
merge — Merge datasets

Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description
merge joins corresponding observations from the dataset currently in memory (called the master

dataset) with those from filename.dta (called the using dataset), matching on one or more key vari-

ables. merge can perform match merges (one-to-one, one-to-many, many-to-one, and many-to-many),

which are often called joins by database people. merge can also perform sequential merges, which have

no equivalent in the relational database world.

merge is for adding new variables from a second dataset to existing observations. You use merge, for
instance, when combining hospital patient and discharge datasets. If you wish to add new observations to

existing variables, then see [D] append. You use append, for instance, when adding current discharges
to past discharges.

To link datasets in separate frames, you can use the frlink and fralias add commands. Linking

and merging solve similar problems, and each is better than the other in some ways. You may prefer

linking, for instance, when dealing with an individual-level dataset and a county-level dataset. Linking

also works well when you have nested linkages such as linking a county dataset, a school-within-county

dataset, and a student-within-school dataset or when you need to link a dataset to itself. See [D] frlink

and [D] fralias for more information and examples.

By default, merge creates a new variable, merge, containing numeric codes concerning the source

and the contents of each observation in the merged dataset. These codes are explained below in the match

results table.

Key variables cannot be strLs.

If filename is specified without an extension, then .dta is assumed.

Quick start
One-to-one merge of mydata1.dta in memory with mydata2.dta on v1

merge 1:1 v1 using mydata2

Same as above, and also treat v2 as a key variable and name the new variable indicating the merge result

for each observation newv
merge 1:1 v1 v2 using mydata2, generate(newv)

Same as above, but keep only v3 from mydata2.dta and use default merge result variable merge
merge 1:1 v1 v2 using mydata2, keepusing(v3)

Same as above, but keep only observations in both datasets

merge 1:1 v1 v2 using mydata2, keepusing(v3) keep(match)

Same as above

merge 1:1 v1 v2 using mydata2, keepusing(v3) keep(3)

1

https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/dappend.pdf#dappend
https://www.stata.com/manuals/dfrlink.pdf#dfrlink
https://www.stata.com/manuals/dfralias.pdf#dfralias
https://www.stata.com/manuals/dfrlink.pdf#dfrlink
https://www.stata.com/manuals/dfralias.pdf#dfralias
https://www.stata.com/manuals/dmerge.pdf#dmergeOptionsresults
https://www.stata.com/manuals/dmerge.pdf#dmergeOptionsresults
https://www.stata.com/manuals/ddatatypes.pdf#dDatatypes

2 merge — Merge datasets

Same as above, but assert that all observations should match or return an error otherwise

merge 1:1 v1 v2 using mydata2, keepusing(v3) assert(3)

Replace missing data in mydata1.dta with values from mydata2.dta
merge 1:1 v1 v2 using mydata2, update

Replace missing and conflicting data in mydata1.dta with values from mydata2.dta
merge 1:1 v1 v2 using mydata2, update replace

Many-to-one merge on v1 and v2
merge m:1 v1 v2 using mydata2

One-to-many merge on v1 and v2
merge 1:m v1 v2 using mydata2

Menu
Data > Combine datasets > Merge two datasets

merge — Merge datasets 3

Syntax
One-to-one merge on specified key variables

merge 1:1 varlist using filename [, options]

Many-to-one merge on specified key variables

merge m:1 varlist using filename [, options]

One-to-many merge on specified key variables

merge 1:m varlist using filename [, options]

Many-to-many merge on specified key variables

merge m:m varlist using filename [, options]

One-to-one merge by observation

merge 1:1 n using filename [, options]

options Description

Options

keepusing(varlist) variables to keep from using data; default is all

generate(newvar) name of new variable to mark merge results; default is merge
nogenerate do not create merge variable

nolabel do not copy value-label definitions from using

nonotes do not copy notes from using

update update missing values of same-named variables in master with values
from using

replace replace all values of same-named variables in master with nonmissing
values from using (requires update)

noreport do not display match result summary table

force allow string/numeric variable type mismatch without error

Results

assert(results) specify required match results

keep(results) specify which match results to keep

sorted do not sort; dataset already sorted

sorted does not appear in the dialog box.

Options

� � �
Options �

keepusing(varlist) specifies the variables from the using dataset that are kept in the merged dataset.

By default, all variables are kept. For example, if your using dataset contains 2,000 demographic

characteristics but you want only sex and age, then type merge . . ., keepusing(sex age)

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/dmerge.pdf#dmergeOptionsresults
https://www.stata.com/manuals/dmerge.pdf#dmergeOptionsresults
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists

4 merge — Merge datasets

generate(newvar) specifies that the variable containing match results information should be named

newvar rather than merge.

nogenerate specifies that merge not be created. This would be useful if you also specified

keep(match), because keep(match) ensures that all values of merge would be 3.

nolabel specifies that value-label definitions from the using file be ignored. This option should be rare,

because definitions from the master are already used.

nonotes specifies that notes in the using dataset not be added to the merged dataset; see [D] notes.

update and replace both perform an update merge rather than a standard merge. In a standard merge,

the data in the master are the authority and inviolable. For example, if the master and using datasets

both contain a variable age, then matched observations will contain values from the master dataset,

while unmatched observations will contain values from their respective datasets.

If update is specified, then matched observations will update missing values from the master dataset

with values from the using dataset. Nonmissing values in the master dataset will be unchanged.

If replace is specified, then matched observations will contain values from the using dataset, unless

the value in the using dataset is missing.

Specifying either update or replace affects the meanings of the match codes. See Treatment of

overlapping variables for details.

noreport specifies that merge not present its summary table of match results.

force allows string/numeric variable type mismatches, resulting in missing values from the using

dataset. If omitted, merge issues an error; if specified, merge issues a warning.

� � �
Results �

assert(results) specifies the required match results. The possible results are

Numeric Equivalent

code word (results) Description

1 master observation appeared in master only

2 using observation appeared in using only

3 match observation appeared in both

4 match update observation appeared in both, missing values updated

5 match conflict observation appeared in both, conflicting nonmissing
values

Codes 4 and 5 can arise only if the update option is specified. If codes of both

4 and 5 could pertain to an observation, then 5 is used.

Numeric codes and words are equivalent when used in the assert() or keep() options.

The following synonyms are allowed: masters for master, usings for using, matches
and matched for match, match updates for match update, and match conflicts for

match conflict.

Using assert(match master) specifies that the merged file is required to include only matched

master or using observations and unmatched master observations, and may not include unmatched

using observations. Specifying assert() results in merge issuing an error message if there are match

results you did not explicitly allow.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/dnotes.pdf#dnotes
https://www.stata.com/manuals/dmerge.pdf#dmergeRemarksandexamplesTreatmentofoverlappingvariables
https://www.stata.com/manuals/dmerge.pdf#dmergeRemarksandexamplesTreatmentofoverlappingvariables

merge — Merge datasets 5

The order of the words or codes is not important, so all the following assert() specifications would

be the same:

assert(match master)

assert(master matches)

assert(1 3)

When the match results contain codes other than those allowed, return code 9 is returned, and the

merged dataset with the unanticipated results is left in memory to allow you to investigate.

keep(results) specifies which observations are to be kept from the merged dataset. Using keep(match
master) specifies keeping onlymatched observations and unmatchedmaster observations after merg-

ing.

keep() differs from assert() because it selects observations from the merged dataset rather than

enforcing requirements. keep() is used to pare the merged dataset to a given set of observations when

you do not care if there are other observations in the merged dataset. assert() is used to verify that

only a given set of observations is in the merged dataset.

You can specify both assert() and keep(). If you require matched observations and un-

matched master observations but you want only the matched observations, then you could specify

assert(match master) keep(match).

assert() and keep() are convenience options whose functionality can be duplicated using merge
directly.

. merge ..., assert(match master) keep(match)

is identical to

. merge ...

. assert _merge==1 | _merge==3

. keep if _merge==3

The following option is available with merge but is not shown in the dialog box:

sorted specifies that the master and using datasets are already sorted by varlist. If the datasets are

already sorted, then merge runs a little more quickly; the difference is hardly detectable, so this option

is of interest only where speed is of the utmost importance.

stata.com

Remarks and examples
Remarks are presented under the following headings:

Overview
Basic description
1:1 merges
m:1 merges
1:m merges
m:m merges
Sequential merges
Treatment of overlapping variables
Sort order
Troubleshooting m:m merges
Working with alias variables

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
http://stata.com

6 merge — Merge datasets

Examples
Video example

Overview
merge 1:1 varlist . . . specifies a one-to-one match merge. varlist specifies variables common to

both datasets that together uniquely identify single observations in both datasets. For instance, suppose

you have a dataset of customer information, called customer.dta, and have a second dataset of other

information about roughly the same customers, called other.dta. Suppose further that both datasets

identify individuals by using the pid variable, and there is only one observation per individual in each

dataset. You would merge the two datasets by typing

. use customer

. merge 1:1 pid using other

Reversing the roles of the two files would be fine. Choosing which dataset is the master and which

is the using matters only if there are overlapping variable names. 1:1 merges are less common than 1:m
and m:1 merges.

merge 1:m and merge m:1 specify one-to-many and many-to-one match merges, respectively. To

illustrate the two choices, suppose you have a dataset containing information about individual hospitals,

called hospitals.dta. In this dataset, each observation contains information about one hospital, which

is uniquely identified by the hospitalid variable. You have a second dataset called discharges.dta,
which contains information on individual hospital stays by many different patients. discharges.dta
also identifies hospitals by using the hospitalid variable. You would like to join all the information in

both datasets. There are two ways you could do this.

merge 1:m varlist . . . specifies a one-to-many match merge.

. use hospitals

. merge 1:m hospitalid using discharges

would join the discharge data to the hospital data. This is a 1:m merge because hospitalid uniquely

identifies individual observations in the dataset in memory (hospitals), but could correspond to many

observations in the using dataset.

merge m:1 varlist . . . specifies a many-to-one match merge.

. use discharges

. merge m:1 hospitalid using hospitals

would join the hospital data to the discharge data. This is an m:1 merge because hospitalid can corre-

spond to many observations in the master dataset, but uniquely identifies individual observations in the

using dataset.

merge m:m varlist . . . specifies a many-to-many match merge. This is allowed for completeness, but

it is difficult to imagine an example of when it would be useful. For an m:m merge, varlist does not

uniquely identify the observations in either dataset. Matching is performed by combining observations

with equal values of varlist; within matching values, the first observation in the master dataset is matched

with the first matching observation in the using dataset; the second, with the second; and so on. If there

is an unequal number of observations within a group, then the last observation of the shorter group is

used repeatedly to match with subsequent observations of the longer group. Use of merge m:m is not

encouraged.

merge — Merge datasets 7

merge 1:1 n performs a sequential merge. n is not a variable name; it is Stata syntax for ob-

servation number. A sequential merge performs a one-to-one merge on observation number. The first

observation of the master dataset is matched with the first observation of the using dataset; the second,

with the second; and so on. If there is an unequal number of observations, the remaining observations

are unmatched. Sequential merges are dangerous, because they require you to rely on sort order to know

that observations belong together. Use this merge at your own risk.

Basic description
Think of merge as being master + using = merged result.

Call the dataset in memory the master dataset, and the dataset on disk the using dataset. This way we

have general names that are not dependent on individual datasets.

Suppose we have two datasets,

master in memory on disk in file filename

id age id wgt

1 22 1 130
2 56 2 180
5 17 4 110

Wewould like to join together the age andweight information. We notice that the id variable identifies
unique observations in both datasets: if you tell me the id number, then I can tell you the one observation

that contains information about that id. This is true for both the master and the using datasets.

Because id uniquely identifies observations in both datasets, this is a 1:1 merge. We can bring in the

dataset from disk by typing

. merge 1:1 id using filename

in memory in filename.dta
master + using = merged result

id age id wgt id age wgt

1 22 1 130 1 22 130 (matched)
2 56 2 180 2 56 180 (matched)
5 17 4 110 5 17 . (master only)

4 . 110 (using only)

The original data in memory are called the master data. The data in filename.dta are called the using

data. After merge, the merged result is left in memory. The id variable is called the key variable. Stata

jargon is that the datasets were merged on id.

Observations for id==1 existed in both the master and using datasets and so were combined in the

merged result. The same occurred for id==2. For id==5 and id==4, however, no matches were found

and thus each became a separate observation in the merged result. Thus each observation in the merged

result came from one of three possible sources:

8 merge — Merge datasets

Numeric Equivalent

code word Description

1 master originally appeared in master only

2 using originally appeared in using only

3 match originally appeared in both

merge — Merge datasets 9

merge encodes this information into new variable merge, which merge adds to the merged result:

in memory in filename.dta
master + using = merged result

id age id wgt id age wgt _merge

1 22 1 130 1 22 130 3
2 56 2 180 2 56 180 3
5 17 4 110 5 17 . 1

4 . 110 2

Note: Above we show the master and using data sorted by id before merging; this was for illustrative

purposes. The dataset resulting from a 1:1 merge will have the same data, regardless of the sort order of

the master and using datasets.

The formal definition for merge behavior is the following: Start with the first observation of the

master. Find the corresponding observation in the using data, if there is one. Record the matched or un-

matched result. Proceed to the next observation in the master dataset. When you finish working through

the master dataset, work through unused observations from the using data. By default, unmatched ob-

servations are kept in the merged data, whether they come from the master dataset or the using dataset.

Remember this formal definition. It will serve you well.

1:1 merges
The example shown above is called a 1:1 merge, because the key variable uniquely identified each

observation in each of the datasets.

A variable or variable list uniquely identifies the observations if each distinct value of the variable(s)

corresponds to one observation in the dataset.

In some datasets, multiple variables are required to identify the observations. Imagine data obtained

by observing patients at specific points in time so that variables pid and time, taken together, identify
the observations. Below we have two such datasets and run a 1:1 merge on pid and time,

. merge 1:1 pid time using filename

master + using = merged result

pid time x1 pid time x2 pid time x1 x2 _merge

14 1 0 14 1 7 14 1 0 7 3
14 2 0 14 2 9 14 2 0 9 3
14 4 0 16 1 2 14 4 0 . 1
16 1 1 16 2 3 16 1 1 2 3
16 2 1 17 1 5 16 2 1 3 3
17 1 0 17 2 2 17 1 0 5 3

17 2 . 2 2

This is a 1:1 merge because the combination of the values of pid and time uniquely identifies ob-

servations in both datasets.

By default, there is nothing about a 1:1 merge that implies that all, or even any of, the observations

match. Above five observations matched, one observation was only in the master (subject 14 at time 4),

and another was only in the using (subject 17 at time 2).

10 merge — Merge datasets

m:1 merges
In an m:1 merge, the key variable or variables uniquely identify the observations in the using data,

but not necessarily in the master data. Suppose you had person-level data within regions and you wished

to bring in regional data. Here is an example:

. merge m:1 region using filename

master + using = merged result

id region a region x id region a x _merge

1 2 26 1 15 1 2 26 13 3
2 1 29 2 13 2 1 29 15 3
3 2 22 3 12 3 2 22 13 3
4 3 21 4 11 4 3 21 12 3
5 1 24 5 1 24 15 3
6 5 20 6 5 20 . 1

. 4 . 11 2

To bring in the regional information, we need to merge on region. The values of region identify

individual observations in the using data, but it is not an identifier in the master data.

We show the merged dataset sorted by id because this makes it easier to see how the merged dataset

was constructed. For each observation in the master data, merge finds the corresponding observation in

the using data. merge combines the values of the variables in the using dataset to the observations in the

master dataset.

1:m merges
1:m merges are similar to m:1, except that now the key variables identify unique observations in the

master dataset. Any datasets that can be merged using an m:1 merge may be merged using a 1:m merge

by reversing the roles of the master and using datasets. Here is the same example as used previously,

with the master and using datasets reversed:

. merge 1:m region using filename

master + using = merged result

region x id region a region x id a _merge

1 15 1 2 26 1 15 2 29 3
2 13 2 1 29 1 15 5 24 3
3 12 3 2 22 2 13 1 26 3
4 11 4 3 21 2 13 3 22 3

5 1 24 3 12 4 21 3
6 5 20 4 11 . . 1

5 . 6 20 2

This merged result is identical to the merged result in the previous section, except for the sort order and

the contents of merge. This time, we show themerged result sorted by region rather than id. Reversing
the roles of the files causes a reversal in the 1s and 2s for merge: where merge was previously 1, it

is now 2, and vice versa. These exchanged merge values reflect the reversed roles of the master and

using data.

merge — Merge datasets 11

For each observation in the master data, merge found the corresponding observation(s) in the us-

ing data and then wrote down the matched or unmatched result. Once the master observations were

exhausted, merge wrote down any observations from the using data that were never used.

m:m merges
m:m specifies a many-to-many merge and is a bad idea. In an m:m merge, observations are matched

within equal values of the key variable(s), with the first observation being matched to the first; the sec-

ond, to the second; and so on. If the master and using have an unequal number of observations within

the group, then the last observation of the shorter group is used repeatedly to match with subsequent

observations of the longer group. Thus m:m merges are dependent on the current sort order—something

which should never happen.

Because m:m merges are such a bad idea, we are not going to show you an example. If you think that

you need an m:m merge, then you probably need to work with your data so that you can use a 1:m or m:1
merge. Tips for this are given in Troubleshooting m:m merges below.

Sequential merges
In a sequentialmerge, there are no key variables. Observations arematched solely on their observation

number:

. merge 1:1 _n using filename

master + using = merged result

x1 x2 x1 x2 _merge

10 7 10 7 3
30 2 30 2 3
20 1 20 1 3
5 9 5 9 3

3 . 3 2

In the example above, the using data are longer than the master, but that could be reversed. In most

cases where sequential merges are appropriate, the datasets are expected to be of equal length, and you

should type

. merge 1:1 _n using filename, assert(match) nogenerate

Sequential merges, like m:m merges, are dangerous. Both depend on the current sort order of the data.

Treatment of overlapping variables
When performing merges of any type, the master and using datasets may have variables in common

other than the key variables. We will call such variables overlapping variables. For instance, if the

variables in the master and using datasets are

master: id, region, sex, age, race
using: id, sex, bp, race

and id is the key variable, then the overlapping variables are sex and race.

https://www.stata.com/manuals/dmerge.pdf#dmergeRemarksandexamplesTroubleshootingmmmerges

12 merge — Merge datasets

By default, merge treats values from the master as inviolable. When observations match, it is the

master’s values of the overlapping variables that are recorded in the merged result.

If you specify the update option, however, then all missing values of overlapping variables in

matched observations are replaced with values from the using data. Because of this new behavior, the

merge codes change somewhat. Codes 1 and 2 keep their old meaning. Code 3 splits into codes 3, 4, and

5. Codes 3, 4, and 5 are filtered according to the following rules; the first applicable rule is used.

5 corresponds to matched observations where at least one overlapping variable had conflicting

nonmissing values.

4 corresponds to matched observations where at least one missing value was updated, but there

were no conflicting nonmissing values.

3 means observations matched, and there were neither updated missing values nor conflicting

nonmissing values.

If you specify both the update and replace options, then the merge==5 cases are updated with

values from the using data.

Sort order
As we have mentioned, in the 1:1, 1:m, and m:1match merges, the sort orders of the master and using

datasets do not affect the data in the merged dataset. This is not the case of m:m, which we recommend

you never use.

Sorting is used by merge internally for efficiency, so the merged result can be produced most quickly

when the master and using datasets are already sorted by the key variable(s) before merging. You are

not required to have the dataset sorted before using merge, however, because merge will sort behind the

scenes, if necessary. If the using dataset is not sorted, then a temporary copy is made and sorted to ensure

that the current sort order on disk is not affected.

All of this is to reassure you that 1) your datasets on disk will not be modified by merge and 2) despite

the fact that our discussion has ignored sort issues, merge is, in fact, efficient behind the scenes.

It hardly makes any difference in run times, but if you know that the master and using data are already

sorted by the key variable(s), then you can specify the sorted option. All that will be saved is the time

merge would spend discovering that fact for itself.

Themerged result produced by merge orders the variables and observations in a special and sometimes

useful way. If you think of datasets as tables, then the columns for the new variables appear to the right

of what was the master. If the master data originally had 𝑘 variables, then the new variables will be the

(𝑘 + 1)st, (𝑘 + 2)nd, and so on. The new observations are similarly ordered so that they all appear at the

end of what was the master. If the master originally had 𝑁 observations, then the new observations, if

any, are the (𝑁 +1)st, (𝑁 +2)nd, and so on. Thus the original master data can be found from the merged

result by extracting the first 𝑘 variables and first 𝑁 observations. If merge with the update option was

specified, however, then be aware that the extracted master may have some updated values.

If you care about the ordering of observations in the data after a merge, then you should sort the data

after the merge. You should sort it in such a way that it has a unique ordering; see Sorting with ties in

[D] sort. If, against this recommendation, you wish to have a reproducible ordering after a merge, then

read the next paragraph. But be forewarned; just because something is reproducible does not mean it is

useful. Again, see Sorting with ties.

https://www.stata.com/manuals/dsort.pdf#dsortRemarksandexamplesSortingwithties
https://www.stata.com/manuals/dsort.pdf#dsort
https://www.stata.com/manuals/dsort.pdf#dsortRemarksandexamplesSortingwithties

merge — Merge datasets 13

The resulting dataset after any merge is unsorted. That is to say, if you type describe, the “Sorted
by” result will be empty. That is not to say that the data will not be ordered; a dataset always has an

order. After 1:1 merges, the ordering will always be in the original order of the master dataset, with any

additional observations from the using dataset at the bottom and in their order from the using dataset.

For all other merges, you will need to go to some effort to ensure a reproducible ordering. For m:1,

1:m, and m:m merges, you must first sort the master and using datasets by the merge keys and by other

variables that will produce a unique ordering of the dataset. You may have to create those other variables.

(See Sorting with ties for obtaining a unique sort.) After m:1 merges, the ordering will be the original

ordering of the master data with any unmatched observations from the using dataset appended to the

bottom in their order from the using dataset. After 1:m and m:m merges, the ordering is difficult to

explain. Regardless, the ordering will be the same if you repeat the merge after uniquely sorting each

dataset—it is reproducible.

Troubleshooting m:m merges
First, if you think you need to perform an m:m merge, then we suspect you are wrong. If you would

like to match every observation in the master to every observation in the using with the same values of

the key variable(s), then you should be using joinby; see [D] joinby.

If you still want to use merge, then it is likely that you have forgotten one or more key variables that

could be used to identify observations within groups. Perhaps you have panel data with 4 observations

on each subject, and you are thinking that what you need to do is

. merge m:m subjectid using filename

Ask yourself if you have a variable that identifies observation within panel, such as a sequence number

or a time. If you have, say, a time variable, then you probably should try something like

. merge 1:m subjectid time using filename

(You might need a 1:1 or m:1 merge; 1:m was arbitrarily chosen for the example.)

If you do not have a time or time-like variable, then ask yourself if there is a meaning to matching the

first observations within subject, the second observations within subject, and so on. If so, then there is a

concept of sequence within subject.

Suppose you do indeed have a sequence concept, but in your dataset it is recorded via the ordering

of the observations. Here you are in a dangerous situation because any kind of sorting would lose the

identity of the first, second, and 𝑛th observation within subject. Your first goal should be to fix this

problem by creating an explicit sequence variable from the current ordering—your merge can come

later.

Start with your master data. Type

. sort subjectid, stable

. by subjectid: generate seqnum = _n

Do not omit sort’s stable option. That is what will keep the observations in the same order within

subject. Save the data. Perform these same three steps on your using data.

After fixing the datasets, you can now type

. merge 1:m subjectid seqnum using filename

https://www.stata.com/manuals/dsort.pdf#dsortRemarksandexamplesSortingwithties
https://www.stata.com/manuals/djoinby.pdf#djoinby
https://www.stata.com/manuals/dsort.pdf#dsort

14 merge — Merge datasets

If you do not think there is a meaning to being the first, second, and 𝑛th observation within subject,
then you need to ask yourself what it means to match the first observations within subjectid, the second
observations within subjectid, and so on. Would it make equal sense to match the first with the third,

the second with the fourth, or any other haphazard matching? If so, then there is no real ordering, so

there is no real meaning to merging. You are about to obtain a haphazard result; you need to rethink your

merge.

Working with alias variables
merge allows alias variables in the master and using datasets, with the following restrictions. An alias

variable with a broken linkage will cause merge to exit with an informative error message; see [D] fralias

for examples.

If a key variable in the master dataset is an alias, then it must be an alias with the same linkage in the

using dataset; otherwise, you get something like the following error message:

variable keyvar is alias in master data but float in using data
Key variables (on which observations are matched) may be type alias,
but their alias characteristics must match between the master and
using datasets for the merged data to be correct and complete. When
alias characteristics do not match, or when a master key variable is
alias but the using key variable is not, you could use command
frunalias to recast the key variables in the master data
to avoid this error message.

r(106);

If an overlapping variable in the master dataset is an alias, then it must be an alias with the same

linkage in the using dataset; otherwise, you get something like the following error message:

variable ovar is alias in master data but float in using data
You could use command frunalias to recast ovar in the master data to avoid
this error message.

r(106);

Examples

Example 1: A 1:1 merge
We have two datasets, one of which has information about the size of old automobiles and the other

of which has information about their expense:

. use https://www.stata-press.com/data/r18/autosize
(1978 automobile data)
. list

make weight length

1. Toyota Celica 2,410 174
2. BMW 320i 2,650 177
3. Cad. Seville 4,290 204
4. Pont. Grand Prix 3,210 201
5. Datsun 210 2,020 165

6. Plym. Arrow 3,260 170

https://www.stata.com/manuals/dfralias.pdf#dfralias

merge — Merge datasets 15

. use https://www.stata-press.com/data/r18/autoexpense
(1978 automobile data)
. list

make price mpg

1. Toyota Celica 5,899 18
2. BMW 320i 9,735 25
3. Cad. Seville 15,906 21
4. Pont. Grand Prix 5,222 19
5. Datsun 210 4,589 35

We can see that these datasets contain different information about nearly the same cars—the autosize
file has one more car. We would like to get all the information about all the cars into one dataset.

Because we are adding new variables to old variables, this is a job for the merge command. We need

only to decide what type of match merge we need.

Looking carefully at the datasets, we see that the make variable, which identifies the cars in each of

the two datasets, also identifies individual observations within the datasets. What this means is that if

you tell me the make of car, I can tell you the one observation that corresponds to that car. Because this

is true for both datasets, we should use a 1:1 merge.

We will start with a clean slate to show the full process:

. use https://www.stata-press.com/data/r18/autosize
(1978 automobile data)
. merge 1:1 make using https://www.stata-press.com/data/r18/autoexpense

Result Number of obs

Not matched 1
from master 1 (_merge==1)
from using 0 (_merge==2)

Matched 5 (_merge==3)

. list

make weight length price mpg _merge

1. BMW 320i 2,650 177 9,735 25 Matched (3)
2. Cad. Seville 4,290 204 15,906 21 Matched (3)
3. Datsun 210 2,020 165 4,589 35 Matched (3)
4. Plym. Arrow 3,260 170 . . Master only (1)
5. Pont. Grand Prix 3,210 201 5,222 19 Matched (3)

6. Toyota Celica 2,410 174 5,899 18 Matched (3)

The merge is successful—all the data are present in the combined dataset, even that from the one car that

has only size information. If we wanted only those makes for which all information is present, it would

be up to us to drop the observations for which merge < 3.

16 merge — Merge datasets

Example 2: Requiring matches
Suppose we had the same setup as in the previous example, but we erroneously think that we have all

the information on all the cars. We could tell merge that we expect only matches by using the assert
option.

. use https://www.stata-press.com/data/r18/autosize, clear
(1978 automobile data)
. merge 1:1 make using https://www.stata-press.com/data/r18/autoexpense,
> assert(match)
merge: after merge, not all observations matched

(merged result left in memory)
r(9);

merge tells us that there is a problem with our assumption. To see how many mismatches there were,

we can tabulate merge:

. tabulate _merge
_merge Freq. Percent Cum.

master only (1) 1 16.67 16.67
matched (3) 5 83.33 100.00

Total 6 100.00

If we would like to list the problem observation, we can type

. list if _merge < 3

make weight length price mpg _merge

4. Plym. Arrow 3,260 170 . . master only (1)

If we were convinced that all data should be complete in the two datasets, we would have to rectify

the mismatch in the original datasets.

Example 3: Keeping just the matches
Once again, suppose that we had the same datasets as before, but this time we want the final dataset

to have only those observations for which there is a match. We do not care if there are mismatches—all

that is important are the complete observations. By using the keep(match) option, we will guarantee

that this happens. Because we are keeping only those observations for which the key variable matches,

there is no need to generate the merge variable. We could do the following:

. use https://www.stata-press.com/data/r18/autosize, clear
(1978 automobile data)
. merge 1:1 make using https://www.stata-press.com/data/r18/autoexpense,
> keep(match) nogenerate

Result Number of obs

Not matched 0
Matched 5

https://www.stata.com/manuals/perror.pdf#perrorRemarksandexamplesr(9)

merge — Merge datasets 17

. list

make weight length price mpg

1. BMW 320i 2,650 177 9,735 25
2. Cad. Seville 4,290 204 15,906 21
3. Datsun 210 2,020 165 4,589 35
4. Pont. Grand Prix 3,210 201 5,222 19
5. Toyota Celica 2,410 174 5,899 18

Example 4: Many-to-one matches
We have two datasets: one has salespeople in regions and the other has regional data about sales. We

would like to put all the information into one dataset. Here are the datasets:

. use https://www.stata-press.com/data/r18/sforce, clear
(Sales Force)
. list

region name

1. N Cntrl Krantz
2. N Cntrl Phipps
3. N Cntrl Willis
4. NE Ecklund
5. NE Franks

6. South Anderson
7. South Dubnoff
8. South Lee
9. South McNeil

10. West Charles

11. West Cobb
12. West Grant

. use https://www.stata-press.com/data/r18/dollars
(Regional Sales & Costs)
. list

region sales cost

1. N Cntrl 419,472 227,677
2. NE 360,523 138,097
3. South 532,399 330,499
4. West 310,565 165,348

We can see that the region would be used to match observations in the two datasets, and this time we

see that region identifies individual observations in the dollars dataset but not in the sforce dataset.

This means we will have to use either an m:1 or a 1:m merge. Here we will open the sforce dataset

and then merge the dollars dataset. This will be an m:1 merge, because region does not identify

individual observations in the dataset in memory but does identify them in the using dataset. Here is the

command and its result:

18 merge — Merge datasets

. use https://www.stata-press.com/data/r18/sforce
(Sales Force)
. merge m:1 region using https://www.stata-press.com/data/r18/dollars
(label region already defined)

Result Number of obs

Not matched 0
Matched 12 (_merge==3)

. list

region name sales cost _merge

1. N Cntrl Krantz 419,472 227,677 Matched (3)
2. N Cntrl Phipps 419,472 227,677 Matched (3)
3. N Cntrl Willis 419,472 227,677 Matched (3)
4. NE Ecklund 360,523 138,097 Matched (3)
5. NE Franks 360,523 138,097 Matched (3)

6. South Anderson 532,399 330,499 Matched (3)
7. South Dubnoff 532,399 330,499 Matched (3)
8. South Lee 532,399 330,499 Matched (3)
9. South McNeil 532,399 330,499 Matched (3)

10. West Charles 310,565 165,348 Matched (3)

11. West Cobb 310,565 165,348 Matched (3)
12. West Grant 310,565 165,348 Matched (3)

We can see from the result that all the values of region were matched in both datasets. This is a rare

occurrence in practice!

Had we had the dollars dataset in memory and merged in the sforce dataset, we would have done

a 1:m merge.

We would now like to use a series of examples that shows how merge treats nonkey variables, which

have the same names in the two datasets. We will call these “overlapping” variables.

merge — Merge datasets 19

Example 5: Overlapping variables
Here are two datasets whose only purpose is for this illustration:

. use https://www.stata-press.com/data/r18/overlap1, clear

. list, sepby(id)

id seq x1 x2

1. 1 1 1 1
2. 1 2 1 .
3. 1 3 1 2
4. 1 4 . 2

5. 2 1 . 1
6. 2 2 . 2
7. 2 3 1 1
8. 2 4 1 2
9. 2 5 .a 1

10. 2 6 .a 2

11. 3 1 . .a
12. 3 2 . 1
13. 3 3 . .
14. 3 4 .a .a

15. 10 1 5 8

. use https://www.stata-press.com/data/r18/overlap2

. list

id bar x1 x2

1. 1 11 1 1
2. 2 12 . 1
3. 3 14 . .a
4. 20 18 1 1

We can see that id can be used as the key variable for putting the two datasets together. We can also see

that there are two overlapping variables: x1 and x2.

20 merge — Merge datasets

We will start with a simple m:1 merge:

. use https://www.stata-press.com/data/r18/overlap1

. merge m:1 id using https://www.stata-press.com/data/r18/overlap2
Result Number of obs

Not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)

Matched 14 (_merge==3)

. list, sepby(id)

id seq x1 x2 bar _merge

1. 1 1 1 1 11 Matched (3)
2. 1 2 1 . 11 Matched (3)
3. 1 3 1 2 11 Matched (3)
4. 1 4 . 2 11 Matched (3)

5. 2 1 . 1 12 Matched (3)
6. 2 2 . 2 12 Matched (3)
7. 2 3 1 1 12 Matched (3)
8. 2 4 1 2 12 Matched (3)
9. 2 5 .a 1 12 Matched (3)

10. 2 6 .a 2 12 Matched (3)

11. 3 1 . .a 14 Matched (3)
12. 3 2 . 1 14 Matched (3)
13. 3 3 . . 14 Matched (3)
14. 3 4 .a .a 14 Matched (3)

15. 10 1 5 8 . Master only (1)

16. 20 . 1 1 18 Using only (2)

Careful inspection shows that for the matched id, the values of x1 and x2 are still the values that were

originally in the overlap1 dataset. This is the default behavior of merge—the data in the master dataset

are the authority and are kept intact.

merge — Merge datasets 21

Example 6: Updating missing data
Now we would like to investigate the update option. Used by itself, it will replace missing values in

the master dataset with values from the using dataset:

. use https://www.stata-press.com/data/r18/overlap1, clear

. merge m:1 id using https://www.stata-press.com/data/r18/overlap2, update
Result Number of obs

Not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)

Matched 14
not updated 5 (_merge==3)
missing updated 4 (_merge==4)
nonmissing conflict 5 (_merge==5)

. list, sepby(id)

id seq x1 x2 bar _merge

1. 1 1 1 1 11 Matched (3)
2. 1 2 1 1 11 Missing updated (4)
3. 1 3 1 2 11 Nonmissing conflict (5)
4. 1 4 1 2 11 Nonmissing conflict (5)

5. 2 1 . 1 12 Matched (3)
6. 2 2 . 2 12 Nonmissing conflict (5)
7. 2 3 1 1 12 Matched (3)
8. 2 4 1 2 12 Nonmissing conflict (5)
9. 2 5 . 1 12 Missing updated (4)

10. 2 6 . 2 12 Nonmissing conflict (5)

11. 3 1 . .a 14 Matched (3)
12. 3 2 . 1 14 Matched (3)
13. 3 3 . .a 14 Missing updated (4)
14. 3 4 . .a 14 Missing updated (4)

15. 10 1 5 8 . Master only (1)

16. 20 . 1 1 18 Using only (2)

Looking through the resulting dataset observation by observation, we can see both what the update
option updated as well as how the merge variable gets its values.

22 merge — Merge datasets

The following is a listing that shows what is happening, where x1 m and x2 m come from the master

dataset (overlap1), x1 u and x2 u come from the using dataset (overlap2), and x1 and x2 are the

values that appear when using merge with the update option.

id x1_m x1_u x1 x2_m x2_u x2 _merge

1. 1 1 1 1 1 1 1 matched (3)
2. 1 1 1 1 . 1 1 missing updated (4)
3. 1 1 1 1 2 1 2 nonmissing conflict (5)
4. 1 . 1 1 2 1 2 nonmissing conflict (5)

5. 2 . . . 1 1 1 matched (3)
6. 2 . . . 2 1 2 nonmissing conflict (5)
7. 2 1 . 1 1 1 1 matched (3)
8. 2 1 . 1 2 1 2 nonmissing conflict (5)
9. 2 .a . . 1 1 1 missing updated (4)

10. 2 .a . . 2 1 2 nonmissing conflict (5)

11. 3a .a .a matched (3)
12. 3 . . . 1 .a 1 matched (3)
13. 3a .a missing updated (4)
14. 3 .a . . .a .a .a missing updated (4)

15. 10 5 . 5 8 . 8 master only (1)

16. 20 . 1 1 . 1 1 using only (2)

From this, we can see two important facts: if there are both a conflict and an updated value, the value

of merge will reflect that there was a conflict, and missing values in the master dataset are updated by

missing values in the using dataset.

Example 7: Updating all common observations
We would like to see what happens if the update and replace options are specified. The replace

option extends the action of update to use nonmissing values of the using dataset to replace values in

the master dataset. The values of merge are unaffected by using both update and replace.

. use https://www.stata-press.com/data/r18/overlap1, clear

. merge m:1 id using https://www.stata-press.com/data/r18/overlap2, update replace
Result Number of obs

Not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)

Matched 14
not updated 5 (_merge==3)
missing updated 4 (_merge==4)
nonmissing conflict 5 (_merge==5)

merge — Merge datasets 23

. list, sepby(id)

id seq x1 x2 bar _merge

1. 1 1 1 1 11 Matched (3)
2. 1 2 1 1 11 Missing updated (4)
3. 1 3 1 1 11 Nonmissing conflict (5)
4. 1 4 1 1 11 Nonmissing conflict (5)

5. 2 1 . 1 12 Matched (3)
6. 2 2 . 1 12 Nonmissing conflict (5)
7. 2 3 1 1 12 Matched (3)
8. 2 4 1 1 12 Nonmissing conflict (5)
9. 2 5 . 1 12 Missing updated (4)

10. 2 6 . 1 12 Nonmissing conflict (5)

11. 3 1 . .a 14 Matched (3)
12. 3 2 . 1 14 Matched (3)
13. 3 3 . .a 14 Missing updated (4)
14. 3 4 . .a 14 Missing updated (4)

15. 10 1 5 8 . Master only (1)

16. 20 . 1 1 18 Using only (2)

Example 8: More on the keep() option
Suppose we would like to use the update option, as we did above, but we would like to keep only

those observations for which the value of the key variable, id, was found in both datasets. This will

be more complicated than in our earlier example, because the update option splits the matches into

matches, match updates, and match conflicts. We must either use all of these code words in the

keep option or use their numerical equivalents, 3, 4, and 5. Here the latter is simpler.

. use https://www.stata-press.com/data/r18/overlap1, clear

. merge m:1 id using https://www.stata-press.com/data/r18/overlap2, update
> keep(3 4 5)

Result Number of obs

Not matched 0
Matched 14

not updated 5 (_merge==3)
missing updated 4 (_merge==4)
nonmissing conflict 5 (_merge==5)

24 merge — Merge datasets

. list, sepby(id)

id seq x1 x2 bar _merge

1. 1 1 1 1 11 Matched (3)
2. 1 2 1 1 11 Missing updated (4)
3. 1 3 1 2 11 Nonmissing conflict (5)
4. 1 4 1 2 11 Nonmissing conflict (5)

5. 2 1 . 1 12 Matched (3)
6. 2 2 . 2 12 Nonmissing conflict (5)
7. 2 3 1 1 12 Matched (3)
8. 2 4 1 2 12 Nonmissing conflict (5)
9. 2 5 . 1 12 Missing updated (4)

10. 2 6 . 2 12 Nonmissing conflict (5)

11. 3 1 . .a 14 Matched (3)
12. 3 2 . 1 14 Matched (3)
13. 3 3 . .a 14 Missing updated (4)
14. 3 4 . .a 14 Missing updated (4)

Example 9: A one-to-many merge
As a final example, we would like show one example of a 1:m merge. There is nothing conceptually

different here; what is interesting is the order of the observations in the final dataset:

. use https://www.stata-press.com/data/r18/overlap2, clear

. merge 1:m id using https://www.stata-press.com/data/r18/overlap1
Result Number of obs

Not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)

Matched 14 (_merge==3)

merge — Merge datasets 25

. list, sepby(id)

id bar x1 x2 seq _merge

1. 1 11 1 1 1 Matched (3)

2. 2 12 . 1 1 Matched (3)

3. 3 14 . .a 1 Matched (3)

4. 20 18 1 1 . Master only (1)

5. 1 11 1 1 2 Matched (3)
6. 1 11 1 1 3 Matched (3)
7. 1 11 1 1 4 Matched (3)

8. 2 12 . 1 2 Matched (3)
9. 2 12 . 1 3 Matched (3)

10. 2 12 . 1 4 Matched (3)
11. 2 12 . 1 5 Matched (3)
12. 2 12 . 1 6 Matched (3)

13. 3 14 . .a 2 Matched (3)
14. 3 14 . .a 3 Matched (3)
15. 3 14 . .a 4 Matched (3)

16. 10 . 5 8 1 Using only (2)

We can see here that the first four observations come from the master dataset, and all additional

observations, whether matched or unmatched, come below these observations. This illustrates that the

master dataset is always in the upper-left corner of the merged dataset.

Video example
How to merge files into a single dataset

References
Canette, I. 2014. Using resampling methods to detect influential points. The Stata Blog: Not Elsewhere Classified. https:

//blog.stata.com/2014/05/08/using-resampling-methods-to-detect-influential-points/.

Chatfield, M. D. 2015. precombine: Acommand to examine𝑛 ≥ 2 datasets before combining. Stata Journal 15: 607–626.

Golbe, D. L. 2010. Stata tip 83: Merging multilingual datasets. Stata Journal 10: 152–156.

Gould, W.W. 2011a. Merging data, part 1: Merges gone bad. The Stata Blog: Not Elsewhere Classified. https://blog.stata.

com/2011/04/18/merging-data-part-1-merges-gone-bad/.

———. 2011b. Merging data, part 2: Multiple-key merges. The Stata Blog: Not Elsewhere Classified. https://blog.stata.

com/2011/05/27/merging-data-part-2-multiple-key-merges/.

Mazrekaj, D., and J. Wursten. 2021. Stata tip 142: joinby is the real merge m:m. Stata Journal 21: 1065–1068.

Wasi, N., and A. Flaaen. 2015. Record linkage using Stata: Preprocessing, linking, and reviewing utilities. Stata Journal

15: 672–697.

https://www.youtube.com/watch?v=niGZBRyyDuY
https://blog.stata.com/2014/05/08/using-resampling-methods-to-detect-influential-points/
https://blog.stata.com/2014/05/08/using-resampling-methods-to-detect-influential-points/
https://www.stata-journal.com/article.html?article=dm0081
https://www.stata-journal.com/article.html?article=dm0046
https://blog.stata.com/2011/04/18/merging-data-part-1-merges-gone-bad/
https://blog.stata.com/2011/04/18/merging-data-part-1-merges-gone-bad/
https://blog.stata.com/2011/05/27/merging-data-part-2-multiple-key-merges/
https://blog.stata.com/2011/05/27/merging-data-part-2-multiple-key-merges/
https://doi.org/10.1177/1536867X211063416
https://www.stata-journal.com/article.html?article=dm0082

26 merge — Merge datasets

Also see
[D] append —Append datasets

[D] cross — Form every pairwise combination of two datasets

[D] fralias —Alias variables from linked frames

[D] frget — Copy variables from linked frame

[D] frlink — Link frames

[D] frunalias — Change storage type of alias variables

[D] joinby — Form all pairwise combinations within groups

[D] save — Save Stata dataset

[U] 23 Combining datasets

Stata, Stata Press, and Mata are registered trademarks of StataCorp LLC. Stata and Stata
Press are registered trademarks with the World Intellectual Property Organization of the
United Nations. StataNow and NetCourseNow are trademarks of StataCorp LLC. Other
brand and product names are registered trademarks or trademarks of their respective com-
panies. Copyright © 1985–2023 StataCorp LLC, College Station, TX, USA. All rights
reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/dappend.pdf#dappend
https://www.stata.com/manuals/dcross.pdf#dcross
https://www.stata.com/manuals/dfralias.pdf#dfralias
https://www.stata.com/manuals/dfrget.pdf#dfrget
https://www.stata.com/manuals/dfrlink.pdf#dfrlink
https://www.stata.com/manuals/dfrunalias.pdf#dfrunalias
https://www.stata.com/manuals/djoinby.pdf#djoinby
https://www.stata.com/manuals/dsave.pdf#dsave
https://www.stata.com/manuals/u23.pdf#u23Combiningdatasets
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

