New in STaTa (18)

Group sequential designs

Why wait until you finish collecting data to analyze the results of your clinical trial?

Stata's **gsbounds** and **gsdesign** commands calculate efficacy- and futility-stopping boundaries, compute sample sizes for interim and final analyses, graph the stopping boundaries for your trial, and more.

- Hypothesis tests
 - One-sample mean
 - Two-sample means
 - One-sample proportion
 - Two-sample proportions
 - Log-rank test of survivor functions
- Add your own methods
- · Automatic and customizable tables and graphs

- Stopping boundaries
 - Classical O'Brien-Fleming
 - Classical Pocock
 - Classical Wang-Tsiatis
 - Error-spending O'Brien-Fleming-style
 - Error-spending Pocock-style
 - Error-spending Kim-DeMets
 - Error-spending Hwang-Shih-de Cani

Stopping boundaries

boundaries.

gsbounds calculates efficacy and futility bounds based on the number of looks, the desired overall type I error, and the desired power.

For instance, calculate O'Brien-Fleming efficacy and futility bounds for a study with 5 looks, the default power of 0.9, and a type I error of 0.05.

. gsbounds, nlooks(5) efficacy(errobfleming)
futility(errobfleming)

```
Group sequential boundaries
Efficacy: Error-spending O'Brien-Fleming style
Futility: Error-spending O'Brien-Fleming style, nonbinding
Study parameters:
      alpha = 0.0500 (two-sided)
power = 0.8000
Info. ratio = 1.1618
Fixed-study crit. values = \pm 1.9600
Critical values and p-values for a group seguential design
                                                         Futility
        Info.
                         Efficacy
         0.20
                -4.8769
                           4.8769
                                     0.0000
                                               -0.0130
                                                           0.0130
                                                                    0.9896
                -3.3570
                           3.3570
                                      0.0008
                                               -0.2929
         0.40
                -2.6803
                           2.6803
                                      0.0074
                                                -0.9245
                                                           0.9245
         0.80
                -2.2898
                           2.2898
                                      0.0220
                                                -1.5186
                                                           1.5186
                                                                     0.1289
                -2.0310
                           2.0310
                                     0.0423
                                               -2.0310
                                                          2.0310
                                                                    0.0423
Note: Critical values are for z statistics; otherwise, use p-value
```

Sample-size determination

gsdesign computes efficacy and futility boundaries and provides sample sizes at each look for a variety of tests.

Compute the required number of events for each look, and graph the O'Brien-Fleming efficacy and futility bounds for the log-rank test comparing the survivor functions of two groups and assuming the hazard ratio (effect size) of 0.6.

 gsdesign logrank, hratio(0.6) nlooks(5) efficacy(errobfleming) futility(errobfleming) graphbounds

Add your own methods

In addition to **gsdesign**'s built-in methods, you can add your own methods to compute the required sample size such as when you use the **simulate** command to compute the sample size by simulation. All you need to do is write a program that computes sample size, and **gsdesign** will do the rest for you.

```
program power_cmd_mygsztest, rclass
    version 18
                        // parse options
    syntax, STDDiff(real)
                            /// standardized diff.
          [ Alpha(real 0.05) /// significance level
           Power(real 0.8) /// power
           NFRACtional
                            /// fractional sample size
        ]
                       // compute sample size
    tempname N
    scalar `N' = ((invnormal(`power') + ///
                 invnormal(1 - alpha'/2))/ stddiff')^2
    if ("`nfractional'" == "") {
             scalar `N' = ceil(`N')
                       // return results
    return scalar N
                        = `N'
   return scalar alpha = `alpha'
    return scalar power = `power'
    return scalar stddiff = `stddiff'
end
```

. gsdesign mygsztest, stddiff(0.1) alpha(0.05)
power(0.9) nlooks(6) efficacy(obfleming)
futility(wtsiatis(0.25)) graphbounds

Perform analyses using point and click

You can perform your analyses interactively by typing the commands or by using a point-and-click GUI available via the PSS Control Panel.

. gsdesign twomeans 1 2, nlooks(6) graphbounds

