = 56,724

Model parameters
Number of trees = 500 Learning rate = .1

actual = 500 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 5 No. of bins cat. = 1,024
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Log loss .0148732 .0234753
Mean class error .1043567 .1406525

AUC .9053009 .8265031
AUCPR .6773611 .5326735

Gini coefficient .8106018 .6530063
MSE .0006575 .0010012

RMSE .0256412 .0316414
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For imbalanced data, the literature (Davis and Goadrich 2006) recommends using AUPCR as the per-

formancemetric. For more information aboutAUCPR and other metrics, see [H2OML]metric option. The

AUCPR on the validation dataset is 0.53. To account for the data imbalance, the h2oml gbbinclass and
h2oml gbmulticlass commands support the balanceclasses option, which oversamples the minor-

ity class to balance the class distribution. But oversampling may not always be a good solution and may

negatively affect machine learning models. You should use the balanceclasses option with caution

(van den Goorbergh et al. 2022; Sakho, Malherbe, and Scornet 2024).

. h2oml gbbinclass fraud v1-v28 amount, validframe(valid) h2orseed(19)
> ntrees(500) balanceclasses
note: balancing distribution of classes per option balanceclasses.
Progress (%): 0 0.4 1.7 2.9 4.8 7.1 9.7 12.2 14.3 16.7 19.4 21.9 23.9 26.6 29.1
> 31.6 33.5 36.1 38.8 41.2 43.2 45.6 48.1 50.5 52.6 55.0 57.5 60.0 62.1 64.6
> 67.1 69.5 72.0 74.4 76.9 79.1 81.5 83.9 86.5 88.8 91.2 93.8 96.2 98.1 100
Gradient boosting binary classification using H2O
Response: fraud
Loss: Bernoulli
Frame: Number of observations:

Training: train Training = 455,361
Validation: valid Validation = 56,724

Model parameters
Number of trees = 500 Learning rate = .1

actual = 500 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 5 No. of bins cat. = 1,024
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Log loss .0108671 .0055343
Mean class error 0 .1011677

AUC 1 .9716178
AUCPR 1 .8094138

Gini coefficient 1 .9432356
MSE .0010155 .0004613

RMSE .0318666 .0214785

In our case, the AUCPR score improves from 0.53 to 0.81.

Stored results
h2oml gbm stores the following in e():

Scalars

e(N train) number of observations in the training frame

e(N valid) number of observations in the validation frame (with option validframe())
e(N cv) number of observations in the cross-validation (with option cv())
e(n cvfolds) number of cross-validation folds (with option cv())
e(k predictors) number of predictors

e(n class) number of classes (with classification)

e(n trees) number of trees
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e(n trees a) actual number of trees used in GBM

e(maxdepth) maximum specified tree depth

e(depth min a) achieved minimum tree depth

e(depth avg a) achieved average depth among trees

e(depth max a) achieved maximum tree depth

e(minobsleaf) minimum specified number of observations for a child leaf

e(lrate) learning rate

e(lratedecay) learning rate decay

e(samprate) observation sampling rate

e(predsamprate) predictor sampling rate

e(minsplitthr) minimum split improvement threshold

e(binscat) number of bins for categorical predictors

e(binsroot) number of bins for root node

e(binscont) number of bins for continuous predictors

e(h2orseed) H2O random-number seed

e(alpha) top percentile of residuals if loss(huber); quantile if loss(quantile)
e(power) variance power if loss(tweedie)
e(auc) 1 if auc; 0 otherwise (with multiclass classification)
e(maxtime) maximum run time

e(balanceclass) 1 if classes are balanced; 0 otherwise (with classification)
e(stop iter) maximum iterations before stopping training without metric improvement

e(stop tol) tolerance for metric improvement before training stops

e(scoreevery) number of trees before scoring metrics during training

e(tune h2orseed) random-number seed for tuning (with option tune())
e(tune stop iter) maximum iterations before stopping tuning without metric improvement (with

option tune())
e(tune stop tol) tolerance for metric improvement before tuning stops (with option tune())
e(tune maxtime) maximum run time for tuning grid search (with option tune())
e(tune maxmodels) maximum number of models considered in tuning grid search (with option

tune())
Macros

e(cmd) h2oml gbregress, h2oml gbbinclass, or h2oml gbmulticlass
e(cmdline) command as typed

e(subcmd) gbregress, gbbinclass, or gbmulticlass
e(method) gbm
e(method type) regression or classification
e(class type) binary or multiclass (with classification)
e(method full name) full method name

e(response) name of response

e(predictors) names of predictors

e(title) title in estimation output

e(loss) name of the loss function

e(train frame) name of the training frame

e(valid frame) name of the validation frame (with option validframe())
e(cv method) fold assignment method (with option cv())
e(cv varname) name of variable identifying cross-validation folds (with option cv())
e(encode type) encoding type for categorical predictors

e(monotone inc) names of predictors with monotone increasing constraints

e(monotone dec) names of predictors with monotone decreasing constraints

e(stop metric) stopping metric for training

e(tune grid) grid search method used for tuning (with option tune())
e(tune metric) name of the tuning metric (with option tune())
e(tune stop metric) stopping metric for tuning (with option tune())
e(properties) nob noV
e(estat cmd) program used to implement h2omlestat
e(predict) program used to implement h2omlpredict
e(marginsnotok) predictions disallowed by margins
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Matrices

e(metrics) training, validation, and cross-validation metrics

e(hyperparam table) minimum, maximum, and selected hyperparameter values

Methods and formulas
For methods and formulas for GBM implementation, see https://docs.h2o.ai/h2o/latest-stable/h2o-

docs/data-science/gbm.html. For a mapping of h2oml gbm option names to the H2O options, see

[H2OML] H2O option mapping.
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Also see
[H2OML] h2oml postestimation — Postestimation tools for h2oml gbm and h2oml rf+

[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2oml gbbinclass — Gradient boosting binary classification+

[H2OML] h2oml gbmulticlass — Gradient boosting multiclass classification+

[H2OML] h2oml gbregress — Gradient boosting regression+

[H2OML] h2oml rf — Random forest for regression and classification+

[U] 20 Estimation and postestimation commands
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+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
h2oml gbbinclass implements gradient boosting classification for binary responses. You can val-

idate your model by using validation data or cross-validation, and you can tune hyperparameters and

stop early to improve model performance on new data. This command provides only measures of perfor-

mance. See [H2OML] h2oml postestimation for commands to compute and explain predictions, examine

variable importance, and perform other postestimation analyses.

For an introduction to decision trees and the gradient boosting machine (GBM) method, see

[H2OML] Intro.

Quick start
Before running the h2oml gbbinclass command, an H2O cluster must be initialized and data must

be imported to an H2O frame; see [H2OML] H2O setup and Prepare your data for H2O machine learning

in Stata in [H2OML] h2oml.

Perform gradient boosting binary classification of binary response y1 on predictors x1 through x100
h2oml gbbinclass y1 x1-x100

As above, but also report measures of fit for the validation frame named valid, and set an H2O random-

number seed for reproducibility

h2oml gbbinclass y1 x1-x100, validframe(valid) h2orseed(123)

As above, but instead of a validation frame, use 3-fold cross-validation

h2oml gbbinclass y1 x1-x100, cv(3) h2orseed(123)

As above, but set the number of trees to 30, the maximum tree depth to 10, the learning rate to 0.01, and

the predictor sampling rate to 0.6

h2oml gbbinclass y1 x1-x100, cv(3) h2orseed(123) ntrees(30) ///
maxdepth(10) lrate(0.01) predsamprate(0.6)

As above, but use the default exhaustive grid search to select the optimal number of trees and the maxi-

mum tree depth that minimize the log-loss metric

h2oml gbbinclass y1 x1-x100, cv(3) h2orseed(123) lrate(0.01) ///
predsamprate(0.6) ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss))

As above, but use a random grid search, set an H2O random-number seed for this search, and limit the

maximum search time to 200 seconds

h2oml gbbinclass y1 x1-x100, cv(3) h2orseed(123) lrate(0.01) ///
predsamprate(0.6) ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss) grid(random, h2orseed(456)) maxtime(200))

110
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As above, but specify a learning-rate decay of 0.9, and tune the number of bins for the categorical and

continuous predictors

h2oml gbbinclass y1 x1-x100, cv(3) h2orseed(123) lrate(0.01) ///
lratedecay(0.9) predsamprate(0.6) ntrees(10(5)100) ///
maxdepth(3(1)10) binscont(15(5)50) binscat(500(50)1100) ///
tune(metric(logloss) grid(random, h2orseed(456)) maxtime(200))

Menu
Statistics > H2O machine learning
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Syntax
h2oml gbbinclass response bin predictors [ , options ]

response bin and predictors correspond to column names of the current H2O frame.

options Description

Model

validframe(framename) specify the name of the H2O frame containing the validation
dataset that will be used to evaluate the performance
of the model

cv[ (# [ , cvmethod ]) ] specify the number of folds and method for cross-validation

cv(colname) specify the name of the variable (H2O column) for
cross-validation that identifies the fold to which each
observation is assigned

balanceclasses balance the distribution of classes (categories of the response
variable) by oversampling the minority class

h2orseed(#) set H2O random-number seed for GBM

encode(encode type) specify H2O encoding type for categorical predictors; default
is encode(enum)

stop[ (# [ , stop opts ]) ] specify the number of training iterations and other criteria
for stopping GBM training if the stopping metric does
not improve

maxtime(#) specify the maximum run time in seconds for GBM;
by default, no time restriction is imposed

scoreevery(#) specify that metrics be scored after every # trees during training

monotone(predictors[ , mon opts ]) specify monotonicity constraints on the relationship between
the response and the specified predictors

Hyperparameter

ntrees(# | numlist) specify the number of trees to build the GBM model; default
is ntrees(50)

lrate(# | numlist) specify the learning rate of each tree; default is lrate(0.1)
lratedecay(# | numlist) specify the rate by which the learning rate specified in

lrate() is decaying after adding each tree to the GBM;
default is lratedecay(1)

maxdepth(# | numlist) specify the maximum depth of each tree; default is
maxdepth(5)

minobsleaf(# | numlist) specify the minimum number of observations per child for
splitting a leaf node; default is minobsleaf(10)

predsamprate(# | numlist) specify the sampling rate for randomly selecting a fraction of
predictors to build a tree; default is predsamprate(1)

samprate(# | numlist) specify the sampling rate for randomly selecting a fraction of
observations to build a tree; default is samprate(1)

minsplitthreshold(# | numlist) specify the threshold for the minimum relative improvement
needed for a node split; default is
minsplitthreshold(1e-05)

binscat(# | numlist) specify the number of bins to build the histogram for node
splits for categorical predictors (enum columns in H2O);
default is binscat(1024)
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binsroot(# | numlist) specify the number of bins to build the histogram for root
node splits for continuous predictors (real and int
columns in H2O); default is binsroot(1024)

binscont(# | numlist) specify the number of bins to build the histogram for node
splits for continuous predictors (real and int columns
in H2O); default is binscont(20)

Tuning

tune(tune opts) specify hyperparameter tuning options for selecting the
best-performing model

Only one of validframe() or cv[ () ] is allowed.
If neither validframe() nor cv[ () ] is specified, the evaluation metrics are reported for the training dataset.
When numlist is specified in one or more hyperparameter options, tuning is performed for those hyperparameters.

collect is allowed; see [U] 11.1.10 Prefix commands.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

cvmethod Description

random randomly split the training dataset into folds; the default

modulo evenly split the training dataset into folds using the modulo
operation

stratify evenly distribute observations from the different classes of
the response to all folds

stop opts Description

metric(metric option) specify the stopping metric for training or grid search

tolerance(#) specify the tolerance value by which a model must improve
before the training or grid search stops; default is
tolerance(1e-3)

tune opts Description

metric(metric option) specify the metric for selecting the best-performing model

grid(gridspec) specify whether to perform an exhaustive or random search
for all hyperparameter combinations

maxmodels(#) specify the maximum number of models considered in the
grid search; default is all configurations

maxtime(#) specify the maximum run time for the grid search in seconds;
default is no time limit

stop[ (# [ , stop opts ]) ] specify the number of iterations and other criteria for
stopping GBM training if the stopping metric does not
improve in the grid search

parallel(#) specify the number of models to build in parallel during
the grid search; default is parallel(1), sequential
model building

nooutput suppress the table summarizing hyperparameter tuning

If any of maxmodels(), maxtime(), or stop[ () ] is specified, then grid(random) is implied.
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Options

� � �
Model �

validframe(), cv[ () ], balanceclasses, h2orseed(), encode(), stop[ () ], maxtime(),
scoreevery(), and monotone(); see [H2OML] h2oml gbm.

� � �
Hyperparameter �

ntrees(), lrate(), lratedecay(), maxdepth(), minobsleaf(), predsamprate(), samprate(),
minsplitthreshold(), binscat(), binsroot(), and binscont(); see [H2OML] h2oml gbm.

� � �
Tuning �

tune(); see [H2OML] h2oml gbm.

Remarks and examples
For examples, see Remarks and examples in [H2OML] h2oml gbm.

Stored results
h2oml gbbinclass stores the following in e():

Scalars

e(N train) number of observations in the training frame

e(N valid) number of observations in the validation frame (with option validframe()
e(N cv) number of observations in the cross-validation (with option cv())
e(n cvfolds) number of cross-validation folds (with option cv())
e(k predictors) number of predictors

e(n trees) number of trees

e(n trees a) actual number of trees used in GBM

e(maxdepth) maximum specified tree depth

e(depth min a) achieved minimum tree depth

e(depth avg a) achieved average depth among trees

e(depth max a) achieved maximum tree depth

e(minobsleaf) minimum specified number of observations for a child leaf

e(lrate) learning rate

e(lratedecay) learning rate decay

e(samprate) observation sampling rate

e(predsamprate) predictor sampling rate

e(minsplitthr) minimum split improvement threshold

e(binscat) number of bins for categorical predictors

e(binsroot) number of bins for root node

e(binscont) number of bins for continuous predictors

e(h2orseed) H2O random-number seed

e(maxtime) maximum run time

e(balanceclass) 1 if classes are balanced; 0 otherwise
e(stop iter) maximum iterations before stopping training without metric improvement

e(stop tol) tolerance for metric improvement before training stops

e(scoreevery) number of trees before scoring metrics during training

e(tune h2orseed) random-number seed for tuning (with option tune())
e(tune stop iter) maximum iterations before stopping tuning without metric improvement (with

option tune())
e(tune stop tol) tolerance for metric improvement before tuning stops (with option tune())
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e(tune maxtime) maximum run time for tuning grid search (with option tune())
e(tune maxmodels) maximum number of models considered in tuning grid search (with option

tune())
Macros

e(cmd) h2oml gbbinclass
e(cmdline) command as typed

e(subcmd) gbbinclass
e(method) gbm
e(method type) classification
e(class type) binary
e(method full name) Gradient boosting binary classification
e(response) name of response

e(predictors) names of predictors

e(title) title in estimation output

e(loss) name of the loss function

e(train frame) name of the training frame (with option validframe())
e(valid frame) name of the validation frame (with option cv())
e(cv method) fold assignment method (with option cv())
e(cv varname) name of variable identifying cross-validation folds

e(encode type) encoding type for categorical predictors

e(monotone inc) names of predictors with monotone increasing constraints

e(monotone dec) names of predictors with monotone decreasing constraints

e(stop metric) stopping metric for training

e(tune grid) grid search method used for tuning (with option tune())
e(tune metric) name of the tuning metric (with option tune())
e(tune stop metric) stopping metric for tuning (with option tune())
e(properties) nob noV
e(estat cmd) program used to implement h2omlestat
e(predict) program used to implement h2omlpredict
e(marginsnotok) predictions disallowed by margins

Matrices

e(metrics) training, validation, and cross-validation metrics

e(hyperparam table) minimum, maximum, and selected hyperparameter values

Also see
[H2OML] h2oml postestimation — Postestimation tools for h2oml gbm and h2oml rf+

[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2oml gbm — Gradient boosting machine for regression and classification+

[H2OML] h2oml gbmulticlass — Gradient boosting multiclass classification+

[H2OML] h2oml gbregress — Gradient boosting regression+

[H2OML] h2oml rfbinclass — Random forest binary classification+

[U] 20 Estimation and postestimation commands
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+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
h2oml gbmulticlass implements gradient boosting multiclass classification for categorical re-

sponses. You can validate your model by using validation data or cross-validation, and you can tune

hyperparameters and stop early to improve model performance on new data. This command provides

only measures of performance. See [H2OML] h2oml postestimation for commands to compute and ex-

plain predictions, examine variable importance, and perform other postestimation analyses.

For an introduction to decision trees and the gradient boosting machine (GBM) method, see

[H2OML] Intro.

Quick start
Before running the h2oml gbmulticlass command, an H2O cluster must be initialized and data must

be imported to an H2O frame; see [H2OML] H2O setup and Prepare your data for H2O machine learning

in Stata in [H2OML] h2oml.

Perform gradient boosting multiclass classification of categorical response y1 on predictors x1 through

x100
h2oml gbmulticlass y1 x1-x100

As above, but also report measures of fit for the validation frame named valid, and set an H2O random-

number seed for reproducibility

h2oml gbmulticlass y1 x1-x100, validframe(valid) h2orseed(123)

As above, but instead of a validation frame, use 3-fold cross-validation

h2oml gbmulticlass y1 x1-x100, cv(3) h2orseed(123)

As above, but set the number of trees to 30, the maximum tree depth to 10, the learning rate to 0.01, and

the predictor sampling rate to 0.6

h2oml gbmulticlass y1 x1-x100, cv(3) h2orseed(123) ntrees(30) ///
maxdepth(10) lrate(0.01) predsamprate(0.6)

As above, but use the default exhaustive grid search to select the optimal number of trees and the maxi-

mum tree depth that minimize the log-loss metric

h2oml gbmulticlass y1 x1-x100, cv(3) h2orseed(123) lrate(0.01) ///
predsamprate(0.6) ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss))
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As above, but use a random grid search, set an H2O random-number seed for this search, and limit the

maximum search time to 200 seconds

h2oml gbmulticlass y1 x1-x100, cv(3) h2orseed(123) lrate(0.01) ///
predsamprate(0.6) ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss) grid(random, h2orseed(456)) maxtime(200))

As above, but specify a learning-rate decay of 0.9, and tune the number of bins for the categorical and

continuous predictors

h2oml gbmulticlass y1 x1-x100, cv(3) h2orseed(123) lrate(0.01) ///
lratedecay(0.9) predsamprate(0.6) ntrees(10(5)100) ///
maxdepth(3(1)10) binscont(15(5)50) binscat(500(50)1100) ///
tune(metric(logloss) grid(random, h2orseed(456)) maxtime(200))

Menu
Statistics > H2O machine learning
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Syntax
h2oml gbmulticlass response mult predictors [ , options ]

response mult and predictors correspond to column names of the current H2O frame.

options Description

Model

validframe(framename) specify the name of the H2O frame containing the validation
dataset that will be used to evaluate the performance
of the model

cv[ (# [ , cvmethod ]) ] specify the number of folds and method for cross-validation

cv(colname) specify the name of the variable (H2O column) for
cross-validation that identifies the fold to which each
observation is assigned

balanceclasses balance the distribution of classes (categories of the response
variable) by oversampling minority classes

h2orseed(#) set H2O random-number seed for GBM

encode(encode type) specify H2O encoding type for categorical predictors; default
is encode(enum)

auc enable potentially time-consuming calculation of the area
under the curve and area under the precision–recall curve
metrics

stop[ (# [ , stop opts ]) ] specify the number of training iterations and other criteria
for stopping GBM training if the stopping metric does
not improve

maxtime(#) specify the maximum run time in seconds for GBM;
by default, no time restriction is imposed

scoreevery(#) specify that metrics be scored after every # trees during training

Hyperparameter

ntrees(# | numlist) specify the number of trees to build the GBM model; default
is ntrees(50)

lrate(# | numlist) specify the learning rate of each tree; default is lrate(0.1)
lratedecay(# | numlist) specify the rate by which the learning rate specified in

lrate() is decaying after adding each tree to the GBM;
default is lratedecay(1)

maxdepth(# | numlist) specify the maximum depth of each tree; default is
maxdepth(5)

minobsleaf(# | numlist) specify the minimum number of observations per child for
splitting a leaf node; default is minobsleaf(10)

predsamprate(# | numlist) specify the sampling rate for randomly selecting a fraction of
predictors to build a tree; default is predsamprate(1)

samprate(# | numlist) specify the sampling rate for randomly selecting a fraction of
observations to build a tree; default is samprate(1)

minsplitthreshold(# | numlist) specify the threshold for the minimum relative improvement
needed for a node split; default is
minsplitthreshold(1e-05)
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binscat(# | numlist) specify the number of bins to build the histogram for node
splits for categorical predictors (enum columns in H2O);
default is binscat(1024)

binsroot(# | numlist) specify the number of bins to build the histogram for root
node splits for continuous predictors (real and int
columns in H2O); default is binsroot(1024)

binscont(# | numlist) specify the number of bins to build the histogram for node
splits for continuous predictors (real and int columns
in H2O); default is binscont(20)

Tuning

tune(tune opts) specify hyperparameter tuning options for selecting the
best-performing model

Only one of validframe() or cv[ () ] is allowed.
If neither validframe() nor cv[ () ] is specified, the evaluation metrics are reported for the training dataset.
When numlist is specified in one or more hyperparameter options, tuning is performed for those hyperparameters.

collect is allowed; see [U] 11.1.10 Prefix commands.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

cvmethod Description

random randomly split the training dataset into folds; the default

modulo evenly split the training dataset into folds using the modulo
operation

stratify evenly distribute observations from the different classes of
the response to all folds

stop opts Description

metric(metric option) specify the stopping metric for training or grid search

tolerance(#) specify the tolerance value by which a model must improve
before the training or grid search stops; default is
tolerance(1e-3)

tune opts Description

metric(metric option) specify the metric for selecting the best-performing model

grid(gridspec) specify whether to perform an exhaustive or random search
for all hyperparameter combinations

maxmodels(#) specify the maximum number of models considered in the
grid search; default is all configurations

maxtime(#) specify the maximum run time for the grid search in seconds;
default is no time limit

stop[ (# [ , stop opts ]) ] specify the number of iterations and other criteria for
stopping GBM training if the stopping metric does not
improve in the grid search

parallel(#) specify the number of models to build in parallel during
the grid search; default is parallel(1), sequential
model building

nooutput suppress the table summarizing hyperparameter tuning
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If any of maxmodels(), maxtime(), or stop[ () ] is specified, then grid(random) is implied.

Options

� � �
Model �

validframe(), cv[ () ], balanceclasses, h2orseed(), encode(), auc, stop[ () ], maxtime(), and
scoreevery(); see [H2OML] h2oml gbm.

� � �
Hyperparameter �

ntrees(), lrate(), lratedecay(), maxdepth(), minobsleaf(), predsamprate(), samprate(),
minsplitthreshold(), binscat(), binsroot(), and binscont(); see [H2OML] h2oml gbm.

� � �
Tuning �

tune(); see [H2OML] h2oml gbm.

Remarks and examples
For examples, see Remarks and examples in [H2OML] h2oml gbm.

Stored results
h2oml gbmulticlass stores the following in e():

Scalars

e(N train) number of observations in the training frame

e(N valid) number of observations in the validation frame (with option validframe())
e(N cv) number of observations in the cross-validation (with option cv())
e(n cvfolds) number of cross-validation folds (with option cv())
e(k predictors) number of predictors

e(n class) number of classes

e(n trees) number of trees

e(n trees a) actual number of trees used in GBM

e(maxdepth) maximum specified tree depth

e(depth min a) achieved minimum tree depth

e(depth avg a) achieved average depth among trees

e(depth max a) achieved maximum tree depth

e(minobsleaf) minimum specified number of observations for a child leaf

e(lrate) learning rate

e(lratedecay) learning rate decay

e(samprate) observation sampling rate

e(predsamprate) predictor sampling rate

e(minsplitthr) minimum split improvement threshold

e(binscat) number of bins for categorical predictors

e(binsroot) number of bins for root node

e(binscont) number of bins for continuous predictors

e(h2orseed) H2O random-number seed

e(auc) 1 if auc; 0 otherwise
e(maxtime) maximum run time

e(balanceclass) 1 if classes are balanced; 0 otherwise
e(stop iter) maximum iterations before stopping training without metric improvement

e(stop tol) tolerance for metric improvement before training stops

e(scoreevery) number of trees before scoring metrics during training
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e(tune h2orseed) random-number seed for tuning (with option tune())
e(tune stop iter) maximum iterations before stopping tuning without metric improvement (with

option tune())
e(tune stop tol) tolerance for metric improvement before tuning stops (with option tune())
e(tune maxtime) maximum run time for tuning grid search (with option tune())
e(tune maxmodels) maximum number of models considered in tuning grid search (with option

tune())
Macros

e(cmd) h2oml gbmulticlass
e(cmdline) command as typed

e(subcmd) gbmulticlass
e(method) gbm
e(method type) classification
e(class type) multiclass
e(method full name) Gradient boosting multiclass classification
e(response) name of response

e(predictors) names of predictors

e(title) title in estimation output

e(loss) name of the loss function

e(train frame) name of the training frame

e(valid frame) name of the validation frame (with option validframe())
e(cv method) fold assignment method (with option cv())
e(cv varname) name of variable identifying cross-validation folds (with option cv())
e(encode type) encoding type for categorical predictors

e(stop metric) stopping metric for training

e(tune grid) grid search method used for tuning (with option tune())
e(tune metric) name of the tuning metric (with option tune())
e(tune stop metric) stopping metric for tuning (with option tune())
e(properties) nob noV
e(estat cmd) program used to implement h2omlestat
e(predict) program used to implement h2omlpredict
e(marginsnotok) predictions disallowed by margins

Matrices

e(metrics) training, validation, and cross-validation metrics

e(hyperparam table) minimum, maximum, and selected hyperparameter values

Also see
[H2OML] h2oml postestimation — Postestimation tools for h2oml gbm and h2oml rf+

[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2oml gbm — Gradient boosting machine for regression and classification+

[H2OML] h2oml gbbinclass — Gradient boosting binary classification+

[H2OML] h2oml gbregress — Gradient boosting regression+

[H2OML] h2oml rfmulticlass — Random forest multiclass classification+

[U] 20 Estimation and postestimation commands
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+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
h2oml gbregress implements gradient boosting regression for continuous and count responses. You

can choose from six loss functions, validate your model by using validation data or cross-validation,

and tune hyperparameters and stop early to improve model performance on new data. This command

provides only measures of performance. See [H2OML] h2oml postestimation for commands to compute

and explain predictions, examine variable importance, and perform other postestimation analyses.

For an introduction to decision trees and the gradient boosting machine (GBM) method, see

[H2OML] Intro.

Quick start
Before running the h2oml gbregress command, an H2O cluster must be initialized and data must be

imported to an H2O frame; see [H2OML] H2O setup and Prepare your data for H2O machine learning in

Stata in [H2OML] h2oml.

Perform gradient boosting regression of response y1 on predictors x1 through x100
h2oml gbregress y1 x1-x100

As above, but also report measures of fit for the validation frame named valid, and set an H2O random-

number seed for reproducibility

h2oml gbregress y1 x1-x100, validframe(valid) h2orseed(123)

As above, but instead of a validation frame, use 3-fold cross-validation

h2oml gbregress y1 x1-x100, cv(3) h2orseed(123)

As above, but set the number of trees to 30, the maximum tree depth to 10, the learning rate to 0.01, and

the predictor sampling rate to 0.6

h2oml gbregress y1 x1-x100, cv(3) h2orseed(123) ntrees(30) ///
maxdepth(10) lrate(0.01) predsamprate(0.6)

As above, but use the default exhaustive grid search to select the optimal number of trees and the maxi-

mum tree depth that minimize the mean squared error (MSE) metric

h2oml gbregress y1 x1-x100, cv(3) h2orseed(123) lrate(0.01) ///
predsamprate(0.6) ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(mse))

As above, but use a random grid search, set an H2O random-number seed for this search, and limit the

maximum search time to 200 seconds

h2oml gbregress y1 x1-x100, cv(3) h2orseed(123) lrate(0.01) ///
predsamprate(0.6) ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(mse) grid(random, h2orseed(456)) maxtime(200))
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As above, but specify a learning-rate decay of 0.9, and tune the number of bins for the categorical and

continuous predictors

h2oml gbregress y1 x1-x100, cv(3) h2orseed(123) lrate(0.01) ///
lratedecay(0.9) predsamprate(0.6) ntrees(10(5)100) ///
maxdepth(3(1)10) binscont(15(5)50) binscat(500(50)1100) ///
tune(metric(mse) grid(random, h2orseed(456)) maxtime(200))

Run gradient boosting quantile regression by specifying the quantile loss function

h2oml gbregress y1 x1-x100, loss(quantile)

Menu
Statistics > H2O machine learning
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Syntax
h2oml gbregress response reg predictors [ , options ]

response reg and predictors correspond to column names of the current H2O frame.

options Description

Model

loss(losstype) specify the loss function; default is loss(gaussian)
validframe(framename) specify the name of the H2O frame containing the validation

dataset that will be used to evaluate the performance
of the model

cv[ (# [ , cvmethod ]) ] specify the number of folds and method for cross-validation

cv(colname) specify the name of the variable (H2O column) for
cross-validation that identifies the fold to which each
observation is assigned

h2orseed(#) set H2O random-number seed for GBM

encode(encode type) specify H2O encoding type for categorical predictors; default
is encode(enum)

stop[ (# [ , stop opts ]) ] specify the number of training iterations and other criteria
for stopping GBM training if the stopping metric does
not improve

maxtime(#) specify the maximum run time in seconds for GBM;
by default, no time restriction is imposed

scoreevery(#) specify that metrics be scored after every # trees during training

monotone(predictors [ , mon opts ]) specify monotonicity constraints on the relationship between
the response and the specified predictors

Hyperparameter

ntrees(# | numlist) specify the number of trees to build the GBM model; default
is ntrees(50)

lrate(# | numlist) specify the learning rate of each tree; default is lrate(0.1)
lratedecay(# | numlist) specify the rate by which the learning rate specified in

lrate() is decaying after adding each tree to the GBM;
default is lratedecay(1)

maxdepth(# | numlist) specify the maximum depth of each tree; default is
maxdepth(5)

minobsleaf(# | numlist) specify the minimum number of observations per child for
splitting a leaf node; default is minobsleaf(10)

predsamprate(# | numlist) specify the sampling rate for randomly selecting a fraction of
predictors to build a tree; default is predsamprate(1)

samprate(# | numlist) specify the sampling rate for randomly selecting a fraction of
observations to build a tree; default is samprate(1)

minsplitthreshold(# | numlist) specify the threshold for the minimum relative improvement
needed for a node split; default is
minsplitthreshold(1e-05)

binscat(# | numlist) specify the number of bins to build the histogram for node
splits for categorical predictors (enum columns in H2O);
default is binscat(1024)
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binsroot(# | numlist) specify the number of bins to build the histogram for root
node splits for continuous predictors (real and int
columns in H2O); default is binsroot(1024)

binscont(# | numlist) specify the number of bins to build the histogram for node
splits for continuous predictors (real and int columns
in H2O); default is binscont(20)

Tuning

tune(tune opts) specify hyperparameter tuning options for selecting the
best-performing model

Only one of validframe() or cv[ () ] is allowed.
If neither validframe() nor cv[ () ] is specified, the evaluation metrics are reported for the training dataset.
monotone() can be specified only with loss(gaussian), loss(tweedie), or loss(quantile).
When numlist is specified in one or more hyperparameter options, tuning is performed for those hyperparameters.

collect is allowed; see [U] 11.1.10 Prefix commands.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

losstype Description

gaussian Gaussian loss; the default

tweedie[ , power(#) ] Tweedie loss; response must be nonnegative

poisson Poisson loss; response must be nonnegative

laplace Laplace loss

huber[ , alpha(#) ] Huber loss

quantile[ , alpha(#) ] quantile loss

cvmethod Description

random randomly split the training dataset into folds; the default

modulo evenly split the training dataset into folds using the modulo
operation

stratify evenly distribute observations from the different classes of
the response to all folds

stop opts Description

metric(metric option) specify the stopping metric for training or grid search

tolerance(#) specify the tolerance value by which a model must improve
before the training or grid search stops; default is
tolerance(1e-3)
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tune opts Description

metric(metric option) specify the metric for selecting the best-performing model

grid(gridspec) specify whether to perform an exhaustive or random search
for all hyperparameter combinations

maxmodels(#) specify the maximum number of models considered in the
grid search; default is all configurations

maxtime(#) specify the maximum run time for the grid search in seconds;
default is no time limit

stop[ (# [ , stop opts ]) ] specify the number of iterations and other criteria for
stopping GBM training if the stopping metric does not
improve in the grid search

parallel(#) specify the number of models to build in parallel during
the grid search; default is parallel(1), sequential
model building

nooutput suppress the table summarizing hyperparameter tuning

If any of maxmodels(), maxtime(), or stop[ () ] is specified, then grid(random) is implied.

Options

� � �
Model �

loss(), validframe(), cv[ () ], h2orseed(), encode(), stop[ () ], maxtime(), scoreevery(),
and monotone(); see [H2OML] h2oml gbm.

� � �
Hyperparameter �

ntrees(), lrate(), lratedecay(), maxdepth(), minobsleaf(), predsamprate(), samprate(),
minsplitthreshold(), binscat(), binsroot(), and binscont(); see [H2OML] h2oml gbm.

� � �
Tuning �

tune(); see [H2OML] h2oml gbm.

Remarks and examples
For examples, see Remarks and examples in [H2OML] h2oml gbm.

Stored results
h2oml gbregress stores the following in e():

Scalars

e(N train) number of observations in the training frame

e(N valid) number of observations in the validation frame (with option validframe())
e(N cv) number of observations in the cross-validation (with option cv())
e(n cvfolds) number of cross-validation folds (with option cv())
e(k predictors) number of predictors

e(n trees) number of trees

e(n trees a) actual number of trees used in GBM

e(maxdepth) maximum specified tree depth

e(depth min a) achieved minimum tree depth
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e(depth avg a) achieved average depth among trees

e(depth max a) achieved maximum tree depth

e(minobsleaf) minimum specified number of observations for a child leaf

e(lrate) learning rate

e(lratedecay) learning rate decay

e(samprate) observation sampling rate

e(predsamprate) predictor sampling rate

e(minsplitthr) minimum split improvement threshold

e(binscat) number of bins for categorical predictors

e(binsroot) number of bins for root node

e(binscont) number of bins for continuous predictors

e(h2orseed) H2O random-number seed

e(alpha) top percentile of residuals if loss(huber); quantile if loss(quantile)
e(power) variance power if loss(tweedie)
e(maxtime) maximum run time

e(stop iter) maximum iterations before stopping training without metric improvement

e(stop tol) tolerance for metric improvement before training stops

e(scoreevery) number of trees before scoring metrics during training

e(tune h2orseed) random-number seed for tuning (with option tune())
e(tune stop iter) maximum iterations before stopping tuning without metric improvement (with

option tune())
e(tune stop tol) tolerance for metric improvement before tuning stops (with option tune())
e(tune maxtime) maximum run time for tuning grid search (with option tune())
e(tune maxmodels) maximum number of models considered in tuning grid search (with option

tune())
Macros

e(cmd) h2oml gbregress
e(cmdline) command as typed

e(subcmd) gbregress
e(method) gbm
e(method type) regression
e(method full name) Gradient boosting regression
e(response) name of response

e(predictors) names of predictors

e(title) title in estimation output

e(loss) name of the loss function

e(train frame) name of the training frame

e(valid frame) name of the validation frame (with option validframe())
e(cv method) fold assignment method (with option cv())
e(cv varname) name of variable identifying cross-validation folds (with option cv())
e(encode type) encoding type for categorical predictors

e(monotone inc) names of predictors with monotone increasing constraints

e(monotone dec) names of predictors with monotone decreasing constraints

e(stop metric) stopping metric for training

e(tune grid) grid search method used for tuning (with option tune())
e(tune metric) name of the tuning metric (with option tune())
e(tune stop metric) stopping metric for tuning (with option tune())
e(properties) nob noV
e(estat cmd) program used to implement h2omlestat
e(predict) program used to implement h2omlpredict
e(marginsnotok) predictions disallowed by margins

Matrices

e(metrics) training, validation, and cross-validation metrics

e(hyperparam table) minimum, maximum, and selected hyperparameter values
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Also see
[H2OML] h2oml postestimation — Postestimation tools for h2oml gbm and h2oml rf+

[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2oml gbm — Gradient boosting machine for regression and classification+

[H2OML] h2oml gbbinclass — Gradient boosting binary classification+

[H2OML] h2oml gbmulticlass — Gradient boosting multiclass classification+

[H2OML] h2oml rfregress — Random forest regression+

[U] 20 Estimation and postestimation commands
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+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
The h2oml rf commands implement the random forest method for regression, binary classification,

and multiclass classification. h2oml rfregress implements random forest regression for continuous

responses; h2oml rfbinclass implements random forest classification for binary responses; and h2oml
rfmulticlass implements random forest classification for multiclass responses (categorical responses

with more than two categories).

The h2oml rf commands provide only measures of performance. See [H2OML] h2oml postestimation

for commands to compute and explain predictions, examine variable importance, and perform other

postestimation analyses.

For an introduction to decision trees and random forest, see [H2OML] Intro.

Quick start
Before running the h2oml rf commands, an H2O cluster must be initialized and data must be imported

to an H2O frame; see [H2OML] H2O setup and Prepare your data for H2O machine learning in Stata in

[H2OML] h2oml.

Perform random forest regression of response y1 on predictors x1 through x100
h2oml rfregress y1 x1-x100

As above, but perform classification for binary response y2, report measures of fit for the validation
frame named valid, and set an H2O random-number seed for reproducibility

h2oml rfbinclass y2 x1-x100, validframe(valid) h2orseed(123)

As above, but for categorical response y3 and instead of a validation frame, use 3-fold cross-validation
h2oml rfmulticlass y3 x1-x100, cv(3) h2orseed(123)

As above, but set the number of trees to 30, the maximum tree depth to 10, and the number of predictors

to sample to 6

h2oml rfmulticlass y3 x1-x100, cv(3) h2orseed(123) ntrees(30) ///
maxdepth(10) predsampvalue(6)

As above, but use the default exhaustive grid search to select the optimal number of trees and the maxi-

mum tree depth that minimize the log-loss metric

h2oml rfmulticlass y3 x1-x100, cv(3) h2orseed(123) predsampvalue(6) ///
ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss))
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As above, but use a random grid search, set an H2O random-number seed for this search, and limit the

maximum search time to 200 seconds

h2oml rfmulticlass y3 x1-x100, cv(3) h2orseed(123) predsampvalue(6) ///
ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss) grid(random, h2orseed(456)) maxtime(200))

As above, but use early stopping for the grid search with the default stopping log-loss metric

h2oml rfmulticlass y3 x1-x100, cv(3) h2orseed(123) predsampvalue(6) ///
ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss) grid(random, h2orseed(456)) maxtime(200) ///
stop(5))

Menu
Statistics > H2O machine learning

Syntax
Random forest regression

h2oml rfregress response reg predictors [ , rfopts ]

Random forest binary classification for binary response

h2oml rfbinclass response bin predictors [ , rfopts ]

Random forest multiclass classification for categorical response

h2oml rfmulticlass response mult predictors [ , rfopts ]

response reg, response bin, response mult, and predictors correspond to column names of the current

H2O frame.
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rfopts Description

Model

validframe(framename) specify the name of the H2O frame containing the validation
dataset that will be used to evaluate the performance
of the model

cv[ (# [ , cvmethod ]) ] specify the number of folds and method for cross-validation

cv(colname) specify the name of the variable (H2O column) for
cross-validation that identifies the fold to which each
observation is assigned

balanceclasses balance the distribution of classes (categories of
the response variable) by oversampling minority classes
with h2oml rfbinclass or h2oml rfmulticlass

h2orseed(#) set H2O random-number seed for random forest

encode(encode type) specify H2O encoding type for categorical predictors; default
is encode(enum)

auc enable potentially time-consuming calculation of the area
under the curve (AUC) and area under the precision–recall
curve (AUCPR) and metrics for multiclass classification with
h2oml rfmulticlass

stop[ (# [ , stop opts ]) ] specify the number of training iterations and other criteria
for stopping random forest training if the stopping metric
does not improve

maxtime(#) specify the maximum run time in seconds for random forest;
by default, no time restriction is imposed

scoreevery(#) specify that metrics be scored after every # trees during training

Hyperparameter

ntrees(# | numlist) specify the number of trees to build the random forest model;
default is ntrees(50)

maxdepth(# | numlist) specify the maximum depth of each tree; default is
maxdepth(20)

minobsleaf(# | numlist) specify the minimum number of observations per child for
splitting a leaf node; default is minobsleaf(1)

predsampvalue(# | numlist) specify rules for how to sample predictors; default is
predsampvalue(-1)

samprate(# | numlist) specify the sampling rate for randomly selecting a fraction of
observations to build a tree; default is samprate(0.632)

minsplitthreshold(# | numlist) specify the threshold for the minimum relative improvement
needed for a node split; default is
minsplitthreshold(1e-05)

binscat(# | numlist) specify the number of bins to build the histogram for node
splits for categorical predictors (enum columns in H2O);
default is binscat(1024)

binsroot(# | numlist) specify the number of bins to build the histogram for root
node splits for continuous predictors (real and int
columns in H2O); default is binsroot(1024)

binscont(# | numlist) specify the number of bins to build the histogram for node
splits for continuous predictors (real and int columns
in H2O); default is binscont(20)
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Tuning

tune(tune opts) specify hyperparameter tuning options for selecting the
best-performing model

Only one of validframe() or cv[ () ] is allowed.
If neither validframe() nor cv[ () ] is specified, the performance metrics are reported for the training dataset.
When numlist is specified in one or more hyperparameter options, tuning is performed for those hyperparameters.

collect is allowed; see [U] 11.1.10 Prefix commands.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

cvmethod Description

random randomly split the training dataset into folds; the default

modulo evenly split the training dataset into folds using the modulo
operation

stratify evenly distribute observations from the different classes of
the response to all folds

stop opts Description

metric(metric option) specify the stopping metric for training or grid search

tolerance(#) specify the tolerance value by which a model must improve
before the training or grid search stops; default is
tolerance(1e-3)

tune opts Description

metric(metric option) specify the metric for selecting the best-performing model

grid(gridspec) specify whether to perform an exhaustive or random search
for all hyperparameter combinations

maxmodels(#) specify the maximum number of models considered in the
grid search; default is all configurations

maxtime(#) specify the maximum run time for the grid search in seconds;
default is no time limit

stop[ (# [ , stop opts ]) ] specify the number of iterations and other criteria for
stopping random forest training if the stopping metric does
not improve in the grid search

parallel(#) specify the number of models to build in parallel during
the grid search; default is parallel(1), sequential
model building

nooutput suppress the table summarizing hyperparameter tuning

If any of maxmodels(), maxtime(), or stop[ () ] is specified, then grid(random) is implied.

Options

� � �
Model �

validframe(framename) specifies the H2O frame name of the validation dataset used to evaluate the

performance of the model. This option is often used when the number of observations is large and the

data-splitting approach is the three-way (training-validation-testing) or two-way (training-validation)
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holdout method. For definitions of different data-splitting approaches, see Three-way and two-way

holdout method in [H2OML] Intro. If neither validframe() nor cv[ () ] is specified, the model is
evaluated using the training dataset. Only one of validframe() or cv[ () ] may be specified.

cv(cvspec) and cv use cross-validation to evaluate model performance. cvspec is one of # [ , cvmethod ]
or colname. Only one of cv() or validframe() may be specified.

cv[ (# [ , cvmethod ]) ] specifies the number of folds for cross-validation and, optionally, the cross-
validation method. This option is preferred when the number of observations is small for the training-

validation-testing split method.

cv is a synonym for cv(10).

cvmethod specifies the cross-validationmethod andmay be one of random, modulo, or stratify.

random specifies that training data be randomly split into the specified number of folds. It is

recommended for large datasets and may lead to imbalanced folds. This is the default.

modulo specifies that a deterministic assignment approach that evenly splits data into the spec-
ified number of folds be used. For example, if cv(3, modulo) is specified, then training ob-

servations 1, 4, 7, . . . are assigned to fold 1; observations 2, 5, 8, . . . to fold 2, etc.

stratify specifies to try to evenly distribute observations from the different classes of the

response across all folds. This approach is useful when the number of classes is large and the

available dataset is small. stratify is not allowed when the response is H2O type real.

cv(colname) specifies the name of the variable (H2O column) that is used to split the data into subsets
according to colname. It provides a custom grouping index for the cross-validation split. This option

is suitable when the data are non-i.i.d. or for comparing different models using cross-validation. The

variable should be categorical (H2O data type enum).

balanceclasses is used with h2oml rfbinclass and h2oml rfmulticlass. It specifies to oversam-
ple the minority classes of the response to balance the class distribution. The imbalanced data can lead

to wrong performance evaluation, and oversampling tries to balance data by increasing the minority

classes. This can increase the size of the dataset. Minority classes are not oversampled by default.

h2orseed(#) sets the H2O random-number seed for H2O model reproducibility of the random forest

estimation. This option is not equivalent to the rseed() option available with other commands or

the set seed command. For reproducibility in H2O, see [H2OML] H2O reproducibility and H2O’s

reproducibility page.

encode(encode type) specifies the H2O encoding type to handle categorical variables, which in H2O are
supported as the data type enum. See https://www.stata.com/h2o/h2o18/h2oframe_describe.html for
information on the H2O data types. encode type may be one of enum, enumfreq, onehotexplicit,
binary, eigen, label, or sortbyresponse. For details, see [H2OML] encode option. The default

is encode(enum).

auc is used with h2oml rfmulticlass. It enables calculation of AUC and AUCPR metrics. Because

the computation of these metrics requires a large amount of memory and computational cost, by

default, H2O does not calculate these metrics. This option must be specified if you plan to use the

postestimation command h2omlestat aucmulticlass or to use one of these metrics for the early

stopping. When the number of classes in the response variable is greater than 50, H2O disables this

option.

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm-faq/reproducibility.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm-faq/reproducibility.html
https://www.stata.com/h2o/h2o18/h2oframe_describe.html


h2oml rf — Random forest for regression and classification+ 134

stop and stop(# [ , metric(metric option) tolerance(#) ]) specify the rules for early stopping

for random forest. Early-stopping rules help prevent the overfitting of machine learning methods

and may reduce the generalization error, which measures how well a model predicts outcome for

new data; see Preliminaries in [H2OML] Intro. stop(#) specifies the number of stopping rounds or

training iterations needed to stop model training when the selected stopping metric does not improve

by tolerance(). For example, if metric(logloss) is used and the specified number of training

iterations is 3, the model will stop training after the performance has been scored three consecutive

times without any improvement in logloss by the specified tolerance(). For reproducibility, it is
recommended to use stop() with option scoreevery(#).

stop is a synonym for stop(5).

metric(metric option) specifies the metric used for early stopping. The list of allowed metrics

is provided in [H2OML] metric option. The default is metric(deviance) for regression and

metric(logloss) for binary and multiclass classification.

tolerance(#) specifies the tolerance value by which metric() must improve during training. If

the metric() does not improve by # after the number of consecutive grid value configurations

specified in stop(#), the training stops. The default is tolerance(1e-3).

maxtime(#) specifies the maximum run time in seconds for the random forest. No time limitation is

imposed by default.

scoreevery(#) specifies that metrics be scored after every # trees during model training. This option is

useful in combination with stop() for reproducibility. When used with early stopping, the specified

number of iterations needed to stop applies to the number of scoring iterations that H2O has performed.

The default is to use H2O’s assessment of a reasonable ratio of training iterations to scoring time,

which may not always guarantee reproducibility. For details on reproducibility, see [H2OML] H2O

reproducibility.

� � �
Hyperparameter �

When numlist is specified in one or more hyperparameter options below, tuning is performed for those

hyperparameters.

ntrees(# | numlist) specifies the number of trees to build the model. The default is ntrees(50). The
specified number of trees and the actual number of trees used during estimation can differ. This can

happen if the early-stopping rules have been specified or the performance of the model is not changing

after adding an additional tree.

maxdepth(# | numlist) specifies the maximum depth of each tree. The default is maxdepth(20). The
splitting is stopped when the tree’s depth reaches the specified number. Adeeper tree provides a better

training accuracy but may overfit the data.

minobsleaf(# | numlist) specifies the minimum number of observations required for splitting a leaf

node. The default is minobsleaf(1). For example, if we specify minobsleaf(50), then the node
will split if the training samples in each of the left and right children are at least 50.

predsampvalue(# | numlist) specifies rules for how to sample predictors. The sampling is without

replacement. The accepted values are {−2, −1} and any integer greater than 1 and less than the

number of predictors 𝑝. If the default predsampvalue(-1) is selected, then in each split, the

square root of the number of predictors are sampled for classification and ⌊𝑝/3⌋ are sampled for

regression. predsampvalue(-2) specifies that all predictors will be used. Finally, for 𝑑 > 0,
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predsampvalue(d) indicates that from the total number of predictors, 𝑑 ≤ 𝑝 will be sampled.

predsampvalue() reduces the correlation among trees and introduces additional randomness to the
estimation method that might improve generalization of the model to new data.

samprate(# | numlist) specifies the sampling rate for the observations. The sampling is without re-

placement. The sampling rate must be in the range (0, 1]. The default is samprate(0.632). The
observation sampling introduces an additional randomization to the estimation method that might

improve generalization of the model to the new data.

minsplitthreshold(# | numlist) specifies the threshold for the required minimum relative improve-

ment in the impurity measure in order for a split to occur. The default is minsplitthreshold(1e-
05). A well-tuned minsplitthreshold() increases generalization because it precludes splits that

lead to overfitting.

binscat(# | numlist) specifies the number of bins to be included in the histogram for each categor-

ical (H2O type enum) predictor. The specified number should be greater than 1. The default is

binscat(1024). The histogram is used to split the tree node at the optimal point. Categorical

predictors are split by first assigning an integer to each distinct level. Then the method bins the

ordered integers according to the specified number of bins. Finally, the optimal split point is selected

among the bins. For details, see https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-

params/nbins_cats.html. For categorical predictors with many levels, a larger value of binscat()
leads to overfitting, and a smaller value adds randomness to the split decisions. Therefore, binscat()
is an important tuning parameter for datasets that contain categorical variables with many levels.

binsroot(# | numlist) specifies the number of bins to use at the root node of each tree for splitting

continuous (H2O type real or int) predictors. For the subsequent nodes, the specified # is divided

by 2, and the resulting number is used for splitting. The default is binsroot(1024). This option is
used in combination with binscont(), which controls the point when the method stops dividing by
2. The histogram is used to split the node at the optimal point. As the tree gets deeper, each subsequent

node includes predictors with a smaller range, and the bins are uniformly spread over this range. If the

number of observations in a node is smaller than the specified value, then the method creates empty

bins. If the number of bins is large, the method evaluates each individual observation as a potential

split point, which may increase the computation time. The number specified in binscont() must be
smaller than the number specified in binsroot().

binscont(# | numlist) specifies the minimum number of bins in the histogram for the continuous (H2O

type real or int) predictors. The default is binscont(20). This option is used in combination with
binsroot(). The number specified in binsroot() must be greater than the number specified in

binscont().

In practice, a model is more generalizable to other datasets if binsroot() and binscat() are small and
tends to overfit for large values of binscont(), binsroot(), and binscat().

� � �
Tuning �

tune(tune opts) specifies options for the grid search method for tuning hyperparameters. In machine

learning, hyperparameter tuning is an important step in selecting a model that can be generalized

to other datasets. Because of the high dimensionality of hyperparameters and their types (continu-

ous, discrete, and categorical), manually setting and testing hyperparameters is time consuming and

inefficient. Grid search methods are designed to achieve optimal model performance within spec-

ified constraints such as time allocated for tuning or computational resources. Tuning begins with

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-params/nbins_cats.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-params/nbins_cats.html
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the selection of the predetermined hyperparameters that you want to tune. Below, we describe the

available suboptions for controlling the tuning procedure. tune opts may be metric(), grid(),
maxmodels(), maxtime(), stop[ () ], or nooutput.

metric(metric option) specifies the metric for tuning. Allowed metrics are provided in

[H2OML] metric option. The default is metric(deviance) for regression and metric(log-
loss) for classification.

grid(gridspec) specifies whether to implement an exhaustive search or a random search for all hy-

perparameter combinations. gridspec is one of cartesian or random[ , h2orseed(#) ].
grid(cartesian) implements an exhaustive search for every possible combination in the search
space. This approach is recommended if the number of hyperparameters or the search space is

small. The default is grid(cartesian).

grid(random[ , h2orseed(#) ]) implements a random search for all hyperparameter combi-

nations. It is recommended to use grid(random) with maxmodels() and maxtime() to

reduce the computation time. If maxtime(), maxmodels(), or stop() is specified, then

grid(random) is implied.

h2orseed(#) sets an H2O random-number seed for the random grid search for reproducibility.

See [H2OML]H2O reproducibility and H2O’s reproducibility page for details. The behavior

of h2orseed() is different from the rseed() option allowed by many commands and the

set seed command.

maxmodels(#) specifies the maximum number of models to be considered in a grid search. By

default, all possible configurations are considered. If this option is specified, grid(random) is

implied.

maxtime(#) specifies the maximum run time for the grid search in seconds. By default, there is no

time limitation. If this option is specified, grid(random) is implied. This option can be specified
with option maxmodels() during the grid search. If maxtime() is also specified for the model

training, then each model building starts with a limit equal to the minimum of the maxtime() for
the model training, and the remaining time is used for the grid search.

stop and stop(# [ , metric(metric option) tolerance(#) ]) specify the rules for early stopping
for the grid search. This option implies grid(random). stop(#) specifies the number of grid

value configurations needed to stop the grid search when the selected metric does not improve

by tolerance(). For example, if the selected metric is the default for the binary and multiclass
classification (metric(logloss)) and we specify stop(3), the grid search will stop after three
consecutive grid values chosen by the grid search do not lead to the improvement of the logloss
by the specified tolerance().

stop is a synonym for stop(5).

metric(metric option) specifies the metric used for early stopping. Allowed metrics are pro-

vided in [H2OML] metric option. The default is metric(deviance) for regression and

metric(logloss) for classification.

tolerance(#) specifies the tolerance value by which metric() must improve during the grid

search. If the metric() does not improve by # after the number of consecutive grid value

configurations specified in stop(#), the grid search stops. The default is tolerance(1e-3).

parallel(#) specifies the number of models to build in parallel during the grid search. This option
enables parallel model building, which reduces computational time. The default, parallel(1),
specifies sequential model building. parallel(0) enables adaptive parallelism, in which the

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm-faq/reproducibility.html
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number of models to be built in parallel is automatically determined by H2O. Any integer greater

than 1 specifies the exact number of models to be built in parallel. This option is particularly

useful for improving speed when tuning many hyperparameters. However, results for models built

in parallel may not be reproducible; see [H2OML] H2O reproducibility for details.

nooutput suppresses the table summarizing hyperparameter tuning.

Remarks and examples
We assume you have read the introduction to decision trees and ensemble methods in [H2OML] Intro.

Remarks are presented under the following headings:

Introduction
Tuning hyperparameters
Examples of using random forest

Example 1: Random forest binary classification using default settings
Example 2: Using validation data and early stopping
Example 3: Using cross-validation
Example 4: User-specified hyperparameters
Example 5: Multiclass classification and model performance

Introduction
Like gradient boosting machine (GBM, see Introduction in [H2OML] h2oml gbm), random forest is

a machine learning method used for prediction, model selection, and exploring predictor importance.

And just like GBM, random forest uses an ensemble of decision trees to alleviate the pitfalls of using a

single decision tree. Whereas GBM uses boosting, random forest uses a variation of the so-called bagging

procedure.

The bagging procedure, introduced in [H2OML] Intro, averages an ensemble of unstable decision trees

to reduce the variance in the predictions. Thus, bagging leads to the improvement of the generalization

error (a measure of error in using the model to predict in new data) over using a single decision tree.

However, this reduction in variance is not substantial if the trees in the ensemble are correlated with each

other. For example, if the training data have one strong and several moderately strong predictors, then in

the ensemble of bagged decision trees, the majority of the trees will have this strong predictor as one of

the first splits. Therefore, most of the bagged trees will have a similar structure, resulting in predictors

that are highly correlated.

Random forest (Breiman 2001) is a modification of the bagging procedure that generates an ensemble

of decorrelated trees and then averages them. It generates 𝐵 bootstrap samples of predictors 𝑋𝑏, where

𝑏 = 1, 2, . . . , 𝐵, from the training data. Random forest recursively grows a tree in which, instead of

the full set of 𝑝 predictors, a random sample of 𝑚 predictors is selected as potential split candidates to

generate decorrelated trees. In h2oml rf, the value of 𝐵 can be specified by using the ntrees() option,
and the value of 𝑚 can be specified by using the predsampvalue() option. In practice, 𝑚 = ⌊√𝑝⌋
is recommended for classification and 𝑚 = ⌊𝑝/3⌋ is recommended for regression, where ⌊⋅⌋ is a floor
function that rounds a given number down to the nearest integer. These are the default values of 𝑚 used

by h2oml rf when the predsamplevalue() option is not specified. The size of the bootstrap sample

𝑋𝑏 controls the bias-variance tradeoff of the random forest. The size can be controlled by using the

samprate() option to specify the sampling rate (the fraction of observations to be sampled). By default,
samprate() is set to 0.632.



h2oml rf — Random forest for regression and classification+ 138

Depending on the type of response, you can use one of the h2oml rfregress, h2oml rfbinclass,
or h2oml rfmulticlass commands to perform random forest. h2oml rfregress performs random

forest regression for continuous responses. h2oml rfbinclass performs random forest binary classi-

fication for binary responses. h2oml rfmulticlass performs random forest multiclass classification

for categorical responses. The commands have many common options. To perform random forest using

a validation dataset, you can use the validframe() option to specify the name of a validation frame.

To perform random forest using cross-validation, you can use the cv() option. You can choose be-

tween three cross-validation methods for splitting data among folds by specifying the random, modulo,
or stratify suboption within the cv() option. Alternatively, you can specify a variable in the cv()
option that defines how observations are split into different folds.

For reproducibility, you can use the h2orseed() option to specify a random-number seed for H2O.

This option is different from the rseed() option available with other commands and the set seed
command. For early stopping, you can use the stop[ () ] option. We highly recommend that you al-

ways specify the scoreevery() option with early stopping to ensure reproducibility. For details, see

[H2OML] H2O reproducibility and H2O’s reproducibility page.

Tuning hyperparameters
All h2oml rf commands provide default values for hyperparameters, but you can also specify your

own in the corresponding options. For instance, you can specify the number of trees for random forest

in the ntrees() option or the predictor sampling value in the predsampvalue() option. In practice,

however, you would want to tune your random forest model, that is, let the random forest method select

the values of the model parameters that correspond to the best-fitting model according to some metric.

You can do this by specifying a possible range of grid values for each hyperparameter you intend to tune

and controlling the grid search by using the tune() option. Currently, h2oml rf provides two grid search

strategies: an exhaustive (Cartesian) grid search with tune(grid(cartesian)) and a random grid

searchwith tune(grid(random)). And several performancemetrics are available in tune(metric()).

Tuning hyperparameters of the machine learning method is a complex and iterative procedure. Under-

standing the steps is important for the correct specification of the options provided. A brief overview

of these steps is provided below, and a deeper treatment can be found in Hyperparameter tuning in

[H2OML] Intro.

Step 1: Choose the data-splitting approach

Use either a three-way holdout method in which data are separated into training, validation, and testing

datasets or, if the number of observations is low, a two-way holdout method (training and testing) with

𝑘-fold cross-validation. Recall that the optimal hyperparameters are selected using the results of the
metric on the validation set (validframe()) or cross-validation (cv()), not on the training set.

Step 2: Select the hyperparameters and performance metric

From the list of hyperparameters such as ntrees() or maxdepth(), select the ones that require tuning
for your application. When numlist is specified in one or more of the hyperparameter options, tuning

is implemented based on the specified grid search suboptions in the tune() option. For instance,

you can specify the desired performance metric in the tune(metric()) option; see [H2OML] met-

ric option for supported metrics. The default metric is specific to each command. There is no sys-

tematic guidance on how many and which hyperparameters to choose: the inclusion of tuning hyper-

parameters depends on the data, machine learning method, and prior knowledge of the researcher.

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm-faq/reproducibility.html
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The performance metric should be selected carefully because it may affect the estimation results. For

example, for the classification problem, if the data are imbalanced, metric accuracy is not recom-

mended and a more appropriate metric, such as aucpr, is preferred. For more details, see metric

options.

Step 3: Select the grid search strategy and search space

If the number of hyperparameters is large, then a random grid search specified via the

tune(grid(random)) option is a better choice than an exhaustive grid search that is performed

by default or when the tune(grid(cartesian)) option is specified. For the first run, it is recom-

mended that you specify a large search space and try to overfit the model. Then, on subsequent runs,

you should narrow the search space on high-performance hyperparameters and apply early-stopping

rules by specifying the tune(stop()) option to avoid overfitting.

Step 4: Use the best-performing hyperparameter configuration

Depending on your research problem, use the best-performing hyperparameter configuration to fit the

final model on the testing dataset.

Below, we demonstrate the use of options in various applications. In this entry, we focus on the syntax

and output of commands. For a more research-focused exposition, see [H2OML] h2oml.

Examples of using random forest
In this section, we demonstrate some of the uses of h2oml rf. Most of the options available in h2oml rf

are also supported in h2oml gbm. Currently, the only option that h2oml rf supports but h2oml gbm does

not is predsampvalue(). Conversely, the options loss(), monotone(), lrate(), lratedecay(),
and predsamprate() are supported by h2oml gbm but not by h2oml rf. If you have already read the

examples presented in [H2OML] h2oml gbm, then the discussions of command syntax in the examples

below might seem repetitive because the two commands are similar, but we use h2oml rf instead of the

corresponding h2oml gbm commands in this entry.

The examples are presented under the following headings.

Example 1: Random forest binary classification using default settings
Example 2: Using validation data and early stopping
Example 3: Using cross-validation
Example 4: User-specified hyperparameters
Example 5: Multiclass classification and model performance

Examples 1 through 4 demonstrate random forest binary classification, but their discussion applies to

all h2oml rf commands. Example 5 demonstrates random forest multiclass classification. Detailed steps

for tuning a random forest model are provided in example 10 in [H2OML] h2oml.

Example 1: Random forest binary classification using default settings
For demonstration purposes, we start with random forest binary classification using the default set-

tings. In practice, however, you would rarely use the default settings because the performance of the

model is improved during training by specifying options that allow optimization or tuning of hyperpa-

rameters.

Consider the social pressure dataset, socialpressure, borrowed from Gerber, Green, and Larimer

(2008), which examines whether social pressure can be used to increase voter turnout in elections in

the United States. The data on voting behavior were gathered from Michigan before the August 2006

primary election using a large mailing campaign.
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We start by opening the dataset and then putting the data into an H2O frame, Recall that h2o init ini-
tiates an H2O cluster, h2oframe put loads the current Stata dataset into an H2O frame, and h2oframe
change makes the specified frame the current H2O frame. For details, see Prepare your data for H2O

machine learning in Stata in [H2OML] h2oml and [H2OML] H2O setup.

. use https://www.stata-press.com/data/r18/socialpressure
(Social pressure data)
. h2o init
(output omitted )

. _h2oframe put, into(social)
Progress (%): 0 100
. _h2oframe change social

We use random forest binary classification of the response voted on predictors gender, g2000,
g2002, p2000, p2004, treatment, and age, and we specify the h2orseed(19) option for reproducibil-
ity. For convenience, we introduce a global macro predictors that stores the predictors.

. global predictors gender g2000 g2002 p2000 p2002 p2004 treatment age

. h2oml rfbinclass voted $predictors, h2orseed(19)
Progress (%): 0 1.9 3.9 10.0 31.9 63.9 92.0 100
Random forest binary classification using H2O
Response: voted
Frame: Number of observations:

Training: social Training = 229,461
Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 12 No. of bins cat. = 1,024
avg = 18.2 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Log loss .5740521
Mean class error .3958885

AUC .6704081
AUCPR .4669581

Gini coefficient .3408163
MSE .1952073

RMSE .4418227

The header provides information about themodel characteristics and data. The Frame section contains
information about the H2O training frame. In this example, our training frame is social with 229,461

observations. The Model parameters portion reports the information about hyperparameters. Multiple

values are reported for some hyperparameters. For example, there are two values for the number of trees.

One reports the number of trees as specified by the user. In our case, it is the default 50. The actual
value shows the number of trees actually used during training. These numbers may differ when an early

stopping rule is applied such as when the stop() option is specified. Similarly, for Tree depth, there
are four values. Input max reports the user-specified value, and min and max report the actual minimum
andmaximum depths achieved during training. The last twomay be different from the default value of 20
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because maxdepth() enforces a possible maximum depth the tree can achieve, but the method can stop

splitting earlier. The Metric summary table reports the seven classification performance metrics for the
training frame. In general, metrics values are used to compare different models. Depending on whether

the method implements regression, binary classification, or multiclass classification, the reported metrics

change. For the definition of metrics, see [H2OML] metric option.

Even though the above output is for binary classification, a similar interpretation applies for regres-

sion and multiclass classification using the h2oml rfregress and h2oml rfmulticlass commands,

respectively.

Example 2: Using validation data and early stopping
Example 1 illustrates the simple use of the h2oml rfbinclass command. In practice, we want a

model that minimizes overfitting. Aswe discussed inModel selection inmachine learning in [H2OML] In-

tro, there are two main approaches to check for overfitting: by using a validation dataset or by cross-

validation. The former is recommended when the number of observations is large and the latter otherwise

(see example 3).

Continuing with example 1, we use the h2oframe split command to randomly split the social
frame into a training frame (80% of observations) and validation frame (20% of observations), which we

named train and valid, respectively. We also change the current frame to train.

. _h2oframe split social, into(train valid) split(0.8 0.2) rseed(19)

. _h2oframe change train

We now use the validframe() option with h2oml rfbinclass to specify the validation frame:

. h2oml rfbinclass voted $predictors, validframe(valid) h2orseed(19)
Progress (%): 0 11.9 21.9 31.9 40.0 77.9 100
Random forest binary classification using H2O
Response: voted
Frame: Number of observations:

Training: train Training = 183,607
Validation: valid Validation = 45,854

Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 13 No. of bins cat. = 1,024
avg = 18.0 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Log loss .5744728 .5723461
Mean class error .3955656 .3970816

AUC .6696099 .6725455
AUCPR .4661055 .4700511

Gini coefficient .3392199 .345091
MSE .1954345 .1943139

RMSE .4420798 .4408105
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Compared with example 1, the output contains additional information about the validation frame.

There are 183,607 training and 45,854 validation observations. The important information here is the

performance metrics for the validation frame, the Validation column of the Metric summary table.

The validation frame is used during tuning to select the best model and control for overfitting. See

example 10 in [H2OML] h2oml and example 5 in [H2OML] h2oml gbm for tuning.

In some cases, we can greatly improve the generalization of the model, that is, improve model predic-

tion on the new testing dataset, by using early stopping. Early stopping allows you to stop adding trees

when the metric computed on the validation sample (or on the cross-validation sample if the cv[ () ] op-
tion was specified) does not improve after a prespecified number of iterations. This prevents overfitting.

In this example, we use stop(5) to halt the training of random forest when the stopping metric does not

improve after 5 iterations. By default, the stopping metric is Log loss. For reproducibility, we specify
the scoreevery() option together with the stop() option. The scoreevery() option controls how

frequently the metric score is updated. For example, scoreevery(1) means the score is updated after

adding each tree to the ensemble. For details, see [H2OML] H2O reproducibility.

. h2oml rfbinclass voted $predictors, validframe(valid) h2orseed(19)
> stop(5) scoreevery(1)
Progress (%): 0 14.0 100
Random forest binary classification using H2O
Response: voted
Frame: Number of observations:

Training: train Training = 182,945
Validation: valid Validation = 45,854

Model parameters
Number of trees = 50

actual = 12
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 13 No. of bins cat. = 1,024
avg = 16.8 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Stopping criteria: No. of iterations = 5

Metric: Log loss Tolerance = .001
Metric summary

Metric Training Validation

Log loss .5771652 .5735485
Mean class error .4003924 .398497

AUC .6640448 .6712069
AUCPR .4583645 .468647

Gini coefficient .3280896 .3424138
MSE .1964515 .1948558

RMSE .4432285 .4414248

Note: Metric is scored after every tree.

We see several differences compared with the first output in this example. First, as expected, now the

actual number of trees is less than the specified number of trees (12 versus 50). In addition, the log-loss

metric for both the training frame and validation frame slightly increased, which means early stopping

might not be beneficial for the current model.
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Example 3: Using cross-validation
In this example, we illustrate the use of h2oml rfbinclass with the default parameters and cross-

validation.

Continuing with example 2, we keep the frame train as our current training data. In the h2oml
rf commands, cross-validation is performed by specifying the cv() option. This option supports three

methods for folds assignment: random, modulo, and stratified. The random method is the default and

is preferred with large datasets. Here, to demonstrate, we use 5-fold cross-validation with modulo fold

assignment, which assigns each observation to a fold based on the modulo operation. We type

. h2oml rfbinclass voted $predictors, cv(5, modulo) h2orseed(19)
Progress (%): 0 5.6 13.3 19.6 25.6 38.9 56.9 75.0 83.3 83.3 86.6 92.0 96.6 100
Random forest binary classification using H2O
Response: voted
Frame: Number of observations:

Training: train Training = 183,607
Cross-validation = 183,607

Cross-validation: Modulo Number of folds = 5
Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 13 No. of bins cat. = 1,024
avg = 18.0 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .5744728 .5741153
Mean class error .3955656 .396895

AUC .6696099 .6706381
AUCPR .4661055 .4675035

Gini coefficient .3392199 .3412763
MSE .1954345 .1953061

RMSE .4420798 .4419344

The output now provides information about the cross-validation assignment method, the number of

folds, and, in the second column of the Metric summary table, the cross-validated metrics.

The three fold-assignment methods are useful when the data are i.i.d. If the dataset requires a specific

grouping for cross-validation, then a new categorical variable can be created and specified in the cv(col-
name) option. Random forest then uses those variable values to split the data into folds. To demonstrate,

in our H2O frame, we generate a new column named foldvar, which contains a hypothetical grouping
for the fold assignment.

. _h2oframe generate foldvar = 1

. _h2oframe replace foldvar = 2 in 20/35

. _h2oframe replace foldvar = 3 in 36/63

. _h2oframe factor foldvar, replace
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The last command converts the type of foldvar into H2O’s enum type, which is required by the cv()
option. Now we can perform cross-validation with the fold assignment determined by foldvar.

. h2oml rfbinclass voted $predictors, cv(foldvar) h2orseed(19)
Progress (%): 0 0.4 10.9 21.5 31.4 61.0 75.0 75.0 76.4 85.0 93.0 100
Random forest binary classification using H2O
Response: voted
Frame: Number of observations:

Training: train Training = 183,607
Cross-validation: foldvar Cross-validation = 183,607
Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 13 No. of bins cat. = 1,024
avg = 18.0 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .5744728 .6689446
Mean class error .3955656 .4134973

AUC .6696099 .6015317
AUCPR .4661055 .3785627

Gini coefficient .3392199 .2030635
MSE .1954345 .2243841

RMSE .4420798 .473692



h2oml rf — Random forest for regression and classification+ 145

Example 4: User-specified hyperparameters
In examples 2 and 3, we used, respectively, validation and cross-validation with default values for

all hyperparameters. Continuing with example 2, suppose we now want to try some specific values of

several hyperparameters (the number of trees, predictor sampling value, and predictor sampling rate) by

including, respectively, the ntrees(50), predsampvalue(3), and samprate(0.7) options.

. h2oml rfbinclass voted $predictors, cv(5, modulo) h2orseed(19)
> ntrees(50) predsampvalue(3) samprate(0.7)
Progress (%): 0 6.3 11.9 17.0 22.3 33.0 44.3 56.0 67.0 75.3 83.3 83.3 84.3 88.3
> 92.6 96.6 100
Random forest binary classification using H2O
Response: voted
Frame: Number of observations:

Training: train Training = 183,607
Cross-validation = 183,607

Cross-validation: Modulo Number of folds = 5
Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = 3

Input max = 20 Sampling rate = .7
min = 20 No. of bins cat. = 1,024
avg = 20.0 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .5763545 .57595
Mean class error .3967958 .3973574

AUC .6651064 .6650558
AUCPR .4577942 .4583547

Gini coefficient .3302127 .3301117
MSE .1961533 .1961127

RMSE .442892 .4428462

The output is similar to previous examples, except that it now reports our specified values of 50

for the number of trees, 3 for the predictor sampling value, and 0.7 for the observation sampling rate.

Compared with example 3, all validation metrics improved. Although we specified our own parameter

values, in practice, these values are typically chosen by performing tuning. For example, see example 10

in [H2OML] h2oml.
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Example 5: Multiclass classification and model performance
In this example, we show how to implement multiclass classification and which performance metrics

to use to measure the performance of the model. For this example, we will use a well-known iris dataset,

where the goal is to predict a class of iris plant. This dataset was used in Fisher (1936) and originally col-

lected by Anderson (1935). We start by initializing a cluster, opening the dataset in Stata, and importing

the dataset as an H2O frame.

. h2o init
(output omitted )

. use https://www.stata-press.com/data/r18/iris
(Iris data)
. _h2oframe put, into(iris)

We then split the data into training and validation frames, with 80% of observations in the training

frame, and use the training frame as our current frame.

. _h2oframe split iris, into(train valid) split(0.8 0.2) rseed(19)

. _h2oframe change train

For convenience, we define a global macro predictors to store the names of the predictors. Next we
run random forest multiclass classification using 500 trees and default values for other hyperparameters.

. global predictors seplen sepwid petlen petwid

. h2oml rfmulticlass iris $predictors, validframe(valid) h2orseed(19)
> ntrees(500)
Progress (%): 0 10.8 37.5 58.7 84.6 100
Random forest multiclass classification using H2O
Response: iris Number of classes = 3
Frame: Number of observations:

Training: train Training = 125
Validation: valid Validation = 25

Model parameters
Number of trees = 500

actual = 500
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 1 No. of bins cat. = 1,024
avg = 3.4 No. of bins root = 1,024
max = 9 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Log loss .1128858 .0952996
Mean class error .0487805 .037037

MSE .0356783 .0307455
RMSE .1888871 .1753439

The output is almost identical to the output for the regression we described in detail in examples 1

and 2, except we have different performance metrics.
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For computing and reportingAUC andAUCPRmetrics after themulticlass classification, see example 6.

Even though the example is for the GBM, similar steps apply for the random forest.

Stored results
h2oml rf stores the following in e():
Scalars

e(N train) number of observations in the training frame

e(N valid) number of observations in the validation frame (with option validframe())
e(N cv) number of observations in the cross-validation (with option cv())
e(n cvfolds) number of cross-validation folds (with option cv())
e(k predictors) number of predictors

e(n class) number of classes (with classification)

e(n trees) number of trees

e(n trees a) actual number of trees used in random forest

e(maxdepth) maximum specified tree depth

e(depth min a) achieved minimum tree depth

e(depth avg a) achieved average depth among trees

e(depth max a) achieved maximum tree depth

e(minobsleaf) minimum specified number of observations for a child leaf

e(samprate) observation sampling rate

e(predsampvalue) predictor sampling value

e(minsplitthr) minimum split improvement threshold

e(binscat) number of bins for categorical predictors

e(binsroot) number of bins for root node

e(binscont) number of bins for continuous predictors

e(h2orseed) H2O random-number seed

e(auc) 1 if auc; 0 otherwise (with multiclass classification)
e(maxtime) maximum run time

e(balanceclass) 1 if classes are balanced; 0 otherwise (with classification)
e(stop iter) maximum iterations before stopping training without metric improvement

e(stop tol) tolerance for metric improvement before training stops

e(scoreevery) number of trees before scoring metrics during training

e(tune h2orseed) random-number seed for tuning (with option tune())
e(tune stop iter) maximum iterations before stopping tuning without metric improvement (with

option tune())
e(tune stop tol) tolerance for metric improvement before tuning stops (with option tune())
e(tune maxtime) maximum run time for tuning grid search (with option tune())
e(tune maxmodels) maximum number of models considered in tuning grid search (with option

tune())
Macros

e(cmd) h2oml rfregress, h2oml rfbinclass, or h2oml rfmulticlass
e(cmdline) command as typed

e(subcmd) rfregress, rfbinclass, or rfmulticlass
e(method) randomforest
e(method type) regression or classification
e(class type) binary or multiclass (with classification)
e(method full name) full method name

e(response) name of response

e(predictors) names of predictors

e(title) title in estimation output

e(train frame) name of the training frame

e(valid frame) name of the validation frame (with option validframe())
e(cv method) fold assignment method (with option cv())
e(cv varname) name of variable identifying cross-validation folds (with option cv())
e(encode type) encoding type for categorical predictors
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e(stop metric) stopping metric for training

e(tune grid) grid search method used for tuning (with option tune())
e(tune metric) name of the tuning metric (with option tune())
e(tune stop metric) stopping metric for tuning (with option tune())
e(properties) nob noV
e(estat cmd) program used to implement h2omlestat
e(predict) program used to implement h2omlpredict
e(marginsnotok) predictions disallowed by margins

Matrices

e(metrics) training, validation, and cross-validation metrics

e(hyperparam table) minimum, maximum, and selected hyperparameter values

Methods and formulas
For methods and formulas for random forest implementation, see https://docs.h2o.ai/h2o/latest-

stable/h2o-docs/data-science/drf.html. For a mapping of h2oml rf option names to the H2O options, see

[H2OML] H2O option mapping.
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+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
h2oml rfbinclass implements random forest classification for binary responses. You can validate

your model by using validation data or cross-validation, and you can tune hyperparameters and stop early

to improve model performance on new data. This command provides only measures of performance. See

[H2OML] h2oml postestimation for commands to compute and explain predictions, examine variable

importance, and perform other postestimation analyses.

For an introduction to decision trees and the random forest method, see [H2OML] Intro.

Quick start
Before running the h2oml rfbinclass command, an H2O cluster must be initialized and data must

be imported to an H2O frame; see [H2OML] H2O setup and Prepare your data for H2O machine learning

in Stata in [H2OML] h2oml.

Perform random forest binary classification of binary response y1 on predictors x1 through x100
h2oml rfbinclass y1 x1-x100

As above, but also report measures of fit for the validation frame named valid, and set an H2O random-

number seed for reproducibility

h2oml rfbinclass y1 x1-x100, validframe(valid) h2orseed(123)

As above, but instead of a validation frame, use 3-fold cross-validation

h2oml rfbinclass y1 x1-x100, cv(3) h2orseed(123)

As above, but set the number of trees to 30, the maximum tree depth to 10, and the number of predictors

to sample to 15

h2oml rfbinclass y1 x1-x100, cv(3) h2orseed(123) ntrees(30) ///
maxdepth(10) predsampvalue(15)

As above, but the default exhaustive grid search to select the optimal number of trees and the maximum

tree depth that minimize the log-loss metric

h2oml rfbinclass y1 x1-x100, cv(3) h2orseed(123) predsampvalue(15) ///
ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss))

As above, but use a random grid search, set an H2O random-number seed, and limit the maximum search

time to 200 seconds

h2oml rfbinclass y1 x1-x100, cv(3) h2orseed(123) predsampvalue(15) ///
ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss) grid(random, h2orseed(456)) maxtime(200))

149
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As above, but use early stopping with the default stopping log-loss metric and 5 iterations of tuning

h2oml rfbinclass y1 x1-x100, cv(3) h2orseed(123) predsampvalue(15) ///
ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss) grid(random, h2orseed(456)) maxtime(200) ///
stop(5))

As above, but tune the number of bins for the categorical and continuous predictors

h2oml rfbinclass y1 x1-x100, cv(3) h2orseed(123) predsampvalue(15) ///
ntrees(10(5)100) maxdepth(3(1)10) binscont(15(5)50) ///
binscat(500(50)1100) tune(metric(logloss) ///
grid(random, h2orseed(456)) maxtime(200) stop(5))

Menu
Statistics > H2O machine learning

Syntax
h2oml rfbinclass response bin predictors [ , options ]

response bin and predictors correspond to column names of the current H2O frame.
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options Description

Model

validframe(framename) specify the name of the H2O frame containing the validation
dataset that will be used to evaluate the performance
of the model

cv[ (# [ , cvmethod ]) ] specify the number of folds and method for cross-validation

cv(colname) specify the name of the variable (H2O column) for
cross-validation that identifies the fold to which each
observation is assigned

balanceclasses balance the distribution of classes (categories of the response
variable) by oversampling the minority class

h2orseed(#) set H2O random-number seed for random forest

encode(encode type) specify H2O encoding type for categorical predictors; default
is encode(enum)

stop[ (# [ , stop opts ]) ] specify the number of training iterations and other criteria
for stopping random forest training if the stopping metric
does not improve

maxtime(#) specify the maximum run time in seconds for random forest;
by default, no time restriction is imposed

scoreevery(#) specify that metrics be scored after every # trees during training

Hyperparameter

ntrees(# | numlist) specify the number of trees to build the random forest model;
default is ntrees(50)

maxdepth(# | numlist) specify the maximum depth of each tree; default is
maxdepth(20)

minobsleaf(# | numlist) specify the minimum number of observations per child for
splitting a leaf node; default is minobsleaf(1)

predsampvalue(# | numlist) specify rules for how to sample predictors; default is
predsampvalue(-1)

samprate(# | numlist) specify the sampling rate for randomly selecting a fraction of
observations to build a tree; default is samprate(0.632)

minsplitthreshold(# | numlist) specify the threshold for the minimum relative improvement
needed for a node split; default is
minsplitthreshold(1e-05)

binscat(# | numlist) specify the number of bins to build the histogram for node
splits for categorical predictors (enum columns in H2O);
default is binscat(1024)

binsroot(# | numlist) specify the number of bins to build the histogram for root
node splits for continuous predictors (real and int
columns in H2O); default is binsroot(1024)

binscont(# | numlist) specify the number of bins to build the histogram for node
splits for continuous predictors (real and int columns
in H2O); default is binscont(20)

Tuning

tune(tune opts) specify hyperparameter tuning options for selecting the
best-performing model
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Only one of validframe() or cv[ () ] is allowed.
If neither validframe() nor cv[ () ] is specified, the evaluation metrics are reported for the training dataset.
When numlist is specified in one or more hyperparameter options, tuning is performed for those hyperparameters.

collect is allowed; see [U] 11.1.10 Prefix commands.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

cvmethod Description

random randomly split the training dataset into folds; the default

modulo evenly split the training dataset into folds using the modulo
operation

stratify evenly distribute observations from the different classes of
the response to all folds

stop opts Description

metric(metric option) specify the stopping metric for training or grid search

tolerance(#) specify the tolerance value by which a model must improve
before the training or grid search stops; default is
tolerance(1e-3)

tune opts Description

metric(metric option) specify the metric for selecting the best-performing model

grid(gridspec) specify whether to perform an exhaustive or random search
for all hyperparameter combinations

maxmodels(#) specify the maximum number of models considered in the
grid search; default is all configurations

maxtime(#) specify the maximum run time for the grid search in seconds;
default is no time limit

stop[ (# [ , stop opts ]) ] specify the number of iterations and other criteria for
stopping random forest training if the stopping metric does
not improve in the grid search

parallel(#) specify the number of models to build in parallel during
the grid search; default is parallel(1), sequential
model building

nooutput suppress the table summarizing hyperparameter tuning

If any of maxmodels(), maxtime(), or stop[ () ] is specified, then grid(random) is implied.

Options

� � �
Model �

validframe(), cv[ () ], balanceclasses, h2orseed(), encode(), stop[ () ], maxtime(), and
scoreevery(); see [H2OML] h2oml rf.

� � �
Hyperparameter �

ntrees(), maxdepth(), minobsleaf(), predsampvalue(), samprate(), minsplitthreshold(),
binscat(), binsroot(), and binscont(); see [H2OML] h2oml rf.
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� � �
Tuning �

tune(); see [H2OML] h2oml rf.

Remarks and examples
For examples, see Remarks and examples in [H2OML] h2oml rf.

Stored results
h2oml rfbinclass stores the following in e():

Scalars

e(N train) number of observations in the training frame

e(N valid) number of observations in the validation frame (with option validframe())
e(N cv) number of observations in the cross-validation (with option cv())
e(n cvfolds) number of cross-validation folds (with option cv())
e(k predictors) number of predictors

e(n trees) number of trees

e(n trees a) actual number of trees used in random forest

e(maxdepth) maximum specified tree depth

e(depth min a) achieved minimum tree depth

e(depth avg a) achieved average depth among trees

e(depth max a) achieved maximum tree depth

e(minobsleaf) minimum specified number of observations for a child leaf

e(samprate) observation sampling rate

e(predsampvalue) predictor sampling value

e(minsplitthr) minimum split improvement threshold

e(binscat) number of bins for categorical predictors

e(binsroot) number of bins for root node

e(binscont) number of bins for continuous predictors

e(binsroot) number of bins for root node

e(h2orseed) H2O random-number seed

e(maxtime) maximum run time

e(balanceclass) 1 if classes are balanced; 0 otherwise
e(stop iter) maximum iterations before stopping training without metric improvement

e(stop tol) tolerance for metric improvement before training stops

e(scoreevery) number of trees before scoring metrics during training

e(tune h2orseed) random-number seed for tuning (with option tune())
e(tune stop iter) maximum iterations before stopping tuning without metric improvement (with

option tune())
e(tune stop tol) tolerance for metric improvement before tuning stops (with option tune())
e(tune maxtime) maximum run time for tuning grid search (with option tune())
e(tune maxmodels) maximum number of models considered in tuning grid search (with option

tune())
Macros

e(cmd) h2oml rfbinclass
e(cmdline) command as typed

e(subcmd) rfbinclass
e(method) randomforest
e(method type) classification
e(class type) binary
e(method full name) Random forest binary classification
e(response) name of response

e(predictors) names of predictors

e(title) title in estimation output

e(train frame) name of the training frame
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e(valid frame) name of the validation frame (with option validframe())
e(cv method) fold assignment method (with option cv())
e(cv varname) name of variable identifying cross-validation folds (with option cv())
e(encode type) encoding type for categorical predictors

e(stop metric) stopping metric for training

e(tune grid) grid search method used for tuning (with option tune())
e(tune metric) name of the tuning metric (with option tune())
e(tune stop metric) stopping metric for tuning (with option tune())
e(properties) nob noV
e(estat cmd) program used to implement h2omlestat
e(predict) program used to implement h2omlpredict
e(marginsnotok) predictions disallowed by margins

Matrices

e(metrics) training, validation, and cross-validation metrics

e(hyperparam table) minimum, maximum, and selected hyperparameter values

Also see
[H2OML] h2oml postestimation — Postestimation tools for h2oml gbm and h2oml rf+

[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2oml rf — Random forest for regression and classification+

[H2OML] h2oml rfmulticlass — Random forest multiclass classification+

[H2OML] h2oml rfregress — Random forest regression+

[H2OML] h2oml gbbinclass — Gradient boosting binary classification+

[U] 20 Estimation and postestimation commands
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+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
h2oml rfmulticlass implements random forest multiclass classification for categorical responses.

You can validate your model by using validation data or cross-validation, and you can tune hyperparam-

eters and stop early to improve model performance on new data. This command provides only measures

of performance. See [H2OML] h2oml postestimation for commands to compute and explain predictions,

examine variable importance, and perform other postestimation analyses.

For an introduction to decision trees and the random forest method, see [H2OML] Intro.

Quick start
Before running the h2oml rfmulticlass command, an H2O cluster must be initialized and data must

be imported to an H2O frame; see [H2OML] H2O setup and Prepare your data for H2O machine learning

in Stata in [H2OML] h2oml.

Perform random forest multiclass classification of categorical response y1 on predictors x1 through x100
h2oml rfmulticlass y1 x1-x100

As above, but also report measures of fit for the validation frame named valid, and set an H2O random-

number seed for reproducibility

h2oml rfmulticlass y1 x1-x100, validframe(valid) h2orseed(123)

As above, but instead of a validation frame, use 3-fold cross-validation to report measures of fit

h2oml rfmulticlass y1 x1-x100, cv(3) h2orseed(123)

As above, but set the number of trees to 30, the maximum tree depth to 10, and the number of predictors

to sample to 15

h2oml rfmulticlass y1 x1-x100, cv(3) h2orseed(123) ntrees(30) ///
maxdepth(10) predsampvalue(15)

As above, but use the default exhaustive grid search to select the optimal number of trees and the maxi-

mum tree depth that minimize the log-loss metric

h2oml rfmulticlass y1 x1-x100, cv(3) h2orseed(123) predsampvalue(15) ///
ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss))

As above, but use a random grid search, set an H2O random-number seed, and limit the maximum search

time to 200 seconds

h2oml rfmulticlass y1 x1-x100, cv(3) h2orseed(123) predsampvalue(15) ///
ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss) grid(random, h2orseed(456)) maxtime(200))
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As above, but use early stopping with the default stopping log-loss metric and 5 iterations of tuning

h2oml rfmulticlass y1 x1-x100, cv(3) h2orseed(123) predsampvalue(15) ///
ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(logloss) grid(random, h2orseed(456)) maxtime(200) ///
stop(5))

As above, but tune the number of bins for the categorical and continuous predictors

h2oml rfmulticlass y1 x1-x100, cv(3) h2orseed(123) predsampvalue(15) ///
ntrees(10(5)100) maxdepth(3(1)10) binscont(15(5)50) ///
binscat(500(50)1100) tune(metric(logloss) ///
grid(random, h2orseed(456)) maxtime(200) stop(5))

Menu
Statistics > H2O machine learning

Syntax
h2oml rfmulticlass response mult predictors [ , options ]

response mult and predictors correspond to column names of the current H2O frame.
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options Description

Model

validframe(framename) specify the name of the H2O frame containing the validation
dataset that will be used to evaluate the performance
of the model

cv[ (# [ , cvmethod ]) ] specify the number of folds and method for cross-validation

cv(colname) specify the name of the variable (H2O column) for
cross-validation that identifies the fold to which each
observation is assigned

balanceclasses balance the distribution of classes (categories of the response
variable) by oversampling minority classes

h2orseed(#) set H2O random-number seed for random forest

encode(encode type) specify H2O encoding type for categorical predictors; default
is encode(enum)

auc enable potentially time-consuming calculation of the area under
the curve and area under the precision–recall curve metrics

stop[ (# [ , stop opts ]) ] specify the number of training iterations and other criteria
for stopping random forest training if the stopping metric
does not improve

maxtime(#) specify the maximum run time in seconds for random forest;
by default, no time restriction is imposed

scoreevery(#) specify that metrics be scored after every # trees during training

Hyperparameter

ntrees(# | numlist) specify the number of trees to build the random forest model;
default is ntrees(50)

maxdepth(# | numlist) specify the maximum depth of each tree; default is
maxdepth(20)

minobsleaf(# | numlist) specify the minimum number of observations per child for
splitting a leaf node; default is minobsleaf(1)

predsampvalue(# | numlist) specify rules for how to sample predictors; default is
predsampvalue(-1)

samprate(# | numlist) specify the sampling rate for randomly selecting a fraction of
observations to build a tree; default is samprate(0.632)

minsplitthreshold(# | numlist) specify the threshold for the minimum relative improvement
needed for a node split; default is
minsplitthreshold(1e-05)

binscat(# | numlist) specify the number of bins to build the histogram for node
splits for categorical predictors (enum columns in H2O);
default is binscat(1024)

binsroot(# | numlist) specify the number of bins to build the histogram for root
node splits for continuous predictors (real and int
columns in H2O); default is binsroot(1024)

binscont(# | numlist) specify the number of bins to build the histogram for node
splits for continuous predictors (real and int columns
in H2O); default is binscont(20)

Tuning

tune(tune opts) specify hyperparameter tuning options for selecting the
best-performing model
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Only one of validframe() or cv[ () ] is allowed.
If neither validframe() nor cv[ () ] is specified, the evaluation metrics are reported for the training dataset.
When numlist is specified in one or more hyperparameter options, tuning is performed for those hyperparameters.

collect is allowed; see [U] 11.1.10 Prefix commands.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

cvmethod Description

random randomly split the training dataset into folds; the default

modulo evenly split the training dataset into folds using the modulo
operation

stratify evenly distribute observations from the different classes of
the response to all folds

stop opts Description

metric(metric option) specify the stopping metric for training or grid search

tolerance(#) specify the tolerance value by which a model must improve
before the training or grid search stops; default is
tolerance(1e-3)

tune opts Description

metric(metric option) specify the metric for selecting the best-performing model

grid(gridspec) specify whether to perform an exhaustive or random search
for all hyperparameter combinations

maxmodels(#) specify the maximum number of models considered in the
grid search; default is all configurations

maxtime(#) specify the maximum run time for the grid search in seconds;
default is no time limit

stop[ (# [ , stop opts ]) ] specify the number of iterations and other criteria for
stopping random forest training if the stopping metric does
not improve in the grid search

parallel(#) specify the number of models to build in parallel during
the grid search; default is parallel(1), sequential
model building

nooutput suppress the table summarizing hyperparameter tuning

If any of maxmodels(), maxtime(), or stop[ () ] is specified, then grid(random) is implied.

Options

� � �
Model �

validframe(), cv[ () ], balanceclasses, h2orseed(), encode(), auc, stop[ () ], maxtime(), and
scoreevery(); see [H2OML] h2oml rf.

� � �
Hyperparameter �

ntrees(), maxdepth(), minobsleaf(), predsampvalue(), samprate(), minsplitthreshold(),
binscat(), binsroot(), and binscont(); see [H2OML] h2oml rf.
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� � �
Tuning �

tune(); see [H2OML] h2oml rf.

Remarks and examples
For examples, see Remarks and examples in [H2OML] h2oml rf.

Stored results
h2oml rfmulticlass stores the following in e():

Scalars

e(N train) number of observations in the training frame

e(N valid) number of observations in the validation frame (with option validframe())
e(N cv) number of observations in the cross-validation (with option cv())
e(n cvfolds) number of cross-validation folds (with option cv())
e(k predictors) number of predictors

e(n class) number of classes

e(n trees) number of trees

e(n trees a) actual number of trees used in random forest

e(maxdepth) maximum specified tree depth

e(depth min a) achieved minimum tree depth

e(depth avg a) achieved average depth among trees

e(depth max a) achieved maximum tree depth

e(minobsleaf) minimum specified number of observations for a child leaf

e(samprate) observation sampling rate

e(predsampvalue) predictor sampling value

e(minsplitthr) minimum split improvement threshold

e(binscat) number of bins for categorical predictors

e(binsroot) number of bins for root node

e(binscont) number of bins for continuous predictors

e(h2orseed) H2O random-number seed

e(maxtime) maximum run time

e(balanceclass) 1 if classes are balanced; 0 otherwise
e(stop iter) maximum iterations before stopping training without metric improvement

e(stop tol) tolerance for metric improvement before training stops

e(scoreevery) number of trees before scoring metrics during training

e(tune h2orseed) random-number seed for tuning (with option tune())
e(tune stop iter) maximum iterations before stopping tuning without metric improvement (with

option tune())
e(tune stop tol) tolerance for metric improvement before tuning stops (with option tune())
e(tune maxtime) maximum run time for tuning grid search (with option tune())
e(tune maxmodels) maximum number of models considered in tuning grid search (with option

tune())
Macros

e(cmd) h2oml rfmulticlass
e(cmdline) command as typed

e(subcmd) rfmulticlass
e(method) randomforest
e(method type) classification
e(class type) multiclass
e(method full name) Random forest multiclass classification
e(response) name of response

e(predictors) names of predictors

e(title) title in estimation output

e(train frame) name of the training frame
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e(valid frame) name of the validation frame (with option validframe())
e(cv method) fold assignment method (with option cv())
e(cv varname) name of variable identifying cross-validation folds (with option cv())
e(encode type) encoding type for categorical predictors

e(stop metric) stopping metric for training

e(tune grid) grid search method used for tuning (with option tune())
e(tune metric) name of the tuning metric (with option tune())
e(tune stop metric) stopping metric for tuning (with option tune())
e(properties) nob noV
e(estat cmd) program used to implement h2omlestat
e(predict) program used to implement h2omlpredict
e(marginsnotok) predictions disallowed by margins

Matrices

e(metrics) training, validation, and cross-validation metrics

e(hyperparam table) minimum, maximum, and selected hyperparameter values

Also see
[H2OML] h2oml postestimation — Postestimation tools for h2oml gbm and h2oml rf+

[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2oml rf — Random forest for regression and classification+

[H2OML] h2oml rfbinclass — Random forest binary classification+

[H2OML] h2oml rfregress — Random forest regression+

[H2OML] h2oml gbmulticlass — Gradient boosting multiclass classification+

[U] 20 Estimation and postestimation commands
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+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
h2oml rfregress implements random forest regression for continuous responses. You can validate

your model by using validation data or cross-validation, and you can tune hyperparameters and stop early

to improve model performance on new data. This command provides only measures of performance. See

[H2OML] h2oml postestimation for commands to compute and explain predictions, examine variable

importance, and perform other postestimation analyses.

For an introduction to decision trees and the random forest method, see [H2OML] Intro.

Quick start
Before running the h2oml rfregress command, an H2O cluster must be initialized and data must be

imported to an H2O frame; see [H2OML] H2O setup and Prepare your data for H2O machine learning in

Stata in [H2OML] h2oml.

Perform random forest regression of response y1 on predictors x1 through x100
h2oml rfregress y1 x1-x100

As above, but also report measures of fit for the validation frame named valid, and set an H2O random-

number seed for reproducibility

h2oml rfregress y1 x1-x100, validframe(valid) h2orseed(123)

As above, but instead of a validation frame, use 3-fold cross-validation

h2oml rfregress y1 x1-x100, cv(3) h2orseed(123)

As above, but set the number of trees to 30, the maximum tree depth to 10, and the number of predictors

to sample to 15

h2oml rfregress y1 x1-x100, cv(3) h2orseed(123) ntrees(30) ///
maxdepth(10) predsampvalue(15)

As above, but use the default exhaustive grid search to select the optimal number of trees and the maxi-

mum tree depth that minimize the mean squared error (MSE) metric

h2oml rfregress y1 x1-x100, cv(3) h2orseed(123) predsampvalue(15) ///
ntrees(10(5)100) maxdepth(3(1)10) tune(metric(mse))

As above, but use a random grid search, set an H2O random-number seed, and limit the maximum search

time to 200 seconds

h2oml rfregress y1 x1-x100, cv(3) h2orseed(123) predsampvalue(15) ///
ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(mse) grid(random, h2orseed(456)) maxtime(200))
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As above, but use early stopping with the MSE metric and 5 iterations of tuning

h2oml rfregress y1 x1-x100, cv(3) h2orseed(123) predsampvalue(15) ///
ntrees(10(5)100) maxdepth(3(1)10) ///
tune(metric(mse) grid(random, h2orseed(456)) maxtime(200) ///
stop(5, metric(mse)))

As above, but tune the number of bins for the categorical and continuous predictors

h2oml rfregress y1 x1-x100, cv(3) h2orseed(123) predsampvalue(15) ///
ntrees(10(5)100) maxdepth(3(1)10) binscont(15(5)50) ///
binscat(500(50)1100) tune(metric(mse) ///
grid(random, h2orseed(456)) maxtime(200) stop(5, metric(mse)))

Menu
Statistics > H2O machine learning

Syntax
h2oml rfregress response reg predictors [ , options ]

response reg and predictors correspond to column names of the current H2O frame.
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options Description

Model

validframe(framename) specify the name of the H2O frame containing the validation
dataset that will be used to evaluate the performance
of the model

cv[ (# [ , cvmethod ]) ] specify the number of folds and method for cross-validation

cv(colname) specify the name of the variable (H2O column) for
cross-validation that identifies the fold to which each
observation is assigned

h2orseed(#) set H2O random-number seed for random forest

encode(encode type) specify H2O encoding type for categorical predictors; default
is encode(enum)

stop[ (# [ , stop opts ]) ] specify the number of training iterations and other criteria
for stopping random forest training if the stopping metric
does not improve

maxtime(#) specify the maximum run time in seconds for random forest;
by default, no time restriction is imposed

scoreevery(#) specify that metrics be scored after every # trees during training

Hyperparameter

ntrees(# | numlist) specify the number of trees to build the random forest model;
default is ntrees(50)

maxdepth(# | numlist) specify the maximum depth of each tree; default is
maxdepth(20)

minobsleaf(# | numlist) specify the minimum number of observations per child for
splitting a leaf node; default is minobsleaf(1)

predsampvalue(# | numlist) specify rules for how to sample predictors; default is
predsampvalue(-1)

samprate(# | numlist) specify the sampling rate for randomly selecting a fraction of
observations to build a tree; default is samprate(0.632)

minsplitthreshold(# | numlist) specify the threshold for the minimum relative improvement
needed for a node split; default is
minsplitthreshold(1e-05)

binscat(# | numlist) specify the number of bins to build the histogram for node
splits for categorical predictors (enum columns in H2O);
default is binscat(1024)

binsroot(# | numlist) specify the number of bins to build the histogram for root
node splits for continuous predictors (real and int
columns in H2O); default is binsroot(1024)

binscont(# | numlist) specify the number of bins to build the histogram for node
splits for continuous predictors (real and int columns
in H2O); default is binscont(20)

Tuning

tune(tune opts) specify hyperparameter tuning options for selecting the
best-performing model
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Only one of validframe() or cv[ () ] is allowed.
If neither validframe() nor cv[ () ] is specified, the evaluation metrics are reported for the training dataset.
When numlist is specified in one or more hyperparameter options, tuning is performed for those hyperparameters.

collect is allowed; see [U] 11.1.10 Prefix commands.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

cvmethod Description

random randomly split the training dataset into folds; the default

modulo evenly split the training dataset into folds using the modulo
operation

stratify evenly distribute observations from the different classes of
the response to all folds

stop opts Description

metric(metric option) specify the stopping metric for training or grid search

tolerance(#) specify the tolerance value by which a model must improve
before the training or grid search stops; default is
tolerance(1e-3)

tune opts Description

metric(metric option) specify the metric for selecting the best-performing model

grid(gridspec) specify whether to perform an exhaustive or random search
for all hyperparameter combinations

maxmodels(#) specify the maximum number of models considered in the
grid search; default is all configurations

maxtime(#) specify the maximum run time for the grid search in seconds;
default is no time limit

stop[ (# [ , stop opts ]) ] specify the number of iterations and other criteria for
stopping random forest training if the stopping metric does
not improve in the grid search

parallel(#) specify the number of models to build in parallel during
the grid search; default is parallel(1), sequential
model building

nooutput suppress the table summarizing hyperparameter tuning

If any of maxmodels(), maxtime(), or stop[ () ] is specified, then grid(random) is implied.

Options

� � �
Model �

validframe(), cv[ () ], h2orseed(), encode(), stop[ () ], maxtime(), and scoreevery(); see
[H2OML] h2oml rf.

� � �
Hyperparameter �

ntrees(), maxdepth(), minobsleaf(), predsampvalue(), samprate(), minsplitthreshold(),
binscat(), binsroot(), and binscont(); see [H2OML] h2oml rf.
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� � �
Tuning �

tune(); see [H2OML] h2oml rf.

Remarks and examples
For examples, see Remarks and examples in [H2OML] h2oml rf.

Stored results
h2oml rfregress stores the following in e():

Scalars

e(N train) number of observations in the training frame

e(N valid) number of observations in the validation frame (with option validframe())
e(N cv) number of observations in the cross-validation (with option cv())
e(n cvfolds) number of cross-validation folds (with option cv())
e(k predictors) number of predictors

e(n trees) number of trees

e(n trees a) actual number of trees used in random forest

e(maxdepth) maximum specified tree depth

e(depth min a) achieved minimum tree depth

e(depth avg a) achieved average depth among trees

e(depth max a) achieved maximum tree depth

e(minobsleaf) minimum specified number of observations for a child leaf

e(samprate) observation sampling rate

e(predsampvalue) predictor sampling value

e(minsplitthr) minimum split improvement threshold

e(binscat) number of bins for categorical predictors

e(binsroot) number of bins for root node

e(binscont) number of bins for continuous predictors

e(h2orseed) H2O random-number seed

e(maxtime) maximum run time

e(stop iter) maximum iterations before stopping training without metric improvement

e(stop tol) tolerance for metric improvement before training stops

e(scoreevery) number of trees before scoring metrics during training

e(tune h2orseed) random-number seed for tuning (with option tune())
e(tune stop iter) maximum iterations before stopping tuning without metric improvement (with

option tune())
e(tune stop tol) tolerance for metric improvement before tuning stops (with option tune())
e(tune maxtime) maximum run time for tuning grid search (with option tune())
e(tune maxmodels) maximum number of models considered in tuning grid search (with option

tune())
Macros

e(cmd) h2oml rfregress
e(cmdline) command as typed

e(subcmd) rfregress
e(method) randomforest
e(method type) regression
e(method full name) Random forest regression
e(response) name of response

e(predictors) names of predictors

e(title) title in estimation output

e(train frame) name of the training frame

e(valid frame) name of the validation frame (with option validframe())
e(cv method) fold assignment method (with option cv())
e(cv varname) name of variable identifying cross-validation folds (with option cv())
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e(encode type) encoding type for categorical predictors

e(stop metric) stopping metric for training

e(tune grid) grid search method used for tuning (with option tune())
e(tune metric) name of the tuning metric (with option tune())
e(tune stop metric) stopping metric for tuning (with option tune())
e(properties) nob noV
e(estat cmd) program used to implement h2omlestat
e(predict) program used to implement h2omlpredict
e(marginsnotok) predictions disallowed by margins

Matrices

e(metrics) training, validation, and cross-validation metrics

e(hyperparam table) minimum, maximum, and selected hyperparameter values

Also see
[H2OML] h2oml postestimation — Postestimation tools for h2oml gbm and h2oml rf+

[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2oml rf — Random forest for regression and classification+

[H2OML] h2oml rfbinclass — Random forest binary classification+

[H2OML] h2oml rfmulticlass — Random forest multiclass classification+

[H2OML] h2oml gbregress — Gradient boosting regression+

[U] 20 Estimation and postestimation commands
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+This command includes features that are part of StataNow.

Postestimation commands h2omlpredict Remarks and examples References
Also see

Postestimation commands
The following postestimation commands are of special interest after h2oml gbm and h2oml rf:

Command Description

Estimation results and postestimation frame

h2omlest store and restore estimation results

h2omlpostestframe specify frame for postestimation analysis

Tuning and estimation summaries

h2omlestat metrics display performance metrics

h2omlgraph scorehistory produce score history plot

h2omlestat cvsummary display cross-validation summary

h2omlestat gridsummary display grid-search summary

h2omlexplore explore models after grid search

h2omlselect select model after grid search

h2omlgof compare goodness of fit for machine learning models

Model performance after binary classification

h2omlestat threshmetric display threshold-based metrics

h2omlgraph prcurve produce precision–recall curve plot

h2omlgraph roc produce ROC curve plot

Model performance after multiclass classification

h2omlestat aucmulticlass display AUC and AUCPR metrics

h2omlestat hitratio display hit-ratio table

Model performance after binary and multiclass classification

h2omlestat confmatrix display confusion matrix

Prediction

h2omlpredict predict continuous responses, probabilities, and classes

Model explainability

h2omlgraph varimp produce variable importance plot

h2omlgraph pdp produce partial dependence plot

h2omlgraph ice produce individual conditional expectation plot

h2omltree save decision tree DOT file and display rule set

Explainability after regression and binary classification

h2omlgraph shapvalues produce SHAP values plot for individual observations

h2omlgraph shapsummary produce SHAP beeswarm plot
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h2omlpredict

Description for h2omlpredict
h2omlpredict generates new variables (H2O columns) containing predictions, probabilities, and

class predictions. The latter two are provided for the binary and multiclass classification problems.

Menu for h2omlpredict
Statistics > H2O machine learning

Syntax for h2omlpredict
After h2oml gbregress and h2oml rfregress

h2omlpredict newvar [ , frame(framename) ]

After h2oml gbbinclass and h2oml rfbinclass

h2omlpredict stub* | newvar | newvarlist [ , binopts frame(framename) ]

After h2oml gbmulticlass and h2oml rfmulticlass

h2omlpredict stub* | newvar | newvarlist [ , multopts frame(framename) ]

binopts Description

Main

class predicted classes

pr predicted probability of each class

threshold(#) specify threshold for predicting classes

multopts Description

Main

class predicted classes

pr predicted probability of each class

outcome(outcome) specify outcome level (class) for which probabilities are computed

You specify one or 𝑘 new variables with pr, where 𝑘 is the number of outcomes. If you specify one new variable and you do
not specify outcome(), then outcome(#1) is assumed.

Options for h2omlpredict

� � �
Main �

frame(framename) specifies the H2O frame in which predictions are stored.
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class computes class predictions for each observation and is the default. For h2oml gbbinclass and

h2oml rfbinclass, the predicted class for each observation is determined based on a threshold value.
By default, the threshold is set to maximize the F1 score. Alternatively, a custom threshold can be

specified using the threshold() option. For h2oml gbmulticlass and h2oml rfmulticlass, the
predicted class for each observation is based on the highest predicted probability. Only one of class
or pr is allowed.

pr computes the predicted probabilities for all outcome levels (classes) or for a specific outcome level

(class) after classification. To compute probabilities for all outcome levels, you specify 𝑘 new vari-

ables (H2O columns), where 𝑘 is the number of classes of the response. Alternatively, you can specify
stub*, in which case pr will store predicted probabilities in variables (H2O columns) stub1, stub2,

. . . , stubk. To compute the probability for a specific outcome level, you specify one new variable

(H2O column) and, optionally, the outcome value in option outcome(); if you omit outcome(), then
the first outcome value, outcome(#1), is assumed. Say that you fit a model by typing h2oml es-

timation cmd y x1 x2, and y has four classes. Then you could type h2omlpredict p1 p2 p3 p4,
pr to obtain all four predicted probabilities; alternatively, you could type h2omlpredict p*, pr to

generate the four predicted probabilities. To compute specific probabilities one at a time, you can

type h2omlpredict p1, pr outcome(#1) (or simply h2omlpredict p1, pr); h2omlpredict p2,
pr outcome(#2); and so on. See the outcome() option for other ways to refer to the outcome value.
Only one of pr or class is allowed.

threshold(#) specifies the threshold for predicted classes for binary classification. The specified num-
ber should be between [0, 1]. By default, the threshold value that maximizes the F1 metric is used.

outcome(outcome) specifies for which outcome level (class) the predicted probabilities are to be cal-

culated after multiclass classification. outcome() should contain either one class of the response or

one of #1, #2, . . . , with #1 meaning the first class of the response, #2 meaning the second class, etc.

outcome() is not allowed with class.

Remarks and examples
Remarks and examples are presented under the following headings:

Binary classification prediction
Multiclass classification prediction
Testing frame prediction
Regression prediction

Binary classification prediction

Example 1
In this example, we show how to use the h2omlpredict command to predict probabilities and classes

for binary classification.

We start by opening the 1978 automobile data (auto.dta) in Stata and then putting the data into an
H2O frame. Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset
into an H2O frame, and h2oframe changemakes the specified frame the current H2O frame. For details,
see Prepare your data for H2Omachine learning in Stata in [H2OML] h2oml and see [H2OML]H2O setup.
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. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
(output omitted )

. _h2oframe put, into(auto)
Progress (%): 0 100
. _h2oframe change auto

We use h2oml rfbinclass to perform random forest binary classification to predict classes of the

car origin.

. global predictors price mpg length weight

. h2oml rfbinclass foreign $predictors, ntrees(100) h2orseed(19)
Progress (%): 0 40.0 100
Random forest binary classification using H2O
Response: foreign
Frame: Number of observations:

Training: auto Training = 74
Model parameters
Number of trees = 100

actual = 100
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 3 No. of bins cat. = 1,024
avg = 5.5 No. of bins root = 1,024
max = 9 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Log loss .3053323
Mean class error .1284965

AUC .9309441
AUCPR .8455917

Gini coefficient .8618881
MSE .1046538

RMSE .3235024

Next we use h2omlpredict to create a new variable (a column in the current H2O frame) containing

the predicted classes.

. h2omlpredict foreignhat, class
Progress (%): 0 100
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The threshold value is a cutpoint that determines the predicted classes from the predicted probabilities.

In binary classification, the threshold is the value that maximizes the F1 score. We can determine this

threshold value by using h2omlestat threshmetric.

. h2omlestat threshmetric
Maximum or minimum metrics using H2O
Training frame: auto

Metric Max/Min Threshold

F1 .7778 .125
F2 .8871 .0732

F0.5 .7979 .6286
Accuracy .8649 .6286

Precision 1 1
Recall 1 .0732

Specificity 1 1
Min. class accuracy .8269 .2258
Mean class accuracy .8715 .125

True negatives 52 1
False negatives 0 .0732 +
True positives 22 .0732

False positives 0 1 +
True-negative rate 1 1

False-negative rate 0 .0732 +
True-positive rate 1 .0732

False-positive rate 0 1 +
MCC .6855 .125

+ identifies minimum metrics.

The threshold that maximizes the F1 score is 0.125. Thus, the observations with predicted probabil-

ities greater than 0.125 are assigned to the positive class (Foreign in our example), and the remaining

observations are assigned to the negative class (Domestic in our example). We can specify a different

threshold with the threshold() option. For example, we can select the threshold that maximizes the

true-positive rate, which is 0.0732.

. h2omlpredict foreignhat_tpr, class threshold(0.0732)

If we want to obtain predicted probabilities, we can use the pr option.

. h2omlpredict foreignpr1 foreignpr2, pr
Progress (%): 0 100

We can get the predictions and the rest of the data in the H2O frame back into Stata by using the

h2oframe get command.

. clear

. _h2oframe get auto
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Multiclass classification prediction

Example 2
In this example, we show how to use the h2omlpredict command to predict probabilities and classes

for multiclass classification.

For this example, we will use a well-known iris dataset, where the goal is to predict a class of iris

plant. This dataset was used in Fisher (1936) and originally collected by Anderson (1935). We start by

initializing a cluster, opening the dataset in Stata, and importing the dataset as an H2O frame. We then

use the h2oframe split command to randomly split the iris frame into a training frame (80% of

observations) and a testing frame (20% of observations), which we name train and test, respectively.
We also change the current frame to train.

. use https://www.stata-press.com/data/r18/iris
(Iris data)
. h2o init
(output omitted )

. _h2oframe put, into(iris)
Progress (%): 0 100
. _h2oframe split iris, into(train test) split(0.8 0.2) rseed(19)
. _h2oframe change train

Next, we use h2oml rfmulticlass to perform random forest multiclass classification.

. global predictors seplen sepwid petlen petwid

. h2oml rfmulticlass iris $predictors, ntrees(100) h2orseed(19)
Progress (%): 0 100
Random forest multiclass classification using H2O
Response: iris Number of classes = 3
Frame: Number of observations:

Training: train Training = 125
Model parameters
Number of trees = 100

actual = 100
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 1 No. of bins cat. = 1,024
avg = 3.5 No. of bins root = 1,024
max = 8 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Log loss .1282741
Mean class error .0650407

MSE .0389344
RMSE .197318

Now, we use h2omlpredict to obtain the predicted classes of the iris plant.

. h2omlpredict irishat, class
Progress (%): 0 100
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For multiclass classification, the class is assigned based on the class with the largest predicted proba-

bility. We can use the pr option to see the predicted probabilities. The number of specified new variable

names should correspond to the number of classes (or we can specify stub*, such as irispr*).

. h2omlpredict irispr1 irispr2 irispr3, pr
Progress (%): 0 100

By default, the variables (H2O columns) corresponding to the predicted probabilities and classes are

created in the current frame, which in our case is train.

Testing frame prediction

Example 3
We continue the previous example and show how to obtain predictions on the testing data. In general,

there are two approaches to achieve this goal.

In the first approach, which we recommend, we use the h2omlpostestframe command.

. h2omlpostestframe test
(testing frame test is now active for h2oml postestimation)
. h2omlpredict irishat, class
Progress (%): 0 100

The above commands generate variable irishat in the frame test.

In the second approach, we use the frame() option.

. h2omlpredict irishat1, class frame(test)

Note that neither approach physically changes the working frame to the specified frame, test.

If we are interested in listing the generated variable, then we can type the following.

. _h2oframe change test

. _h2oframe list in 1/5
iris seplen sepwid petlen petwid irishat irishat1

1 Setosa 4.7 3.2 1.3 .2 Setosa Setosa
2 Setosa 5.1 3.8 1.5 .3 Setosa Setosa
3 Setosa 5.1 3.7 1.5 .4 Setosa Setosa
4 Setosa 5.5 4.2 1.4 .2 Setosa Setosa
5 Setosa 4.9 3.6 1.4 .1 Setosa Setosa
[5 rows x 7 columns]
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Regression prediction

Example 4
In this example, we show how to obtain predictions for regression.

We again use auto.dta.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
(output omitted )

. _h2oframe put, into(auto)
Progress (%): 0 100
. _h2oframe change auto

We perform gradient boosting regression to predict prices.

. h2oml gbregress price mpg weight length, ntrees(100) h2orseed(19)
Progress (%): 0 100
Gradient boosting regression using H2O
Response: price
Loss: Gaussian
Frame: Number of observations:

Training: auto Training = 74
Model parameters
Number of trees = 100 Learning rate = .1

actual = 100 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 3 No. of bins cat. = 1,024
avg = 4.1 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training

Deviance 1612524
MSE 1612524

RMSE 1269.852
RMSLE .1750365

MAE 853.3532
R-squared .8121031

Then we use h2omlpredict to obtain predictions.

. h2omlpredict pricehat
Progress (%): 0 100

The new variable (H2O column) pricehat now contains the predicted prices based on our model.
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h2omlest — Store and restore H2OML estimation results+

+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Option Remarks and examples Stored results Also see

Description
h2omlest allows you to store, restore, list, and drop estimation results after h2oml gbm or h2oml rf.

h2omlest store name stores the current (active) estimation results as name.

h2omlest restore name loads the specified results into the current (active) estimation results.

h2omlest dir displays a list of the stored estimates.

h2omlest drop namelist drops the specified stored estimation results.

h2omlest clear drops all stored estimation results.

h2omlest clear, h2omlest drop all, and h2omlest drop * do the same thing. h2omlest drop
and h2omlest clear do not eliminate the current (active) estimation results.

Quick start
Store estimation results as m1 for use later in the same session

h2omlest store m1

Restore estimation results from m2
h2omlest restore m2

Drop stored estimation results m3
h2omlest drop m3

Drop all stored results

h2omlest clear

Display table of information about all stored results

h2omlest dir

Menu
Statistics > H2O machine learning

176
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Syntax
h2omlest store name [ , nocopy ]

h2omlest restore name

h2omlest dir

h2omlest drop namelist

h2omlest clear

where namelist is a name, a list of names, all, or *. all and * mean the same thing.

Option
nocopy, used with h2omlest store, specifies that the current (active) estimation results be moved into

name rather than copied. Typing

. h2omlest store hold, nocopy

is the same as typing

. h2omlest store hold

. ereturn clear

except that the former is faster. The nocopy option is sometimes used by programmers.
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Remarks and examples
h2omlest store stores estimation results in memory after h2oml rf and h2oml gbm so that you can

access them later.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
(output omitted )

. _h2oframe put, into(auto)

. _h2oframe change auto

. h2oml gbregress price weight displ
(output omitted )

. h2omlest store myreg

. ... you do other things, including fitting other models ...

. h2omlest restore myreg

. h2oml gbregress
(same output shown again)

After h2omlest restore myreg, things are once again as they were, estimationwise, just after you
typed h2oml gbregress price weight displ.

h2omlest store stores results in memory. When you exit Stata, those stored results vanish.

Youmake copies in memory so that you can quickly switch between them and so that you can compare

estimation results. Concerning the latter, see [H2OML] h2omlgof.

Stored results
h2omlest dir stores the following in r():

Macro

r(names) names of stored results

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+
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+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results References
Also see

Description
h2omlestat aucmulticlass reports area under the curve (AUC) and area under the precision–recall

curve (AUCPR) metrics after multiclass classification performed by h2oml gbmulticlass or h2oml
rfmulticlass. These metrics measure how well the model can classify observations. Unlike after

binary classification, multiple variations of AUC and AUCPR metrics can be defined with multiclass clas-

sification. The variations include one-versus-one metrics, one-versus-rest metrics, and averages of these

metrics.

AUC and AUCPR metrics can be computationally intensive. To obtain these metrics, the auc option

must be specified in the h2oml gbmulticlass or h2oml rfmulticlass command before the metrics

can be reported by h2omlestat aucmulticlass.

Quick start
Report AUC and AUCPR metrics

h2omlestat aucmulticlass

As above, but report testing results based on data in frame test
h2omlestat aucmulticlass, test(test)

Menu
Statistics > H2O machine learning
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Syntax
h2omlestat aucmulticlass [ , options ]

options Description

title(string) specify title to be displayed above the table

train specify that metrics be reported using training results

valid specify that metrics be reported using validation
results

cv specify that metrics be reported using
cross-validation results

test specify that metrics be computed using the
testing frame

test(framename) specify that metrics be computed using data in
testing frame framename

frame(framename) specify that metrics be computed using data in
H2O frame framename

framelabel(string) label frame as string in the output

collect is allowed; see [U] 11.1.10 Prefix commands.

train, valid, cv, test, test(), frame(), and framelabel() do not appear in the dialog box.

Options
title(string) specifies the title to be displayed above the table.

The following options are available with h2omlestat aucmulticlass but are not shown in the dialog

box:

train, valid, cv, test, test(), and frame() specify the H2O frame for whichAUC andAUCPRmetrics
are reported. Only one of train, valid, cv, test, test(), or frame() is allowed.

train specifies that AUC and AUCPR metrics be reported using training results. This is the default

when neither validation nor cross-validation is performed during estimation and when a postesti-

mation frame has not been set with h2omlpostestframe.

valid specifies that AUC and AUCPR metrics be reported using validation results. This is the default

when validation is performed during estimation and when a postestimation frame has not been

set with h2omlpostestframe. valid may be specified only when the validframe() option is

specified with h2oml gbm or h2oml rf.

cv specifies thatAUC andAUCPRmetrics be reported using cross-validation results. This is the default
when cross-validation is performed during estimation and when a postestimation frame has not

been set with h2omlpostestframe. cv may be specified only when the cv or cv() option is

specified with h2oml gbm or h2oml rf.

test specifies that AUC and AUCPR metrics be computed on the testing frame specified with h2oml-
postestframe. This is the default when a testing frame is specified with h2omlpostestframe.
test may be specified only after a testing frame is set with h2omlpostestframe. test is neces-
sary onlywhen a subsequent h2omlpostestframe command is used to set a default postestimation
frame other than the testing frame.
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test(framename) specifies that AUC and AUCPR metrics be computed using data in testing frame

framename and is rarely used. This option is most useful when running a single postestimation

command on the named frame. If multiple postestimation commands are to be run on the same test

frame, h2omlpostestframe provides amore convenient and computationally efficient process for
doing this.

frame(framename) specifies that AUC and AUCPR metrics be computed using the data in H2O frame

framename.

framelabel(string) specifies the label to be used for the frame in the output. This option is not allowed
with the cv option.

Remarks and examples
h2omlestat aucmulticlass computes AUC and AUCPR metrics after multiclass classification.

These metrics measure how well the model can classify observations. Unlike with binary classifica-

tion, observations are not classified into simply one positive and one negative class. Instead, with mul-

ticlass classification, variations of these metrics are defined. The one-versus-one metrics compute the

AUC and AUCPR for all pairwise combinations of the classes. The one-versus-rest metrics compute the

AUC and AUCPR for each class versus all the other classes combined. h2omlestat aucmulticlass
reports all one-versus-one and one-versus-rest AUC and AUCPR metrics. It also reports the macro (un-

weighted) average and the prevalence weighted average of each metric. For definitions of these metrics,

see [H2OML] metric option.

Because calculation of theAUC andAUCPRmetrics is computationally expensive for multiclass classi-

fication, thesemetrics are not calculated by default by h2oml gbmulticlass and h2oml rfmulticlass.
To enable the calculation, we must specify the auc option during estimation. Additionally, AUC and

AUCPR metrics may not be requested when the number of response classes is greater than 50.

Example 1: AUC and AUCPR metrics
We use a well-known iris dataset, where the goal is to predict a class of iris plant. This dataset was

used in Fisher (1936) and originally collected by Anderson (1935). We start by initializing a cluster,

opening the dataset in Stata, and importing the dataset as an H2O frame. Recall that h2o init initiates an
H2O cluster, h2oframe put loads the current Stata dataset into an H2O frame, and h2oframe change
makes the specified frame the current H2O frame. For details, see Prepare your data for H2O machine

learning in Stata in [H2OML] h2oml and see [H2OML] H2O setup.

. use https://www.stata-press.com/data/r18/iris
(Iris data)
. h2o init
. _h2oframe put, into(iris)
. _h2oframe change iris
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We define the global macro predictors to store the names of the predictors, and we use the h2oml
rfmulticlass command to perform random forest multiclass classification. We use default settings for

all hyperparameters, and we specify an H2O random-number seed for reproducibility. We also specify

the auc option to request that the AUC and AUCPR metrics be computed.

. global predictors seplen sepwid petlen petwid

. h2oml rfmulticlass iris $predictors, h2orseed(19) auc
Progress (%): 0 100
Random forest multiclass classification using H2O
Response: iris Number of classes = 3
Frame: Number of observations:

Training: iris Training = 150
Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 1 No. of bins cat. = 1,024
avg = 3.7 No. of bins root = 1,024
max = 9 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Log loss .3438683
Mean class error .0533333

AUC .9906667
AUCPR .9816699

MSE .0384685
RMSE .196134

Note: AUC and AUCPR computed
using macro average OVR.

The output reports an AUC of 0.991 and an AUCPR of 0.982. The note at the bottom of the table tells us

that these values are the macro average OVR (one-versus-rest) metrics.
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To report all computed AUC and AUCPR metrics, we type

. h2omlestat aucmulticlass
AUC and AUCPR summary using H2O
Training frame: iris

AUC AUCPR

One vs. rest (OVR)
Setosa vs. rest 1 1

Versicolor vs. rest .983 .978
Virginica vs. rest .989 .967

Macro OVR .991 .982
Weighted OVR .991 .982

One vs. one (OVO)
Setosa vs. Versicolor .995 .997
Setosa vs. Virginica 1 1

Versicolor vs. Virginica .977 .974
Macro OVO .991 .99

Weighted OVO .991 .99

As with standard AUC, a value closer to 1 for each of these metrics indicates better classification. In

the first table, we see the one-versus-rest AUC values followed by the one-versus-one AUC values. The

Setosa vs. Rest AUC value is 1. This means that if we run a binary classification where Setosa is

considered the positive class and the remaining classes are considered the negative class, then the model

will perfectly classify all observations.

Similarly, the Versicolor vs. Rest AUC is the AUC for a binary classification where Versicolor
is treated as the positive class and the other classes jointly comprise the negative class. Macro OVR is an
unweighted average of the above one-versus-restAUCs that gives all classes the same weight. Weighted
OVR is a prevalence weighted average of the one-versus-restAUCs, where weights are assigned to classes
based on the number of positives in each class.

In the next portion of the first table, the AUCs are computed by treating one class as the positive class

and one class as the negative class while ignoring all other classes.

The second table can be interpreted similarly to the first table, but it reportsAUCPRmetrics rather than

AUC metrics. The AUCPR is preferred when the classes of the response variable are highly imbalanced.

In this example, all the reported AUC and AUCPR metrics are close to 1, indicating that the model can

accurately distinguish between each class and the other classes. However, as we illustrate in the next

example, this does not mean that the model is highly accurate at performing multiclass classification in

terms of assigning the correct class to every observation.
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Example 2: AUC and AUCPR for validation and testing frames
Above, we performed classification and evaluated metrics using a single training frame. To demon-

strate how to obtain the AUC and AUCPR metrics for other frames, such as validation and testing frames,

we first use the h2oframe split command to split the dataset, specifying 60% of observations in the

training frame, 20% in the validation frame, and 20% in the testing frame. We then change to the training

frame.

. use https://www.stata-press.com/data/r18/iris, clear
(Iris data)
. h2o init
. _h2oframe put, into(iris)
. _h2oframe split iris, into(training validation testing) split(0.6 0.2 0.2)
> rseed(19)
. _h2oframe change training

Next we perform random forest multiclass classification, setting the number of trees to 500 and leaving

the other hyperparameters at their default values. We also specify the name of our validation frame in

the validframe() option.

. h2oml rfmulticlass iris $predictors, h2orseed(19) auc ntrees(500)
> validframe(validation)
Progress (%): 0 29.6 53.3 71.3 99.1 100
Random forest multiclass classification using H2O
Response: iris Number of classes = 3
Frame: Number of observations:

Training: training Training = 95
Validation: validation Validation = 30

Model parameters
Number of trees = 500

actual = 500
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 1 No. of bins cat. = 1,024
avg = 3.0 No. of bins root = 1,024
max = 9 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Log loss .1027022 .1406913
Mean class error .0423591 .0666667

AUC .995535 1
AUCPR .9915411 1

MSE .0300273 .0473201
RMSE .1732838 .2175318

Note: AUC and AUCPR computed using macro
average OVR.
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Now we can run h2omlestat aucmulticlass to see how well our model classifies the data in

the validation frame. Because we specified the validation frame during estimation, h2omlestat
aucmulticlass defaults to reporting metrics for the validation frame.

. h2omlestat aucmulticlass
AUC and AUCPR summary using H2O
Validation frame: validation

AUC AUCPR

One vs. rest (OVR)
Setosa vs. rest 1 1

Versicolor vs. rest 1 1
Virginica vs. rest 1 1

Macro OVR 1 1
Weighted OVR 1 1

One vs. one (OVO)
Setosa vs. Versicolor 1 1
Setosa vs. Virginica 1 1

Versicolor vs. Virginica 1 1
Macro OVO 1 1

Weighted OVO 1 1

We get a score of 1 for each of the one-versus-rest AUC metrics, meaning that if we performed three

binary classifications, one for each class being positive while the rest of the classes are negative, those

models will correctly classify all observations. Similarly, all the one-versus-one AUC metrics are 1,

corresponding to perfect prediction for all pairwise binary classifications where one class is considered

positive and another is considered negative.

However, it is important to remember that computation of one-versus-one AUC and one-versus-rest

AUC metrics ignores the fact that the initial problem is multiclass. The results can differ compared with

other performance metrics that take into account the true multiclass nature of the problem. For example,

let’s look at the confusion matrix by using the h2omlestat confmatrix command.

. h2omlestat confmatrix
Confusion matrix using H2O
Validation frame: validation

Predicted
iris Setosa Versico~r Virginica Total Error Rate

Setosa 12 0 0 12 0 0
Versicolor 0 8 0 8 0 0
Virginica 0 2 8 10 2 .2

Total 12 10 8 30 2 .067

We see that Setosa and Versicolor were perfectly classified, but the model did misclassify some

Virginica flowers as Versicolor.

In addition to the default metrics that are reported for the validation frame in this case, we can obtain

metrics for other frames. Here we are interested in results from the testing frame, and we have two ways

to request these. One approach is to use the test(testing) option to specify the testing frame. The

second approach, our preferred method, is to use h2omlpostestframe to set the testing frame to be used
as the default for all affected postestimation commands. For details, see [H2OML] h2omlpostestframe.
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. h2omlpostestframe testing
(testing frame testing is now active for h2oml postestimation)
. h2omlestat aucmulticlass
AUC and AUCPR summary using H2O
Testing frame: testing

AUC AUCPR

One vs. rest (OVR)
Setosa vs. rest 1 1

Versicolor vs. rest 1 1
Virginica vs. rest 1 1

Macro OVR 1 1
Weighted OVR 1 1

One vs. one (OVO)
Setosa vs. Versicolor 1 1
Setosa vs. Virginica 1 1

Versicolor vs. Virginica 1 1
Macro OVO 1 1

Weighted OVO 1 1

As with the validation frame, we obtain values of 1 for all AUC and AUCPR metrics calculated on the

testing frame.

Stored results
h2omlestat aucmulticlass stores the following in r():

Matrices

r(aucmulticlass) one-versus-rest and one-versus-oneAUC scores

r(aucprmulticlass) one-versus-rest and one-versus-oneAUCPR scores

References
Anderson, E. 1935. The irises of the Gaspé Peninsula. Bulletin of the American Iris Society 59: 2–5.

Fisher, R. A. 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics 7: 179–188. https:

//doi.org/10.1111/j.1469-1809.1936.tb02137.x.

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2omlestat confmatrix — Display confusion matrix+

https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
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+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
h2omlestat confmatrix displays a confusion matrix after binary or multiclass classification per-

formed by h2oml gbbinclass, h2oml rfbinclass, h2oml gbmulticlass, or h2oml rfmulticlass.
Aconfusionmatrix is a summary table for the prediction performance of amachine learning classification

model. It displays how different observations are classified based on correct and incorrect predictions.

It provides a more informative breakdown of a model’s performance than a single metric.

Quick start
Display the confusion matrix after classification

h2omlestat confmatrix

As above, but report confusion matrix based on a validation set

h2omlestat confmatrix, valid

As above, but use a threshold value of 0.5 to determine negative versus positive predicted classes

h2omlestat confmatrix, valid threshold(0.5)

Menu
Statistics > H2O machine learning

187
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Syntax
h2omlestat confmatrix [ , options ]

options Description

Main

metric(metric) specify the metric to be used to select the optimal threshold after
binary classification

threshold(#) specify the threshold value for the predicted probabilities after
binary classification

Reporting

title(string) specify the title to be displayed above the table

labels(lnames) specify label names for rows and columns

nototals suppress row and column totals

norowtotals suppress row totals

nocoltotals suppress column totals

noerrors suppress the error column

norate suppress the rate column

train specify that the confusion matrix be reported using training results

valid specify that the confusion matrix be reported using validation
results

cv specify that the confusion matrix be reported using
cross-validation results

test specify that the confusion matrix be computed using the
testing frame

test(framename) specify that the confusion matrix be computed using data in
testing frame framename

frame(framename) specify that the confusion matrix be computed using data in
H2O frame framename

framelabel(string) label frame as string in the output

collect is allowed; see [U] 11.1.10 Prefix commands.

train, valid, cv, test, test(), frame(), and framelabel() do not appear in the dialog box.

Options

� � �
Main �

metric(metric) specifies the classification metric to be used for selecting a threshold value. This option
is valid only after binary classification. metric can be one of f1 (the default), f2, fhalf, accuracy,
precision, recall, specificity, minclassaccuracy, meanclassaccuracy, tn, fn, tp, fp,
tnr, fnr, tpr, fpr, or mcc. For definitions, see [H2OML] metric option. Only one of metric() or

threshold() is allowed.

threshold(#) specifies the cutpoint for the predicted probabilities after binary classification. The spec-
ified # must be a value between 0 and 1. Observations with a predicted probability greater than the

specified threshold() will be classified as “positive”, and the remaining observations will be clas-
sified as “negative”. By default, the selected threshold value maximizes the F1 score. The list of

threshold values for which threshold-based metrics are computed corresponds to the predicted prob-

abilities of the positive class (the positive class is the largest numeric value, such as 1 in a 0/1 coded
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variable, or the second label in lexicographical order). If the specified threshold(#) is not in the

list of predicted probabilities, a result based on the closest threshold value is reported. Only one of

threshold() or metric() is allowed.

� � �
Reporting �

title(string) specifies the title to be displayed above the table.

labels(lnames) specifies the label names for rows and columns. By default, label names show the

class names of the categorical response variable. The specified number of labels must be equal to the

number of classes of the categorical response variable. The specified labels should be separated by

spaces. If the label itself contains spaces, it must be enclosed with double quotes.

nototals suppresses the totals for rows and columns. nototals is not allowed with norowtotals or

nocoltotals.

norowtotals suppresses the totals for rows. norowtotals is not allowed with nototals.

nocoltotals suppresses the totals for columns. nocoltotals is not allowed with nototals.

noerrors suppresses the error column.

norate suppresses the rate column.

The following options are available with h2omlestat confmatrix but are not shown in the dialog box:

train, valid, cv, test, test(), and frame() specify the H2O frame for which the confusion matrix

is reported. Only one of train, valid, cv, test, test(), or frame() is allowed.

train specifies that the confusion matrix be reported using training results. This is the default when
neither validation nor cross-validation is performed during estimation and when a postestimation

frame has not been set with h2omlpostestframe.

valid specifies that the confusionmatrix be reported using validation results. This is the default when
validation is performed during estimation and when a postestimation frame has not been set with

h2omlpostestframe. valid may be specified only when the validframe() option is specified
with h2oml gbm or h2oml rf.

cv specifies that the confusion matrix be reported using cross-validation results. This is the default

when cross-validation is performed during estimation and when a postestimation frame has not

been set with h2omlpostestframe. cv may be specified only when the cv or cv() option is

specified with h2oml gbm or h2oml rf.

test specifies that the confusion matrix be computed on the testing frame specified with h2oml-
postestframe. This is the default when a testing frame is specified with h2omlpostestframe.
test may be specified only after a testing frame is set with h2omlpostestframe. test is neces-
sary onlywhen a subsequent h2omlpostestframe command is used to set a default postestimation
frame other than the testing frame.

test(framename) specifies that the confusion matrix be computed using data in testing frame frame-

name and is rarely used. This option is most useful when running a single postestimation command

on the named frame. If multiple postestimation commands are to be run on the same test frame,

h2omlpostestframe provides a more convenient and computationally efficient process for doing
this.

frame(framename) specifies that the confusion matrix be computed using the data in H2O frame

framename.
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framelabel(string) specifies the label to be used for the frame in the output. This option is not allowed
with the cv option.

Remarks and examples
Aconfusion matrix is a popular tool for assessing model performance for classification. It consists of

a simple grid that contains information about the model’s performance in terms of correct and incorrect

predictions. A confusion matrix summarizes the types of errors the model makes and allows you to

determine areas in which the model predictions can be improved.

Below is an example of a confusion matrix where we predict the origin of a car to be either Domestic
or Foreign. Rows of the confusion matrix correspond to the actual classes, and columns correspond to
predicted classes. In H2O, a “positive” class corresponds to a class that contains 1, True, or the second
label in lexicographical order. In our case, the positive class corresponds to the car origin being Foreign.

. h2omlestat confmatrix
Confusion matrix using H2O
Training frame: train

Predicted
foreign Domestic Foreign Total Error Rate

Domestic 37 8 45 8 .178
Foreign 0 18 18 0 0

Total 37 26 63 8 .127
Note: Probability threshold .2083 that maximizes F1

metric used for classification.

In this example, the 37 in the upper left cell indicates that there are 37 observations for which the

actual class is Domestic and the model correctly predicts this class. Because Domestic is treated as a

“negative” class in this example, the result in this cell is also known as the number of true negatives. On

the other hand, 8 is the number of observations belonging to the Domestic class that were misclassified
by the model as Foreign, that is, 8 is the number of false positives. Similarly, 0 and 18 are the numbers
of false negatives and true positives, respectively. The predicted class for each observation is determined

based on a threshold value of 0.208, which is reported above the table. A predicted probability greater

than 0.208 will classify the car as Foreign, while a probability below this threshold will classify the

car as Domestic. By default, h2omlestat confmatrix uses the threshold that maximizes the F1 score.
However, you can select a threshold value or specify that a threshold be selected that maximizes another

metric.

The Error column in the output reports the number of misclassified observations for each class, and
the Rate column reports the misclassification error rate.

When there are more than two classes, the number of rows and columns in the confusion matrix

corresponds to the number of classes. The examples below demonstrate h2omlestat confmatrix after
binary classification. For an example with more than two classes, see example 1.
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Example 1: Model comparison
In this example, we use the confusion matrix obtained from 3-fold cross-validation to compare two

machine learning methods, random forest and gradient boosting machine (GBM), at their default values.

We start by opening the 1978 automobile data (auto.dta) in Stata and then putting the data into an
H2O frame. Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset
into an H2O frame, and h2oframe changemakes the specified frame the current H2O frame. For details,
see Prepare your data for H2Omachine learning in Stata in [H2OML] h2oml and see [H2OML]H2O setup.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
. _h2oframe put, into(auto)
. _h2oframe change auto

We run random forest binary classification with 3-fold cross-validation. We store the estimation re-

sults by using the h2omlest store command so that we can use the results in example 2.

. h2oml rfbinclass foreign price mpg trunk weight length, cv(3, modulo)
> h2orseed(19)
Progress (%): 0 100
Random forest binary classification using H2O
Response: foreign
Frame: Number of observations:

Training: auto Training = 74
Cross-validation = 74

Cross-validation: Modulo Number of folds = 3
Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 4 No. of bins cat. = 1,024
avg = 5.8 No. of bins root = 1,024
max = 9 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .7514549 .4192503
Mean class error .1127622 .1809441

AUC .9200175 .8706294
AUCPR .7622589 .624291

Gini coefficient .840035 .7412587
MSE .1081766 .1406502

RMSE .3289021 .3750336

. h2omlest store myrf



h2omlestat confmatrix — Display confusion matrix+ 192

We report the confusion matrix by using the h2omlestat confmatrix command.

. h2omlestat confmatrix
Cross-validation confusion matrix using H2O

Predicted
foreign Domestic Foreign Total Error Rate

Domestic 45 7 52 7 .135
Foreign 5 17 22 5 .227

Total 50 24 74 12 .162
Note: Probability threshold .38 that maximizes F1 metric

used for classification.

Because cross-validation was implemented during estimation, by default, h2omlestat confmatrix re-
ports results that correspond to cross-validation.

Next we implement GBM and report the confusion matrix.

. h2oml gbbinclass foreign price mpg trunk weight length, cv(3, modulo)
> h2orseed(19)
Progress (%): 0 94.9 100
Gradient boosting binary classification using H2O
Response: foreign
Loss: Bernoulli
Frame: Number of observations:

Training: auto Training = 74
Cross-validation = 74

Cross-validation: Modulo Number of folds = 3
Model parameters
Number of trees = 50 Learning rate = .1

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 2 No. of bins cat. = 1,024
avg = 3.9 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .0796245 .3856675
Mean class error 0 .1284965

AUC 1 .9125874
AUCPR 1 .8214532

Gini coefficient 1 .8251748
MSE .017155 .1286581

RMSE .1309771 .3586894
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. h2omlestat confmatrix
Cross-validation confusion matrix using H2O

Predicted
foreign Domestic Foreign Total Error Rate

Domestic 41 11 52 11 .212
Foreign 1 21 22 1 .045

Total 42 32 74 12 .162
Note: Probability threshold .1228 that maximizes F1

metric used for classification.

We can see that random forest is better in predicting Domestic cars (45 true negatives versus 41).

However, it is not straightforward to quantify howmuch better because random forest also has more false

negatives than does GBM (5 false negatives versus 1). In such cases, we recommend comparing the recall

and precision metrics of the two models, which can be obtained from the h2omlestat threshmetric
command.

In general, when you are interested in quantifying how well a method predicts positives, then the

recall metric is recommended.

Example 2: Threshold and metric selection
In example 1, the entries of the confusion matrix were computed using the threshold value that max-

imizes the F1 score. However, we can instead select a different threshold by using the threshold()
option or request that h2omlestat confmatrix select a threshold value based on optimizing a differ-

ent metric. Recall that the threshold is a cutoff above which observations are predicted to belong to the

positive class and below which observations are predicted to belong to the negative class. Thus, if we

change the threshold, the entries of the confusionmatrix will also change. Below, we show two confusion

matrices with threshold values equal to 0.5 and 0.25 for the random forest.

When we specify the threshold value, h2omlestat confmatrix may not report the confusion matrix
for the exact value specified. In H2O, the list of possible threshold values for which threshold-based

metrics have been computed is limited to the predicted probabilities of the positive class. Therefore,

h2omlestat confmatrix reports a confusion matrix using the closest available predicted probability of
a positive class as the threshold value.

We first restore the random forest estimation results from example 1 with the h2omlest
restore command and then specify the threshold value in h2omlestat confmatrix by using the

threshold(0.25) option.

. h2omlest restore myrf
(results myrf are active now)
. h2omlestat confmatrix, threshold(0.25)
Cross-validation confusion matrix using H2O

Predicted
foreign Domestic Foreign Total Error Rate

Domestic 38 14 52 14 .269
Foreign 3 19 22 3 .136

Total 41 33 74 17 .23
Note: Probability threshold .244 that is closest to the

specified .25 used for classification.
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Next we obtain the confusion matrix for a threshold value of 0.5.

. h2omlestat confmatrix, threshold(0.5)
Cross-validation confusion matrix using H2O

Predicted
foreign Domestic Foreign Total Error Rate

Domestic 46 6 52 6 .115
Foreign 9 13 22 9 .409

Total 55 19 74 15 .203
Note: Probability threshold .5 used for classification.

We can see that different threshold values substantially change the reported results. The selection of

the threshold value depends on the problem that the data scientist is trying to answer. For example, if it

is important to classify all Foreign cars correctly, then we could choose the threshold that maximizes

the true-positive rate by specifying the metric(tpr) option.

. h2omlestat confmatrix, metric(tpr)
Cross-validation confusion matrix using H2O

Predicted
foreign Domestic Foreign Total Error Rate

Domestic 32 20 52 20 .385
Foreign 0 22 22 0 0

Total 32 42 74 20 .27
Note: Probability threshold .0885 that maximizes

true-positive rate metric used for classification.

Stored results
h2omlestat confmatrix stores the following in r():

Scalars

r(threshold) specified threshold (with option threshold())
r(threshold a) actual threshold

Macro

r(metric) metric for threshold selection

Matrix

r(confmatrix) confusion matrix

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2omlestat aucmulticlass — Display AUC and AUCPR after multiclass classification+

[H2OML] h2omlestat threshmetric — Display threshold-based metrics for binary classification+
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+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Option Remarks and examples Stored results Reference
Also see

Description
h2omlestat cvsummary displays the cross-validation summary for each fold after performing cross-

validation with h2oml gbm or h2oml rf. h2omlestat cvsummary reports performance metrics for each
fold as well as the mean and standard deviation of each metric. The individual metrics and summary

statistics are useful for evaluating the stability of the machine learning method and whether results will

generalize well to new data.

Quick start
Display the 5-fold cross-validation summary after h2oml rfregress

h2oml rfregress y1 x1-x100, cv(5) h2orseed(19)
h2omlestat cvsummary

Specify a title for the table

h2omlestat cvsummary, title(5-fold CV summary)

Menu
Statistics > H2O machine learning

Syntax
h2omlestat cvsummary [ , title(string) ]

Option
title(string) specifies the title to be displayed above the table.

Remarks and examples
We assume you have read Model selection in machine learning in [H2OML] Intro.

𝑘-fold cross-validation is one of the most commonmodel evaluation and selection techniques. Similar
to the two-way holdout method, we start by splitting data into training and testing sets. However, 𝑘-fold
cross-validation additionally splits the training set into 𝑘 folds. In each iteration, it uses one fold for

validation and the remaining 𝑘 − 1 folds as a training subset for model fitting. One way to compute a

cross-validation metric is to take the average of the 𝑘 validation metrics of the cross-validated models.

h2omlestat cvsummary reports this average along with the standard deviation and the estimatedmetrics
for each fold.

195
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Looking at the standard deviation of cross-validated metrics over the folds can provide useful insights

into the stability and reliability of amachine learningmodel. For example, if the standard deviation across

the folds is large, it may indicate that the performance of the model is not consistent across different

subsets of data and that the model will not generalize well to new data. A large standard deviation could

also indicate data issues; for example, data may be insufficient for reliable training or may suffer from

imbalanced classes.

Another common reason for a large standard deviation is the bias–variance tradeoff of the machine

learning model. A large standard deviation can indicate overfitting, where the model is too complex and

closely learns patterns in the training data. In such cases, a less complex model that provides slightly

lower performance metrics but also low variance might be preferable.

Several authors have tried to find the best value of 𝑘 that minimizes the bias–variance tradeoff. Based
on numerous empirical analyses, Kohavi (1995) suggests 𝑘 = 10 folds. However, cross-validation with

this many folds can be computationally intensive when the dataset is large. In general, as the number of

folds increases, the performance bias decreases but the variance of the performance metric and compu-

tational cost increases.

The steps for hyperparameter tuning with 𝑘-fold cross-validation are as follows:

1. Split the dataset into two sets—a training set for model fitting and selection and a testing set for

the final model evaluation.

2. Perform hyperparameter tuning. For each hyperparameter configuration, apply the 𝑘-fold cross-
validation method on the training set.

3. Select the best hyperparameter settings from the 𝑘-fold cross-validation, and apply them to the

entire training set.

4. Use the independent testing set and the hyperparameter setting from the previous step to estimate

the generalization performance.

To perform cross-validationwith the h2oml gbm and h2oml rf commands, we specify the cv() option.
After estimation, we can use h2omlestat cvsummary to summarize performance metrics and examine

their results for each fold.
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Example 1: Cross-validation summary for bias–variance tradeoff
In this example, we use gradient boosting binary classification on the auto dataset to examine the

standard deviation of a cross-validated metric as an indicator for overfitting.

We start by opening auto.dta in Stata and then putting it in an H2O frame. Recall that h2o init ini-
tiates an H2O cluster, h2oframe put loads the current Stata dataset into an H2O frame, and h2oframe
change makes the specified frame the current H2O frame. (Because we are focused on evaluating cross-

validation, we do not split the data into training and testing sets as we typically would in practice.) For

details, see Prepare your data for H2Omachine learning in Stata in [H2OML] h2oml and see [H2OML]H2O

setup.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
(output omitted )

. _h2oframe put, into(auto)
Progress (%): 0 100
. _h2oframe change auto

We perform gradient boosting binary classification with 3-fold cross-validation and use 5,000 trees.

. h2oml gbbinclass foreign price mpg weight length, cv(3, modulo) h2orseed(19)
> ntrees(5000)
Progress (%): 0 0.3 1.2 2.4 3.6 11.4 15.6 19.9 26.4 31.9 32.7 33.3 33.8 34.6 38.
> 0 41.0 45.6 52.7 100
Gradient boosting binary classification using H2O
Response: foreign
Loss: Bernoulli
Frame: Number of observations:

Training: auto Training = 74
Cross-validation = 74

Cross-validation: Modulo Number of folds = 3
Model parameters
Number of trees = 5,000 Learning rate = .1

actual = 5,000 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 1 No. of bins cat. = 1,024
avg = 2.7 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss 1.80e-17 2.487799
Mean class error 0 .1197552

AUC 1 .8902972
AUCPR 1 .7719202

Gini coefficient 1 .7805944
MSE 4.00e-33 .1135748

RMSE 6.32e-17 .3370087
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Next we report the cross-validated metrics for each fold, together with the mean and standard deviation.

. h2omlestat cvsummary
Cross-validation summary using H2O

Metric Mean Std. dev. Fold 1 Fold 2 Fold 3

Log loss 2.467125 2.757786 .8134241 5.650739 .9372107
F1 .8586183 .0740218 .9230769 .7777778 .875
F2 .8872107 .0564633 .882353 .8333333 .9459459

F0.5 .8369541 .1209393 .9677419 .7291667 .8139535
Accuracy .9055555 .0607667 .96 .84 .9166667

Precision .825926 .1556878 1 .7 .7777778
Recall .9107143 .0778375 .8571429 .875 1

Specificity .9019608 .0898544 1 .8235294 .882353
Misclassification .0944444 .0607667 .04 .16 .0833333
Mean class error .0936625 .0498267 .0714286 .1507353 .0588235
Max. class error .1456583 .0295116 .1428571 .1764706 .1176471

Mean class accuracy .9063376 .0498267 .9285714 .8492647 .9411765
Misclassification count 2.333333 1.527525 1 4 2

AUC .919779 .0744504 .984127 .8382353 .9369748
AUCPR .7621639 .180335 .9663477 .624682 .6954619

MSE .1134442 .0786849 .0400411 .196517 .1037744
RMSE .3218485 .1216001 .2001026 .4433024 .3221404

For illustration purposes, we focus on the log-loss metric; for details, see [H2OML]metric option. In

the first row of the output, the mean is 2.47 and the standard deviation is 2.76. Further analysis reveals

that fold 2 has a large log-loss metric. One possible explanation is that, given the simplicity of this

dataset, fitting a model with a large number of trees might lead to overfitting, which is why the model

does not generalize well for data in fold 2. To investigate, we fit a less complex model with the default

50 trees and report the cross-validation results.
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. h2oml rfbinclass foreign price mpg weight length, cv(3, modulo) h2orseed(19)
Progress (%): 0 100
Random forest binary classification using H2O
Response: foreign
Frame: Number of observations:

Training: auto Training = 74
Cross-validation = 74

Cross-validation: Modulo Number of folds = 3
Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 3 No. of bins cat. = 1,024
avg = 5.6 No. of bins root = 1,024
max = 8 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .3097282 .8764794
Mean class error .1284965 .2036713

AUC .9278846 .8435315
AUCPR .8502403 .6751862

Gini coefficient .8557692 .6870629
MSE .1088474 .1504919

RMSE .3299203 .3879328

. h2omlestat cvsummary
Cross-validation summary using H2O

Metric Mean Std. dev. Fold 1 Fold 2 Fold 3

Log loss .8879563 .7421946 .3638948 .5627286 1.737245
F1 .7857143 .0795395 .8571429 .7 .8
F2 .8286436 .0311104 .8571429 .7954546 .8333333

F0.5 .7504579 .1172045 .8571429 .625 .7692308
Accuracy .8516667 .0825126 .92 .76 .875

Precision .7301587 .1379789 .8571429 .5833333 .75
Recall .8630952 .0103098 .8571429 .875 .8571429

Specificity .8442266 .1237666 .9444444 .7058824 .882353
Misclassification .1483333 .0825126 .08 .24 .125
Mean class error .1463391 .0569079 .0992063 .2095588 .1302521
Max. class error .1932773 .0873303 .1428571 .2941177 .1428571

Mean class accuracy .8536609 .0569079 .9007937 .7904412 .8697479
Misclassification count 3.666667 2.081666 2 6 3

AUC .843643 .067583 .9206349 .8161765 .7941176
AUCPR .663395 .0049219 .6678722 .6581247 .6641881

MSE .150353 .0437331 .112672 .1983087 .1400785
RMSE .3850852 .0556203 .3356665 .4453186 .3742706

We can see that the mean and standard deviation of the log loss are now much smaller.
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Stored results
h2omlestat cvsummary stores the following in r():

Matrix

r(cvsummary) summary of cross-validation metrics and metrics for each fold

Reference
Kohavi, R. 1995. “A study of cross-validation and bootstrap for accuracy estimation and model selection”. In Proceedings

of the 14th International Joint Conference on Artificial Intelligence, August 20–25, vol. 2: 1137–1143. San Francisco:

Morgan Kaufman.

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+
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+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
h2omlestat gridsummary displays the grid summary for configurations of hyperparameters after

h2oml gbm and h2oml rf perform tuning using a grid search.

When tuning is performed, the h2oml gbm and h2oml rf commands report performancemetrics for the

best model based on the tuning metric. h2omlestat gridsummary reports the tuning metric or another
specified metric for additional models that were evaluated as part of the grid search. It also assigns an ID

number to each model. You can then specify these ID numbers in h2omlexplore to compare a variety

of performance metrics for the chosen models. You can also use h2omlselect to select a model based

on the ID number so that subsequent postestimation commands will be based on this model instead of the

one selected by tuning h2oml gbm or h2oml rf.

Quick start
Display the grid summary of log-loss metrics after h2oml gbbinclass

h2oml gbbinclass y x2-x5, ntrees(50(5)80) tune(grid(cartesian))
h2omlestat gridsummary

As above, but report the grid summary for the area under the curve (AUC) metric

h2omlestat gridsummary, metric(auc)

Menu
Statistics > H2O machine learning

Syntax
h2omlestat gridsummary [ , options ]

options Description

metric(metric) specify the metric to be reported

top(#) report the top # models; top( all) reports all models;
default is top(10)

title(string) specify title to be displayed above the table

201



h2omlestat gridsummary — Display grid-search summary+ 202

Options
metric(metric) specifies the metric for which the grid summary will be reported. Allowed metrics are

provided in [H2OML] metric option. If the metric() suboption is specified in the tune() option

of the h2oml gbm or h2oml rf command, then h2omlestat gridsummary will use the same metric.

Otherwise, the default metric is deviance for regression and log loss for classification.

top(#) specifies that the top # models be included in the summary table. top( all) specifies that all

models be reported. The default is top(10).

title(string) specifies the title to be displayed above the table.

Remarks and examples
To build a machine learning model that generalizes well to new data involves choosing an appropriate

method and selecting a model by tuning hyperparameters; see Hyperparameter tuning in [H2OML] Intro

for more information on tuning. For example, suppose we want to perform gradient boosting binary

classification and use an exhaustive grid search to select the optimal number of trees. We could type

h2oml gbbinclass y x1-x100, ntrees(10(5)100)

We can use h2omlestat gridsummary to report the models ranked based on the default log-loss

tuning metric.

h2omlestat gridsummary

Alternatively, we can request a grid summary for another metric, such as the AUC.

h2omlestat gridsummary, metric(auc)

After reporting the grid-search summary, we can compare models with different hyperparameters

based on other performance metrics by using the h2omlexplore command; we select the desired model
by using the h2omlselect command. See [H2OML] h2omlexplore and [H2OML] h2omlselect for exam-

ples demonstrating how to use h2omlestat gridsummary in combination with these commands.

Example 1: Sequential hyperparameter tuning
When the dataset is large and there are many hyperparameters, tuning these hyperparameters simul-

taneously can be computationally intensive. We can reduce the computational burden by tuning hyper-

parameters sequentially. That is, in the first iteration of tuning, a small set of hyperparameters are tuned

to narrow the search space. Then in the second iteration, the best results from the previous iteration can

be used with additional hyperparameters. However, note that this procedure might lead us to select sub-

optimal values for the hyperparameters, and it is only recommended for large datasets. As an alternative,

which also may result in a suboptimal solution, one could use a random grid search and restrict the search

space by specifying the maxmodels() or maxtime() suboption in the tune() option of the h2oml gbm

or h2oml rf command.

In this example, we use gradient boosting to illustrate the sequential procedure.

We begin by opening the auto.dta dataset in Stata and then putting it into an H2O frame. Recall that

h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset into an H2O frame, and
h2oframe change makes the specified frame the current H2O frame. For details, see Prepare your data

for H2O machine learning in Stata in [H2OML] h2oml and see [H2OML] H2O setup.
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. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
(output omitted )

. _h2oframe put, into(auto)
Progress (%): 0 100
. _h2oframe change auto

In the first step of our tuning procedure, we tune the maximum depth of the trees hyperparameter using

3-fold cross-validation and an exhaustive grid search. We set the learning rate to 0.05, a little higher than

the recommended 0.01, because the learning rate decay is 0.9. For details on gradient boosting machine

hyperparameters, see [H2OML] h2oml gbm.

. h2oml gbbinclass foreign price mpg weight length, cv(3, modulo) h2orseed(19)
> lratedecay(0.9) lrate(0.05) maxdepth(1(1)10) tune(grid(cartesian))
Progress (%): 0 100
Gradient boosting binary classification using H2O
Response: foreign
Loss: Bernoulli
Frame: Number of observations:

Training: auto Training = 74
Cross-validation = 74

Cross-validation: Modulo Number of folds = 3
Tuning information for hyperparameters
Method: Cartesian
Metric: Log loss

Grid values
Hyperparameters Minimum Maximum Selected

Max. tree depth 1 10 10

Model parameters
Number of trees = 50 Learning rate = .05

actual = 50 Learning rate decay = .9
Tree depth: Pred. sampling rate = 1

Input max = 10 Sampling rate = 1
min = 2 No. of bins cat. = 1,024
avg = 3.0 No. of bins root = 1,024
max = 4 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .3679234 .4914566
Mean class error .0576923 .1958042

AUC .9820804 .8535839
AUCPR .9584095 .6989351

Gini coefficient .9641608 .7071678
MSE .1063068 .159142

RMSE .3260472 .398926
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Next we use h2omlestat gridsummary to report the configurations that achieve the best perfor-

mance based on the log-loss metric.

. h2omlestat gridsummary
Grid summary using H2O

Max. tree
ID depth Log loss

1 10 .4914566
2 3 .4914566
3 4 .4914566
4 5 .4914566
5 6 .4914566
6 7 .4914566
7 8 .4914566
8 9 .4914566
9 2 .4919681

10 1 .5266221

We see that the performance of the model in terms of the log-loss metric does not change for maximum

tree depths between 3 and 10. Therefore, to have a parsimonious model, we select a maximum tree depth

of 3. In the second step of our tuning procedure, we specify the maxdepth(3) option and tune the

learning rate and sampling rate hyperparameters.

. h2oml gbbinclass foreign price mpg weight length, cv(3, modulo) h2orseed(19)
> lratedecay(0.9) maxdepth(3) samprate(0.4(0.1)1) lrate(0.2(0.02)0.3)
> tune(grid(cartesian))
Progress (%): 0 100
Gradient boosting binary classification using H2O
Response: foreign
Loss: Bernoulli
Frame: Number of observations:

Training: auto Training = 74
Cross-validation = 74

Cross-validation: Modulo Number of folds = 3
Tuning information for hyperparameters
Method: Cartesian
Metric: Log loss

Grid values
Hyperparameters Minimum Maximum Selected

Learning rate .2 .3 .28
Sampling rate .4 1 1
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Model parameters
Number of trees = 50 Learning rate = .28

actual = 50 Learning rate decay = .9
Tree depth: Pred. sampling rate = 1

Input max = 3 Sampling rate = 1
min = 2 No. of bins cat. = 1,024
avg = 3.0 No. of bins root = 1,024
max = 3 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .1357221 .2983633
Mean class error .0227273 .090035

AUC .9982517 .9370629
AUCPR .9961309 .8555774

Gini coefficient .9965035 .8741259
MSE .0326208 .097178

RMSE .1806123 .3117338

Once again, we use h2omlestat gridsummary to report the configurations that achieve the best

performance based on the log-loss metric.

. h2omlestat gridsummary
Grid summary using H2O

Learning Sampling
ID rate rate Log loss

1 .28 1 .2983633
2 .3 1 .2998373
3 .24 1 .3038322
4 .26 1 .3042715
5 .28 .9 .3087905
6 .3 .9 .3102182
7 .22 1 .3137784
8 .26 .9 .3159972
9 .24 .9 .3176375

10 .28 .7 .3319306

We see that the top model achieved a log-loss of 0.298, and the corresponding hyperparameters are a

learning rate of 0.28 and a sampling rate of 1.

Stored results
h2omlestat gridsummary stores the following in r():

Matrix

r(gridsummary) grid-search summary of hyperparameters and metrics
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Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2omlexplore — Explore models after grid search+

[H2OML] h2omlselect — Select model after grid search+
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+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results References
Also see

Description
h2omlestat hitratio reports hit ratios after multiclass classification performed by h2oml

gbmulticlass or h2oml rfmulticlass. A hit ratio measures how often the correct class is within

the top-𝑘 predicted classes. The top-𝑘 hit ratio is the proportion of observations for which the correct

class has one of the 𝑘 highest predicted probabilities.

Quick start
Display the top-𝑘 hit ratios

h2omlestat hitratio

As above, but report results for the validation frame

h2omlestat hitratio, valid

Menu
Statistics > H2O machine learning
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Syntax
h2omlestat hitratio [ , options ]

options Description

title(string) specify title to be displayed above the table

train specify that hit ratios be reported using training results

valid specify that hit ratios be reported using validation
results

cv specify that hit ratios be reported using
cross-validation results

test specify that hit ratios be computed using the
testing frame

test(framename) specify that hit ratios be computed using data in
testing frame framename

frame(framename) specify that hit ratios be computed using data in
H2O frame framename

framelabel(string) label frame as string in the output

collect is allowed; see [U] 11.1.10 Prefix commands.

train, valid, cv, test, test(), frame(), and framelabel() do not appear in the dialog box.

Options
title(string) specifies the title to be displayed above the table.

The following options are available with h2omlestat hitratio but are not shown in the dialog box:

train, valid, cv, test, test(), and frame() specify the H2O frame for which hit ratios are reported.

Only one of train, valid, cv, test, test(), or frame() is allowed.

train specifies that hit ratios be reported using training results. This is the default when neither

validation nor cross-validation is performed during estimation and when a postestimation frame

has not been set with h2omlpostestframe.

valid specifies that hit ratios be reported using validation results. This is the default when val-

idation is performed during estimation and when a postestimation frame has not been set with

h2omlpostestframe. valid may be specified only when the validframe() option is specified
with h2oml gbm or h2oml rf.

cv specifies that hit ratios be reported using cross-validation results. This is the default when cross-

validation is performed during estimation and when a postestimation frame has not been set with

h2omlpostestframe. cv may be specified only when the cv or cv() option is specified with

h2oml gbm or h2oml rf.

test specifies that hit ratios be computed on the testing frame specified with h2omlpostestframe.
This is the default when a testing frame is specified with h2omlpostestframe. test may be

specified only after a testing frame is set with h2omlpostestframe. test is necessary only when
a subsequent h2omlpostestframe command is used to set a default postestimation frame other

than the testing frame.
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test(framename) specifies that hit ratios be computed using data in testing frame framename and

is rarely used. This option is most useful when running a single postestimation command on

the named frame. If multiple postestimation commands are to be run on the same test frame,

h2omlpostestframe provides a more convenient and computationally efficient process for doing
this.

frame(framename) specifies that hit ratios be computed using the data in H2O frame framename.

framelabel(string) specifies the label to be used for the frame in the output. This option is not allowed
with the cv option.

Remarks and examples
For multiclass classification, the hit ratio measures how often the correct class is in one of the top-𝑘

predicted classes, where the top-𝑘 predicted classes are ranked by predicted probabilities. For example,

when computing the top-2 hit ratio, if the true class for an observation has one of the two highest predicted

probabilities, then it is considered a “hit”; it is considered a “miss” otherwise. The top-2 hit ratio is the

proportion of observations having such a hit. h2omlestat hitratio provides a table of top-𝑘 hit ratios.
If there are more than 10 classes, H2O limits the computation to a maximum of top-10 hit ratios.

In practice, the hit ratio is useful in situations where multiple predictions are made and the true class

does not need to have the highest predicted probability but does need to be within the top few. For

example, in recommendation systems or search engines, the output is presented as a ranked list of results.

The correct result needs to be somewhere near the top of that list, but it does not necessarily need to be

the first one.

Example 1: Hit ratios
We use a well-known iris dataset, where the goal is to predict a class of iris plant. This dataset was

used in Fisher (1936) and originally collected by Anderson (1935). We start by initializing a cluster,

opening the dataset in Stata, and importing the dataset as an H2O frame. Recall that h2o init initiates an
H2O cluster, h2oframe put loads the current Stata dataset into an H2O frame, and h2oframe change
makes the specified frame the current H2O frame. We also use the h2oframe split command to split

the dataset, specifying 70% of observations in the training frame and 30% in the validation frame. For

details, see Prepare your data for H2Omachine learning in Stata in [H2OML] h2oml and see [H2OML]H2O

setup.

. use https://www.stata-press.com/data/r18/iris
(Iris data)
. h2o init
(output omitted )

. _h2oframe put, into(iris)
Progress (%): 0 100
. _h2oframe split iris, into(train valid) split(0.7 0.3) rseed(19)
. _h2oframe change train
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We define the global macro predictors to store the names of the predictors, and we use the h2oml
rfmulticlass command to perform random forest multiclass classification. We use default settings for

all hyperparameters, and we specify an H2O random-number seed for reproducibility. We also specify

the name of our validation frame in the validframe() option.

. global predictors seplen sepwid petlen petwid

. h2oml rfmulticlass iris $predictors, validframe(valid) h2orseed(19)
Progress (%): 0 100
Random forest multiclass classification using H2O
Response: iris Number of classes = 3
Frame: Number of observations:

Training: train Training = 113
Validation: valid Validation = 37

Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 1 No. of bins cat. = 1,024
avg = 3.2 No. of bins root = 1,024
max = 6 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Log loss .0821639 .1523995
Mean class error .0456654 .0747475

MSE .0269054 .0555373
RMSE .1640287 .2356636

The top-1 hit ratio is closely related to the misclassification error, which we will report first by using

the h2omlestat confmatrix command.

. h2omlestat confmatrix
Confusion matrix using H2O
Validation frame: valid

Predicted
iris Setosa Versico~r Virginica Total Error Rate

Setosa 11 0 0 11 0 0
Versicolor 0 10 1 11 1 .091
Virginica 0 2 13 15 2 .133

Total 11 12 14 37 3 .081

This confusion matrix based on validation results shows that the highest predicted probabilities from

the model misclassified three observations, resulting in a misclassification error of 0.08. This means that

the top-1 hit ratio is 0.92 (1 − 0.08). In other words, the true class has the highest predicted probability

for 92% of observations.

To determine the top-2 hit ratio, we need to know whether the true class for each of the three mis-

classified observations has the second highest predicted probability. To check, we predict the class

and corresponding probabilities using the validation frame. By default, h2omlpredict generates pre-

dictions in the current working frame. (We can use h2oframe pwf to check which is the current
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frame.) To make predictions in the validation frame, we set it as our postestimation frame by using

the h2omlpostestframe command. We use h2omlpredict to obtain the predicted class, the default

prediction. We then specify the pr option to obtain the predicted probabilities of each class.

. h2omlpostestframe _valid
(validation frame valid is now active for h2oml postestimation)
. h2omlpredict pr_class
(option class assumed; predicted class)
Progress (%): 0 100
. h2omlpredict pr_setosa pr_versicolor pr_virginica, pr
Progress (%): 0 100

Because the h2omlpostestframe command does not physically change the current frame, we use the
h2oframe change command to change the working frame before listing the misclassified observations.

. _h2oframe change valid

. _h2oframe list iris pr_class pr_setosa pr_versicolor pr_virginica
> if pr_class != iris, abbreviate(14)

iris pr_class pr_setosa pr_versicolor pr_virginica
1 Versicolor Virginica 0 .2038981 .7961019
2 Virginica Versicolor 0 .8080754 .1919246
3 Virginica Versicolor 0 .8631397 .1368603
[3 rows x 5 columns]

In the first row, we see that the model misclassified true class Versicolor as Virginica with the

probability 0.8. For this observation, the probability of predicting Versicolor, the true class, is the
second highest probability of 0.2. Similarly, for the next two observations, the second highest predicted

probability corresponds to the true class. Consequently, for all misclassified observations, the top-2

predicted classes contain the true class; thus, the top-2 hit ratio is 1.

The h2omlestat hitratio command provides an easy way to obtain the hit ratios we computed

manually.

. h2omlestat hitratio
Hit-ratio table using H2O
Validation frame: valid

Top Hit ratio

1 .9189189
2 1
3 1

From this table, we confirm that the true class has the highest predicted probability for 92% of obser-

vations in the validation data. The true class has one of the two highest predicted probabilities for 100%

of the observations.

In this example, we see top-1, top-2, and top-3 hit ratios. For classification problems in which the

response has many classes, h2omlestat hitratio will report all top-𝑘 hit ratios up to the top-10 hit

ratio.
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Stored results
h2omlestat hitratio stores the following in r():

Matrix

r(hitratio) hit ratios

References
Anderson, E. 1935. The irises of the Gaspé Peninsula. Bulletin of the American Iris Society 59: 2–5.

Fisher, R. A. 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics 7: 179–188. https:

//doi.org/10.1111/j.1469-1809.1936.tb02137.x.

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2omlestat aucmulticlass — Display AUC and AUCPR after multiclass classification+

[H2OML] h2omlestat confmatrix — Display confusion matrix+

https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
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+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
h2omlestat metrics reports the performance metrics after h2oml gbm and h2oml rf.

Quick start
Report the performance metrics

h2omlestat metrics

As above, but report performance metrics for the validation frame

h2omlestat metrics, valid

Report performance metrics for frame myframe
h2omlestat metrics, frame(myframe)

Menu
Statistics > H2O machine learning

Syntax
h2omlestat metrics [ , options ]

options Description

train specify that performance metrics be reported using training results

valid specify that performance metrics be reported using validation
results

cv specify that performance metrics be reported using
cross-validation results

test specify that performance metrics be computed using the
testing frame

test(framename) specify that performance metrics be computed using data in
testing frame framename

frame(framename) specify that performance metrics be computed using data in
H2O frame framename

framelabel(string) label frame as string in the output

collect is allowed; see [U] 11.1.10 Prefix commands.

train, valid, cv, test, test(), frame(), and framelabel() do not appear in the dialog box.
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Options
The following options are available with h2omlestat metrics but are not shown in the dialog box:

train, valid, cv, test, test(), and frame() specify the H2O frame for which performance metrics

are reported. Only one of train, valid, cv, test, test(), or frame() is allowed.

train specifies that performance metrics be reported using training results. This is the default when
neither validation nor cross-validation is performed during estimation and when a postestimation

frame has not been set with h2omlpostestframe.

valid specifies that performancemetrics be reported using validation results. This is the default when
validation is performed during estimation and when a postestimation frame has not been set with

h2omlpostestframe. valid may be specified only when the validframe() option is specified
with h2oml gbm or h2oml rf.

cv specifies that performance metrics be reported using cross-validation results. This is the default

when cross-validation is performed during estimation and when a postestimation frame has not

been set with h2omlpostestframe. cv may be specified only when the cv or cv() option is

specified with h2oml gbm or h2oml rf.

test specifies that performance metrics be computed on the testing frame specified with h2oml-
postestframe. This is the default when a testing frame is specified with h2omlpostestframe.
test may be specified only after a testing frame is set with h2omlpostestframe. test is neces-
sary onlywhen a subsequent h2omlpostestframe command is used to set a default postestimation
frame other than the testing frame.

test(framename) specifies that performance metrics be computed using data in testing frame frame-

name and is rarely used. This option is most useful when running a single postestimation command

on the named frame. If multiple postestimation commands are to be run on the same test frame,

h2omlpostestframe provides a more convenient and computationally efficient process for doing
this.

frame(framename) specifies that performance metrics be computed using the data in H2O frame

framename.

framelabel(string) specifies the label to be used for the frame in the output. This option is not allowed
with the cv option.

Remarks and examples
h2omlestat metrics reports the performance metrics of a machine learning model after h2oml gbm

or h2oml rf.

The default frame for which metrics are reported depends on options specified in the estimation com-

mand and on whether a postestimation frame has been set by using h2omlpostestframe.

If no postestimation frame has been set and if neither the cv() nor validframe() option was spec-
ified during estimation, performance metrics are reported for the training frame. If the validframe()
option is specified during estimation, performance metrics are reported by the validation frame. If the

cv() option is specified during estimation, performance metrics are reported for cross-validation. If a

postestimation frame has been set by h2omlpostestframe, the performance metrics are reported for the
specified postestimation frame by default; see [H2OML] h2omlpostestframe. You can also specify one

of the train, valid, cv, test, test(), or frame() options with h2omlestat metrics to indicate the
frame for which metrics are reported.
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Example 1: Performance metrics on different frames
In this example, we demonstrate how to obtain performance metrics based on multiple frames after

estimation.

We start by opening the 1978 automobile data (auto.dta) in Stata and then putting the data into an
H2O frame. Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset
into an H2O frame, and h2oframe change makes the specified frame the current H2O frame. We then

use the h2oframe split command to randomly split the auto frame into a training frame (80% of

observations) and a testing frame (20% of observations), which we name train and test, respectively.
We also change the current frame to train. For details, see Prepare your data for H2O machine learning

in Stata in [H2OML] h2oml and [H2OML] H2O setup.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
(output omitted )

. _h2oframe put, into(auto)

. _h2oframe split auto, into(train test) split(0.8 0.2) rseed(19)

. _h2oframe change train

We perform random forest binary classification with default hyperparameters and use 3-fold cross-

validation.

. h2oml rfbinclass foreign price mpg length, cv(3, modulo) h2orseed(19)
(output omitted )

By default, because cross-validation was used during estimation, h2omlestat metrics reports esti-
mation metrics based on cross-validation.

. h2omlestat metrics
Performance metrics using H2O
Random forest binary classification
Response: foreign
Number of observations = 63

Cross-
Metric validation

Log loss .4275175
Mean class error .1777778

AUC .8666667
AUCPR .6008256

Gini coefficient .7333333
MSE .1446453

RMSE .3803227
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If we wish to compute and report results based on a testing frame, we can set the testing frame with

the h2omlpostestframe command.

. h2omlpostestframe test
(testing frame test is now active for h2oml postestimation)
. h2omlestat metrics
Performance metrics using H2O
Random forest binary classification
Response: foreign
Testing frame: test
Number of observations = 11

Metric Testing

Log loss .3117297
Mean class error .0714286

AUC .9285714
AUCPR .8722936

Gini coefficient .8571429
MSE .1053455

RMSE .3245696

Stored results
h2omlestat metrics stores the following in r():

Scalars

r(N) number of observations

Macros

r(method) gbm or randomforest
r(method type) regression or classification
r(class type) binary or multiclass (with classification)
r(method full name) full method name

r(response) name of response

r(title) title in output

Matrices

r(metric) performance metrics

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+
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+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
h2omlestat threshmetric reports threshold-based performance metrics after binary classification

performed by h2oml gbbinclass or h2oml rfbinclass. Threshold-based metrics are functions of

predicted classes, which are determined by comparing predicted probabilities with a threshold value.

Observations with predicted probabilities greater than the threshold are predicted to be in the “positive”

class, and observations with predicted probabilities below the threshold are predicted to be in the “neg-

ative” class. The elements of the confusion matrix—the numbers of true positives, false positives, true

negatives, and false negatives—are threshold-basedmetrics and are components of a variety of additional

threshold-based metrics that are reported by h2omlestat threshmetric. Each of these metrics has a
different threshold value.

h2omlestat threshmetric reports the optimized (minimum or maximum) value of each metric

and the corresponding threshold that produces that optimized metric. Alternatively, the metrics can be

reported for one or more selected threshold values.

Quick start
Display threshold-based metrics

h2omlestat threshmetric

As above, but report metrics based on a validation set

h2omlestat threshmetric, valid

As above, but report metrics corresponding to threshold values of 0.4, 0.5, 0.6, 0.7, and 0.8

h2omlestat threshmetric, valid thresholds(0.4(0.1)0.8)

Menu
Statistics > H2O machine learning
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Syntax
h2omlestat threshmetric [ , options ]

options Description

Main

thresholds(numlist) specify the thresholds for which to compute the metrics; by default,
the threshold that optimizes each metric is reported

Table options

all report metrics for all stored threshold values

index display threshold index

title(string) specify the title to be displayed above the table

train specify that performance metrics be reported using training results

valid specify that performance metrics be reported using validation
results

cv specify that performance metrics be reported using
cross-validation results

test specify that performance metrics be computed using the
testing frame

test(framename) specify that performance metrics be computed using data in
testing frame framename

frame(framename) specify that performance metrics be computed using data in
H2O frame framename

framelabel(string) label frame as string in the output

collect is allowed; see [U] 11.1.10 Prefix commands.

train, valid, cv, test, test(), frame(), and framelabel() do not appear in the dialog box.

Options

� � �
Main �

thresholds(numlist) specifies the list of threshold values in numlist. All values in numlist must be

between 0 and 1. Observations with predicted probabilities greater than the specified threshold are

classified as “positive”, and the remaining observations are classified as “negative”. The threshold-

based metrics are calculated based on these classifications. By default, the threshold values that

optimize (maximize or minimize) each metric are reported.

The list of threshold values for which threshold-based metrics are computed corresponds to the pre-

dicted probabilities of the positive class (the predicted class is the largest numeric value, such as 1 in

a 0/1 coded variable, or the second label in lexicographical order). If a value specified in numlist is

not in the list of predicted probabilities, the metric based on the closest threshold value is reported.

thresholds() is not allowed with all.

� � �
Table options �

all returns all stored threshold values and metrics. The default is to report the optimized (maximum or

minimum) values for each metric. all is not allowed with thresholds().

index displays the index number of the threshold. By default, the index column is suppressed.

title(string) specifies the title to be displayed above the table.
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The following options are available with h2omlestat threshmetric but are not shown in the dialog

box:

train, valid, cv, test, test(), and frame() specify the H2O frame for which performance metrics

are reported. Only one of train, valid, cv, test, test(), or frame() is allowed.

train specifies that performance metrics be reported using training results. This is the default when
neither validation nor cross-validation is performed during estimation and when a postestimation

frame has not been set with h2omlpostestframe.

valid specifies that performancemetrics be reported using validation results. This is the default when
validation is performed during estimation and when a postestimation frame has not been set with

h2omlpostestframe. valid may be specified only when the validframe() option is specified
with h2oml gbm or h2oml rf.

cv specifies that performance metrics be reported using cross-validation results. This is the default

when cross-validation is performed during estimation and when a postestimation frame has not

been set with h2omlpostestframe. cv may be specified only when the cv or cv() option is

specified with h2oml gbm or h2oml rf.

test specifies that performance metrics be computed on the testing frame specified with h2oml-
postestframe. This is the default when a testing frame is specified with h2omlpostestframe.
test may be specified only after a testing frame is set with h2omlpostestframe. test is neces-
sary onlywhen a subsequent h2omlpostestframe command is used to set a default postestimation
frame other than the testing frame.

test(framename) specifies that performance metrics be computed using data in testing frame frame-

name and is rarely used. This option is most useful when running a single postestimation command

on the named frame. If multiple postestimation commands are to be run on the same test frame,

h2omlpostestframe provides a more convenient and computationally efficient process for doing
this.

frame(framename) specifies that performance metrics be computed using the data in H2O frame

framename.

framelabel(string) specifies the label to be used for the frame in the output. This option is not allowed
with the cv option.

Remarks and examples
Binary classification divides observations into two classes, typically labeled as “positive” and “neg-

ative”. In H2O, the positive class corresponds to the class that contains 1, True, or the second label in
lexicographical order. Abinary classifier classifies all observations as either positive or negative by com-

paring the predicted probability for each observationwith a threshold value. Observations greater than the

threshold are classified as positive, and the remaining observations are classified as negative. This results

in two types of correct or true classification, true positive and true negative, and two types of incorrect

or false classification, false positive and false negative. These four metrics are reported in the confusion

matrix produced by the h2omlestat confmatrix command. The h2omlestat threshmetric com-

mand reports these metrics as well as other performance metrics that are derived from the elements of a

confusion matrix.

By default, h2omlestat threshmetric reports the optimized (minimum ormaximum) value of each

metric and the corresponding threshold value that produces the optimized metric. You can also evaluate

how different threshold values affect each metric by specifying one or more threshold values in the



h2omlestat threshmetric — Display threshold-based metrics for binary classification+ 220

thresholds() option. When you specify the thresholds() option, metrics may not be reported for

the exact threshold values you have selected. In H2O, the available thresholds are limited to the list

of predicted probabilities of the positive class. Threshold-based metrics are reported for the threshold

corresponding to the closest available predicted probability.

The table below provides definitions of the available threshold-based metrics. See Metrics for classi-

fication in [H2OML] metric option for additional information.

Metric Formula

true positive (tp) number of correct predictions of the positive class

true negative (tn) number of correct predictions of the negative class

false positive (fp) number of incorrect predictions of the positive class

false negative (fn) number of incorrect predictions of the negative class

true-positive rate (tpr), recall
tp

tp+fn

true-negative rate (tnr) tn
tn+fp

false-positive rate (fpr)
fp

tn+fp

false-negative rate (fnr) fn
tp+fn

accuracy
tp+tn

tp+tn+fp+fn

mean per class accuracy
tpr+tnr

2

min. per class accuracy minimum of {tpr, tnr}

specificity tn
tn+fp

precision
tp

tp+fp

𝐹𝛽 score, for 𝛽 = {1, 0.5, 2} (1 + 𝛽2) precision×recall

𝛽2(precision+recall)

Matthews correlation coefficient
tp×tn−fp×fn

√(tp+fp)(tp+fn)(tn+fp)(tn+fn)

Example 1: Report threshold-based metrics
Below, we illustrate the use of h2omlestat threshmetric after h2oml gbbinclass.

We start by opening the 1978 automobile data (auto.dta) in Stata and then putting the data into an
H2O frame. Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset
into an H2O frame, and h2oframe changemakes the specified frame the current H2O frame. For details,
see Prepare your data for H2Omachine learning in Stata in [H2OML] h2oml and see [H2OML]H2O setup.
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We use the h2oframe split command to randomly split the auto frame into a training frame (70%
of observations) and a testing frame (30% of observations), which we name train and test, respec-
tively. We also change the current frame to train.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
(output omitted )

. _h2oframe put, into(auto)
Progress (%): 0 100
. _h2oframe split auto, into(train test) split(0.7 0.3) rseed(19)
. _h2oframe change train

Next we perform gradient boosting binary classification with default values.

. h2oml gbbinclass foreign price mpg weight length, h2orseed(19)
Progress (%): 0 89.9 100
Gradient boosting binary classification using H2O
Response: foreign
Loss: Bernoulli
Frame: Number of observations:

Training: train Training = 57
Model parameters
Number of trees = 50 Learning rate = .1

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 2 No. of bins cat. = 1,024
avg = 2.9 No. of bins root = 1,024
max = 4 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training

Log loss .1057473
Mean class error .0125

AUC .9948529
AUCPR .9870295

Gini coefficient .9897059
MSE .0255994

RMSE .1599981

. h2omlest store mygbm
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To report threshold-based metrics, we use the h2omlestat threshmetric command.

. h2omlestat threshmetric
Maximum or minimum metrics using H2O
Training frame: train

Metric Max/Min Threshold

F1 .9714 .6608
F2 .9884 .6608

F0.5 .9551 .6608
Accuracy .9825 .6608

Precision 1 .9694
Recall 1 .6608

Specificity 1 .9694
Min. class accuracy .975 .6608
Mean class accuracy .9875 .6608

True negatives 40 .9694
False negatives 0 .6608 +
True positives 17 .6608

False positives 0 .9694 +
True-negative rate 1 .9694

False-negative rate 0 .6608 +
True-positive rate 1 .6608

False-positive rate 0 .9694 +
MCC .9596 .6608

+ identifies minimum metrics.

By default, because we did not use validation or cross-validation, h2omlestat threshmetric re-

ports training results. The reported table has three columns. The first column provides the names of the

classification metrics. The second and third columns report the optimal value of each metric (maximum

orminimum) and the threshold value that achieves the optimum. The reported optimal value of the metric

is the minimum for the false-negative rate, false-positive rate, false negatives, and false positives metrics

and is the maximum for all other metrics.
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We can use the thresholds() option to obtain the reported metrics for a different threshold value or
values. For example, to report metrics for a threshold of 0.5, we type

. h2omlestat threshmetric, thresholds(0.5)
Metrics for specific threshold using H2O
Training frame: train

Threshold
Input .5

Computed .4477

Metric
F1 .9444
F2 .977

F0.5 .914
Accuracy .9649

Precision .8947
Recall 1

Specificity .95
Min. class accuracy .95
Mean class accuracy .975

True negatives 38
False negatives 0
True positives 17

False positives 2
True-negative rate .95

False-negative rate 0
True-positive rate 1

False-positive rate .05
MCC .922

We see that, even though we specified thresholds(0.5), H2O returned results for a threshold of 0.4477,
which is the closest available threshold (those found among the stored predicted probabilities).
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Example 2: Threshold-based metrics using testing frame
Above, we reported metrics for the training frame. If we wish to report those metrics on the new

testing data frame, then we can take one of two approaches.

In the first approach, we specify the test() option with the name of our testing frame.

. h2omlest restore mygbm
(results mygbm are active now)
. h2omlestat threshmetric, test(test)
Maximum or minimum metrics using H2O
Testing frame: test

Metric Max/Min Threshold

F1 .8333 .4477
F2 .9259 .4477

F0.5 .8824 .8916
Accuracy .8824 .8916

Precision 1 .9694
Recall 1 .4477

Specificity 1 .9694
Min. class accuracy .8333 .4477
Mean class accuracy .9167 .4477

True negatives 12 .9694
False negatives 0 .4477 +
True positives 5 .4477

False positives 0 .9694 +
True-negative rate 1 .9694

False-negative rate 0 .4477 +
True-positive rate 1 .4477

False-positive rate 0 .9694 +
MCC .7715 .4477

+ identifies minimum metrics.
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In the second approach, which we recommend, we use the h2omlpostestframe command to specify
test as the default testing frame to be used by this and other postestimation commands.

. h2omlpostestframe test
(testing frame test is now active for h2oml postestimation)
. h2omlestat threshmetric
Maximum or minimum metrics using H2O
Testing frame: test

Metric Max/Min Threshold

F1 .8333 .4477
F2 .9259 .4477

F0.5 .8824 .8916
Accuracy .8824 .8916

Precision 1 .9694
Recall 1 .4477

Specificity 1 .9694
Min. class accuracy .8333 .4477
Mean class accuracy .9167 .4477

True negatives 12 .9694
False negatives 0 .4477 +
True positives 5 .4477

False positives 0 .9694 +
True-negative rate 1 .9694

False-negative rate 0 .4477 +
True-positive rate 1 .4477

False-positive rate 0 .9694 +
MCC .7715 .4477

+ identifies minimum metrics.

Stored results
h2omlestat threshmetric stores the following in r():

Scalars

r(thresholds) specified thresholds

r(thresholds a) actual thresholds

Matrix

r(threshmetric) classification performance metrics

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+
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+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Remarks and examples Stored results Also see

Description
h2omlexplore allows you to compare models with different hyperparameter configurations after

h2omlestat gridsummary. In the process of tuning hyperparameters with h2oml gbm and h2oml rf,

you can use h2omlestat gridsummary to report the specified metric for different hyperparameter con-
figurations. h2omlexplore allows you to further explore a few selected models by reporting several

performance metrics.

Quick start
After performing multiclass classification and obtaining the grid-search summary, view the performance

metrics of the models with IDs 2, 4, and 8

h2oml rfmulticlass y1 x1-x20, ntrees(10(5)100) maxdepth(3(1)10)
h2omlestat gridsummary
h2omlexplore id = 2 4 8

Menu
Statistics > H2O machine learning

Syntax
h2omlexplore id = # | numlist

where # is a grid ID from h2omlestat gridsummary corresponding to a model with the desired hyper-

parameter configuration, and numlist is a list of grid IDs.

Remarks and examples
Building a machine learning model that generalizes well to new data involves choosing an appropriate

method and selecting a model by tuning hyperparameters. We can perform a grid search using gradient

boosting and random forest methods and then use h2omlestat gridsummary to report the hyperparam-
eter configurations that achieve the top performance based on the specified metric. In some cases, you

may decide to choose the best-performing model reported in h2omlestat gridsummary; in other cases,
you may want to explore other well-performing models further, which you can do using h2omlexplore.
With h2omlexplore, you can report several performance metrics for models with different hyperparam-
eter configurations.

226
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Example 1: Exploring different models
In example 1 of [H2OML] h2omlselect, we used the social pressure dataset (Gerber, Green, and

Larimer 2008) to implement a hyperparameter tuning, and we used the h2omlselect command to select
the second-best model, which was comparably less complex than the best model. In that example, our

decision was based on the area under the precision–recall curve (AUCPR) metric. Suppose now we want

to compare those two models based on different performance metrics to make sure that the same pattern

holds.

We start by opening the social pressure dataset in Stata and then putting the data into an H2O frame.

Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset in an H2O

frame, and h2oframe changemakes the specified frame the current H2O frame. We use the h2oframe
split command to randomly split the social frame into a training frame (80% observations) and a

validation frame (20% of observations), which we name train and valid, respectively. We also change

the current frame to train. For details, see Prepare your data for H2O machine learning in Stata in

[H2OML] h2oml and see [H2OML] H2O setup.

. use https://www.stata-press.com/data/r18/socialpressure
(Social pressure data)
. h2o init
(output omitted )

. _h2oframe _put, into(social)
Progress (%): 0 100
. _h2oframe _split social, into(train valid) split(0.8 0.2) rseed(19)
. _h2oframe _change train
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We define a global macro, predictors, to store the names of our predictors. We perform random

forest binary classification, and we specify the maxdepth() and predsampvalue() options to tune the
maximum tree depth and predictor sampling rate hyperparameters. For illustration, we use the AUCPR

metric for tuning.

. global predictors gender g2000 g2002 p2000 p2002 p2004 treatment age

. h2oml rfbinclass voted $predictors, validframe(valid) h2orseed(19)
> ntrees(200) maxdepth(3(3)12) predsampvalue(-1, 1(2)8) tune(metric(aucpr))
Progress (%): 0 100
Random forest binary classification using H2O
Response: voted
Frame: Number of observations:

Training: train Training = 183,607
Validation: valid Validation = 45,854

Tuning information for hyperparameters
Method: Cartesian
Metric: AUCPR

Grid values
Hyperparameters Minimum Maximum Selected

Max. tree depth 3 12 6
Pred. sampling value -1 7 7

Model parameters
Number of trees = 200

actual = 200
Tree depth: Pred. sampling value = 7

Input max = 6 Sampling rate = .632
min = 6 No. of bins cat. = 1,024
avg = 6.0 No. of bins root = 1,024
max = 6 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Log loss .5724664 .5705699
Mean class error .3935492 .3943867

AUC .6705554 .6734867
AUCPR .4658395 .4725543

Gini coefficient .3411109 .3469735
MSE .1946923 .1935647

RMSE .4412395 .4399599
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Next we obtain the grid-search summary by using the h2omlestat gridsummary command. This

command lists the configuration of the hyperparameters we are tuning ranked by AUCPR.

. h2omlestat gridsummary
Grid summary using H2O

Pred.
Max. tree sampling

ID depth value AUCPR

1 6 7 .4725543
2 6 5 .4723736
3 6 3 .4714554
4 9 3 .4712076
5 6 -1 .4708614
6 12 -1 .4706606
7 9 -1 .4705794
8 9 5 .4689799
9 9 7 .4682457

10 9 1 .4674565

To compare the first two models based on other metrics, we use the h2omlexplore command.

. h2omlexplore id = 1 2
Performance metric summary using H2O
Training frame : train
Validation frame: valid

Model index
1 2

Training
No. of observations 183,607 183,607

Log loss .5724664 .57237
Mean class error .3935492 .3979593

AUC .6705554 .671146
AUCPR .4658395 .4670326

Gini coefficient .3411109 .342292
MSE .1946923 .1946602

RMSE .4412395 .4412031

Validation
No. of observations 45,854 45,854

Log loss .5705699 .5704978
Mean class error .3943867 .3945857

AUC .6734867 .6737527
AUCPR .4725543 .4723736

Gini coefficient .3469735 .3475054
MSE .1935647 .1935627

RMSE .4399599 .4399576

The first section of the output corresponds to the training metrics, while the second presents the val-

idated metrics of the specified models. For each of the metrics, we see that the difference between the

best and second-best models is not substantial. Therefore, the decision to switch to the less complex

model may be justified.
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Stored results
h2omlestat explore stores the following in r():

Macro

r(id) model IDs

Matrix

r(table) performance metrics for selected models

Reference
Gerber, A. S., D. P. Green, and C. W. Larimer. 2008. Social pressure and voter turnout: Evidence from a large-scale field

experiment.American Political Science Review 102: 33–48. https://doi.org/10.1017/S000305540808009X.

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

https://doi.org/10.1017/S000305540808009X
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+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
h2omlgof reports goodness of fit after the h2oml rf and h2oml gbm commands. This command cre-

ates a table with side-by-side performance metrics from selected machine learning methods or models

for easy comparison.

Quick start
Goodness of fit for comparing stored estimation results myrf and mygbm

h2omlgof myrf mygbm

Goodness-of-fit for comparing all stored estimation results using H2O frame mynewframe
h2omlgof *, frame(mynewframe)

Menu
Statistics > H2O machine learning
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Syntax
h2omlgof namelist [ , options ]

namelist is a name of a stored estimation result, a list of names, all, or *. all or * requests all stored
results. See [H2OML] h2omlest.

options Description

Main

title(string) specify the title to be displayed above the table

train specify that performance metrics be reported using training results

valid specify that performance metrics be reported using validation
results

cv specify that performance metrics be reported using
cross-validation results

test specify that performance metrics be computed using the
testing frame

test(framename) specify that performance metrics be computed using data in
testing frame framename

frame(framename) specify that performance metrics be computed using data in
H2O frame framename

framelabel(string) label frame as string in the output

collect is allowed; see [U] 11.1.10 Prefix commands.

train, valid, cv, test, test(), frame(), and framelabel() do not appear in the dialog box.

Options

� � �
Main �

title(string) specifies the title to be displayed above the table.

The following options are available with h2omlgof but are not shown in the dialog box:

train, valid, cv, test, test(), and frame() specify the H2O frame for which performance metrics

are reported. Only one of train, valid, cv, test, test(), or frame() is allowed.

train specifies that performance metrics be reported using training results. This is the default when
neither validation nor cross-validation is performed during estimation and when a postestimation

frame has not been set with h2omlpostestframe.

valid specifies that performancemetrics be reported using validation results. This is the default when
validation is performed during estimation and when a postestimation frame has not been set with

h2omlpostestframe. valid may be specified only when the validframe() option is specified
with h2oml gbm or h2oml rf.

cv specifies that performance metrics be reported using cross-validation results. This is the default

when cross-validation is performed during estimation and when a postestimation frame has not

been set with h2omlpostestframe. cv may be specified only when the cv or cv() option is

specified with h2oml gbm or h2oml rf.
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test specifies that performance metrics be computed on the testing frame specified with h2oml-
postestframe. This is the default when a testing frame is specified with h2omlpostestframe.
test may be specified only after a testing frame is set with h2omlpostestframe. test is neces-
sary onlywhen a subsequent h2omlpostestframe command is used to set a default postestimation
frame other than the testing frame.

test(framename) specifies that performance metrics be computed using data in testing frame frame-

name and is rarely used. This option is most useful when running a single postestimation command

on the named frame. If multiple postestimation commands are to be run on the same test frame,

h2omlpostestframe provides a more convenient and computationally efficient process for doing
this.

frame(framename) specifies that performance metrics be computed using the data in H2O frame

framename.

framelabel(string) specifies the label to be used for the frame in the output. This option is not allowed
with the cv option.

Remarks and examples
The h2omlgof command provides a concise table of performance metrics for comparing different

machine learning methods or models.

After h2oml gbregress and h2oml rfregress, h2omlgof reports the deviance, mean squared error
(MSE), root mean squared error (RMSE), root mean squared logarithmic error (RMSLE), mean absolute

error (MAE), and 𝑅2. After h2oml gbbinclass and h2oml rfbinclass, it reports log loss, mean of
per-class error rates, area under the curve (AUC), area under the precision–recall curve (AUCPR), Gini

coefficient, MSE, and RMSE. Finally, after h2oml gbmulticlass and h2oml rfmulticlass, it reports
log loss, mean of per-class error rates,MSE, and RMSE. See [H2OML]metric option for more information

on the reported metrics.

Example 1: Comparing performance in H2OML
In this example, we use h2omlgof to compare results of h2oml rf and h2oml gbm.

We start by opening the 1978 automobile data (auto.dta) in Stata and then putting the data into an
H2O frame. Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset
into an H2O frame, and h2oframe change makes the specified frame the current H2O frame. We then

use the h2oframe split command to randomly split the auto frame into a training frame (70% of

observations), a validation frame (20% of observations), and a testing frame (10% of observations),

which we name train, valid, and test, respectively. We also change the current frame to train. For
details, see Prepare your data for H2O machine learning in Stata in [H2OML] h2oml and [H2OML] H2O

setup.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
(output omitted )

. _h2oframe _put, into(auto)
Progress (%): 0 100
. _h2oframe split auto, into(train valid test) split(0.7 0.2 0.1) rseed(19)
. _h2oframe change train
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We perform random forest binary classification with default values, and we specify the validation frame

in the validframe() option. We store the estimation results by using the h2omlest store command.

. h2oml rfbinclass foreign price length weight, validframe(valid)
> h2orseed(19)
Progress (%): 0 60.0 100
Random forest binary classification using H2O
Response: foreign
Frame: Number of observations:

Training: train Training = 57
Validation: valid Validation = 10

Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 3 No. of bins cat. = 1,024
avg = 5.7 No. of bins root = 1,024
max = 8 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Log loss .8466057 .3177202
Mean class error .0625 .1666667

AUC .9235294 .9047619
AUCPR .6822189 .8512376

Gini coefficient .8470588 .8095238
MSE .0948292 .11421

RMSE .3079434 .3379497

. h2omlest store RF

Next we perform gradient boosting binary classification and store the estimation results.

. h2oml gbbinclass foreign price length weight, validframe(valid)
> h2orseed(19)
Progress (%): 0 100
Gradient boosting binary classification using H2O
Response: foreign
Loss: Bernoulli
Frame: Number of observations:

Training: train Training = 57
Validation: valid Validation = 10

Model parameters
Number of trees = 50 Learning rate = .1

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 2 No. of bins cat. = 1,024
avg = 2.9 No. of bins root = 1,024
max = 4 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
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Metric summary

Metric Training Validation

Log loss .1072901 .2774807
Mean class error .0125 .0714286

AUC .9955882 .952381
AUCPR .9889171 .904106

Gini coefficient .9911765 .9047619
MSE .0261993 .1002502

RMSE .161862 .3166232

. h2omlest store GBM

To compare random forest (RF) and gradient boosting machine (GBM) models, we type

. h2omlgof RF GBM
Performance metrics for model comparison using H2O
Training frame: train
Validation frame: valid

RF GBM

Training
No. of observations 57 57

Log loss .8466057 .1072901
Mean class error .0625 .0125

AUC .9235294 .9955882
AUCPR .6822189 .9889171

Gini coefficient .8470588 .9911765
MSE .0948292 .0261993

RMSE .3079434 .161862

Validation
No. of observations 10 10

Log loss .3177202 .2774807
Mean class error .1666667 .0714286

AUC .9047619 .952381
AUCPR .8512376 .904106

Gini coefficient .8095238 .9047619
MSE .11421 .1002502

RMSE .3379497 .3166232

In the output, the first section reports training results, and the second section reports validation results.

Looking at the validation results, we see that the GBM method outperforms the RF method. The log loss,

mean of per-class error rates, MSE, and RMSE are all smaller for GBM, while AUC, AUCPR, and the Gini

coefficient are larger for GBM, all of which indicate better performance.
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Example 2: Comparing performance in H2OML on a new frame
In example 1, we compared the performance of two methods on the validation frame. If we instead

wish to compare methods on a new data frame, we can take one of two approaches. In the first, we

specify the frame in the frame() option or, if it is a testing frame, in the test() option.

. h2omlgof RF GBM, test(test)
Performance metrics for model comparison using H2O
Testing frame: test

RF GBM

Testing
No. of observations 7 7

Log loss .236301 .1155489
Mean class error 0 0

AUC 1 1
AUCPR 1 1

Gini coefficient 1 1
MSE .0878302 .0364771

RMSE .2963615 .1909897

In the second approach, which we recommend, we use the h2omlpostestframe command to specify
the postestimation frame to be used by this and other postestimation commands. With this approach, the

new frame must be set for each set of estimation results. Thus, we first need to restore each set of

estimates by using the h2omlest restore command. For the GBM results, we type

. h2omlest restore GBM
(results GBM are active now)
. h2omlpostestframe test
(testing frame test is now active for h2oml postestimation)

Similarly, for the RF results, we type

. h2omlest restore RF
(results RF are active now)
. h2omlpostestframe test
(testing frame test is now active for h2oml postestimation)

Finally, we compare the testing results by using the h2omlgof command.

. h2omlgof RF GBM
Performance metrics for model comparison using H2O
Testing frame: test

RF GBM

Testing
No. of observations 7 7

Log loss .236301 .1155489
Mean class error 0 0

AUC 1 1
AUCPR 1 1

Gini coefficient 1 1
MSE .0878302 .0364771

RMSE .2963615 .1909897
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Here GBM again outperforms RF for most of the performance metrics.

Stored results
h2omlgof stores the following in r():

Macros

r(names) names of estimation results displayed

Matrices

r(table) matrix containing the values displayed

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2omlestat metrics — Display performance metrics+
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+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description
h2omlgraph ice plots the individual conditional expectation (ICE) curves after h2oml gbm and

h2oml rf. For regression, the ICE values correspond to predictions for an individual observation as values

of a predictor of interest vary. For classification, the ICE values correspond to the predicted probabilities

for an individual observation as values of a predictor of interest vary. Rather than plotting the ICE curve

for every observation, h2omlgraph ice plots ICE curves at the boundaries of the deciles of the predic-

tor of interest. The graph produced by h2omlgraph ice is useful for evaluating the partial effect of a

predictor on the response and how that effect differs across deciles of the predictor. It is also useful for

determining whether interaction effects exist between the variable of interest and other predictors.

The ICE plots are similar to the partial density plot (PDP), but the PDP estimates the average predictions

for the entire dataset and can be considered as the average of the ICE curves for all observations.

Quick start
Plot the ICE for predictor x1

h2omlgraph ice x1

As above, but do not show histogram in the plot

h2omlgraph ice x1, nohistogram

Plot the ICE after the multiclass classification for the class no and using H2O frame myframe
h2omlgraph ice x1, target(no) frame(myframe)

Menu
Statistics > H2O machine learning
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Syntax
h2omlgraph ice predictor [ , options ]

options Description

Main
∗ target(class) specify the target class of the response after multiclass

classification

maxlevels(#) specify the maximum number of levels for categorical
predictors; default is maxlevels(30)

savedata(filename[ , replace ]) save plot data to filename

Plot options

nohistogram do not plot histogram of the predictor

histopts(bar opts) affect rendition of the histogram

line#opts(line options) affect rendition of the ICE curve for quantile #

nopdline do not plot partial dependence curve

pdlineopts(line options) affect rendition of partial dependence curve

twoway options any options other than by() documented in
[G-3] twoway options

train specify that the ICE be reported using training results

valid specify that the ICE be reported using validation results

test specify that the ICE be computed using testing frame

test(framename) specify that the ICE be computed using data
in testing frame framename

frame(framename) specify that the ICE be computed using data
in H2O frame framename

framelabel(string) label frame as string in the output

∗target() is required after multiclass classification.
train, valid, test, test(), frame(), and framelabel() do not appear in the dialog box.

Options

� � �
Main �

target(class) specifies for which class of the response variable the ICE should be plotted. target()
is required after multiclass classification with h2oml gbmulticlass or h2oml rfmulticlass.

maxlevels(#) specifies the maximum number of levels of the specified categorical predictor to be

included in the ICE estimation. The default is maxlevels(30).

savedata(filename[ , replace ]) saves the plot data to a Stata data file (.dta file). replace specifies
that filename be overwritten if it exists.

� � �
Plot options �

nohistogram removes the histogram of the predictor. By default, the histogram is included.

histopts(bar opts) affects rendition of the histogram; see [G-2] graph twoway bar.

line#opts(line options) affects the rendition of the ICE curve for decile #. See [G-3] line options.
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nopdline removes the line for the partial dependence curve. The partial dependence curve is included

by default.

pdlineopts(line options) affects rendition of the partial dependence curve; see [G-3] line options.

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and options for saving the graph to disk

(see [G-3] saving option).

The following options are available with h2omlgraph ice but are not shown in the dialog box:

train, valid, test, test(), and frame() specify the H2O frame for which ICE is reported. Only one

of train, valid, test, test(), or frame() is allowed.

train specifies that ICE be reported using training results. This is the default when validation

is not performed during estimation and when a postestimation frame has not been set with

h2omlpostestframe.

valid specifies that ICE be reported using validation results. This is the default when valida-

tion is performed during estimation and when a postestimation frame has not been set with

h2omlpostestframe. valid may be specified only when the validframe() option is speci-

fied with h2oml gbm or h2oml rf.

test specifies that ICE be computed on the testing frame specified with h2omlpostestframe. This
is the default when a testing frame is specified with h2omlpostestframe. test may be specified
only after a testing frame is set by using h2omlpostestframe. test is necessary only when a

subsequent h2omlpostestframe command is used to set a default postestimation frame other

than the testing frame.

test(framename) specifies that ICE be computed using data in testing frame framename and is rarely

used. This option is most useful when running a single postestimation command on the named

frame. If multiple postestimation commands are to be run on the same test frame, it is more com-

putationally efficient and convenient to specify the testing frame by using h2omlpostestframe
instead of specifying test(framename) with individual postestimation commands.

frame(framename) specifies that ICE be computed using the data in H2O frame framename.

framelabel(string) specifies the label to be used for the frame in the output.

Remarks and examples
We assume you have read the Interpretation and explanation in [H2OML] Intro.

Remarks are presented under the following headings:

Introduction
Examples of ICE curves

Introduction
The PDP, introduced in [H2OML] h2omlgraph pdp, graphs the average predictions across the values

of a predictor of interest and is useful for understanding the average or partial effect of the predictor

on the response. However, when there is an interaction effect among predictors, the PDP cannot fully

capture the effect. In fact, there may be no average effect shown by a flat curve in the PDP, while there
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are substantial effects at various levels of the predictor, but the effects are in opposite directions and

cancel each other out when averaged in the PDP. The ICE plots improve upon the PDPs by visualizing the

relationship between the response and the predictor for individual observations (Goldstein et al. 2015).

Formally, let 𝑓(X𝑆,X𝐶) be our machine learning model, X𝑆 be the predictor whose effect we wish

to study, and X𝐶 be all other predictors in our model.

To obtain ICE values for all observations 𝑖 = 1, 2, . . . , 𝑛, the values of predictors X𝐶 are fixed to

their observed values of x𝐶𝑖. Then the values of X𝑆 are iteratively set to the observed value x𝑆𝑗 for

observations 𝑗 = 1, 2, . . . , 𝑛 to obtain predictions ̂𝑓(x𝑆𝑗, x𝐶𝑖). Thus, for each observation 𝑖 in the dataset,
we obtain 𝑛 predicted values. These correspond to predictions where X𝑆 is set to its observed value in

observations 𝑗 = 1, . . . , 𝑛, while the remaining predictors X𝐶 are held at their observed values for the

same observation.

The ICE curve for observation 𝑖 plots the resulting predicted values on the 𝑦 axis and the predictor of
interest X𝑆 on the 𝑥 axis. In practice, if the number of observations 𝑛 is large, displaying a graph with

curves for each observation becomes difficult to read. Therefore, it is recommended to consider using

only deciles or quantiles of the data. h2omlgraph ice plots ICE curves for deciles of the predictor of

interest. By default, it also plots the partial dependence curve for comparison with the ICE curves.

Examples of ICE curves
In this section, we demonstrate the advantage of h2omlgraph icewhen an interaction effect is present

among predictors. As with most explainable machine learning methods, caution is advised when using

those results for decision making. For examples where explainable machine learning methods fail, see

example 2 of [H2OML] h2omlgraph varimp, Krishna et al. (2022), Lakkaraju and Bastani (2020), and

Slack et al. (2020).

The examples are presented under the following headings:

Example 1: Capturing an interaction effect through ICE
Example 2: Finding regions of interactions
Example 3: ICE plot for multinomial classification

Example 1: Capturing an interaction effect through ICE
This example is borrowed from Goldstein et al. (2015). We consider the following data-generation

process with an interaction: 𝑌 = 0.2𝑋1 + 5𝑋2 + 𝜀 if 𝑋3 ≥ 0 and 𝑌 = 0.2𝑋1 − 5𝑋2 + 𝜀 otherwise.
Here 𝑋1, 𝑋2, 𝑋3 ∼ 𝑈(−1, 1) and 𝜀 ∼ 𝑁(0, 1).

We start by opening the simulated interaction.dta dataset in Stata and then putting it into an H2O

frame. Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset into
an H2O frame, and h2oframe change makes the specified frame the current H2O frame. For details,

see Prepare your data for H2O machine learning in Stata in [H2OML] h2oml and [H2OML] H2O setup.

. use https://www.stata-press.com/data/r18/interaction
(Fictional interaction data)
. h2o init
(output omitted )

. _h2oframe put, into(interaction)
Progress (%): 0 100
. _h2oframe change interaction



h2omlgraph ice — Produce individual conditional expectation plot+ 242

For illustration purposes, we use h2oml rfregress to perform random forest regression with de-

fault values for hyperparameters. We then store the estimation results by using the h2omlest store
command.

. h2oml rfregress Y X1 X2 X3, h2orseed(19)
Progress (%): 0 54.0 100
Random forest regression using H2O
Response: Y
Frame: Number of observations:

Training: interaction Training = 500
Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 16 No. of bins cat. = 1,024
avg = 18.8 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Deviance 2.876126
MSE 2.876126

RMSE 1.695915
RMSLE .

MAE 1.29916
R-squared .6973235

. h2omlest store rf_inter

Next we plot ICE curves for X2 by using the h2omlgraph ice command.

. h2omlgraph ice X2
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Here the dashed black line represents the partial dependence, and the other 11 lines correspond to ICE

computed at the boundaries of the deciles X2—the 0th, 10th, . . . , 100th percentiles of the observed values

of X2 in the dataset. The partial dependence suggests no partial effect of X2 on the response, because the



h2omlgraph ice — Produce individual conditional expectation plot+ 243

curve is mostly flat over the range of X2 values. This aggregate effect close to zero is actually the result
of the individual effects canceling each other out. Some of them are positive (the ICE lines that increase

with X2), and some of them negative (the ICE lines that decrease with X2).

In contrast to the PDP, the ICE curves provide a more comprehensive representation of the relationship

between X2 and the response. Moreover, an interaction effect can be inferred from the ICE plots, because

depending on the region of the X2 predictor space, ICE is either increasing or decreasing.

Example 2: Finding regions of interactions
In example 1, we showed that the ICE plots suggest some interaction effects among predictors. In

this example, we are interested in detecting the regions where those interactions occur. For details, see

Goldstein et al. (2015, sect. 4.2).

We now visualize ICE plots for the predictor X3.

. h2omlgraph ice X3
Progress (%): 0 10 20 30 40 50 60 70 80 90 100
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As in example 1, PDP suggests no effect of X3 on the response. However, the nonparallel ICE curves

show the effect of X3 changes for each of the plotted percentiles near the neighborhood of X3 = 0. This

indicates an interaction of X3 with another variable at this point, and we know this to be true based on

the data-generating process for our simulated data.
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Example 3: ICE plot for multinomial classification
In example 5 of [H2OML] h2omlgraph pdp, we showed how to implement and interpret PDP after

multiclass classification. In this example, we continue from example 5 and plot ICE curves. Note that,

compared with h2omlgraph pdp, the target() option of h2omlgraph ice supports only one class of

the response variable. Here we plot ICE for the Setosa class in iris.

. h2omlgraph ice seplen, target(Setosa)
Progress (%): 0 10 20 30 40 50 60 70 80 90 100
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For observations below the 50th percentile of seplen, the probability of predicting Setosa is around
1 when seplen < 7 and goes down afterward. For observations in the higher percentiles of seplen, the
probability of predicting Setosa is close to 0. PDP, the dashed black line, is an average of ICE curves for
all observations.
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Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2omlgraph pdp — Produce partial dependence plot+
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+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description
h2ograph pdp produces the partial dependence plot (PDP) after h2oml gbm and h2oml rf. For regres-

sion, the PDP graphs the average prediction versus the values of a predictor of interest. For classification,

PDP graphs average predicted probabilities versus values of a predictor of interest. Thus, PDP graphically

depicts the average or partial effect of predictors on the response.

Quick start
Plot the PDP for the predictor x1

h2omlgraph pdp x1

As above, but plot for x1, x2, and x3, and combine the plots
h2omlgraph pdp x1 x2 x3, combine

As above, but show the standard deviations of the average response, and do not show the histogram

h2omlgraph pdp x1 x2 x3, combine sd nohistogram

Create a contour plot of the joint PDP for x1 and x2
h2omlgraph pdp x1 x2, pair

Menu
Statistics > H2O machine learning
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Syntax
h2omlgraph pdp predictors [ , options ]

options Description

Main
∗ target(classes) specify the target class(es) of the response variable

for multiclass classification

obs(#) specify the observation number for computing partial
dependence

savedata(filename[ , replace ]) save plot data to filename

Plot options

pair create a contour plot of the joint marginal predictions

pairopts(contour options) affect rendition of PDP contour plot

lineopts(line options) affect rendition of PDP line

line#opts(line options) affect rendition of PDP line for target class #

sd display standard deviation band with PDP

sdopts(area options) affect rendition of the standard deviation band

combine combine multiple PDP graphs

combineopts(comb opts) affect rendition of the combined graphs

nohistogram do not plot histogram of the predictor

histopts(bar opts) affect rendition of the histogram

Y axis, X axis, Titles, Legend, Overall

name(namespec[ , replace ]) specify names of graphs

saving(filespec[ , replace ]) save graphs in files

twoway options any options other than by() documented in
[G-3] twoway options

train specify that the partial dependence be reported using training
results

valid specify that the partial dependence be reported using validation
results

test specify that the partial dependence be computed using testing
frame

test(framename) specify that the partial dependence be computed using data
in testing frame framename

frame(framename) specify that the partial dependence be computed using data
in H2O frame framename

framelabel(string) label frame as string in the output

∗target() is required after multiclass classification.
train, valid, test, test(), frame(), and framelabel() do not appear in the dialog box.

Options

� � �
Main �

target(classes) specifies for which class or classes of the response variable the partial dependence

should be plotted. target() is required after multiclass classification with h2oml gbmulticlass or
h2oml rfmulticlass. target() is not allowed with pair.
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obs(#) specifies the observation number for which partial dependence will be computed. The specified
value should be a positive integer. If obs() is specified, the individual conditional expectation for

obs(#) is computed; see [H2OML] h2omlgraph ice. obs() is not allowed with sd.

savedata(filename[ , replace ]) saves the plot data to a Stata data file (.dta file). replace specifies
that filename be overwritten if it exists.

� � �
Plot options �

pair specifies to create the contour plot of the joint marginal predictions of predictors. This option is

valid only if two or more predictors are specified. pair is not allowed with any of sd, target(),
lineopts(), histopts(), or line#opts().

pairopts(contour options) affects the rendition of the contour plot. See [G-2] graph twoway contour.

lineopts(line options) affects the rendition of the PDP line. See [G-3] line options. lineopts() is

not allowed with pair.

line#opts(line options) affects the rendition of the PDP line for the target class #. See

[G-3] line options. line#opts() is valid only if target() is specified. line#opts() is not al-

lowed with pair.

sd specifies to plot a standard deviation band. For each observed value of the specified predictor, PDP

estimates the mean response, and the standard deviation is estimated using those responses. sd is not
allowed with pair or obs().

sdopts(area options) affects the rendition of the standard deviation band. See [G-3] area options.

combine specifies to combine the graphs of PDP for individual predictors when more than one predictor
is specified.

combineopts(comb opts) affects the rendition of the combined graphs. See [G-2] graph combine.

nohistogram removes the histogram of the predictor from the PDP. By default, the histogram is included.

histopts(bar opts) affects the rendition of the histogram; see [G-2] graph twoway bar. histopts()
is not allowed with pair.

� � �
Y axis, X axis, Titles, Legend, Overall �

name(namespec[ , replace ]) specifies the name of the graph or multiple graphs. See

[G-3] name option for a single graph. If multiple graphs are produced, then the argument of

name() is either a list of names or a stub, in which case graphs are named stub1, stub2, and so on.
With multiple graphs, if name() is not specified and neither sleep() nor wait is specified, then

name(Graph #, replace) is assumed.

replace specifies to replace existing graphs with the specified name or names.

saving(filespec[ , replace ]) specifies the filename or filenames to use to save the graph or multiple

graphs to disk. See [G-3] saving option for a single graph. If multiple graphs are produced, then

the argument of saving() is either a list of filenames or a stub, in which case graphs are saved with
filenames stub1, stub2, and so on.

replace specifies to replace existing graphs with the specified name or names.

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and options for saving the graph to disk

(see [G-3] saving option).
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The following options are available with h2omlgraph pdp but are not shown in the dialog box:

train, valid, test, test(), and frame() specify the H2O frame for which partial dependencies are

reported. Only one of train, valid, test, test(), or frame() is allowed.

train specifies that partial dependencies be reported using training results. This is the default when
validation is not performed during estimation and when a postestimation frame has not been set

with h2omlpostestframe.

valid specifies that partial dependencies be reported using validation results. This is the default when
validation is performed during estimation and when a postestimation frame has not been set with

h2omlpostestframe. valid may be specified only when the validframe() option is specified
with h2oml gbm or h2oml rf.

test specifies that partial dependencies be computed on the testing frame specified with h2oml-
postestframe. This is the default when a testing frame is specified with h2omlpostestframe.
test may be specified only after a testing frame is set by using h2omlpostestframe. test is

necessary only when a subsequent h2omlpostestframe command is used to set a default postes-
timation frame other than the testing frame.

test(framename) specifies that partial dependencies be computed using data in testing frame fra-

mename and is rarely used. This option is most useful when running a single postestimation

command on the named frame. If multiple postestimation commands are to be run on the same

test frame, it is more computationally efficient and convenient to specify the testing frame by us-

ing h2omlpostestframe instead of specifying test(framename)with individual postestimation
commands.

frame(framename) specifies that partial dependencies be computed using the data in H2O frame

framename.

framelabel(string) specifies the label to be used for the frame in the output.

Remarks and examples
We assume you have read the introduction to explainable machine learning in [H2OML] Intro.

Remarks are presented under the following headings:

Introduction
Examples of using PDP

Introduction
The partial dependence plot (PDP) is an intuitive tool to study the marginal effect of predictors on the

response (Friedman 2001). The PDP allows you to easily visualize how the expected response changes

across different values of a predictor. For regression, the PDP graphs the average prediction versus the

values of a predictor of interest. For classification, the PDP graphs the average of the predicted probabil-

ities versus the values of a predictor of interest.

In fact, to study the average predictions (or predictive margins) for a single predictor in regres-

sion or binary classification, the PDP is analogous to the plot of predictive margins we can obtain from

marginsplot in Stata after fitting a model with regress or logit, respectively.
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Formally, let 𝑓(X𝑆,X𝐶) be our machine learning model,X𝑆 be the predictors whose effect we wish to

study, and X𝐶 be all other predictors in our model. For X𝑆 fixed at x𝑆, the partial dependence is defined

as

𝑓𝑆(x𝑆) = 𝐸X𝐶
{𝑓(x𝑆,X𝐶)} = ∫ 𝑓(x𝑆, x𝐶)𝑑𝑃(x𝐶)

In words, partial dependence is an average (over the marginal distribution of X𝐶) of the predictions

our model makes when we fix X𝑆 at some value x𝑆. In the h2omlgraph pdp syntax, X𝑆 corresponds

to the input predictors. In a finite sample, for the 𝑗th observation, partial dependence is computed by
averaging predictions computed at the observed values of predictors x𝐶𝑖

for 𝑖 = 1, . . . , 𝑛.

̂𝑓𝑆(x𝑆𝑗) = 1
𝑛

𝑛
∑
𝑖=1

̂𝑓(x𝑆𝑗, x𝐶𝑖
)

The PDP is a plot of such average predictions over the support of X𝑆, which allows us to investi-

gate how average predicted values of the response (in regression) or average predicted probabilities (in

classification) vary over the support of the predictors of interest.

In practice, PDPworks well when the dependence betweenX𝑆 andX𝐶 is not strong. When the depen-

dence is strong or the true model includes interactions, PDP is not reliable and the individual conditional

expectation curve is recommended for postestimation analysis of partial effects.

Examples of using PDP
In this section, we demonstrate some uses of the h2omlgraph pdp command. The examples are

presented under the following headings.

Example 1: PDP interpretation for regression
Example 2: Caution on PDP causal interpretation
Example 3: PDP with a monotonicity constraint
Example 4: Joint marginal predictions through PDP
Example 5: PDP interpretation for multiclass classification

Example 1: PDP interpretation for regression
In this example, we plot and interpret the PDP for a random forest regression model.

We start by opening the 1978 automobile data (auto.dta) in Stata and then putting the data into an
H2O frame. Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset
into an H2O frame, and h2oframe changemakes the specified frame the current H2O frame. For details,
see Prepare your data for H2Omachine learning in Stata in [H2OML] h2oml and see [H2OML]H2O setup.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
(output omitted )

. _h2oframe put, into(auto)
Progress (%): 0 100
. _h2oframe change auto
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For simplicity, we save the predictor names in the global macro predictors in Stata. We then per-

form random forest regression with 100 trees and a maximum depth of 5.

. global predictors mpg trunk weight length

. h2oml rfregress price $predictors, h2orseed(19) ntrees(100) maxdepth(5)
Progress (%): 0 92.0 100
Random forest regression using H2O
Response: price
Frame: Number of observations:

Training: auto Training = 74
Model parameters
Number of trees = 100

actual = 100
Tree depth: Pred. sampling value = -1

Input max = 5 Sampling rate = .632
min = 5 No. of bins cat. = 1,024
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Deviance 3760463
MSE 3760463

RMSE 1939.191
RMSLE .2626369

MAE 1361.947
R-squared .5618179

Finally, we use the h2omlgraph pdp command to show how the average predicted price changes

across levels of the predictor mpg.

. h2omlgraph pdp mpg
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Partial dependence plot using H2O
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From the plot, we can see that the predicted price tends to decrease as the value of mpg increases. We

also see a histogram of mpg, showing that only a few observations have mpg values over 30.

Example 2: Caution on PDP causal interpretation
In this example, we explore why it is important to exercise caution when using and interpreting ma-

chine learning explanation methods such as PDPs. See also example 2 of [H2OML] h2omlgraph varimp

and examples in Krishna et al. (2022), Lakkaraju and Bastani (2020), and Slack et al. (2020).

The data-generating process and the discussion closely follow Lundberg (2021). Our goal is to un-

derstand how various predictors affect a subscriber’s decision to renew their contract with a company,

which is a causal question. We assume that our data are generated from the following causal directed

acyclic graph (DAG).

BR SCPN

MU

BF AS

Di InLU

Re

Ec

See [CAUSAL] Intro for an introduction to DAGs. Here the abbreviations in the nodes correspond to

the following predictors: MU is customer monthly usage, BF is the number of bugs faced, PN is product

need, SC is the number of sales calls, Di is the customer discount, Ec is other macroeconomic activities,

AS is the ad spending amount, LU is the last upgrade, Re is whether the customer renewed the contract,

In is the number of interactions with a customer, and BR is bugs reported by a customer. The response is

Re, whether the customer renewed the contract. The gray nodes represent unobserved confounders.

An important assumption to causally interpret PDP is that the model needs to satisfy the backdoor

or unconfoundedness assumption (Zhao and Hastie 2021). In short, to identify the causal effect of one

of these predictors on the response renewal, all other paths between the predictor and renewal must be

blocked. Blocking the alternative paths involves “controlling for” or “conditioning on” a specific set of

predictors. For definitions, see Pearl (2009) and Imbens and Rubin (2015).

We start by opening the retention.dta dataset in Stata and then putting it into an H2O frame.

. use https://www.stata-press.com/data/r18/retention
(Fictional retention data)
. h2o init
(output omitted )

. _h2oframe put, into(retention)
Progress (%): 0 100
. _h2oframe change retention
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For convenience, we create a global macro predictors in Stata to store the names of the observed

predictors. We then perform gradient boosting binary classification using these observed predictors.

. global predictors_obs salescalls interactions economy lastupgrade
> discount monthlyusage adspend bugsreported
. h2oml gbbinclass renew $predictors_obs, h2orseed(19) lrate(0.1)
> maxdepth(15) ntrees(300)
Progress (%): 0 0.6 5.3 13.6 23.0 41.6 63.6 86.0 95.9 98.3 100
Gradient boosting binary classification using H2O
Response: renew
Loss: Bernoulli
Frame: Number of observations:

Training: retention Training = 10,000
Model parameters
Number of trees = 300 Learning rate = .1

actual = 300 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 15 Sampling rate = 1
min = 15 No. of bins cat. = 1,024
avg = 15.0 No. of bins root = 1,024
max = 15 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training

Log loss .007453
Mean class error 0

AUC 1
AUCPR 1

Gini coefficient 1
MSE .0000988

RMSE .0099407
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Next we use h2omlgraph pdp to plot the partial dependence for the predictors bugsreported,
adspend, and discount. To combine the plots, we specify the combine option. We also specify the

combineopts() option with the cols(3) suboption to request three columns, and we give the 𝑦 axis a
common scale by specifying the ycommon suboption.

. h2omlgraph pdp bugsreported adspend discount, combine
> combineopts(cols(3) ycommon)
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Partial dependence plot using H2O

The figure suggests counterintuitive results. Specifically, as the number of bugs reported increases,

the probability of retention also increases, and as the discount increases, the probability of retention

decreases.

A closer look at a causal DAG sheds more light on the source of these counterintuitive results. The

bugsreported (BR) predictor is a collider (for definitions, see Causal diagrams in [CAUSAL] Intro), and
by conditioning on a collider, we open a path between its parents, BF and PN, which are unobserved. This

leads to an incorrect positive effect for BR, when there is no true effect. Similarly, conditioning on the

predictor adspend (AS), we introduce a collider bias. Finally, the effect of discount (Di) suffers from

the unobserved confounders. In causal DAG language, because PN and BF are unobserved, there are open

backdoor paths between Di and Re.

These results highlight the fundamental difference between prediction and causal inference. The same

predictors can be good for predicting an outcome but may not be useful for causal inference. For details

and more discussion, see Cinelli, Forney, and Pearl (2024).
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Because the dataset is artificial, we can demonstrate the effect of controlling unobserved confounders

on the average predicted probabilities. We now control for the number of bugs faced and product

needed, and we omit BR and AS from our model. The new set of predictors is saved in the global macro

predictors in Stata.

. global predictors salescalls interactions economy lastupgrade
> discount monthlyusage bugsfaced productneed
. h2oml gbbinclass renew $predictors, h2orseed(19) lrate(0.1)
> maxdepth(15) ntrees(300)
Progress (%): 0 6.3 15.6 25.3 35.6 56.9 77.6 97.6 100
Gradient boosting binary classification using H2O
Response: renew
Loss: Bernoulli
Frame: Number of observations:

Training: retention Training = 10,000
Model parameters
Number of trees = 300 Learning rate = .1

actual = 300 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 15 Sampling rate = 1
min = 15 No. of bins cat. = 1,024
avg = 15.0 No. of bins root = 1,024
max = 15 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training

Log loss .0022039
Mean class error 0

AUC 1
AUCPR 1

Gini coefficient 1
MSE 9.28e-06

RMSE .0030459

. h2omlgraph pdp discount
Progress (%): 0 100
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We can see that the interpretation of Di changed substantially. The partial dependence first grows

with the discount, but then clearly decreases for discounts greater than 0.25.

Example 3: PDP with a monotonicity constraint
In some applications, it is reasonable to assume that the response is a monotone function of the pre-

dictor. For details, see [H2OML] Intro. In this example, we continue with example 2 and show a PDP

after enforcing monotonicity constraints. Suppose we strongly believe that the effect of the predictor

discount should be monotonic increasing. This information can be directly imposed on the gradient

boosting machine model by using the monotone() option.

. h2oml gbbinclass renew $predictors, h2orseed(19) lrate(0.1)
> maxdepth(15) ntrees(300) monotone(discount)
Progress (%): 0 4.3 13.3 22.6 31.3 49.0 68.3 86.3 100
Gradient boosting binary classification using H2O
Response: renew
Loss: Bernoulli
Frame: Number of observations:

Training: retention Training = 10,000
Model parameters
Number of trees = 300 Learning rate = .1

actual = 300 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 15 Sampling rate = 1
min = 15 No. of bins cat. = 1,024
avg = 15.0 No. of bins root = 1,024
max = 15 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training

Log loss .0050499
Mean class error 0

AUC 1
AUCPR 1

Gini coefficient 1
MSE .0000516

RMSE .0071842

Monotone increasing: discount
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. h2omlgraph pdp discount
Progress (%): 0 100
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Compared with the PDP in example 2, the partial dependence of the predictor discount is monoton-
ically increasing as the size of the discount increases.

Example 4: Joint marginal predictions through PDP
In example 2 of [H2OML] h2omlgraph ice, we show that partial dependence curves are not useful for

capturing an interaction effect and instead suggest to use ICE curves. In this example, we show how we

might mitigate this issue by plotting the joint partial effect.

We start by restoring the rf inter model by using the h2omlest restore command. The model

was stored in example 1 of [H2OML] h2omlgraph ice.

. h2omlest restore rf_inter
(results rf_inter are active now)
. h2omlgraph pdp X2 X3, pair
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We can see that the contour plot of the joint effect clearly captures the interaction, with the largest

predictions in the regions 𝑋3 < 0, 𝑋2 < −0.5 and 𝑋3 > 0, 𝑋2 > 0.5.

Example 5: PDP interpretation for multiclass classification
In this example, we consider the well-known iris dataset, where the goal is to predict a class of iris

plant. This dataset was used in Fisher (1936) and originally collected by Anderson (1935). We will

demonstrate how to interpret the PDP for multiclass classification. For illustration purposes, we use

random forest multiclass classification with 500 trees.

. use https://www.stata-press.com/data/r18/iris
(Iris data)
. h2o init
(output omitted )

. _h2oframe put, into(iris)
Progress (%): 0 100
. _h2oframe change iris

. global predictors seplen sepwid petlen petwid

. h2oml rfmulticlass iris $predictors, h2orseed(19) ntrees(500)
Progress (%): 0 11.8 43.5 70.8 100
Random forest multiclass classification using H2O
Response: iris Number of classes = 3
Frame: Number of observations:

Training: iris Training = 150
Model parameters
Number of trees = 500

actual = 500
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 1 No. of bins cat. = 1,024
avg = 3.7 No. of bins root = 1,024
max = 9 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Log loss .118939
Mean class error .0533333

MSE .037385
RMSE .1933519

To plot the partial dependence after multiclass classification, we need to specify the target() option
in h2omlgraph pdp. In the target() option, we specify the names of the classes of the response iris
for which we want to produce a PDP. We can list the classes of the response by typing

. _h2oframe levelsof iris
‘”Setosa”’ ‘”Versicolor”’ ‘”Virginica”’
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Next we plot the partial dependence of the predictor seplen on all three classes.

. h2omlgraph pdp seplen, target(Setosa Versicolor Virginica)
Progress (%): 0 100
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On the plot, the red line corresponds to the PDP for the Setosa class. The plot shows how the average

probability of predicting Setosa differs with the different values of the predictor seplen.

References
Anderson, E. 1935. The irises of the Gaspé Peninsula. Bulletin of the American Iris Society 59: 2–5.

Cinelli, C., A. Forney, and J. Pearl. 2024. A crash course in good and bad controls. Sociological Methods and Research

53: 1071–1104. https://doi.org/10.1177/00491241221099552.

Fisher, R. A. 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics 7: 179–188. https:

//doi.org/10.1111/j.1469-1809.1936.tb02137.x.

Friedman, J. H. 2001. Greedy function approximation: A gradient boosting machine.Annals of Statistics 29: 1189–1232.

https://doi.org/10.1214/aos/1013203451.

Imbens, G. W., and D. B. Rubin. 2015. Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction.

New York: Cambridge University Press. https://doi.org/10.1017/CBO9781139025751.

Krishna, S., T. Han,A. Gu, S.Wu, S. Jabbari, and H. Lakkaraju. 2022. The disagreement problem in explainable machine

learning: A practitioner’s perspective. arXiv:2202.01602 [cs.LG], https://doi.org/10.48550/arXiv.2202.01602.

Lakkaraju, H., and O. Bastani. 2020. ““How do I fool you?”: Manipulating user trust via misleading black box expla-

nations”. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 79–85. New York: Association for

Computing Machinery. https://doi.org/10.1145/3375627.3375833.

Lundberg, S. M. 2021. Be careful when interpreting predictive models in search of causal insights. Medium: Thoughts

and Theory. https://medium.com/towards-data-science/be-careful-when-interpreting-predictive-models-in-search-of-

causal-insights-e68626e664b6.

Pearl, J. 2009. Causality: Models, Reasoning, and Inference. 2nd ed. Cambridge: Cambridge University Press. https:

//doi.org/10.1017/CBO9780511803161.

Slack, D., S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju. 2020. “Fooling LIME and SHAP: Adversarial attacks on post

hoc explanation methods”. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 180–186. New

York: Association for Computing Machinery. https://doi.org/10.1145/3375627.3375830.

Zhao, Q., and T. J. Hastie. 2021. Causal interpretations of black-box models. Journal of Business and Economic Statistics

39: 272–281. https://doi.org/10.1080/07350015.2019.1624293.

https://doi.org/10.1177/00491241221099552
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1017/CBO9781139025751
https://doi.org/10.48550/arXiv.2202.01602
https://doi.org/10.1145/3375627.3375833
https://medium.com/towards-data-science/be-careful-when-interpreting-predictive-models-in-search-of-causal-insights-e68626e664b6
https://medium.com/towards-data-science/be-careful-when-interpreting-predictive-models-in-search-of-causal-insights-e68626e664b6
https://doi.org/10.1017/CBO9780511803161
https://doi.org/10.1017/CBO9780511803161
https://doi.org/10.1145/3375627.3375830
https://doi.org/10.1080/07350015.2019.1624293


h2omlgraph pdp — Produce partial dependence plot+ 260

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2omlgraph ice — Produce individual conditional expectation plot+
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+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description
h2omlgraph prcurve plots the precision–recall curve after binary classification performed by h2oml

gbbinclass and h2oml rfbinclass. With binary classification, the predicted probability for each

observation is compared with a threshold value to determine whether the observation is predicted to be

in the positive class or the negative class. Thus, for different threshold values, different numbers of

observations are classified as positive and negative. Metrics based on the predicted classes, including

precision (the proportion of correct predictions out of all observations predicted to be in the positive

class) and recall (the true-positive rate), also depend on the selected threshold. Plotting the precision

versus the recall for a variety of threshold values produces the precision–recall curve, which allows us

to evaluate the tradeoff between precision and recall for a model.

The precision–recall curve is useful for evaluating model performance, especially for models fit to

imbalanced response variables. A large area under the precision–recall curve (AUCPR) indicates good fit

with both precision and recall being high.

Quick start
Plot the precision–recall curve

h2omlgraph prcurve

As above, but plot the curve based on the validation data

h2omlgraph prcurve, valid

As above, but remove the reference line

h2omlgraph prcurve, valid norefline

Menu
Statistics > H2O machine learning

261
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Syntax
h2omlgraph prcurve [ , options ]

options Description

Main

models(namelist) specify the name or a list of names of the stored estimation
results

savedata(filename[ , replace ]) save plot data to filename

Plot options

rlopts(line options) affect rendition of reference line

norefline suppress plotting reference line

lineopts(line options) affect rendition of all precision–recall curves

line#opts(line options) affect rendition of the precision–recall curve for model #

twoway options any options other than by() documented in [G-3] twoway options

train specify that precision and recall be reported using training results

valid specify that precision and recall be reported using validation
results

cv specify that precision and recall be reported using
cross-validation results

test specify that precision and recall be computed using the
testing frame

test(framename) specify that precision and recall be computed using data in
testing frame framename

frame(framename) specify that precision and recall be computed using data in
H2O frame framename

framelabel(string) label frame as string in the output

train, valid, cv, test, test(), frame(), and framelabel() do not appear in the dialog box.

Options

� � �
Main �

models(namelist) specifies the name or a list of names of the stored estimation results for which the

precision–recall curve is being plotted. For each model, the displayed curve corresponds to the default

frame of that model when the h2omlpostestframe command has not been used to set a postestima-
tion frame.

savedata(filename[ , replace ]) saves the plot data to a Stata data file (.dta file). replace specifies
to overwrite the existing file.

� � �
Plot options �

rlopts(line options) affects the rendition of the reference line. See [G-3] line options.

norefline suppresses plotting the reference line. The reference line of the precision–recall curve is

determined by the proportion of the response variable in the positive class, that is, the ratio of the

number of positives to the total number of observations.

lineopts(line options) affects the rendition of all precision–recall curves. See [G-3] line options.
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line#opts(line options) affects the rendition of the precision–recall curve for model #. See

[G-3] line options.

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and options for saving the graph to disk

(see [G-3] saving option).

The following options are available with h2omlgraph prcurve but are not shown in the dialog box:

train, valid, cv, test, test(), and frame() specify the H2O frame for which precision and recall

are reported. Only one of train, valid, cv, test, test(), or frame() is allowed.

train specifies that precision and recall be reported using training results. This is the default when

neither validation nor cross-validation is performed during estimation and when a postestimation

frame has not been set with h2omlpostestframe.

valid specifies that precision and recall be reported using validation results. This is the default when
validation is performed during estimation and when a postestimation frame has not been set with

h2omlpostestframe. valid may be specified only when the validframe() option is specified
with h2oml gbm or h2oml rf.

cv specifies that precision and recall be reported using cross-validation results. This is the default

when cross-validation is performed during estimation and when a postestimation frame has not

been set with h2omlpostestframe. cv may be specified only when the cv or cv() option is

specified with h2oml gbm or h2oml rf.

test specifies that precision and recall be computed on the testing frame specified with h2oml-
postestframe. This is the default when a testing frame is specified with h2omlpostestframe.
test may be specified only after a testing frame is set with h2omlpostestframe. test is neces-
sary onlywhen a subsequent h2omlpostestframe command is used to set a default postestimation
frame other than the testing frame.

test(framename) specifies that precision and recall be computed using data in testing frame frame-

name and is rarely used. This option is most useful when running a single postestimation command

on the named frame. If multiple postestimation commands are to be run on the same test frame,

h2omlpostestframe provides a more convenient and computationally efficient process for doing
this.

frame(framename) specifies that precision and recall be computed using the data in H2O frame fra-

mename.

framelabel(string) specifies the label to be used for the frame in the output. This option is not allowed
with the cv option.

Remarks and examples
After performing binary classification, the receiver operating characteristic (ROC) curve, introduced

in [H2OML] h2omlgraph roc, is a common tool for evaluating model performance. However, the ROC

curve is not reliable when the data are imbalanced (when the data contain very few positive classes). For

imbalanced data, a small false-positive rate and a large true-positive rate are expected. Consequently,

the ROC curve will be close to the upper-left corner and will indicate good fit rather than reflecting

the true performance of the model. The precision–recall curve is designed to mitigate this problem by

plotting the precision (the proportion of correct predictions out of all observations predicted to be in the

positive class) versus the recall (the proportion of correct predictions out of all observations actually in
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the positive class; also known as the true-positive rate) (Davis and Goadrich 2006). The precision–recall

curve is more reliable for imbalanced data compared with the ROC curve because the false-positive rate

in the ROC curve is replaced with precision, which does not rely on the number of true negatives. (The

number of true negatives will be large for imbalanced data and will strongly influence the false-positive

rate.)

The computation of the precision and recall metrics relies on a threshold value. After binary classi-

fication, the predicted probability for each observation is compared with a threshold value to determine

whether the observation is predicted to be in the positive class or the negative class. Observations with

probabilities greater than the threshold are classified as positive, and the remaining observations are

classified as negative. Different threshold values lead to different predicted classes. Therefore, as the

threshold changes, the precision and recall also change.

The precision–recall curve plots the precision on the 𝑦 axis and the recall on the 𝑥 axis, where each

metric is computed across a range of threshold values. When evaluating model performance, the closer

the curve is to the upper-right corner, the better the performance. Similarly, the larger the AUCPR, the

better the performance.

Example 1: The precision–recall curve vs. the ROC
In this example, we compare ROC and precision–recall graphs for imbalanced data.

We use a popular credit card dataset available in Kaggle (Pozzolo et al. [2015], Pozzolo et al. [2018])

to predict whether a given credit card transaction is fraudulent.

The dataset contains 28 predictors, denoted V1,...,V28, which are obtained after a principal com-
ponent analysis transformation. Due to confidentiality issues, the original predictors are not available.

The response fraud is a binary variable that takes value 1 in the case of fraud and value 0 otherwise.

We start by opening the dataset in Stata and using the tabulate command to look at the distribution
of the classes of fraud.

. use https://www.stata-press.com/data/r18/creditcard
(Credit card data)
. tabulate fraud

Is
fraudulent Freq. Percent Cum.

No 284,315 99.83 99.83
Yes 492 0.17 100.00

Total 284,807 100.00

The data are highly imbalanced; only 0.17% of the response belongs to the class yes.

Next we put the data into an H2O frame. Recall that h2o init initiates an H2O cluster, h2oframe
put loads the current Stata dataset into an H2O frame, and h2oframe changemakes the specified frame
the current H2O frame. We use the h2oframe split command to randomly split the credit frame into
a training frame (70% of observations) and a testing frame (30% of observations), which we name train
and test, respectively. We also change the current frame to train. For details, see Prepare your data
for H2O machine learning in Stata in [H2OML] h2oml and see [H2OML] H2O setup.

. h2o init
(output omitted )

. _h2oframe put, into(credit)
Progress (%): 0 100
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. _h2oframe split credit, into(train test) split(0.7 0.3) rseed(19)

. _h2oframe change train

We use random forest binary classification with 3-fold cross-validation to fit a model, and we specify

h2orseed() for reproducibility. Because our goal is to compare ROC and precision–recall curves, we

do not implement tuning. We store the estimation results by using the h2omlest store command.

. h2oml rfbinclass fraud v1-v28 amount, h2orseed(19) cv(3, modulo)
Progress (%): 0 0.4 1.9 3.5 7.0 12.9 20.0 23.9 28.0 31.9 35.4 38.9 44.4 50.0 54.
> 0 57.4 61.0 63.4 69.9 75.0 75.0 76.4 81.9 86.5 91.5 99.0 100
Random forest binary classification using H2O
Response: fraud
Frame: Number of observations:

Training: train Training = 199,612
Cross-validation = 199,612

Cross-validation: Modulo Number of folds = 3
Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 19 No. of bins cat. = 1,024
avg = 19.9 No. of bins root = 1,024
max = 20 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .0057128 .0054806
Mean class error .0890433 .0904708

AUC .940396 .9553414
AUCPR .8348062 .8391036

Gini coefficient .8807921 .9106828
MSE .0004454 .0004531

RMSE .0211043 .0212871

. h2omlest store RF
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Now we plot the ROC curve by using the h2omlgraph roc command.

. h2omlgraph roc
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As expected, the ROC curve fails to capture the imbalance in the response and shows good performance

of the model.

On the other hand, the precision–recall curve, plotted below, shows an abrupt decrease in performance

closer to the right side.

. h2omlgraph prcurve
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Cross-validation precision–recall
curve using H2O

The abrupt drop in precision when recall is greater than 0.8 suggests that the model’s ability to dis-

tinguish between positive and negative classes diminishes substantially at certain thresholds.

The horizontal black line in the graph is the reference line. The reference line of the precision–

recall curve is determined by the proportion of positive classes in the response (the ratio of the number

of positives and the total number of observations). It corresponds to the model that always predicts a

positive class.
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Note that the h2omlgraph prcurve command by default plotted the precision and recall values based
on cross-validation because the cv() option was specified and cross-validation was performed during

estimation.

Example 2: Comparing models using the precision–recall curve
In example 1, we plotted the precision–recall curve for random forest binary classification. In practice,

the precision–recall curve is often used to compare the performance of different models and methods on

a testing frame. In this example, we compare the precision–recall curves for the random forest method

and the gradient boosting machine (GBM) method.

We use the h2omlpostestframe command to set the testing frame for the random forest model

estimated in example 1.

. h2omlpostestframe test
(testing frame test is now active for h2oml postestimation)

Then we perform gradient boosting binary classification and store the estimation results.

. h2oml gbbinclass fraud v1-v28 amount, h2orseed(19) cv(3, modulo)
Progress (%): 0 0.9 1.9 10.9 23.4 43.5 52.4 58.9 65.4 71.4 75.4 81.9 91.5 100
Gradient boosting binary classification using H2O
Response: fraud
Loss: Bernoulli
Frame: Number of observations:

Training: train Training = 199,612
Cross-validation = 199,612

Cross-validation: Modulo Number of folds = 3
Model parameters
Number of trees = 50 Learning rate = .1

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 5 No. of bins cat. = 1,024
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .0069067 .0213072
Mean class error .0932605 .1597576

AUC .9220793 .8142659
AUCPR .8075749 .5743456

Gini coefficient .8441585 .6285319
MSE .0004101 .0009271

RMSE .0202519 .0304475

. h2omlest store GBM

. h2omlpostestframe test
(testing frame test is now active for h2oml postestimation)
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To compare GBM and random forest, with default hyperparameters, we use h2omlgraph prcurve
with the models() option.

. h2omlgraph prcurve, models(RF GBM)
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Based on the graph above, random forest performs better than GBM.
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+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
h2omlgraph roc plots the receiver operating characteristic (ROC) curve after binary classification

performed by h2oml gbbinclass and h2oml rfbinclass. With binary classification, the predicted

probability for each observation is compared with a threshold value to determine whether the observation

is predicted to be in the positive class or the negative class. Thus, for different threshold values, different

numbers of observations are classified as positive and negative. The ROC curve allows us to evaluate the

tradeoff between the true-positive rate (TPR) and false-positive rate (FPR) by plotting these metrics for a

variety of threshold values.

The curve produced by plotting TPR versus FPR is useful for evaluating model performance. A large

area under the curve (AUC) indicates that the model has a high true-positive rate and low false-positive

rate.

Quick start
Plot the ROC curve

h2omlgraph roc

As above, but report results based on the validation data

h2omlgraph roc, valid

As above, but remove the reference line

h2omlgraph roc, valid norefline

Menu
Statistics > H2O machine learning

269
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Syntax
h2omlgraph roc [ , options ]

options Description

Main

models(namelist) specify the name or a list of names of stored estimation
results

savedata(filename[ , replace ]) save plot data to filename

Plot options

rlopts(line options) affect rendition of reference line

norefline suppress plotting reference line

lineopts(line options) affect rendition of all ROC curves

line#opts(line options) affect rendition of the ROC curve for model #

twoway options any options other than by() documented in
[G-3] twoway options

train specify that the TPR and FPR be reported using training results

valid specify that the TPR and FPR be reported using validation
results

cv specify that the TPR and FPR be reported using
cross-validation results

test specify that the TPR and FPR be computed using the
testing frame

test(framename) specify that the TPR and FPR be computed using data in
testing frame framename

frame(framename) specify that the TPR and FPR be computed using data in
H2O frame framename

framelabel(string) label frame as string in the output

train, valid, cv, test, test(), frame(), and framelabel() do not appear in the dialog box.

Options

� � �
Main �

models(namelist) specifies the name or the list of the names of the stored estimation results for which

the ROC curves are plotted. For each model, the displayed curve corresponds to the default frame of

that model when a postestimation frame has not been set with h2omlpostestframe.

savedata(filename[ , replace ]) saves the plot data to a Stata data file (.dta file). replace specifies
that filename be overwritten if it exists.

� � �
Plot options �

rlopts(line options) affects the rendition of the reference line. See [G-3] line options.

norefline suppresses plotting the reference line. The 45-degree reference line is the ROC curve that is
expected if predictions are a random guess. The area between the ROC curve for the model and the

reference line indicates how much better the model performs over a random guess.

lineopts(line options) affects the rendition of all ROC curves. See [G-3] line options.
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line#opts(line options) affects the rendition of the ROC curve for model #. See [G-3] line options.

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and options for saving the graph to disk

(see [G-3] saving option).

The following options are available with h2omlgraph roc but are not shown in the dialog box:

train, valid, cv, test, test(), and frame() specify the H2O frame for which TPR and FPR are re-

ported. Only one of train, valid, cv, test, test(), or frame() is allowed.

train specifies that TPR and FPR be reported using training results. This is the default when neither

validation nor cross-validation is performed during estimation and when a postestimation frame

has not been set with h2omlpostestframe.

valid specifies that TPR and FPR be reported using validation results. This is the default when val-

idation is performed during estimation and when a postestimation frame has not been set with

h2omlpostestframe. valid may be specified only when the validframe() option is specified
with h2oml gbm or h2oml rf.

cv specifies that TPR and FPR be reported using cross-validation results. This is the default when

cross-validation is performed during estimation and when a postestimation frame has not been set

with h2omlpostestframe. cv may be specified only when the cv or cv() option is specified

with h2oml gbm or h2oml rf.

test specifies that TPR and FPR be computed on the testing frame specified with h2omlpostest-
frame. This is the default when a testing frame is specified with h2omlpostestframe. test
may be specified only after a testing frame is set with h2omlpostestframe. test is necessary

only when a subsequent h2omlpostestframe command is used to set a default postestimation

frame other than the testing frame.

test(framename) specifies that TPR and FPR be computed using data in testing frame framename

and is rarely used. This option is most useful when running a single postestimation command

on the named frame. If multiple postestimation commands are to be run on the same test frame,

h2omlpostestframe provides a more convenient and computationally efficient process for doing
this.

frame(framename) specifies that TPR and FPR be computed using the data in H2O frame framename.

framelabel(string) specifies the label to be used for the frame in the output. This option is not allowed
with the cv option.

Remarks and examples
ROC curves graphically illustrate how well a model performs in terms of the TPR and FPR.

After binary classification, the predicted probability for each observation is compared with a threshold

value to determine whether the observation is predicted to be in the positive class or the negative class.

Observations with probabilities greater than the threshold are classified as positive, and the remaining

observations are classified as negative. Different threshold values lead to different predicted classes.

Therefore, as the threshold changes, the numbers of true positives and false positives also change.

The ROC curve plots the TPR on the 𝑦 axis and FPR on the 𝑥 axis, where each metric is computed across
a range of threshold values. This is useful for evaluating model performance. When the area under the

ROC curve is large (close to 1), the model has a high TPR and low FPR.
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Example 1: Basic example
To best understand the ROC curve, we can find it helpful to first consider the TPR and FPR for individual

threshold values. Below, we use the h2omlestat threshmetric command to obtain these metrics for

three different threshold values.

. h2omlestat threshmetric, threshold(0)
Metrics for specific threshold using H2O
Training frame: auto

Threshold
Input 0

Computed 0

Metric
F1 .4583
F2 .679

F0.5 .3459
Accuracy .2973

Precision .2973
Recall 1

Specificity 0
Min. class accuracy 0
Mean class accuracy .5

True negatives 0
False negatives 0
True positives 22

False positives 52
True-negative rate 0

False-negative rate 0
True-positive rate 1

False-positive rate 1
MCC 0

A threshold of 0 produces a TPR of 1 and an FPR of 1.
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. h2omlestat threshmetric, threshold(0.1)
Metrics for specific threshold using H2O
Training frame: auto

Threshold
Input .1

Computed .125

Metric
F1 .7
F2 .8333

F0.5 .6034
Accuracy .7568

Precision .5526
Recall .9545

Specificity .6731
Min. class accuracy .6731
Mean class accuracy .8138

True negatives 35
False negatives 1
True positives 21

False positives 17
True-negative rate .6731

False-negative rate .0455
True-positive rate .9545

False-positive rate .3269
MCC .5739

A threshold of 0.1 produces a TPR of 0.9545 and an FPR of 0.3269.

. h2omlestat threshmetric, threshold(1)
Metrics for specific threshold using H2O
Training frame: auto

Threshold
Input 1

Computed 1

Metric
F1 .2308
F2 .163

F0.5 .3947
Accuracy .7297

Precision .75
Recall .1364

Specificity .9808
Min. class accuracy .1364
Mean class accuracy .5586

True negatives 51
False negatives 19
True positives 3

False positives 1
True-negative rate .9808

False-negative rate .8636
True-positive rate .1364

False-positive rate .0192
MCC .2368

A threshold of 1 produces a TPR of 0.1364 and an FPR of 0.0192.
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If we repeat the same exercise with more threshold values and graph the corresponding TPRs and FPRs,

the resulting curve is the ROC curve in the graph below.
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The black reference line is the ROC curve for a method that randomly classifies with probability equal

to 0.5. Therefore, a model that has a ROC curve that lies below the reference line performs worse than

a random guess. Similarly, the further a model’s ROC curve lies above the reference line, the better the

model performs over a random guess.

We can also use ROC curves to compare models. The ROC curve located closest to the upper-left

corner has the best performance. If ROC curves of two models overlap, then the higher AUCmay indicate

a better performance. In h2omlgraph roc, we can compare models by specifying the models() option
with the names of two or more stored results.

Example 2: ROC for one model
In this example, we plot and interpret the ROC curve after performing random forest binary classifi-

cation.

We start by opening the 1978 automobile data (auto.dta) in Stata and then putting the data into
an H2O frame. Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata

dataset into an H2O frame, and h2oframe change makes the specified frame the current H2O frame.

We use the h2oframe split command to randomly split the auto frame into a training frame (80% of

observations) and a testing frame (20% of observations), which we name train and test, respectively.
We also change the current frame to train. For details, see Prepare your data for H2O machine learning

in Stata in [H2OML] h2oml and [H2OML] H2O setup.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile dataset)
. h2o init
(output omitted )

. _h2oframe put, into(auto)
Progress (%): 0 100
. _h2oframe split auto, into(train test) split(0.8 0.2) rseed(19)
. _h2oframe change train
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Next we perform random forest binary classification with 3-fold cross-validation and store the esti-

mation results by using the h2omlest store command.

. global predictors price mpg trunk weight length

. h2oml rfbinclass foreign $predictors, h2orseed(19) cv(3, modulo)
Progress (%): 0 36.5 100
Random forest binary classification using H2O
Response: foreign
Frame: Number of observations:

Training: train Training = 63
Cross-validation = 63

Cross-validation: Modulo Number of folds = 3
Model parameters
Number of trees = 50

actual = 50
Tree depth: Pred. sampling value = -1

Input max = 20 Sampling rate = .632
min = 4 No. of bins cat. = 1,024
avg = 5.3 No. of bins root = 1,024
max = 8 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .8986088 .4191571
Mean class error .1166667 .1166667

AUC .8851852 .8771605
AUCPR .590704 .5771737

Gini coefficient .7703704 .754321
MSE .1331692 .144763

RMSE .3649235 .3804774

. h2omlest store RF

Finally, we plot the ROC curve by using the h2omlgraph roc command.

. h2omlgraph roc
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Because the cv() option was specified and cross-validation was performed during the estimation, the
default reported results correspond to the metrics calculated using cross-validation. The closer the curve

is to the upper-left corner, the better the performance. This model performs substantially better than the

reference line corresponding to random guessing.

Example 3: Comparing models using ROC

In example 2, we plotted the ROC curve for the random forest binary classification. In practice, the

ROC curve is often used to compare the performance of different models on a testing frame. In this

example, we compare the ROC curve for the random forest method with the one for the gradient boosting

machine (GBM) method.

We use the h2omlpostestframe command to set the testing frame for the random forest model

estimated in example 2.

. h2omlpostestframe test
(testing frame test is now active for h2oml postestimation)

Then we perform gradient boosting binary classification, set the testing frame for this model, and

store the estimation results.

. h2oml gbbinclass foreign $predictors, h2orseed(19) cv(3, modulo)
Progress (%): 0 95.4 100
Gradient boosting binary classification using H2O
Response: foreign
Loss: Bernoulli
Frame: Number of observations:

Training: train Training = 63
Cross-validation = 63

Cross-validation: Modulo Number of folds = 3
Model parameters
Number of trees = 50 Learning rate = .1

actual = 50 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 2 No. of bins cat. = 1,024
avg = 3.5 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .0931244 .2803522
Mean class error .0111111 .0666667

AUC .9975309 .9259259
AUCPR .9938208 .7733418

Gini coefficient .9950617 .8518519
MSE .0211802 .096305

RMSE .1455344 .3103305

. h2omlpostestframe test
(testing frame test is now active for h2oml postestimation)
. h2omlest store GBM
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To compare the ROC curves of the GBM and random forest models, with default hyperparameters, we

use h2omlgraph roc with the models() option.

. h2omlgraph roc, models(RF GBM)
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Based on the graph above, GBM performs better than random forest.

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+
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+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
h2omlgraph scorehistory plots the evolution of a performance metric (a score) as the number of

trees grows in a machine learning model fit using either h2oml gbm or h2oml rf. The performance metric

is based on the training set. If validation was specified during estimation, the performance metric on the

validation set is also plotted. If cross-validation was specified during estimation, the performance metric

based on the cross-validation results and based on the training on cross-validation results is also plotted.

Quick start
Plot the score history

h2omlgraph scorehistory

As above, but show the best score reference line

h2omlgraph scorehistory, bsline

Menu
Statistics > H2O machine learning

278
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Syntax
h2omlgraph scorehistory [ , options ]

options Description

Main

metric(metric) specify the metric (score) to be plotted

table display results as a table

savedata(filename[ , replace ]) save plot data to filename

Plot options

bsline plot the best score reference line

bslineopts(line options) affect rendition of the best score reference line

lineopts(line options) affect rendition of all training, validation, and
cross-validation curves

trainlineopts(line options) affect rendition of training curve

validlineopts(line options) affect rendition of validation curve

cvtrainlineopts(line options) affect rendition of the training on cross-validation curve

cvlineopts(line options) affect rendition of cross-validation curve

nocvtrainsd do not plot the standard deviation band for the training on
cross-validation curve

cvtrainsdopts(area options) affect rendition of the standard deviation band for the training
on cross-validation curve

nocvsd do not plot the standard deviation band for the cross-validation
curve

cvsdopts(area options) affect rendition of the standard deviation band for the
cross-validation curve

twoway options any options other than by() documented in
[G-3] twoway options

trainopts(line options) synonym for trainlineopts()
validopts(line options) synonym for validlineopts()
cvtrainopts(line options) synonym for cvtrainlineopts()
cvopts(line options) synonym for cvlineopts()

Options

� � �
Main �

metric(metric) specifies the metric to be plotted. The allowed options are the following:

After regression: deviance, rmse, and mae.

After binary classification: logloss, misclassification, auc, aucpr, and rmse.

After multiclass classification: logloss, misclassification, and rmse.

deviance is the default metric for regression. logloss is the default metric for binary and multiclass
classification.

table displays results as a table. The table is suppressed by default.

savedata(filename[ , replace ]) saves the plot data to a Stata data file (.dta file). replace specifies
that filename be overwritten if it exists.
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� � �
Plot options �

bsline plots the best score reference line for the training, validation, or cross-validation curve. The best
score corresponds to the optimal training score (the optimal metric) if neither validation nor cross-

validation is performed during estimation. When validation or cross-validation is performed, the best

score corresponds to the optimal validation or cross-validation score, respectively.

bslineopts(line options) affects rendition of the best score reference line. For options, see

[G-3] line options.

lineopts(line options) affects the rendition of both training and validation curves when

validframe() is specified during estimation or the rendition of training, training on cross-validation,
and cross-validation curves when cv() is specified during estimation. If neither validframe() nor

cv() is specified, only training curve is affected. See [G-3] line options.

trainlineopts(line options) affects the rendition of the training curve. See [G-3] line options.

validlineopts(line options) affects the rendition of the validation curve when validframe() is

specified during estimation. See [G-3] line options.

cvtrainlineopts(line options) affects the rendition of the training on cross-validation curve when

cv() is specified during estimation. During 𝑘-fold cross-validation, the training data are separated
into 𝑘 folds, from which 𝑘 − 1 are used for training and 1 for prediction. The training on cross-

validation curve plots the average across the 𝑘 cross-validation iterations of the metrics computed on
the training data (from 𝑘 − 1 folds). See [G-3] line options.

cvlineopts(line options) affects the rendition of the cross-validation curve when cv() is specified

during estimation. See [G-3] line options.

nocvtrainsd suppresses plotting the standard deviation band for the mean training on cross-validation
curve. The standard deviation band is included by default.

cvtrainsdopts(area options) affects rendition of the standard deviation band for mean training on

cross-validation metrics. See [G-3] area options.

nocvsd suppresses plotting the standard deviation band for the mean cross-validation curve.

cvsdopts(area options) affects rendition of the standard deviation band for the mean cross-validation
curve. See [G-3] area options.

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and options for saving the graph to disk

(see [G-3] saving option).

trainopts(line options) is a synonym for trainlineopts().

validopts(line options) is a synonym for validlineopts().

cvtrainopts(line options) is a synonym for cvtrainlineopts().

cvopts(line options) is a synonym for cvlineopts().

Remarks and examples
We assume you have read [H2OML] Intro.

Overfitting occurswhen amachine learningmodel fits the training data toowell. This harms the ability

of the model to generalize to new data, increasing the generalization error. Underfitting occurs when

performance can be improved by increasing complexity of the model by modifying the hyperparameters.
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The score history curve, also known as the learning curve, is a useful graphical tool for examining the

overfitting or underfitting of a model. It plots a performance metric (a score) as a function of the number

of trees and allows you to evaluate the optimal number of trees.

Example 1: Over- and underfitting with score history
Consider churn.dta, described in example 1 of [H2OML] h2oml and where the goal is to build a

predictive model that will predict the best behavior of a customer who is more likely to churn or retain

the company’s services.

We start by opening the churn dataset in Stata and then putting the data into an H2O frame. Recall

that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset into an H2O frame,
and h2oframe changemakes the specified frame the current H2O frame. We use the h2oframe split
command to randomly split the churn frame into a training frame (80% of observations) and a validation

frame (20% of observations), which we name train and valid, respectively. We also change the current

frame to train. For details, see Prepare your data for H2O machine learning in Stata in [H2OML] h2oml

and [H2OML] H2O setup.

. use https://www.stata-press.com/data/r18/churn
(Telco customer churn data)
. h2o init
(output omitted )

. _h2oframe put, into(churn)
Progress (%): 0 100
. _h2oframe split churn, into(train valid) split(0.8 0.2) rseed(19)
. _h2oframe change train

Next we define a global macro, predictors, to store predictors, and perform gradient boosting binary

classification with 200 trees.

. global predictors latitude longitude tenuremonths monthlycharges
> totalcharges gender seniorcitizen partner dependents phoneservice
> multiplelines internetserv onlinesecurity onlinebackup deviceprotect
> techsupport streamtv streammovie contract paperlessbill paymethod
. h2oml gbbinclass churn $predictors, validframe(valid) ntrees(200) h2orseed(19)
Progress (%): 0 2.9 12.5 28.9 46.5 100
Gradient boosting binary classification using H2O
Response: churn
Loss: Bernoulli
Frame: Number of observations:

Training: train Training = 5,643
Validation: valid Validation = 1,400

Model parameters
Number of trees = 200 Learning rate = .1

actual = 200 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 5 No. of bins cat. = 1,024
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
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Metric summary

Metric Training Validation

Log loss .2353826 .4184287
Mean class error .0982787 .2314265

AUC .9692747 .8515924
AUCPR .9264498 .6724044

Gini coefficient .9385495 .7031848
MSE .0679986 .1370254

RMSE .2607655 .3701694

Next we plot the score history curve by using the h2omlgraph scorehistory command.

. h2omlgraph scorehistory
Training frame: train
Validation frame: valid
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Score history using H2O

We can see that when the number of trees is fewer than 10, learning and generalization behave simi-

larly. In other words, the log loss is similar for the training and validation data. For these small numbers

of trees, the log-loss metric is large; the model is underfitting the training data, and performance can be

improved. However, when the number of trees exceeds 40, the log-loss metric for the validation data

starts to increase. Generalization stops improving, even though the training metrics continue to improve.

This indicates that the model learns patterns specific to training data that cannot be extended to new data

points. At this stage, the model is overfitting.

Example 2: Score history with cross-validation
In example 1, we used a validation frame during estimation. When cross-validation is used, the

h2omlgraph scorehistory command provides not only the score history curves for cross-validation

but also standard deviation bands for quantifying uncertainty.
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We open auto.dta in Stata and then put it into an H2O frame. Because we are focused on evaluating

cross-validation, we do not split the data into training and testing sets as we typically would in practice.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
(output omitted )

. _h2oframe put, into(auto)
Progress (%): 0 100
. _h2oframe change auto

We perform gradient boosting binary classification with 3-fold cross-validation and use 100 trees.

. h2oml gbbinclass foreign price length weight trunk mpg, h2orseed(19)
> cv(3, modulo) ntrees(100)
Progress (%): 0 15.7 58.9 100
Gradient boosting binary classification using H2O
Response: foreign
Loss: Bernoulli
Frame: Number of observations:

Training: auto Training = 74
Cross-validation = 74

Cross-validation: Modulo Number of folds = 3
Model parameters
Number of trees = 100 Learning rate = .1

actual = 100 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 5 Sampling rate = 1
min = 2 No. of bins cat. = 1,024
avg = 4.3 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Cross-
Metric Training validation

Log loss .0319483 .5174966
Mean class error 0 .1153846

AUC 1 .9143357
AUCPR 1 .802104

Gini coefficient 1 .8286713
MSE .0050191 .1460853

RMSE .0708458 .3822111
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Next we plot the score history using the h2omlgraph scorehistory command.

. h2omlgraph scorehistory
Training frame: auto
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Score history using H2O

The band representing the cross-validation standard deviation, displayed in green, has an hourglass-

like shape. The uncertainty is greater at the beginning, where the model is underfitting. It then narrows

in the regions where the model’s performance is likely to generalize well before widening again at the

end, where the model overfits the training data.

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+
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+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
h2omlgraph shapsummary produces the beeswarm plot of Shapley additive explanation (SHAP) val-

ues after regression or binary classification performed by h2oml gbregress, h2oml rfregress, h2oml
gbbinclass, or h2oml rfbinclass. SHAP values indicate the contributions of predictors to the pre-

diction for a given observation. The beeswarm plot allows visualization of SHAP values for many ob-

servations by placing them in a one-dimensional scatterplot for each predictor where the overlapping

observations are separated (or jittered) so that each SHAP value is visible.

SHAP values are considered a unified measure for variable importance and machine learning model

explanation. For an overview of SHAP values, see Remarks and examples in [H2OML] h2omlgraph

shapvalues.

Quick start
Plot SHAP summary

h2omlgraph shapsummary

As above, but plot the summary for predictors x1, x2, and x3
h2omlgraph shapsummary x1-x3

Plot the summary for the top 5 highest SHAP-important predictors

h2omlgraph shapsummary, top(5)

Menu
Statistics > H2O machine learning

285
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Syntax
h2omlgraph shapsummary [ predictors ] [ , options ]

options Description

Main

top(#) display the top # highest SHAP-important predictors;
default is top(20)

samples(#) specify the number of observations to be randomly sampled
to estimate the SHAP approximation; default is samples(1000)

rseed(#) set random-number seed to #

savedata(filename[ , replace ]) save plot data to filename

Plot options

norefline suppress vertical reference line identifying the origin

rlopts(line options) affect rendition of reference line

startcolor(colorstyle) determine starting color for the color legend

endcolor(colorstyle) determine ending color for the color legend

jitter(#) affect the magnitude of jitter of overlapped observations

twoway options any option other than by() documented in [G-3] twoway options

train specify that the SHAP summary be reported using training results

valid specify that the SHAP summary be reported using validation results

test specify that the SHAP summary be computed using testing frame

test(framename) specify that the SHAP summary be computed using data
in testing frame framename

frame(framename) specify that the SHAP summary be computed using data
in H2O frame framename

framelabel(string) label frame as string in the output

train, valid, test, test(), frame(), and framelabel() do not appear in the dialog box.

Options

� � �
Main �

top(#) specifies the number of highest SHAP-important predictors to be included in the plot. Up to 20

top important predictors are included by default. top() is not allowed if predictors are specified.

samples(#) specifies the maximum number of observations to be randomly sampled with replacement

to approximate the estimate of the contribution function. The default is samples(1000).

rseed(#) specifies the random-number seed for reproducibility.

savedata(filename[ , replace ]) saves the plot data to a Stata data file (.dta file). replace specifies
that filename be overwritten if it exists.

� � �
Plot options �

norefline suppresses the vertical reference line identifying the origin. The line is included by default.

rlopts(line options) affects the rendition of the reference line. See [G-3] line options.
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startcolor(colorstyle) determines the starting color of the color legend. The color legend shows

whether the value of the given predictor for the observation is low (starting color) or high (ending

color). See [G-4] colorstyle.

endcolor(colorstyle) determines the ending color of the color legend. The color legend shows whether
the value of the given predictor for the observation is low (starting color) or high (ending color). See

[G-4] colorstyle.

jitter(#) adds spherical random noise to the data before plotting. # represents the size of the noise as

a percentage of the graphical area.

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and options for saving the graph to disk

(see [G-3] saving option).

The following options are available with h2omlgraph shapsummary but are not shown in the dialog

box:

train, valid, test, test(), and frame() specify the H2O frame for which SHAP summary is reported.
Only one of train, valid, test, test(), or frame() is allowed.

train specifies that SHAP summary be reported using training results. This is the default when vali-
dation is not performed during estimation and when a postestimation frame has not been set with

h2omlpostestframe.

valid specifies that SHAP summary be reported using validation results. This is the default when

validation is performed during estimation and when a postestimation frame has not been set with

h2omlpostestframe. valid may be specified only when the validframe() option is specified
with h2oml gbm or h2oml rf.

test specifies that SHAP summary be computed on the testing frame specified with h2omlpostest-
frame. This is the default when a testing frame is specified with h2omlpostestframe. testmay
be specified only after a testing frame is set by using h2omlpostestframe. test is necessary only
when a subsequent h2omlpostestframe command is used to set a default postestimation frame

other than the testing frame.

test(framename) specifies that SHAP summary be computed using data in testing frame frame-

name and is rarely used. This option is most useful when running a single postestimation com-

mand on the named frame. If multiple postestimation commands are to be run on the same test

frame, it is more computationally efficient and convenient to specify the testing frame by us-

ing h2omlpostestframe instead of specifying test(framename)with individual postestimation
commands.

frame(framename) specifies that SHAP summary be computed using the data in H2O frame frame-

name.

framelabel(string) specifies the label to be used for the frame in the output.

Remarks and examples
We assume you have read the introduction to explainable machine learning in Interpretation and ex-

planation in [H2OML] Intro and [H2OML] h2omlgraph shapvalues.

Additional examples can be found in example 6 of [H2OML] h2oml and example 2 of [H2OML] h2oml-

graph shapvalues.
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SHAP values explain the predictions of a model by measuring the contribution of each predictor to

those predictions. For an overview of SHAP values and how they are computed, see Remarks and ex-

amples in [H2OML] h2omlgraph shapvalues. SHAP values can be computed for each observation in the

dataset. The h2omlgraph shapvalues command allows you to plot SHAP values for one observation at
a time. The h2omlgraph shapsummary command discussed here provides a summary beeswarm plot

for evaluating the contribution of predictors across many observations.

Example 1: Interpreting a SHAP summary plot
In this example, we interpret a SHAP summary plot after performing random forest regression.

We start by opening the 1978 automobile data (auto.dta) in Stata and then putting the data into an
H2O frame. Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset
into an H2O frame, and h2oframe changemakes the specified frame the current H2O frame. For details,
see Prepare your data for H2O machine learning in Stata in [H2OML] h2oml and [H2OML] H2O setup.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
(output omitted )

. _h2oframe put, into(auto)
Progress (%): 0 100
. _h2oframe change auto

For simplicity, we save the predictor names in the global macro predictors in Stata. We then per-

form random forest regression with 100 trees and limit the maximum depth of the trees to 5.

. global predictors foreign mpg trunk weight length

. h2oml rfregress price $predictors, h2orseed(19) ntrees(100) maxdepth(5)
Progress (%): 0 100
Random forest regression using H2O
Response: price
Frame: Number of observations:

Training: auto Training = 74
Model parameters
Number of trees = 100

actual = 100
Tree depth: Pred. sampling value = -1

Input max = 5 Sampling rate = .632
min = 2 No. of bins cat. = 1,024
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Deviance 3129378
MSE 3129378

RMSE 1769.005
RMSLE .2315556

MAE 1229.955
R-squared .6353542
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Finally, we use the h2omlgraph shapsummary command to plot the SHAP summary. The

samples(300) option specifies that 300 randomly sampled observations be used, and the rseed(19)
option is for reproducibility.

. h2omlgraph shapsummary, samples(300) rseed(19)
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SHAP summary using H2O

The summary plot is a beeswarm plot that provides a summary of how the predictors in a dataset affect

the model’s predictions. In the graph, for each predictor, each observation is represented as a dot. The

horizontal location shows the contributed SHAP value for a specific observation. Colors showwhether the

predictor has high (red) or low (blue) observed values. For example, smaller observed values of weight

are mostly associated with smaller SHAP contributions and a smaller predicted price. On the other hand,

smaller observed values of mpg mostly imply larger SHAP contributions and a larger predicted price.

h2omlgraph shapsummary offers a number of options to control the look of this graph. The start

color and end color for the normalized predictions can be changed by using the scolor() and ecolor()
options. We can specify the jitter() option to control how much the observations overlap. We can

also specify the sample() option to control the maximum number of observations to be sampled from

the dataset.
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Example 2: Explaining voting behavior
In example 2 of [H2OML] h2omlgraph shapvalues, we used local SHAP explanation to study voting

behavior for a specific observation. In this example, we use h2omlgraph shapsummary to explain voting
behavior from a global perspective.

We assume that the h2oml gbbinclass command in example 2 of [H2OML] h2omlgraph shapvalues

has been run to perform gradient boosting binary classification. Here we focus on the SHAP summary

plot for the top 5 SHAP-important predictors.

. h2omlgraph shapsummary, top(5) rseed(19)
Progress (%): 0 100
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For binary classification, the explanation is with respect to the positive class, which in our case is

vote = Yes. We see that being young (represented by blue points for age) has a negative effect on the
probability of voting because lower ages are mostly associated with negative SHAP contributions. The

p2000, p2002, p2004, and g2002 variables are indicators for voting in primary and general elections.

We see that the previous voting behavior of the subjects has a substantial effect on future voting behavior.

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2omlgraph shapvalues — Produce SHAP values plot for individual observations+
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+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description
h2omlgraph shapvalues plots the Shapley additive explanation (SHAP) values for an individual ob-

servation after regression or binary classification performed by h2oml gbregress, h2oml rfregress,
h2oml gbbinclass, or h2oml rfbinclass. SHAP values indicate the contributions of predictors to the
prediction for a given observation. SHAP values are considered a unified measure for variable importance

and machine learning model explanation.

Quick start
Plot individual SHAP values for the third observation

h2omlgraph shapvalues, obs(3)

As above, but use H2O frame myframe and predictors x1, x2, and x3
h2omlgraph shapvalues x1-x3, obs(3) frame(myframe)

As above, but instead of x1, x2, and x3, plot the top 4 SHAP-important predictors

h2omlgraph shapvalues, obs(3) frame(myframe) top(4)

As above, but save the result in the shapval3.dta file
h2omlgraph shapvalues, obs(3) frame(myframe) top(4) ///

savedata(shapval3, replace)

Menu
Statistics > H2O machine learning

291
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Syntax
h2omlgraph shapvalues [ predictors ], obs(#) [ options ]

options Description

Main
∗ obs(#) specify the observation number for which SHAP will be computed

impplot plot SHAP values as zero-based importance—as deviations
from zero rather than deviations from average prediction

top(#) display the top # highest SHAP-important predictors;
default is top(20)

savedata(filename[ , replace ]) save plot data to filename

Plot options

norefline suppress reference line at zero for zero-based importance

rlopts(line options) affect rendition of reference line for zero-based importance

nopredline suppress prediction line

predlineopts(line options) affect rendition of prediction line

nopredlabel suppress label of prediction line

predlabelopts(textbox options) affect labeling of prediction line

nobiasline suppress bias line

biaslineopts(line options) affect rendition of bias line that identifies the expected
model prediction

nobiaslabel suppress label of bias line

biaslabelopts(textbox options) affect labeling of bias line

noboundarylines suppress boundary lines for SHAP contribution bars

boundarylineopts(line options) affect rendition of boundary lines for SHAP contribution bars

novaluelabel suppress labels of SHAP values

valuelabelopts(label opts) affect labeling of SHAP values

poscolor(colorstyle) affect color for positive SHAP values

negcolor(colorstyle) affect color for negative SHAP values

bar#opts(bar opts) affect rendition of the bar for the #th SHAP-important predictor

baropts(bar opts) affect rendition of all bars for the SHAP plot

barwidth(#) specify the bar width; default is barwidth(0.9)

Y axis, X axis, Titles, Legend, Overall

twoway options any option other than by() documented in
[G-3] twoway options

train specify that SHAP values be reported using training results

valid specify that SHAP values be reported using validation results

test specify that SHAP values be computed using testing frame

test(framename) specify that SHAP values be computed using data
in testing frame framename

frame(framename) specify that SHAP values be computed using data
in H2O frame framename

framelabel(string) label frame as string in the output

∗obs() is required.
train, valid, test, test(), frame(), and framelabel() do not appear in the dialog box.
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Options

� � �
Main �

obs(#) specifies the observation number for which SHAPwill be computed. #must be a positive integer.
obs() is required.

impplot plots SHAP values as deviations from zero rather than deviations from the average model

prediction. impplot is not allowed with any of options predlineopts(), predlabelopts(),
biaslineopts(), biaslabelopts(), valuelabelopts(), or boundarylineopts().

top(#) specifies the number of highest SHAP-important predictors to be included in the plot. Up to 20

top important predictors are included by default. top() is not allowed if predictors are specified.

savedata(filename[ , replace ]) saves the plot data to a Stata data file (.dta file). replace specifies
that filename be overwritten if it exists.

� � �
Plot options �

norefline suppresses the reference line at zero when zero-based importance is plotted. norefline
may be specified with only option impplot. The reference line is included by default.

rlopts(line options) affects the rendition of the reference line at zero for zero-based importance.

rlopts() must be specified with the option impplot. See [G-3] line options.

nopredline suppresses prediction line identifying the predicted value for regression or the predicted

probability for classification. When gradient boosting machine is used, the predicted values corre-

spond to the raw predictions of the model before applying the inverse link function.

predlineopts(line options) affects rendition of prediction line. See [G-3] line options. predline-
opts() is not allowed with impplot.

nopredlabel suppresses the label for prediction line.

predlabelopts(textbox options) affects labeling of prediction line. See [G-3] textbox options. pred-
labelopts() is not allowed with impplot.

nobiasline suppresses bias line identifying the expected model response—the contribution of the

model without any predictors. When gradient boosting machine is used, the bias value corresponds

to the raw prediction of the model before applying the inverse link function.

biaslineopts(line options) affects rendition of bias line. See [G-3] line options. biaslineopts()
is not allowed with impplot.

nobiaslabel suppresses the label for the bias line.

biaslabelopts(textbox options) affects labeling of bias line. See [G-3] textbox options. bias-
labelopts() is not allowed with impplot.

noboundarylines suppresses the boundary lines for the SHAP contribution bars.

boundarylineopts(line options) affects the rendition of the lines on the boundaries of the bars for the
SHAP contributions. boundarylineopts() is not allowed with impplot. See [G-3] line options.

novaluelabel suppresses labeling of the SHAP contributions for each predictor.

valuelabelopts(label opts) affects labeling of the SHAP values for each predictor.
See [G-3]marker label options. The labels are numbers that show the SHAP values. valuelabel()
is not allowed with impplot.
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poscolor(colorstyle) affects the bar color of the positive SHAP contributions. See [G-4] colorstyle.

negcolor(colorstyle) affects the bar color of the negative SHAP contributions. See [G-4] colorstyle.

bar#opts(bar opts) affects rendition of the bar for the SHAP-important predictor #. In an h2omlgraph
shapvalues plot, the order of the predictors is based on SHAP importance. The predictor with largest
magnitude of SHAP values will be the first and so on. For example, to change the rendition of the bar

for the third-ranked predictor, we need to specify bar3opts(). See [G-2] graph twoway bar.

baropts(bar opts) affects rendition of all bars for the SHAP plot. See [G-2] graph twoway bar.

barwidth(#) specifies the width of the bar. The default is barwidth(0.9).

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and options for saving the graph to disk

(see [G-3] saving option).

The following options are available with h2omlgraph shapvalues but are not shown in the dialog box:

train, valid, test, test(), and frame() specify the H2O frame for which SHAP values are reported.

Only one of train, valid, test, test(), or frame() is allowed.

train specifies that SHAP values be reported using training results. This is the default when vali-

dation is not performed during estimation and when a postestimation frame has not been set with

h2omlpostestframe.

valid specifies that SHAP values be reported using validation results. This is the default when val-

idation is performed during estimation and when a postestimation frame has not been set with

h2omlpostestframe. valid may be specified only when the validframe() option is specified
with h2oml gbm or h2oml rf.

test specifies that SHAP values be computed on the testing frame specified with h2omlpostest-
frame. This is the default when a testing frame is specified with h2omlpostestframe. testmay
be specified only after a testing frame is set by using h2omlpostestframe. test is necessary only
when a subsequent h2omlpostestframe command is used to set a default postestimation frame

other than the testing frame.

test(framename) specifies that SHAP values be computed using data in testing frame framename

and is rarely used. This option is most useful when running a single postestimation command

on the named frame. If multiple postestimation commands are to be run on the same test

frame, it is more computationally efficient and convenient to specify the testing frame by us-

ing h2omlpostestframe instead of specifying test(framename)with individual postestimation
commands.

frame(framename) specifies that SHAP values be computed using the data in H2O frame framename.

framelabel(string) specifies the label to be used for the frame in the output.

Remarks and examples
We assume you have read the introduction to explainable machine learning in Interpretation and ex-

planation in [H2OML] Intro.
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SHAP values are used to explain the predictions of a model by measuring the contribution of each

predictor to those predictions. Specifically, for a given prediction, the SHAP value measures the contri-

bution of a predictor to the deviation of that prediction from a base prediction, typically from the average

prediction our model makes (Štrumbelj and Kononenko 2010, 2013; Lundberg and Lee 2017).

In a traditional linear regression with no interaction terms, the computation of SHAP has a simple

closed-form solution. For example, the contribution of predictor 𝑋1 to the prediction is simply the esti-

mated coefficient on 𝑋1 multiplied by the observed value 𝑥1𝑖. However, for a typical machine learning

model, no such coefficients are available, so computing the contributions requires an alternative ap-

proach.

In this entry, we focus on local SHAP explanation, which allows us to explain the effect of predictors

for one observation at a time. The h2omlgraph shapvalues command plots this type of local SHAP

values. For global SHAP explanations, the h2omlgraph shapsummary command uses the Kernel SHAP

algorithm (Lundberg and Lee 2017) and produces a beeswarm plot that summarizes how each predictor

affects predictions across many observations.

For intuition on SHAP values, suppose we have trained a machine learning model, such as random

forest, to predict the price of a car using three predictors: mileage (M), number of accidents (A), and

the presence of add-on features (F). A new car then arrives with mileage equal to 6,000 miles, a history

of 1 accident, and with add-on features. In the h2omlgraph shapvalues command, we specify the

observation number for this new car with the obs() option. Finally, suppose the predicted price for the

car is $32,000 and the average predicted price for all cars is $29,000. Our goal then is to measure the

contribution of each predictor (M, A, and F) to the $32,000− $29,000 = $3,000 by which the predicted

price of the new car deviates from the average predicted price.

The general idea of SHAP values is to imagine that the three predictors collaborate with each other

to achieve the predicted value. For example, suppose for the newly arrived car we start by adding the

predictor M into our model and observe that it contributes $7,000 to the prediction, then add the number

of accidents A predictor and see that it contributes −$5,000. Finally, the presence of add-on features

F contributes $1,000 to the so-called coalition of predictors {M, A}. The contribution of all predictors
then adds up to the $3,000, the deviation we computed above. Unfortunately, the contribution of each

predictor depends on the order at which it enters the model; that is, it depends on the coalition of the

previously entered predictors. Notice that the coalition S of predictors that entered the model before M

could be one of four:

S ∈ {{∅}, {A}, {F}, {A, F}}

And there are eight possible coalitions of predictors:

C = {M,A,F} ∶ {∅}, {M}, {A}, {F}, {M, A}, {M, F}, {A, F}, {M, A, F}

Therefore, the SHAP contribution of M is a weighted average of the differences of contributions of

a coalition with M, denoted 𝑣𝑥(S ∪ M), and a coalition excluding M, denoted 𝑣𝑥(S), for each possible
scenario of S. Here 𝑣𝑥(S) is defined as a conditional expectation of the prediction given the observed
values of predictors in the coalition S,

𝑣𝑥(S) = 𝐸( ̂𝑓(x)|xS)

where ̂𝑓(x) is the prediction for a specific observation x. For more details, see Lundberg and Lee (2017)
and Aas, Jullum, and Løland (2021).
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For machine learning methods, there is no simple form for the weighted average and with many

predictors, direct computation becomes intractable. Therefore, H2O uses the TREESHAP algorithm, intro-

duced in Lundberg, Erion, and Lee (2018), which is an efficient procedure for the exact computation of

the SHAP values.

SHAP values have desirable properties (Molnar 2022, chap. 9). For instance, the efficiency property

is

̂𝑓(x) = 𝜙0 +
𝑝

∑
𝑗=1

𝜙𝑗

where 𝜙0 = 𝐸{ ̂𝑓(x)} is the average predicted contribution and 𝜙𝑗, 𝑗 = 1, . . . , 𝑝 is the SHAP value of

each predictor. The prediction for each observation is the sum of the average prediction plus the SHAP

values for all predictors.

We can also define SHAP predictor importance (Molnar 2022, chap. 9.6), which is based on the idea

that important predictors are associated with large absolute SHAP values. Thus, the global importance for

predictors 𝑗 = 1, . . . , 𝑝 can be computed by averaging their absolute SHAP values over the observations

𝐼𝑗 = 1
𝑁

𝑛
∑
𝑖=1

|𝜙(𝑖)
𝑗 |

In h2omlgraph shapvalues, you can specify that only a given number of highest SHAP-important pre-
dictors to be included in the graph with the top() option.

Example 1: Interpreting SHAP values
In this example, we interpret SHAP values after performing random forest regression.

We start by opening the 1978 automobile data (auto.dta) in Stata and then putting the data into an
H2O frame. Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset
into an H2O frame, and h2oframe changemakes the specified frame the current H2O frame. For details,
see Prepare your data for H2O machine learning in Stata in [H2OML] h2oml and [H2OML] H2O setup.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
(output omitted )

. _h2oframe put, into(auto)
Progress (%): 0 100
. _h2oframe change auto
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For simplicity, we save the predictor names in the global macro predictors in Stata. We then per-

form random forest regression with 100 trees and limit the maximum depth of the trees to 5.

. global predictors foreign mpg trunk weight length

. h2oml rfregress price $predictors, h2orseed(19) ntrees(100) maxdepth(5)
Progress (%): 0 100
Random forest regression using H2O
Response: price
Frame: Number of observations:

Training: auto Training = 74
Model parameters
Number of trees = 100

actual = 100
Tree depth: Pred. sampling value = -1

Input max = 5 Sampling rate = .632
min = 2 No. of bins cat. = 1,024
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Deviance 3129378
MSE 3129378

RMSE 1769.005
RMSLE .2315556

MAE 1229.955
R-squared .6353542

Finally, we use the h2omlgraph shapvalues command to plot SHAP values for the third observation.

. h2omlgraph shapvalues, obs(3)
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trunk = 12
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or

3700 3900 4100 4300 4500 4700 4900
SHAP contribution

Obs. = 3; prediction = 4728.009
Training frame: auto

SHAP values using H2O

In this case, the predicted car price is 4728. We wish to explain the contribution of each predictor to

this predicted price. In the plot, the contributions are plotted bottom to top, starting from the baseline

value, which is the average prediction of 4055. We can see from the top blue bar that trunk = 12 has a
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positive SHAP value, which means it increases the predicted price. On the other hand, weight = 2640 has
a negative contribution to the predicted price as indicated by the red bar in the center of the graph. The

sum of the bars in the plot is equal to the difference of the predicted price and the bias term 4728−4055.

If we wish to display contributions of a subset of predictors, for example, trunk and mpg, the plot
can be customized to show contributions of this subset by specifying the names of the predictors in the

h2omlgraph shapvalues command.

. h2omlgraph shapvalues trunk mpg, obs(3)
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Training frame: auto

SHAP values using H2O

In this case, the bottom bar in the plot shows the total contribution of the remaining predictors. The

order of the predictors is determined based on the magnitude of their SHAP values.

Example 2: Explaining voting behavior
In this example, we consider the social pressure dataset described in example 1 of [H2OML] h2oml

rf. The goal is to explain how the predictors affect the probability of voting in the August 2006 primary

election. As with most explainable machine learning methods, caution is advised when interpreting the

results.

We start by opening the simulated socialpressure.dta dataset in Stata and then putting it into an

H2O frame.

. use https://www.stata-press.com/data/r18/socialpressure
(Social pressure data)
. h2o init
. _h2oframe _put, into(social)
Progress (%): 0 100
. _h2oframe _change social
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For convenience, we create a global macro, predictors, in Stata that contains the predictor names
and perform gradient boosting binary classification with a learning rate of 0.05, a maximum tree depth

of 6, and 70 trees.

. global predictors gender g2000 g2002 p2000 p2002 p2004 treatment age

. h2oml gbbinclass voted $predictors, h2orseed(19) lrate(0.05)
> maxdepth(6) ntrees(70)
Progress (%): 0 1.4 4.2 27.1 38.5 64.2 74.2 100
Gradient boosting binary classification using H2O
Response: voted
Loss: Bernoulli
Frame: Number of observations:

Training: social Training = 229,461
Model parameters
Number of trees = 70 Learning rate = .05

actual = 70 Learning rate decay = 1
Tree depth: Pred. sampling rate = 1

Input max = 6 Sampling rate = 1
min = 6 No. of bins cat. = 1,024
avg = 6.0 No. of bins root = 1,024
max = 6 No. of bins cont. = 20

Min. obs. leaf split = 10 Min. split thresh. = .00001
Metric summary

Metric Training

Log loss .5695804
Mean class error .3907184

AUC .6771573
AUCPR .4761226

Gini coefficient .3543147
MSE .1934469

RMSE .439826
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We display SHAP values for the second observation of the dataset by using the h2omlgraph
shapvalues command with the option obs(2). The option xlabel() improves the display of the figure
by setting the range of the 𝑥 axis to a convenient interval.

. h2omlgraph shapvalues, obs(2) xlabel(-1.4(0.1)-0.7)
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SHAP values using H2O

The second observation corresponds to a male who voted in the primary election, so our goal is to

explain why the prediction of his vote is “Yes” based on predictors. We can see that the subject being

male has a very small effect on the probability of voting. On the other hand, as expected, voting in the

primary election in 2002 (p2002) has a substantial positive effect on the probability of voting.

Note that the reported SHAP values after h2oml gbbinclass are reported as raw predictions. To

interpret these values as probabilities, we need to apply the inverse logit transformation to the values

shown in the graph. Similarly, for SHAP values reported after h2oml gbregress with a loss other than

Gaussian, an appropriate transformation may be needed for interpretation. Nonetheless, the graph still

allows us to infer the direction and magnitude of the predictions directly.
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Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2omlgraph shapsummary — Produce SHAP beeswarm plot+
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+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description
h2omlgraph varimp plots the variable importance after h2oml gbm and h2oml rf. Variable impor-

tance for ensemble decision tree methods, such as random forest and gradient boosting machine, mea-

sures the relative influence of a predictor to the predictive performance of the model.

Quick start
Plot the variable importance

h2omlgraph varimp

As above, but plot the top 5 important predictors

h2omlgraph varimp, top(5)

Plot scaled importance of predictors

h2omlgraph varimp, scaled

Plot variable importance as a dot graph

h2omlgraph varimp, dot

As above, but save the graph data

h2omlgraph varimp, dot savedata(varimp)

Menu
Statistics > H2O machine learning

302
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Syntax
h2omlgraph varimp [ , options ]

options Description

Main

top(#) plot the top # important predictors; default is top(10)
proportion plot the proportional contribution of the importance of each

predictor; the default

relative plot relative influence of each predictor

scaled plot scaled importance of each predictor

table display results as a table

savedata(filename[ , replace ]) save plot data to filename

Plot options

bar plot variable importance as a bar plot; the default

baropts(bar opts) affect rendition of the bar plot

dot plot variable importance as a dot plot

dotopts(dot opts) affect rendition of the dot plot

valuelabel display variable importance values

valuelabelopts(label opts) affect the labeling of important values

twoway options any options other than by() documented in
[G-3] twoway options

Options

� � �
Main �

top(#) plots the top # important predictors. The default is top(10).

proportion, relative, and scaled specify the type of the variable importance contribution to be

plotted.

proportion plots the proportional contribution of the importance of each predictor. It is calculated

by dividing the importance of each predictor by the total sum of the importance of all predictors.

proportion is the default.

relative plots the importance, which is the relative influence of each predictor.

scaled plots the scaled importance. It is calculated by dividing the importance of each predictor by

the largest importance score of the predictors.

Only one of proportion, relative, or scaled is allowed.

table displays results as a table. The table is suppressed by default.

savedata(filename[ , replace ]) saves the plot data to a Stata data file (.dta file). replace specifies
that filename be overwritten if it exists.

� � �
Plot options �

bar plots the variable importance as a bar plot. This is the default. bar is not allowed with dot.
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baropts(bar opts) affects rendition of the bar plot. bar opts are any of the options documented in

[G-2] graph twoway bar, excluding horizontal and vertical.

dot plots the variable importance as a dot plot. dot is not allowed with bar.

dotopts(dot opts) affects the rendition of the dot plot. dot opts are any of the options documented in

[G-2] graph twoway dot, excluding horizontal and vertical.

valuelabel displays the values of the variable importance on the graph.

valuelabelopts(label opts) affects the labeling of variable importance values. label opts includes

any of the options documented in [G-3] marker label options, excluding mlabel().

twoway options are any of the options documented in [G-3] twoway options, excluding by(),
horizontal, and vertical. These include options for titling the graph (see [G-3] title options)

and options for saving the graph to disk (see [G-3] saving option).

Remarks and examples
We assume you have read the Interpretation and explanation in [H2OML] Intro.

In a typical machine learning problem, the predictors influence on the outcome differs. Some of

the predictors are more relevant than others. In decision trees, the variable importance of a predictor

quantifies this relevance by accumulating the improvement of an impurity measure, such as cross-entropy

or mean squared error (MSE), from the splitting of this predictor. For a single tree 𝑇, Breiman et al.
(1984) propose to measure a relative importance of a predictor X𝑖 by summing the square of relative

improvements 𝚤2
𝑗 associated to all 𝐽 − 1 node splits,

𝐼2
𝑖 (𝑇 ) =

𝐽−1
∑
𝑗=1

𝚤2
𝑗 𝐼(𝑣(𝑗) = 𝑖)

where the split relative improvement 𝚤𝑗 is defined in (1) of [H2OML] Intro and is computed using entropy

for classification and MSE for regression. 𝐼(𝑣(𝑗) = 𝑖) is an indicator function, which takes 1 when the
internal node is the predictor 𝑋𝑖. This measure easily extends to ensemble decision trees by taking an

average over the number of trees. For example, if the ensemble decision tree method contains 100 trees

(𝑡 = 1, 2, . . . , 100), then

𝐼2
𝑖 = 1

100

100
∑
𝑡=1

𝐼2
𝑖 (𝑇𝑡)

To find the importance for the variable 𝑋𝑖, we take the square root of the measure above.

For multiclass classification with 𝐾 classes (𝑘 = 1, 2, . . .𝐾), there are 𝐾 different models induced,

where each model is an ensemble of classification trees. Then for the class 𝑘 with 100 trees, the impor-

tance of the predictor 𝑋𝑖 is computed by

𝐼2
𝑖𝑘 = 1

100

100
∑
𝑡=1

𝐼2
𝑖 (𝑇𝑡𝑘)

where 𝑇𝑡𝑘 is the 𝑡th tree for the class 𝑘.
It is common to plot the proportional contributions of importance values so that the total importance of

all predictors sums to 1. This approachmakes it easier to compare predictors. In the h2omlgraph varimp
command, this is the default behavior. To plot the relative influences, you can specify the relative
option.
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One of the main limitations of variable importance based on impurity measures is their bias toward

predictors with more levels. Additionally, they are not reliable when predictors are correlated.

Example 1: Plotting variable importance
In this example, we plot variable importance after performing random forest binary classification.

We consider the churn dataset described in example 1 of [H2OML] h2oml and where the goal is to

build a predictive model that will predict the best behavior of a customer who is more likely to churn or

retain the company’s services.

We start by opening the churn dataset in Stata and then putting the data into an H2O frame. Recall

that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset into an H2O frame,
and h2oframe change makes the specified frame the current H2O frame. For details, see Prepare your

data for H2O machine learning in Stata in [H2OML] h2oml and [H2OML] H2O setup.

. use https://www.stata-press.com/data/r18/churn
(Telco customer churn data)
. h2o init
(output omitted )

. _h2oframe put, into(churn)
Progress (%): 0 100
. _h2oframe change churn

For convenience, we save the name of the predictors in the global macro predictors in Stata.

. global predictors latitude longitude tenuremonths monthlycharges
> totalcharges gender seniorcitizen partner dependents phoneservice
> multiplelines internetserv onlinesecurity onlinebackup deviceprotect
> techsupport streamtv streammovie contract paperlessbill paymethod

We use h2oml rfbinclass to perform random forest binary classification with 200 trees, a maximum

tree depth of 3, an observation sampling rate of 0.9, and a predictor sampling value of 1. Then we use

h2omlgraph varimp to plot the variable importance.

. h2oml rfbinclass churn $predictors, h2orseed(19) ntrees(200)
> maxdepth(3) samprate(0.9) predsampvalue(1)
Progress (%): 0 28.4 59.5 87.9 100
Random forest binary classification using H2O
Response: churn
Frame: Number of observations:

Training: churn Training = 7,043
Model parameters
Number of trees = 200

actual = 200
Tree depth: Pred. sampling value = 1

Input max = 3 Sampling rate = .9
min = 3 No. of bins cat. = 1,024
avg = 3.0 No. of bins root = 1,024
max = 3 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
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Metric summary

Metric Training

Log loss .480982
Mean class error .2400372

AUC .8284618
AUCPR .6263171

Gini coefficient .6569236
MSE .1572825

RMSE .3965886

. h2omlgraph varimp
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Variable importance plot using H2O

The proportion of importance for the top 10 predictors is plotted. Based on this model, contract,
paymethod, and internetserv are the three most important predictors of churn.

Example 2: Assessing stability of variable importance
Recent literature shows an increased attention on assessing stability of variable importance (Wang

et al. 2016). In this example, we study the stability of variable importance by showing dependence of

variable rankings from the predictor sampling number. That is, our goal is to vary the predictor sampling

value predsampvalue() in random forest and explore the change in rankings of predictors based on the

importance. Wang et al. (2016) implement a more extensive study and use rank-based tests to quantify

stability. Our example is limited only to graphical comparison.

In the previous example, we specified a predictor sampling value of 1. Here we will compare this

with the results using three other values. For convenience, we save a list of possible predsampvalues
in the local macro sratelist in Stata.

. local sratelist 1 -1 10 -2

Next we use a loop to perform random forest binary classification with the predictor sampling

values of {1, −1, 10, −2}, iteratively specifying each of these values in the predsampvalue() op-

tion of h2oml rfbinclass. We plot the variable importance after each estimation by using the

h2omlgraph varimp command. Note that predsampvalue(-2) corresponds to selecting all predic-
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tors, and predsampvalue(-1) corresponds to selecting the square root of the number of predictors. In

h2omlgraph varimp, we also specify the option saving() to save the graphs and the option title()
to provide a title for each graph.

. local i = 1

. foreach rate in ‘sratelist’{
2. quietly h2oml rfbinclass churn $predictors, h2orseed(19)

> ntrees(200) maxdepth(3) samprate(0.9) predsampvalue(‘rate’)
3. h2omlgraph varimp, saving(imp‘i’, replace)

> title(”Predictor sampling value = ‘rate’”)
4. local i = ‘i’ + 1
5. }

file imp1.gph saved
file imp2.gph saved
file imp3.gph saved
file imp4.gph saved

Finally, we display the saved graphs by using the graph combine command in Stata.

. graph combine imp1.gph imp2.gph imp3.gph imp4.gph

deviceprotect
dependents
techsupport

onlinebackup
totalcharges

onlinesecurity
tenuremonths

internetserv
paymethod

contract

.04 .06 .08 .1 .12
Proportion importance

Predictor sampling value = 1

deviceprotect
onlinebackup
totalcharges
dependents
paymethod
internetserv
techsupport

onlinesecurity
tenuremonths

contract

0 .1 .2 .3
Proportion importance

Predictor sampling value = -1

onlinebackup
paymethod

monthlycharges
totalcharges
dependents
techsupport
internetserv

tenuremonths
onlinesecurity

contract

0 .1 .2 .3 .4
Proportion importance

Predictor sampling value = 10

gender
longitude

latitude
totalcharges

onlinesecurity
monthlycharges

dependents
tenuremonths

internetserv
contract

0 .2 .4 .6
Proportion importance

Predictor sampling value = -2

As the predictor sampling value changes, except for the contract predictor, the ranking of the im-

portance of predictors changes substantially, indicating instability in the variable importance measure.

In practice, this instability can be explained as follows: For smaller numbers of sampled predictors,

predictors with smaller effects are assigned greater importance. Conversely, for larger numbers of sam-

pled predictors, such as when all predictors are sampled with predsampvalue(-2), the random forest

focuses on highly influential predictors, resulting in only a few predictors considered important.
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+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples Stored results Also see

Description
h2omlpostestframe is a convenience command for setting anH2O frame to be used by h2oml postes-

timation commands to report results after h2oml gbm and h2oml rf. h2omlpostestframe does not

physically change the current frame to the specified frame; see h2oframe change.

h2omlpostestframe affects all but the following postestimation commands: h2omlestat grid-
summary, h2omlselect, h2omlexplore, h2omlestat cvsummary, h2omlgraph varimp, h2oml-
graph scorehistory, and h2omltree.

Quick start
Specify a generic frame named mytest to be used by postestimation commands, and label it as “Testing”

in the output

h2omlpostestframe mytest

Specify a predefined validation frame to be used by postestimation commands

h2omlpostestframe _valid

Specify a frame named auto and label it
h2omlpostestframe auto, label(Auto dataset)

Switch back to the default frame specific to each postestimation command

h2omlpostestframe _default

Menu
Statistics > H2O machine learning
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Syntax
Specify generic frame to be used by postestimation commands to report the results

h2omlpostestframe framename [ , notest label(string) ]

Specify prespecified frame to be used by postestimation commands to report the results

h2omlpostestframe frametype [ , label(string) ]

frametype Description

default default frame; varies across commands

train training frame

valid validation frame
∗ cv cross-validation “frame”

∗ cv does not correspond to an actual H2O frame; it is not applicable for some postestimation commands. See Remarks and
examples.

label() is not allowed with default or cv.

Options

� � �
Options �

notest specifies that the generic frame should not be considered a testing frame. By default, the specified
frame is assumed to be a testing frame. This frame will be used whenever option test is specified

with h2oml postestimation commands that support this option. However, if option notest is specified
with h2omlpostestframe, then option test may not be used with the postestimation commands.

label(string) labels frame as string in the output.

Remarks and examples
The h2omlpostestframe command is designed to simplify machine learning postestimation analy-

sis. If neither the cv() nor validframe() option is specified during estimation, the h2oml postestima-
tion commands perform computations using the training frame. If the validframe() option is specified,
they use the validation frame. And if the cv() option is specified, they use the cross-validation results

for computation.

Sometimes, we may want to use a different frame for postestimation analysis such as a testing frame.

The h2oml postestimation commands support options that allow you to specify a different frame. Al-

ternatively, we can use the h2omlpostestframe command to specify the desired frame once for all

postestimation analyses. By default, the specified frame is assumed to be a testing frame and thus will

be labeled correspondingly in the output. You can use the notest option to suppress this and use the

label() option to provide your own frame label.

Instead of a generic frame name, we can also specify train, valid, or cv with the h2omlpost-
estframe command to use the respective training, validation, or cross-validation results for all postesti-
mation analyses, provided the appropriate options were specified during estimation. The cv specifica-
tion does not correspond to an actual H2O frame and is not supported by h2omlpredict, h2omlgraph
pdp, h2omlgraph ice, h2omlgraph shapvalues, and h2omlgraph shapsummary postestimation

commands.
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At any point during your postestimation analyses, you can specify default to switch back to using
the default frame, which is specific to each postestimation command.

Below, we demonstrate various uses of h2omlpostestframe on auto.dta.

Example 1: Using h2omlpostestframe

Suppose we want to perform various postestimation analyses using the testing frame. We start by

opening the 1978 automobile data (auto.dta) in Stata and then putting the data into an H2O frame.

Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset into an H2O
frame, and h2oframe changemakes the specified frame the current H2O frame. We use the h2oframe
split command to randomly split the auto frame into a training frame (80%) and a testing frame (20%),
which we name train and test, respectively. We also change the current frame to train. For details,
see Prepare your data for H2O machine learning in Stata in [H2OML] h2oml and [H2OML] H2O setup.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
. _h2oframe put, into(auto)
. _h2oframe split auto, into(train test) split(0.8 0.2) rseed(19)
. _h2oframe change train

Next we perform random forest binary classification using cross-validation.

. h2oml rfbinclass foreign price mpg length, cv(3, modulo) h2orseed(19)
(output omitted )

We want to use the testing frame test for all postestimation analyses. We type

. h2omlpostestframe test
(testing frame test is now active for h2oml postestimation)

The command reported that test is assumed to be a testing frame.

Now we can use any of the postestimation commands that work with a testing frame, and the test
frame will be used in computations automatically:

. h2omlestat confmatrix
Confusion matrix using H2O
Testing frame: test

Predicted
foreign Domestic Foreign Total Error Rate

Domestic 6 1 7 1 .143
Foreign 0 4 4 0 0

Total 6 5 11 1 .091
Note: Probability threshold .52 that maximizes F1 metric

used for classification.
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or

. h2omlgraph pdp price
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Partial dependence plot using H2O

And to compute predictions for the testing frame test, we can simply type

. h2omlpredict foreignhat, class

Note that h2omlpostestframe does not physically change the current frame to test. To access the
predicted classes, we will need to change the working frame to test with h2oframe change test.

Instead of using h2omlpostestframe, we could have specified the test(test) options with each

command above. For instance, we could have typed

. h2omlestat confmatrix, test(test)
Confusion matrix using H2O
Testing frame: test

Predicted
foreign Domestic Foreign Total Error Rate

Domestic 6 1 7 1 .143
Foreign 0 4 4 0 0

Total 6 5 11 1 .091
Note: Probability threshold .52 that maximizes F1 metric

used for classification.

But this would require more typing.
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If we need to switch back to postestimation commands using their default frames, we can specify

default instead of the frame name. For instance, because we specified the cv() option during estima-
tion, by default, h2omlestat confmatrix would have reported the results based on cross-validation.

We can still obtain these results by specifying the cv option with the command:

. h2omlestat confmatrix, cv
Cross-validation confusion matrix using H2O

Predicted
foreign Domestic Foreign Total Error Rate

Domestic 34 11 45 11 .244
Foreign 2 16 18 2 .111

Total 36 27 63 13 .206
Note: Probability threshold .22 that maximizes F1 metric

used for classification.

Or we can use h2omlpostestframe to restore the default frame for all postestimation commands by

typing

. h2omlpostestframe _default
(cross-validation results are now active for h2oml postestimation)

We can also specify one of the predefined frames with h2omlpostestframe to be used for h2oml
postestimation analysis: train to use the training frame, valid to use the validation frame when the
validframe() option is specified during estimation, and cv to use cross-validation results when the

cv() option is specified during estimation. For instance, we can type

. h2omlpostestframe _train
(training frame train is now active for h2oml postestimation)

The above is also equivalent to specifying the train option with h2omlestat confmatrix:

. h2omlestat confmatrix, train
(output omitted )

Also, because we previously used h2omlpostestframe to define a testing frame, we can use the test
option with the postestimation commands that support this option to obtain results for the testing frame:

. h2omlestat confmatrix, test
Confusion matrix using H2O
Testing frame: test

Predicted
foreign Domestic Foreign Total Error Rate

Domestic 6 1 7 1 .143
Foreign 0 4 4 0 0

Total 6 5 11 1 .091
Note: Probability threshold .52 that maximizes F1 metric

used for classification.
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Stored results
h2omlpostestframe stores the following in r():

Macros

r(postest frame) name of the frame

r(postest label) frame label

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2oml postestimation — Postestimation tools for h2oml gbm and h2oml rf+
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+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Remarks and examples Stored results Also see

Description
h2omlselect retrieves the fitted model with the hyperparameter configuration you select after h2oml

gbm and h2oml rf perform tuning using a grid search. These estimation commands select the top-

performing model, the one with the most optimal tuning performance metric, as the working model.

After estimation, you can use h2omlestat gridsummary to see performance metrics for models with

different hyperparameter configurations and to obtain an ID for each of these models. You can then select

a different model to be the working model by using h2omlselect. h2omlselect selects and retrieves

the fitted model; afterward, you can treat this model just as you would treat estimation results from the

h2oml gbm and h2oml rf estimation commands. Subsequent postestimation commands are based on the

selected model.

Quick start
After performing multiclass classification and obtaining the grid-search summary, select the model that

has id = 2
h2oml rfmulticlass y x1-x20, ntrees(10(5)100) maxdepth(3(1)10)
h2omlestat gridsummary
h2omlselect id = 2

Menu
Statistics > H2O machine learning

Syntax
h2omlselect id = #

where # is a grid ID from h2omlestat gridsummary corresponding to the desired model configuration.

Remarks and examples
Building a machine learning model that generalizes well to new data involves choosing an appropriate

method and selecting a model by tuning hyperparameters. We can perform a grid search using gradient

boosting and random forest methods and then use h2omlestat gridsummary to report the hyperparam-
eter configurations that achieve the top performance based on the specified metric. For example, you

might use the log-loss metric to choose between models with 10, 20, and 30 trees. Typically, you would

select the model that performs the best based on the chosen metric. However, you may want to explore

different hyperparameter configurations that do not correspond to the best model, in which case you can

use h2omlselect and h2omlexplore.
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After you review the grid-search summary from h2omlestat gridsummary, you can select themodel
you are interested in by specifying the ID number with h2omlselect. Once you have selected a model
with h2omlselect, you can treat the model in the same way you would treat results from the h2oml
gbm and h2oml rf estimation commands. Postestimation commands will be based on the model selected

by h2omlselect; for example, you could estimate variable importance for the selected model with

h2omlgraph varimp. h2omlselect overwrites the previously stored estimation results, which can be

recovered by refitting the original model or by storing the estimation results before running h2omlselect
and then restoring them; see [H2OML] h2omlest.

Example 1: Selecting the second-best model
In this example, we illustrate the use of h2omlselect by performing random forest binary classifi-

cation with the social pressure dataset discussed in example 1 of [H2OML] h2oml rf.

We start by opening the social pressure dataset in Stata and then putting the data into an H2O frame.

Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset in an H2O

frame, and h2oframe changemakes the specified frame the current H2O frame. We use the h2oframe
split command to randomly split the social frame into a training frame (80% of observations) and

a validation frame (20% of observations), which we name train and valid, respectively. We also

change the current frame to train. For details, see Prepare your data for H2O machine learning in Stata

in [H2OML] h2oml and see [H2OML] H2O setup.

. use https://www.stata-press.com/data/r18/socialpressure
(Social pressure data)
. h2o init
(output omitted )

. _h2oframe _put, into(social)
Progress (%): 0 100
. _h2oframe _split social, into(train valid) split(0.8 0.2) rseed(19)
. _h2oframe _change train
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We define a global macro, predictors, to store the names of our predictors. We perform random

forest binary classification, and we specify the maxdepth() and predsampvalue() options to tune the
maximum tree depth and predictor sampling rate hyperparameters. For illustration, we use the area under

the precision–recall curve (AUCPR) metric for tuning.

. global predictors gender g2000 g2002 p2000 p2002 p2004 treatment age

. h2oml rfbinclass voted $predictors, validframe(valid) h2orseed(19)
> ntrees(200) maxdepth(3(3)12) predsampvalue(-1, 1(2)8) tune(metric(aucpr))
Progress (%): 0 100
Random forest binary classification using H2O
Response: voted
Frame: Number of observations:

Training: train Training = 183,607
Validation: valid Validation = 45,854

Tuning information for hyperparameters
Method: Cartesian
Metric: AUCPR

Grid values
Hyperparameters Minimum Maximum Selected

Max. tree depth 3 12 6
Pred. sampling value -1 7 7

Model parameters
Number of trees = 200

actual = 200
Tree depth: Pred. sampling value = 7

Input max = 6 Sampling rate = .632
min = 6 No. of bins cat. = 1,024
avg = 6.0 No. of bins root = 1,024
max = 6 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Log loss .5724664 .5705699
Mean class error .3935492 .3943867

AUC .6705554 .6734867
AUCPR .4658395 .4725543

Gini coefficient .3411109 .3469735
MSE .1946923 .1935647

RMSE .4412395 .4399599
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Next we obtain the grid-search summary by using the h2omlestat gridsummary command. This

command lists the configuration of the hyperparameters we are tuning ranked by AUCPR.

. h2omlestat gridsummary
Grid summary using H2O

Pred.
Max. tree sampling

ID depth value AUCPR

1 6 7 .4725543
2 6 5 .4723736
3 6 3 .4714554
4 9 3 .4712076
5 6 -1 .4708614
6 12 -1 .4706606
7 9 -1 .4705794
8 9 5 .4689799
9 9 7 .4682457

10 9 1 .4674565

The top two models have very similar values of AUCPR, and they correspond to models with 7 and 5

randomly sampled predictors and a maximum tree depth of 6. As discussed in [H2OML] h2oml rf, using a

random sample of predictors improves the ability of the model to generalize to new data, compared with

using the full set of predictors, because it introduces an additional randomness to the method. Therefore,

we may prefer to continue our analysis with the second-best model.

To select the second-best model, we specify id = 2 in h2omlselect.

. h2omlselect id = 2
Random forest binary classification using H2O
Response: voted
Frame: Number of observations:

Training: train Training = 183,607
Validation: valid Validation = 45,854

Model parameters
Number of trees = 200

actual = 200
Tree depth: Pred. sampling value = 5

Input max = 6 Sampling rate = .632
min = 6 No. of bins cat. = 1,024
avg = 6.0 No. of bins root = 1,024
max = 6 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training Validation

Log loss .57237 .5704978
Mean class error .3979593 .3945857

AUC .671146 .6737527
AUCPR .4670326 .4723736

Gini coefficient .342292 .3475054
MSE .1946602 .1935627

RMSE .4412031 .4399576
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Now we can continue our analysis using the second-best model.

Stored results
h2omlselect retrieves the selected fitted model and thus stores the same results as the estimation

command used.

See Stored results in [H2OML] h2oml gbm or [H2OML] h2oml rf.

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2omlestat gridsummary — Display grid-search summary+

[H2OML] h2omlexplore — Explore models after grid search+
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+This command includes features that are part of StataNow.

Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description
h2omltree saves the decision tree plot in a DOT file and returns the decision rules for a specified tree

after the h2oml gbm and h2oml rf commands. For details on how to work with DOT files and convert

them to images, see [H2OML] DOT extension.

Quick start
Save the plot of the second tree as a DOT file after regression

h2omltree, id(2) dotsaving(tree.dot)

As above, but report the returned results as a rule set, and replace the existing tree.dot file
h2omltree, id(2) dotsaving(tree.dot, replace) rule

Save the plot of the first tree as a DOT file after multiclass classification, and use the second class as the

target (reference) class

h2omltree, target(2) dotsaving(classtree.dot, replace)

As above, but set the direction to horizontal with the tree built left to right

h2omltree, target(2) dotsaving(classtree.dot, replace direction(lr))

Menu
Statistics > H2O machine learning

Syntax
h2omltree [ , options ]

options Description

∗ target(class) specify the target class of the response variable after
multiclass classification

id(#) specify the number of the tree; default is id(1)
rule report the result as a rule set

dotsaving(filename[ , saveopts ]) specify that the graph be saved as filename

∗target() is required for multiclass classification.

saveopts Description

replace overwrites the existing file if it already exists

direction(diropts) sets the direction of tree layout; may be tb (the default), bt, lr, or rl
titile(string) specifies the tree title in the DOT file
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Options
target(class) specifies the target class of the response variable for which the decision tree DOT file is

to be created. target() is required after multiclass classification with h2oml gbmulticlass and

h2oml rfmulticlass.

id(#) specifies the number of the tree. The default is the first tree.

rule specifies that the tree results be reported as a rule set.

dotsaving(filename[ , saveopts ]) specifies that the tree be saved as filename. saveopts are the follow-

ing:

replace specifies that, if the file already exists, it is okay to replace it.

direction(diropts) sets the direction of the tree layout. diropts may be one of the following:

tb specifies that the tree is built top to bottom; the default.

bt specifies that the tree is built bottom to top.

lr specifies that the tree is built left to right.

rl specifies that the tree is built right to left.

title(string) specifies the tree title in the DOT file.

Remarks and examples
We assume you have read the introduction to decision trees in [H2OML] Intro.

Remarks are presented under the following headings:

Example 1: Plotting a classification tree after random forest
Example 2: Plotting a classification tree after gradient boosting machine (GBM)
Example 3: Plotting a regression tree
Example 4: Plotting a tree for multiclass classification

An additional example can be found in Explaining classification prediction of [H2OML] h2oml.

All decision tree plots in the examples below are produced using Graphviz (https://graphviz.org). See

[H2OML] DOT extension for more information.

Example 1: Plotting a classification tree after random forest
We plot and interpret binary classification trees produced by random forest.

We start by opening the 1978 automobile data (auto.dta) in Stata and then putting the data into an
H2O frame. Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset
into an H2O frame, and h2oframe change makes the specified frame the current H2O frame.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile dataset)
. h2o init
(output omitted )

. _h2oframe put, into(auto)
Progress (%): 0 100
. _h2oframe change auto

https://graphviz.org
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For simplicity, we save the predictor names in the global macro predictors in Stata. We then per-

form random forest binary classification with 100 trees and a maximum depth of 5.

. global predictors price mpg trunk weight length

. h2oml rfbinclass foreign $predictors, h2orseed(19) ntrees(100) maxdepth(5)
Progress (%): 0 100
Random forest binary classification using H2O
Response: foreign
Frame: Number of observations:

Training: auto Training = 74
Model parameters
Number of trees = 100

actual = 100
Tree depth: Pred. sampling value = -1

Input max = 5 Sampling rate = .632
min = 3 No. of bins cat. = 1,024
avg = 4.8 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Log loss .3238765
Mean class error .1223776

AUC .9160839
AUCPR .7850033

Gini coefficient .8321678
MSE .1089033

RMSE .330005

Finally, we use the h2omltree command to save the 10th tree in the DOT file named classtreerf.dot.

. h2omltree, id(10) dotsaving(classtreerf, replace)
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For binary classification, only the base class (the “negative” class) can be chosen as a target or ref-

erence class in H2O. In this example, this is the Domestic class. The tree plot shown below can be

generated and saved as a PDF or another format using the information in classtreerf.dot and the

Graphviz tool. For more details, refer to [H2OML] DOT extension.

Tree 10, class Domestic
trunk

price

[NA]
< 15.5

length

>= 15.5

length

[NA]
< 5003.5

weight

>= 5003.5

0

< 163.0

1

[NA]
>= 163.0

length

< 166.0

1

[NA]
>= 166.0

mpg

[NA]
< 3624.0

1

>= 3624.0

0

< 156.0

trunk

>= 156.0

0

[NA]
< 25.5

length

>= 25.5

1

< 10.0

0.5

[NA]
>= 10.0

0

< 167.0

1

[NA]
>= 167.0

The internal nodes in the tree correspond to the predictor names for which the split has occurred and

the terminal nodes correspond to 𝑃(Domestic = 1). Each internal predictor separates data based on the
split. The NA’s on the branches indicate the split of the missing values, if any. Based on this tree, for the
observations with length ≥ 163, the predicted probability of the car being domestic is 1.

Example 2: Plotting a classification tree after gradient boosting machine (GBM)
In this example, we plot a classification tree after gradient boosting binary classification. We start by

running the h2oml gbbinclass command with options ntrees(100) and maxdepth(5).
. h2oml gbbinclass foreign $predictors, h2orseed(19) ntrees(100) maxdepth(5)
(output omitted )

Thenwe use the h2omltree command to save the 10th tree in theDOT file named classtreegbm.dot

. h2omltree, id(10) dotsaving(classtreegbm, replace)
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The tree below is generated from the classtreegbm.dot file using Graphviz.

Tree 10, class Domestic
length

price

[NA]
< 194.0

price

>= 194.0

-0.019

< 4498.5

weight

[NA]
>= 4498.5

mpg

[NA]
< 7085.5

-0.116

>= 7085.5

0.148

[NA]
< 2467.5

0.065

>= 2467.5

-0.114

[NA]
< 18.5

-0.114

>= 18.5

Compared with the classification tree in Example 1: Plotting a classification tree after random forest,

the terminal nodes of the classification tree after GBM contain negative values. This may be surprising

because the expected values should be between [0, 1]. However, as we explain below, this is the expected
behavior.

As discussed in the Introduction of [H2OML] h2oml gbm, GBM relies on link functions to determine

the loss function. For instance, in binary classification, GBM uses the logit link function. Consequently,

for certain postestimation commands, such as h2omltree and h2omlgraph shapvalues, probabilities
are obtained by applying the inverse link function, in this case, the inverse logit function.

For example, the predicted raw value −0.114 in the terminal node corresponds to probability

0.47153083.

. display invlogit(-0.114)

.47153083

Here the terminal nodes can be explained based on increasing or decreasing probability

𝑃(Domestic = 1). Thus, the highest probability corresponds to 0.148 (probability of 0.54) and occurs
for the observations with length less than 194, price greater than 4498.5, and weight less than 2467.5.
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Example 3: Plotting a regression tree
In this example, we create and save a DOT file and display a regression tree for random forest regres-

sion.

We start by redefining the global macro predictors. Then we perform random forest regression

with 100 trees and a maximum depth of 5 for each tree.

. global predictors foreign mpg trunk weight length

. h2oml rfregress price $predictors, h2orseed(19) ntrees(100) maxdepth(5)
Progress (%): 0 100
Random forest regression using H2O
Response: price
Frame: Number of observations:

Training: auto Training = 74
Model parameters
Number of trees = 100

actual = 100
Tree depth: Pred. sampling value = -1

Input max = 5 Sampling rate = .632
min = 2 No. of bins cat. = 1,024
avg = 5.0 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Deviance 3129378
MSE 3129378

RMSE 1769.005
RMSLE .2315556

MAE 1229.955
R-squared .6353542

We save the regression tree as a DOT file by using the h2omltree command.

. h2omltree, id(10) dotsaving(regtreerf, replace)
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The following tree is created from the regtreerf.dot file using Graphviz.

Tree 10
mpg

trunk

< 17.5

length

[NA]
>= 17.5

4749

< 12.5

weight

[NA]
>= 12.5

foreign

[NA]
< 203.0

mpg

>= 203.0

foreign

[NA]
< 4046.5

mpg

>= 4046.5

trunk

[NA]
Domestic

length

Foreign

weight

[NA]
< 20.0

trunk

>= 20.0

trunk

[NA]
Domestic

length

Foreign

11497

< 13.0

mpg

>= 13.0

mpg

< 8.5

mpg

[NA]
>= 8.5

5337.75

[NA]
< 176.5

9735

>= 176.5

5788

< 3685.5

5344

[NA]
>= 3685.5

15906

< 16.5

8814

[NA]
>= 16.5

12177.25

[NA]
< 19.0

6253.5

>= 19.0

11340

[NA]
< 192.5

11995

>= 192.5

5841

< 14.5

7827

>= 14.5

4257.667

[NA]
< 25.5

6486

>= 25.5

4630.2

< 19.5

4118.111

[NA]
>= 19.5

From the tree above, the predicted price for the cars with mileage per gallon less than 17.5 and trunk

space less than 12.5 cu.ft. is equal to $4,749.

Example 4: Plotting a tree for multiclass classification
In this example, we create a DOT file for a tree for multiclass classification by using the iris dataset

and random forest. This dataset was used in Fisher (1936) and originally collected by Anderson (1935).

We start by initializing a cluster, opening the dataset in Stata, and importing the dataset as an H2O

frame.

. use https://www.stata-press.com/data/r18/iris
(Iris data)
. h2o init
(output omitted )

. _h2oframe put, into(iris)
Progress (%): 0 100
. _h2oframe change iris
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Next we define the global macro predictors to store the name of predictors and perform random

forest multiclass classification.

. global predictors seplen sepwid petlen petwid

. h2oml rfmulticlass iris $predictors, h2orseed(19) ntrees(100) maxdepth(5)
Progress (%): 0 100
Random forest multiclass classification using H2O
Response: iris Number of classes = 3
Frame: Number of observations:

Training: iris Training = 150
Model parameters
Number of trees = 100

actual = 100
Tree depth: Pred. sampling value = -1

Input max = 5 Sampling rate = .632
min = 1 No. of bins cat. = 1,024
avg = 3.4 No. of bins root = 1,024
max = 5 No. of bins cont. = 20

Min. obs. leaf split = 1 Min. split thresh. = .00001
Metric summary

Metric Training

Log loss .1290855
Mean class error .06

MSE .0370932
RMSE .1925959

To save a tree after a multiclass classification, you must specify the option target() in the

h2omltree command. Here we create a DOT file to plot the 10th tree for the class Setosa.

. h2omltree, id(10) dotsaving(mclasstreerf, replace) target(Setosa)

The following tree is created from the mclasstreerf.dot file using Graphviz.

Tree 10, class Setosa
petwid

1

< 0.80078125

0

[NA]
>= 0.80078125

References
Anderson, E. 1935. The irises of the Gaspé Peninsula. Bulletin of the American Iris Society 59: 2–5.

Fisher, R. A. 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics 7: 179–188. https:

//doi.org/10.1111/j.1469-1809.1936.tb02137.x.

https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
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Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] DOT extension — Handling DOT files+



DOT extension — Handling DOT files+

+These features are part of StataNow.

Description Remarks and examples Also see

Description
This entry provides a brief introduction to the DOT language and DOT files. These DOT files, which

can be created by h2omltree, can be converted into images of decision trees.

The open source software Graphviz can be used to convert DOT files to images.

Remarks and examples
Remarks are presented under the following headings:

Install Graphviz
How to use Graphviz and DOT language
Modifying the DOT file

Install Graphviz
Graphviz is available for most operating systems. For the steps to download and install Graphviz, see

https://graphviz.org/download/. If prompted during installation, you can allow Graphviz to be installed

on the system path so that Graphviz commands can be issued from the terminal and issued from the

Commandwindow of Stata using the shell command. For the rest of this entry, we assume that Graphviz
is installed.

How to use Graphviz and DOT language
Instead of providing extensive details of DOT language, we will explain by example and focus on

options that are relevant to our goal.

First, we open the 1978 automobile data (auto.dta) in Stata and then put the data into an H2O frame.
Recall that h2o init initiates an H2O cluster, h2oframe put loads the current Stata dataset in an H2O

frame, and h2oframe change makes the specified frame the current H2O frame.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)
. h2o init
(output omitted )

. _h2oframe _put, into(auto)

. _h2oframe _change auto

Next, we perform gradient boosting regression and specify h2orseed(19) for reproducibility.

. h2oml gbregress price make mpg, h2orseed(19)
(output omitted )

Finally, we use the h2omltree command to save the second tree in a file called example.dot.

. h2omltree, id(2) dotsaving(example.dot, replace)

329
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The code below is the content of the example.dot file. You can look through the content of DOT

files using your preferred text editor.

digraph G {
rankdir = TB
/* Level 0 */
{
”Node_0” [shape=box, fontsize=20, label=”mpg”]
}
/* Level 1 */
{
”Node_9” [fontsize=20, label=”286.207”]
”Node_2” [shape=box, fontsize=20, label=”mpg”]
}
/* Level 2 */
{
”Node_3” [shape=box, fontsize=20, label=”mpg”]
”Node_10” [fontsize=20, label=”-172.209”]
}
/* Level 3 */
{
”Node_11” [fontsize=20, label=”-125.564”]
”Node_6” [shape=box, fontsize=20, label=”mpg”]
}
/* Level 4 */
{
”Node_12” [fontsize=20, label=”15.111”]
”Node_13” [fontsize=20, label=”-78.548”]
}
/* Edges */
”Node_0” -> ”Node_9” [fontsize=20, label=”< 17.5
”]
”Node_0” -> ”Node_2” [fontsize=20, label=”[NA]
>= 17.5
”]
”Node_2” -> ”Node_3” [fontsize=20, label=”[NA]
< 27.0
”]
”Node_2” -> ”Node_10” [fontsize=20, label=”>= 27.0
”]
”Node_3” -> ”Node_11” [fontsize=20, label=”< 20.5
”]
”Node_3” -> ”Node_6” [fontsize=20, label=”[NA]
>= 20.5
”]
”Node_6” -> ”Node_12” [fontsize=20, label=”[NA]
< 23.5
”]
”Node_6” -> ”Node_13” [fontsize=20, label=”>= 23.5
”]
fontsize=40
labelloc=”t”
label = ”Tree 2”
}
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The file provides information about nodes of each level in the tree. For example, Node 2 and Node 9
belong to level 1. By default, the file provides information about the shape of the node, font size, and

label. Those entries can be modified and other options can be added to describe the node. The Edges
section in the file provides information about the structure of the tree, that is, which nodes are connected

and how.

To create a PDF file with a diagram of this tree with Graphviz, we type in Stata

. shell dot -Tpdf example.dot -o example.pdf

and to create the diagram as a PNG image, we type

. shell dot -Tpng example.dot -o example.png

The shell command of Stata allows you to send commands to the operating system. For details, see

[D] shell. The resulting tree is shown below.

Tree 2
mpg

286.207

< 17.5

mpg

[NA]
>= 17.5

mpg

[NA]
< 27.0

-172.209

>= 27.0

-125.564

< 20.5

mpg

[NA]
>= 20.5

15.111

[NA]
< 23.5

-78.548

>= 23.5
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Modifying the DOT file
Having a DOT file gives us the flexibility to modify the tree based on our preference. For example, in

the code below, we change the title to “Toy Example”, the contour of the Node 0 to red, and the color

of the left edge emanating from the Node 0 also to red. Note that the title also can be changed using the
title() option in h2omltree. Changes are highlighted in bold.

digraph G {
rankdir = TB
/* Level 0 */
{
”Node_0” [shape=box, fontsize=20, label=”mpg”, color = "red"]
}
/* Level 1 */
{
”Node_9” [fontsize=20, label=”286.207”]
”Node_2” [shape=box, fontsize=20, label=”mpg”]
}
/* Level 2 */
{
”Node_3” [shape=box, fontsize=20, label=”mpg”]
”Node_10” [fontsize=20, label=”-172.209”]
}
/* Level 3 */
{
”Node_11” [fontsize=20, label=”-125.564”]
”Node_6” [shape=box, fontsize=20, label=”mpg”]
}
/* Level 4 */
{
”Node_12” [fontsize=20, label=”15.111”]
”Node_13” [fontsize=20, label=”-78.548”]
}
/* Edges */
”Node_0” -> ”Node_9” [fontsize=20, label=”< 17.5
”, color = "red"]
”Node_0” -> ”Node_2” [fontsize=20, label=”[NA]
>= 17.5
”]
”Node_2” -> ”Node_3” [fontsize=20, label=”[NA]
< 27.0
”]
”Node_2” -> ”Node_10” [fontsize=20, label=”>= 27.0
”]
”Node_3” -> ”Node_11” [fontsize=20, label=”< 20.5
”]
”Node_3” -> ”Node_6” [fontsize=20, label=”[NA]
>= 20.5
”]
”Node_6” -> ”Node_12” [fontsize=20, label=”[NA]
< 23.5
”]
”Node_6” -> ”Node_13” [fontsize=20, label=”>= 23.5
”]
fontsize=40
labelloc=”t”
label = ”Toy Example”
}
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The following plot depicts the changes.

Toy Example
mpg

286.207

< 17.5

mpg

[NA]
>= 17.5

mpg

[NA]
< 27.0

-172.209

>= 27.0

-125.564

< 20.5

mpg

[NA]
>= 20.5

15.111

[NA]
< 23.5

-78.548

>= 23.5

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+



encode option — Encoding schemes for categorical predictors+

+These features are part of StataNow.

Description Syntax Option Reference Also see

Description
The encode() option specifies the encoding scheme to use for categorical predictors in machine

learning models implemented by the h2oml gbm and h2oml rf commands. The encoding scheme deter-

mines how a machine learning method splits categorical predictors, which can affect model performance.

This entry introduces encoding schemes for categorical predictors that are available in H2O and that may

be selected via the encode() option. For more details, see https://docs.h2o.ai/h2o/latest-stable/h2o-

docs/data-science/algo-params/categorical_encoding.html. For an introduction to predictor encoding,

see Kuhn and Johnson (2020).

Syntax
command ...[ , ... encode(encode type) ... ]

command is one of h2oml gbregress, h2oml gbbinclass, h2oml gbmulticlass, h2oml rfregress,
h2oml rfbinclass, or h2oml rfmulticlass.

encode type Description

enum map labels of categorical predictors to integers; the default

enumfreq map labels for 10 most frequent levels of each categorical predictor
to integers; combine all other levels to an 11th integer

onehotexplicit generate a binary predictor for each level of each categorical
predictor

binary convert levels of categorical predictors into binary digit representation

eigen generate new predictors for a categorical predictor based on eigenvalues
of the one-hot-encoding matrix

label map labels of categorical predictors to integers; ensure order is
preserved

sortbyresponse map levels of categorical predictors to integers; order by average
response within levels

Option
encode(encode type) specifies the H2O encoding scheme to be used for categorical predictors. The

selected encoding scheme does not modify the existing H2O frame. The predictors generated by the

encoding scheme are entirely virtual; they are created at the algorithmic level rather than at the mem-

ory level. Therefore, they cannot be accessed directly. However, it can be helpful to think of the

predictors as physically generated.

encode type may be one of enum, enumfreq, onehotexplicit, binary, eigen, label, or
sortbyresponse.
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enum maps the labels of categorical predictors into integers, which are then used by the machine

learning method for splitting decisions. For example, if a categorical predictor has the levels

{cat, dog, horse, cow, turtle, unicorn}, then the enum option maps those levels to {0, 1, 2, 3, 4, 5}.
The machine learning method may split the levels as {0, 2, 4} and {1, 3, 5}. This is the default
scheme.

enumfreq reduces the levels of each categorical predictor to the 10 most frequent levels. All other

levels, if any, are grouped into a separate 11th level. This option is useful when the number of levels

of categorical predictors is very large and some of the categories are very rare andmight not provide

useful information. In reporting postestimation results, this option adds suffix .top 10 levels
to the names of the categorical predictors.

onehotexplicit internally generates a new binary predictor for each level of each

categorical predictor. For example, if a categorical predictor has the observations

{cat, dog, cat, cat, dog, unicorn, unicorn}, then three new predictors will be generated with

cat = {1, 0, 1, 1, 0, 0, 0}, dog = {0, 1, 0, 0, 1, 0, 0}, and unicorn = {0, 0, 0, 0, 0, 1, 1}. This is the
most well-known encoding scheme in machine learning. In reporting postestimation results, this

option adds suffix .level to the names of the categorical predictors, where level corresponds to

the class of the predictor, including missing values, which are labeled as class NA.

binary converts the levels of each categorical predictor into binary digits, with each binary digit rep-
resenting a new separate predictor. The encoding process begins by assigning a numeric value

to each level of the categorical predictor, starting from 1. For example, the observations of

the categorical predictor {cat, dog, cat, cat, dog, unicorn, unicorn} are converted to the sequence

{1, 2, 1, 1, 2, 3, 3}. The binary code for each numeric value is then determined, with 1 being rep-
resented by 01, 2 by 10, and 3 by 11. Then the observations are converted to the binary code

{01, 10, 01, 01, 10, 11, 11}, with the digits of the binary number forming separate predictors. In
our example, there are two new encoded predictors: {0, 1, 0, 0, 1, 1, 1} and {1, 0, 1, 1, 0, 1, 1}. Bi-
nary encoding is useful when the number of categories is very large. However, H2O limits the

number of new encoded predictors to 32. In reporting postestimation results, this option adds suf-

fix :# to the names of the categorical predictors, where # varies from 1 to the maximum number of

newly generated predictors. In the above example, the maximum number of generated predictors

is 2.

eigen generates 𝑘 new projected predictors per categorical predictor, such that the projections

of the matrix generated from one-hot-encoding of the categorical predictor is in 𝑘-dimensional
eigenspace. Currently, H2O uses 𝑘 = 1. For details, see https://docs.h2o.ai/h2o/latest-stable/h2o-

docs/data-science/algo-params/categorical_encoding.html. In reporting postestimation results,

this option adds suffix .Eigen to the names of the categorical predictors.

label maps the labels of categorical predictors into integers, ensuring that the ordinal nature of each
encoded predictor is preserved. For example, if an encoded predictor has values {0, 1, 2, 3, 4, 5},
a possible split could be {0, 1, 2} and {3, 4, 5}, but not {0, 3, 4} and {1, 2, 5}.

sortbyresponse maps the levels of categorical predictors into integers according to the ascending

order of the average value of the response for each level. Thus, the level with the lowest average

response value is assigned to 0, the level with second-lowest average response is assigned to 1,

and so on.

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-params/categorical_encoding.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-params/categorical_encoding.html
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Reference
Kuhn, M., and K. Johnson. 2020. Feature Engineering and Selection: A Practical Approach for Predictive Models. Boca

Raton, FL: CRC Press.

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2oml gbm — Gradient boosting machine for regression and classification+

[H2OML] h2oml rf — Random forest for regression and classification+



metric option — Classification and regression metrics+

+These features are part of StataNow.

Description Syntax Options References Also see

Description
The h2oml gbm and h2oml rf estimation commands allow you to specify which metric is to be used

for tuning and for early stopping. In addition, h2omlestat gridsummary allows you to specify a metric
for reporting; h2omlestat confmatrix allows you to specify a metric for selecting an optimal threshold
for classifying predictions; and h2omlgraph scorehistory allows you to specify a metric for the 𝑦 axis
of the graph. In each case, you may specify the metric via a metric() option or suboption. The allowed
list of metrics for each command is documented here. Available metrics vary depending on whether

regression, binary classification, or multiclass classification is performed.

Syntax
In h2oml gbm and h2oml rf

command ... [ , ... tune(metric(metric) ...) ]

or

command ... [ , ... stop(#, metric(metric) ...) ]

In h2omlestat gridsummary

h2omlestat gridsummary ... [ , ... metric(metric) ... ]

In h2omlestat confmatrix

h2omlestat confmatrix ... [ , ... metric(metric conf ) ... ]

In h2omlgraph scorehistory

h2omlgraph scorehistory ... [ , ... metric(metric score) ... ]

command is one of h2oml gbregress, h2oml gbbinclass, h2oml gbmulticlass, h2oml rfregress,
h2oml rfbinclass, or h2oml rfmulticlass.

metric Description

reg metric metric for regression (h2oml gbregress and h2oml rfregress)
binclass metric metric for binary classification (h2oml gbbinclass and

h2oml rfbinclass)
multiclass metric metric for multiclass classification (h2oml gbmulticlass and

h2oml rfmulticlass)

337



metric option — Classification and regression metrics+ 338

reg metric Description

∗ deviance deviance
∗ mse mean squared error
∗ rmse root mean squared error
∗ rmsle root mean squared logarithmic error
∗ mae mean absolute error

r2 coefficient of determination

∗ indicates metrics allowed for stopping.

binclass metric Description

∗ logloss logarithmic loss

f1 𝐹1 score

f2 𝐹2 score

fhalf 𝐹0.5 score

accuracy number of correct predictions as a ratio of all predictions made

precision proportion of correct predictions in predictions of positive class

recall proportion of correct predictions of positive class

specificity proportion of correct predictions in the negative class
∗ misclassification number of observations incorrectly classified divided by

the total number of observations
∗ meanclasserror mean of per-class error rates

maxclasserror maximum of per-class error rates

meanclassaccuracy mean of per-class accuracy

misclasscount total count of misclassification per class
∗ auc area under the ROC curve
∗ aucpr area under the precision–recall curve
∗ mse mean squared error
∗ rmse root mean squared error

misclasserror synonym for misclassification
meanpcerr synonym for meanclasserror
maxpcerr synonym for maxclasserror
meanpcacc synonym for meanclassaccuracy
misclasscnt synonym for misclasscount

∗ indicates metrics allowed for stopping.
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multiclass metric Description

∗ logloss logarithmic loss metric

accuracy number of correct predictions as a ratio of all predictions made
∗ misclassification number of observations incorrectly classified divided by

the total number of observations
∗ meanclasserror mean of per-class error rates

maxclasserror maximum of per-class error rates

meanclassaccuracy mean of per-class accuracy

misclasscount total count of misclassification per class
∗ mse mean squared error
∗ rmse root mean squared error

meanpcerr synonym for meanclasserror
maxpcerr synonym for maxclasserror
meanpcacc synonym for meanclassaccuracy
misclasscnt synonym for misclasscount

∗ indicates metrics allowed for stopping.

metric conf Description

f1 𝐹1 score

f2 𝐹2 score

fhalf 𝐹0.5 score

accuracy number of correct predictions as a ratio of all predictions made

precision proportion of correct predictions in predictions of positive class

recall proportion of correct predictions of positive class

specificity proportion of correct predictions in the negative class

minclassaccuracy minimum of per-class accuracy

meanclassaccuracy mean of per-class accuracy

tn true negative; the number of correct predictions of the negative
class

fn false negative; the number of incorrect predictions of the negative
class

tp true positive; the number of correct predictions of the positive
class

fp false positive; the number of incorrect predictions of the positive
class
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tnr true-negative rate; synonym for specificity
fnr false-negative rate; the proportion of incorrect predictions in negative

class

tpr true-positive rate; synonym for recall
fpr false-positive rate; the proportion of incorrect predictions in positive

class

mcc Matthews correlation coefficient

meanpcacc synonym for meanclassaccuracy
tneg synonym for tn
fneg synonym for fn
tpos synonym for tp
fpos synonym for fp
tnegrate synonym for tnr
fnegrate synonym for fnr
tposrate synonym for tpr
fposrate synonym for fpr
mccorr synonym for mcc

metric score Description

reg metric score metric for regression (h2oml gbregress and h2oml rfregress)
binclass metric score metric for binary classification (h2oml gbbinclass and

h2oml rfbinclass)
multiclass metric score metric for multiclass classification (h2oml gbmulticlass and

h2oml rfmulticlass)

reg metric score Description

deviance deviance

rmse root mean squared error

mae mean absolute error

binclass metric score Description

logloss logarithmic loss

misclassification number of observations incorrectly classified divided by
the total number of observations

auc area under the ROC curve

aucpr area under the precision–recall curve

rmse root mean squared error

misclasserror synonym for misclassification

multiclass metric score Description

logloss logarithmic loss

misclassification number of observations incorrectly classified divided by
the total number of observations

rmse root mean squared error

misclasserror synonym for misclassification
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Options
Options are presented under the following headings:

Metrics for regression
Metrics for classification
Additional classification metrics

Metrics are divided into those for regression and those for classification (binary and multiclass).

Metrics for regression
In the metric formulas, the 𝑖th observation is denoted by 𝑦𝑖, the predicted value by ̂𝑦, the mean by 𝑦, and
the total number of observations by 𝑛.

deviance requests the deviance, which is a measurement of goodness-of-fit of the model.

With h2oml rfregress or with h2oml gbregress and the Gaussian loss, the deviance,𝐷, is defined

as

𝐷 =
𝑛

∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2

which is equivalent to the mean squared error (MSE).

With h2oml gbregress and the Tweedie loss, the deviance is defined as

𝐷 =
𝑛

∑
𝑖=1

[{max(𝑦, 0)}2−𝑝

(1 − 𝑝)(2 − 𝑝)
− 𝑦( ̂𝑦)1−𝑝

1 − 𝑝
+ ( ̂𝑦)2−𝑝

2 − 𝑝
]

where 𝑝 is the parameter in Tweedie and specified as power() in h2oml gbm.

With h2oml gbregress and the Poisson loss, the deviance is defined as

𝐷 = −2
𝑛

∑
𝑖=1

{𝑦𝑖 log(𝑦𝑖
̂𝑦𝑖
) − (𝑦𝑖 − ̂𝑦𝑖)}

With h2oml gbregress and the Laplace loss, the deviance is defined as

𝐷 = 1
𝑛

𝑛
∑
𝑖=1

|𝑦𝑖 − ̂𝑦𝑖|

which is equivalent to the mean absolute error (MAE).

mse requests the MSE, which is the average of the squared errors. MSE can be represented as a sum of the

variance and the square of the bias. It imposes larger penalties on larger errors. Thus, it is sensitive

to outliers. The formula is
1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2

rmse requests the root mean squared error (RMSE). Unlike the MSE, the units of RMSE are the same as

the units of the response variable, which provides a useful interpretation when the size of the error is

of interest. The formula is

√ 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2
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rmsle requests the rootmean squared logarithmic error (RMSLE), which is the ratio between the logarithm

actual values and the logarithm of predicted values. The RMSLE is recommended when underpredic-

tion of the model is worse than the overprediction. The formula is

√ 1
𝑛

𝑛
∑
𝑖=1

{ ln(𝑦𝑖 + 1
̂𝑦𝑖 − 1

)}
2

mae requests the MAE, which is the average of the absolute value of the error. The units of MAE are

the same as the units of the response, and it is robust to outliers. A smaller MAE indicates a better

performance. The formula is
1
𝑛

𝑛
∑
𝑖=1

|𝑦𝑖 − ̂𝑦𝑖|

r2 requests the 𝑅2, also known as the coefficient of determination. 𝑅2 is the proportion of the variance

of a response that is explained by the predictors. Because the estimated variance depends on the given

dataset, we do not advise the comparison of 𝑅2 across different datasets. The best 𝑅2 score is 1, and

it can be negative because a model can predict arbitrarily poorly. The estimated 𝑅2 is defined as

1 −
∑𝑛

𝑖=1(𝑦𝑖 − ̂𝑦𝑖)2

∑𝑛
𝑖=1(𝑦𝑖 − 𝑦)2

Metrics for classification
For binary classification, suppose that 𝑦𝑖 takes two possible values {0, 1}, where 0 and 1 correspond to
negative and positive classes, respectively. The predicted probability for the positive class and observa-

tion 𝑖 is denoted by ̂𝑝𝑖 and the predicted class by ̂𝑦𝑖.

For multiclass classification, the number of classes is denoted by 𝐾 and 𝑦𝑖𝑘 = 1 if the observation 𝑖
belongs to the class 𝑘 and 0 otherwise. The predicted probability for the observation 𝑖 and class 𝑘 is

denoted by ̂𝑝𝑖𝑘.

logloss requests log loss (logarithmic loss). The goal of the log loss is to estimate the closeness of the
model’s predicted probabilities to the actual values of the response variable. That is, log loss indicates

the ability of the model to assign higher predicted probabilities to observations in the positive class

and smaller probabilities to observations in the negative class. Log loss may take any nonnegative

value. For binary classification, it is defined as

− 1
𝑛

𝑛
∑
𝑖=1

𝑦𝑖 ln( ̂𝑝𝑖) + (1 − 𝑦𝑖) ln(1 − ̂𝑝𝑖)

For multiclass classification, it is defined as

− 1
𝑛

𝑛
∑
𝑖=1

𝐾
∑
𝑘=1

𝑦𝑖𝑘 ln( ̂𝑝𝑖𝑘)

f1, f2, and fhalf are 𝐹𝛽 scores and are functions of recall and precision. The 𝐹𝛽 scores are defined as

𝐹𝛽 = (1 + 𝛽2) precision × recall

𝛽2(precision + recall)
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where 𝛽 > 0 is chosen such that recall is considered 𝛽 times as important as precision. Here precision

and recall are defined as in the descriptions of the precision and recall options.

f1 requests 𝐹1.

f2 requests 𝐹2, which is the harmonic mean of precision and recall.

fhalf requests 𝐹0.5.

accuracy requests the accuracy, which is the ratio of the number of correct predictions to the total number
of all predictions made. The accuracy metric is not recommended for imbalanced data (Bradley 1997;

Huang and Ling 2005). For example, for a sample with 100 observations such that 96 belong to

positive and 4 to negative classes, the accuracy score for a model that predicts the positive class for

all observations is 0.96, which is misleading. The formula is

tp + tn

tp + tn + fp + fn

where tn and tp are the numbers of true negatives and true positives (correct predictions) and where

fn and fp are the numbers of false negatives and false positives (incorrect predictions).

For multiclass classification, accuracy k denotes the estimated accuracy for the class 𝑘.
precision requests the precision, which is the proportion of observations correctly predicted to be in

the positive class out of all observations predicted to be in the positive class. Precision is a biased

metric; it fails to account for the performance in negative classes (Powers 2011). The formula is

tp

tp + fp

recall requests the recall, also known as the sensitivity or the true-positive rate. It is the proportion of
observations correctly predicted to be in the positive class out of all observations that actually belong

to the positive class. Recall is a biased metric; it fails to account for the performance in negative

classes (Powers 2011). The formula is
tp

tp + fn

specificity requests the specificity, also known as the true-negative rate. It is the proportion of correct
predictions in the negative class. The formula is

tn

tn + fn

misclassification requests the misclassification, which is the proportion of the predictions that are

false. It is equal to

1 − accuracy

For multiclass classification, the misclassification error for the class 𝑘 is defined as

1 − accuracy𝑘

misclasserror is a synonym for misclassification.
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meanclasserror requests the mean of the per-class misclassification errors. The misclassification error
in class 𝑘 is estimated by 1− accuracy𝑘, where accuracy𝑘 is the accuracy for the class 𝑘. Then for 𝐾
classes, the meanclasserror is

1
𝐾

𝐾
∑
𝑘=1

(1 − accuracy𝑘)

meanpcerr is a synonym for meanclasserror.

maxclasserror requests the maximum per-class misclassification error. For 𝐾 classes, it is defined as

max𝑘=1,...,𝐾{1 − accuracy𝑘}

maxpcerr is a synonym for maxclasserror.

minclassaccuracy requests the minimum per-class accuracy. For 𝐾 classes, it is defined as

min𝑘=1,...,𝐾{accuracy𝑘}

meanclassaccuracy requests the mean of the per-class accuracies. For 𝐾 classes, it is defined as

1
𝐾

𝐾
∑
𝑘=1

accuracy𝑘

meanpcacc is a synonym for meanclassaccuracy.

misclasscount requests the total number of observations that a model has incorrectly classified. For

the binary classification, it is defined as

𝑛
∑
𝑖=1

1(𝑦𝑖 ≠ ̂𝑦𝑖)

where 1(⋅) is an indicator function and ̂𝑦𝑖 is the predicted class.

For the multiclass classification, it is defined as

𝑛
∑
𝑖=1

𝐾
∑
𝑘=1

1(𝑦𝑖𝑘 ≠ ̂𝑦𝑖𝑘)

misclasscnt is a synonym for misclasscount.

auc requests the area under the curve (AUC), which measures the ability of the classification model to

distinguish between true positives and false positives. A higher value indicates a better classifier. A

classifier with an AUC score of 0.5 is no better than a random guess. H2O uses the trapezoidal rule to

approximate the area under the receiver operating characteristic (ROC) curve. The ROC curve plots

the recall against the false-positive rate. For imbalanced data, AUC is preferred more than accuracy

(Bradley 1997) but less recommended than the area under the precision–recall curve (AUCPR) or the

Matthews correlation coefficient (MCC).

For multiclass classification with the number of classes equal to 𝐾, there exist several variations of

the AUC score.

The one-versus-oneAUC (OVOAUC) calculates theAUC score for all pairwise combinations of classes.

The computation of this metric requires fitting one binary classification per class pair. Thus, there are

𝐾 × (𝐾 − 1)/2 binary classifiers.
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The one-versus-restAUC (OVRAUC) calculates theAUC score for one class with the rest of the classes.

The computation of this metric requires fitting one binary classifier per class, where a given class is

regarded as the “positive” class and the remaining classes are regarded as the “negative” class.

The macro average OVRAUC is a uniform weighted average of all OVRAUCs.

1
𝐾

𝐾
∑
𝑘=1

AUC(𝑘, 𝐾−𝑘)

where 𝐾 is the number of classes and AUC(𝑗, 𝐾−𝑗) is the AUC with class 𝑗 as the positive class and
the rest of classes 𝐾−𝑗 as the negative class.

The weighted average OVR AUC calculates the prevalence weighted average of all OVR AUCs, where

the prevalence of class 𝑘, 𝑝(𝑘), is the number of observations in class 𝑘.

1
∑𝐾

𝑘=1 𝑝(𝑘)

𝐾
∑
𝑘=1

𝑝(𝑘)AUC(𝑘, 𝐾−𝑘)

The macro average OVOAUC is a uniformly weighted average of all OVOAUCs

2
𝐾

𝐾
∑
𝑘=1

𝐾
∑
𝑗≠𝑘

1
2

{AUC(𝑘, 𝑗) + AUC(𝑗, 𝑘)}

The weighted average OVOAUC is a prevalence weighted average of all OVOAUCs.

2
∑𝐾

𝑘=1 ∑𝐾
𝑗≠𝑘 𝑝(𝑘 ∪ 𝑗)

𝐾
∑
𝑘=1

𝐾
∑
𝑗≠𝑘

𝑝(𝑘 ∪ 𝑗)1
2

{AUC(𝑘, 𝑗) + AUC(𝑗, 𝑘)}

aucpr requests the AUCPR. It is a weighted average of precision, where the weights are determined by

recall at the threshold. By construction, AUCPR is more sensitive to true-positive, false-positive, and

false-negative rates than AUC. Thus, it is more suitable for highly imbalanced data.

For multiclass classification, AUCPR metrics are defined similarly to the corresponding AUC metrics.

tn requests the true-negative metric, tn, which is the number of correct predictions of the negative class.

tneg is a synonym for tn.

fn requests the false-negative metric, fn, which is the number of incorrect predictions of the negative

class.

fneg is a synonym for fn.

tp requests the true-positive metric, tp, which is the number of correct predictions of the positive class.

tpos is a synonym for tp.

fp requests the false-positive metric, fp, which is the number of incorrect predictions of the positive

class.

fpos is a synonym for fp.

tnr requests the true-negative rate, which is the same as specificity.

tnegrate is a synonym for tnr.
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fnr requests the false-negative rate, which is the proportion of incorrect predictions in the positive class.
The formula is

fn

tp + fn

fnegrate is a synonym for fnr.

tpr requests the true-positive rate, which is the same as recall.

tposrate is a synonym for tpr.

fpr requests the false-positive rate, which is the proportion of incorrect predictions in the negative class.
The formula is

fp

tn + fp

fposrate is a synonym for fpr.

mcc requests the MCC, which measures how well a binary classifier detects true and false positives, and

true and false negatives. The MCC provides correlation between the actual and predicted values.

tp × tn − fp × fn

√(tp + fp)(tp + fn)(tn + fp)(tn + fn)

mccorr is a synonym for mcc.

Additional classification metrics
Below, we provide definitions for additional metrics that are reported by H2OML commands for classifi-

cation but that need not be specified via the metric() option.

Gini coefficient. Often referred to as the Gini index, this estimates the “purity” of a dataset in classifi-

cation problems. For a binary classification, the Gini coefficient is calculated as

Gini = 1 − (𝑝2
1 + 𝑝2

2)

where 𝑝1 and 𝑝2 are the proportions of class 1 and 2, respectively.

R2 for classification. This represents the degree to which the predicted probability and the actual class

move together. The best 𝑅2 score is 1, and it can be negative because a model can predict arbitrarily

poorly. For binary classification, the estimated 𝑅2 is defined as

1 −
∑𝑛

𝑖=1(𝑦𝑖 − ̂𝑝𝑖)2

∑𝑛
𝑖=1(𝑦𝑖 − 𝑝𝑖)2

For multiclass classification, it is defined as

1 −
∑𝑛

𝑖=1 ∑𝐾
𝑘=1(𝑦𝑖𝑘 − ̂𝑝𝑖𝑘)2

∑𝑛
𝑖=1 ∑𝐾

𝑘=1(𝑦𝑖 − 𝑝𝑖𝑘)2
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MSE for classification. This is the average of the squared errors, where error is the difference between

the predicted probability and the actual class. For binary classification, the formula is

1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑝𝑖)2

For multiclass classification, it is

1
𝑛

𝑛
∑
𝑖=1

𝐾
∑
𝑘=1

(𝑦𝑖𝑘 − ̂𝑝𝑖𝑘)2

RMSE for classification. This is the square root of MSE.
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[H2OML] h2oml gbm — Gradient boosting machine for regression and classification+

[H2OML] h2oml rf — Random forest for regression and classification+

[H2OML] h2omlestat gridsummary — Display grid-search summary+
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H2O option mapping — Mapping of H2OML estimation options to H2O+

+These features are part of StataNow.

Description Also see

Description
The H2OML suite of commands in Stata provides a wrapper for H2O. To facilitate the transition and

clear up a potential ambiguity that you might encounter, in this entry we provide a mapping of h2oml
gbm and h2oml rf option names in Stata to the H2O option names available in H2O GBM and H2O random

forest. For options corresponding to hyperparameter tuning and grid search (via h2oml’s tune() option),
we refer you to documentation for H2O tuning.

H2OML in Stata H2O

∗ loss() distribution
validframe() validation frame
cv(#) nfolds
cv(cvmethod) fold assignment
cv(varname) fold column
h2orseed() seed
encode() categorical encoding
stop(#) stopping rounds
stop(metric()) stopping metric
stop(tolerance) stopping tolerance
maxtime() max runtime secs
scoreevery() score tree interval

∗ monotone() monotone constraints
ntrees() ntrees

∗ lrate() learn rate (GBM option)
∗ lratedecay() learn rate annealing

maxdepth() max depth
minobsleaf() min rows

∗ predsamprate() col sample rate
† predsampvalue() mtries

samprate() sample rate
minsplitthreshold() min split improvement
binscat() nbins cats
binsroot() nbins top level
binscont() nbins
tune(grid(gridspec)) strategy
tune(maxmodels()) max models
∗ indicates that the option is available only for GBM.
† indicates that the option is available only for random forest.
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Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2oml gbm — Gradient boosting machine for regression and classification+

[H2OML] h2oml rf — Random forest for regression and classification+



H2O reproducibility — Reproducibility in H2O+

+These features are part of StataNow.

Description Also see

Description
Reproducibility is an important consideration in all scientific research, data analyses, and machine

learning experiments. The goal is ensure that repeating the same analysis under the same conditions will

yield identical results. In H2O, reproducibility can be affected by randomness in data splitting, model

training, and the design of the machine learning method.

Below, we provide a list of guidelines to help you ensure that your analysis and results are repro-

ducible. For more details, see H2O’s reproducibility page.

1. Control data splitting: If you split the dataset into multiple datasets, such as training and testing

sets, by using the h2oframe split command, control the randomness of the splitting by setting
the random-number seed with the rseed() option. For example, you might type

. _h2oframe split mydata, into(train test) split(0.8 0.2) rseed(19)

2. Set a seed when fitting a model: Gradient boosting machine (GBM) and random forest meth-

ods use random-number generation for various operations throughout estimation and grid search.

For example, the observation sampling rate and column sampling rate set by the samprate()
and colsamprate() options in the commands for GBM use a seed for sampling. To ensure re-

producibility, set a seed via the h2orseed() option for both the model and the grid search. For

example, you might type

. h2oml gbregress y x1 x2, h2orseed(19) ntrees(10(4)20)
> tune(grid(random, h2orseed(20)))

3. Make sure hyperparameters are the same in every execution: For reproducibility, the hyper-

parameters of the model, such as those set by the maxdepth(), samprate(), minobsleaf(), and
other hyperparameter options, should be identical in each execution of the estimation command.

4. Be careful with early stopping: Early stopping, specified by the stop() option in GBM and

random forest commands, stops the training process early when the model performance does not

improve. Even though early stopping may prevent overfitting and significantly improve execution

time, it is a potential source of nonreproducibility. By default, during training H2O determines an

interval 𝑇, and the model performance is scored only after 𝑇 trees are added to the model. In each

execution of the estimation command, this default interval 𝑇 can vary, which affects the scoring

of the model performance, and the training may stop at different times. To ensure that the scoring

of the model is consistent throughout multiple executions, specify the scoreevery() option with
early stopping. For example, you might type

. h2oml gbregress y x1 x2, h2orseed(19) ntrees(100) stop(3) scoreevery(1)

5. Control parallelism: The number ofmachine cores, the specified number of threads during cluster

initialization, and the parallelism level determine how a dataset is partitioned in memory (referred

to as “chunks” by H2O) and affect the estimation of various methods, such as GBM. While H2O

leverages parallelism to improve training time, this can introduce some randomness when running

on multiple threads and cores.
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You can limit parallelism during cluster initialization by specifying the desired number of threads

using the nthread() option in the h2o.init command. For example, you can type

. h2o init, nthread(1)

However, even though nthreads() is closely related to the number of cores, in H2O this does

not determine how it partitions the dataset into chunks, as this depends on the number of cores

available on the machine. If the number of chunks varies, the order of operations executed by H2O

will also differ. As a result, certain numeric operations may produce slightly different outcomes

depending on the order of operations. This can lead to small variations in metrics sensitive to

ordering, such as AUC, AUCPR, etc, when the same model with the same parameters is run in a

machine with different number of cores.

The reproducibility issues described above also apply when you choose to enable parallel model

building during grid search to reduce computational time. For example,

. h2oml gbregress y x1 x2, h2orseed(19) ntrees(100(50)200) tune(parallel(0))

6. Use the same version of H2O: A different version of H2O may contain slight differences in im-

plementation of the method, which can affect the reproducibility. To avoid discrepancies, ensure

that the same version of H2O is used each time the command is executed. The version of H2O in

Stata can be checked by using the h2o query command. In the output below, the H2O version is

3.46.0.6. For details on how to download and set up H2O, see [H2OML] H2O setup.

. h2o query
Cluster is running at http://127.0.0.1:54321.

H2O cluster uptime: 1 hour 0 mins
H2O cluster timezone: America/Chicago
H2O data parsing timezone: UTC
H2O cluster version: 3.46.0.6
H2O cluster version age: 3 months
H2O cluster total nodes: 1
H2O cluster free memory: 6.892 Gb
H2O cluster total cores: 28
H2O cluster allowed cores: 28
H2O cluster status: locked, healthy
H2O connection url: http://127.0.0.1:54321

Also see
[H2OML] h2oml — Introduction to commands for Stata integration with H2O machine learning+

[H2OML] h2oml gbm — Gradient boosting machine for regression and classification+

[H2OML] h2oml rf — Random forest for regression and classification+



Glossary+

+These features are part of StataNow.

bagging. Amodel agnostic procedure that generates perturbation of the dataset by random and indepen-

dent drawings (Breiman 1996).

base learner. A learner whose error rate is only slightly better than random guessing.

beeswarm plot. A type of data visualization used to display the individual data points as dots such that

the points do not overlap, resulting in a “swarm” of points. This type of plot is used by h2omlgraph
shapsummary.

bias-variance tradeoff. This controls the tension between learning and generalization. The tradeoff

concerns how to lower generalization error by reducing the bias and variance of the machine learning

methods. For details, see Fundamentals of machine learning in [H2OML] Intro.

black box method. A machine learning method that is difficult to interpret by design. For example,

linear models and decision trees belong to the class of interpretable models, but ensemble methods,

and neural networks are considered black box methods.

boosting. Amodel agnostic deterministic procedure that generates perturbation of the dataset by sequen-

tially reweighting it (Freund and Schapire 1997).

categorical encoding. A process of transforming categorical predictors into numerical representations

so that they can be used in machine learning models. For details, see [H2OML] encode option.

classification. A type of supervised machine learning task where the goal is to predict the category or

class of a response based on predictors.

classifier. A machine learning method that is designed for classification. When the response variable in

the supervised learning method is categorical, then the method implements classification.

DOT language. A plain-text graph description language used in the Graphviz software.

ensemble method. A mechanism that forms a smart committee of incompetent but carefully selected

members to solve a machine learning problem. For details, see Ensemble methods in [H2OML] Intro.

explainable method. A technique used in machine learning that enables explaining the predictions of a

model.

feature. Same as predictor.

fitting. A process of training a model on data by adjusting its hyperparameters to improve performance.

generalization. A process where the model not only performs well on the training data but also general-

izes to new (testing) data.

generalization error. A quantitative measure of how well a machine learning model can predict out-

comes for new (testing) data. Generalization error is the expected error on new data (the testing set).

grid search. A process of evaluating different hyperparameter configurations in the hyperparameter

space to find the best configuration that improves performance of a model.

hyperparameter. A parameter whose value is adjusted to control and improve the training process.

hyperparameter space. Possible values and ranges of the hyperparameters.

hyperparameter tuning. A process where the hyperparameters of a model are optimized to improve

performance.
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impurity measure. Ameasure to quantify the goodness of fit of a split in the regression or classification

trees.

k-fold cross-validation. A process of splitting a dataset into 𝑘 parts. For each of 𝑘 iterations, it uses one
part for validation and the remaining 𝑘 − 1 parts as a training subset for model fitting.
learn. In the machine learning context, learning refers to the process when a model uses data to adjust

its parameters to increase prediction accuracy.

learner. A machine learning method such as random forest and gradient boosting machine used for

learning.

majority-vote rule. A classification rule that returns a class that is the most commonly occurring one

among the predictors. Majority-vote rule is used in bagging and random forest to predict the class.

manifold hypothesis. The manifold hypothesis states that the observed high-dimensional data lie on a

low-dimensional manifold.

metric scoring. A process of evaluating the performance of a machine learning algorithm by using a

specified metric.

model agnostic. A methodology whose implementation does not directly require a particular model.

model selection. The process of building an optimal model by exploring a range of possible hyperpa-

rameters and selecting the ones that result in the best-performing model.

one-hot encoding. A process that decomposes categories of a categorical predictor into binary variables.

optimism bias. Bias that occurs when a sufficiently complex machine learning model memorizes the

patterns in the training data.

out-of-bag observations. Observations that are not used to grow the tree after bootstrap.

overfitting. A process of fitting a machine learning method too well on the training data so the method

fails to generalize to testing data. For details, see Fundamentals of machine learning in [H2OML] Intro.

performance metric. A quantitative measure used to evaluate the performance of a model.

pessimistic bias. Bias that occurs when the validation set is small and the machine learning model fails

to reach its full capacity.

predictive modeling. A process of developing a model that generates accurate predictions.

predictor importance. The degree to which a predictor influences the model’s predictions.

predictors. The inputs for a machine learning model. In classical statistics, these may be referred to as

independent variables, covariates, 𝑥 variables, or predictors. In machine learning literature, they are

also referred to as features.

proportion predictor importance. A type of predictor importance calculated by dividing the importance

of each predictor by the total sum of the importance of all predictors.

pruning. A process to optimize hyperparameters for regression and classification trees (Breiman et al.

1984).

response. The outputs for a machine learning model. In classical statistics, these may be referred to as

dependent variables, 𝑦 variables, or outcomes. In machine learning literature, they are also referred
to as targets.

root node. A node in the graph or tree that does not have parents. For details, see Decision trees in

[H2OML] Intro.



Glossary+ 354

scaled predictor importance. A type of predictor importance calculated by dividing the importance of

each predictor by the largest importance score of the predictors.

stopping criteria. In growing decision trees, the stopping criteria determine what will be used to halt

the additional splitting of the node. Examples of stopping criteria are the depth of the tree, minimum

number of observations in each tree, etc.

stump. A decision tree with depth equal to one. Stumps are weak learners.

supervised learning. A type of machine learning in which a method is trained on data where there is

an associated response for each observation. Linear regression, random forest, and gradient boosting

machine are examples of supervised learning.

surrogatemodel. An explainable model that approximates the prediction of the machine learningmodel.

target. See response.

terminal node. A node in the graph that does not have children. For details, see Decision trees in

[H2OML] Intro.

testing set. New data used to estimate the generalization error of the machine learning method.

three-way holdout. A process of splitting the dataset into three parts: training, validation, and testing

datasets. This method is used to evaluate model performance.

training set. Data used to train a machine learning method.

tuning budget. Time or computational resources allocated for hyperparameter tuning.

two-way holdout. A process of splitting the dataset into two parts: training and testing datasets. This

method is used to evaluate model performance.

underfitting. Underfitting occurs when a machine learning model is not complex enough to capture the

hidden patterns of the data, resulting in poor performance on the training and testing data.

unsupervised learning. A type of machine learning where there is no response variable.

validation dataset. A subset of data separated during the training process of a machine learning model

and used to evaluate the model’s performance during hyperparameter tuning.

variable importance. See predictor importance.

weak learner. See base learner.
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Subject and author index

See the combined subject index and the combined author index in the Stata Index.
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