Path diagrams as a notational formalism (Noodling around with pictures)

Vince Wiggins Vice President, Scientific Development StataCorp LP

2013 London Stata Users Group Meeting

< 6 b

- Sometimes path diagrams are used in lieu of mathematical notation to define and explain models.
- How far can they be pushed?

< 17 ▶

Х

э

• • • • • • • • • • • • •

Χ

Path notation for a covariate

4 A N

Χ

Path notation for a covariate

A .

∃ >

у

у

Path notation for a dependent variable

у

Path notation for a dependent variable

Mathematical notation for a parameter

Mathematical notation for a parameter

 β

Mathematical notation for a parameter

 β

Path notation for a parameter

< A >

Mathematical notation for a parameter

Path notation for a parameter

β

β

Mathematical notation for a parameter

Path notation for a parameter

β

β

Paths are truly parameters in a linear form, and must connect observed or latent variables. So better is

Mathematical notation for a parameter

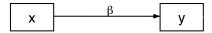
Path notation for a parameter

β

β

Paths are truly parameters in a linear form, and must connect observed or latent variables. So better is

$$y = \beta x + \dots$$



Mathematical notation for a latent variable

Mathematical notation for a latent variable

 μ_i unobserved $\mu_i \sim Normal(0, \sigma_\mu)$

< 同 > < ∃ >

Mathematical notation for a latent variable

 μ_i unobserved $\mu_i \sim Normal(0, \sigma_\mu)$

Path notation for a latent variable

A .

Mathematical notation for a latent variable

 μ_i unobserved $\mu_i \sim Normal(0, \sigma_\mu)$

Path notation for a latent variable

V. Wiggins (StataCorp)

Path diagrams as a notational formalism

They can be:

- an error term
- a random intercept
- part of a random slope
- a frailty
- a creator/modeler of endogeneity
- a creator/modeler of sample selection
- a creator/modeler of endogenous treatment effects
- part of a switching model
- or any other latent/unobserved thingy

Linear regression

Mathematical notation for a linear regression

$$y_i = \beta_0 + \beta_1 x \mathbf{1}_i + \beta_2 x \mathbf{2}_i + \epsilon_i$$

$$\epsilon_j \sim Normal(0, \sigma_{\epsilon})$$

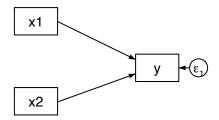
Linear regression

Mathematical notation for a linear regression

$$y_i = \beta_0 + \beta_1 x \mathbf{1}_i + \beta_2 x \mathbf{2}_i + \epsilon_i$$

$$\epsilon_i \sim Normal(0, \sigma_{\epsilon})$$

Path notation for a linear regression



4 A N

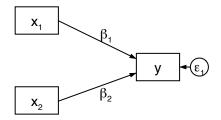
Linear regression

Mathematical notation for a linear regression

$$y_i = \beta_0 + \beta_1 x \mathbf{1}_i + \beta_2 x \mathbf{2}_i + \epsilon_i$$

$$\epsilon_j \sim Normal(0, \sigma_\epsilon)$$

Path notation for a linear regression — with coefficients



V. Wiggins (StataCorp)

Path diagrams as a notational formalism

2013 London UG 8 / 20

4 A N

Linear multilevel model

Mathematical notation for a multilevel model

$$\begin{aligned} y_{ji} &= \beta_0 + \beta_1 x \mathbf{1}_{ji} + (\beta_2 + \mu \mathbf{1}_j) x \mathbf{2}_{ji} + \mu \mathbf{0}_j + \epsilon_{ji} \\ \mu \mathbf{0}_j &\sim \textit{Normal}(\mathbf{0}, \sigma_{\mu \mathbf{0}}) \\ \mu \mathbf{1}_j &\sim \textit{Normal}(\mathbf{0}, \sigma_{\mu \mathbf{1}}) \end{aligned}$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Linear multilevel model

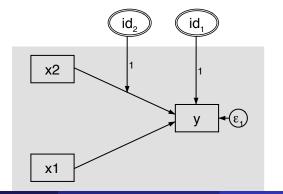
Mathematical notation for a multilevel model

$$y_{ji} = \beta_0 + \beta_1 x \mathbf{1}_{ji} + (\beta_2 + \mu \mathbf{1}_j) x \mathbf{2}_{ji} + \mu \mathbf{0}_j + \epsilon_{ji}$$

$$\mu \mathbf{0}_j \sim Normal(\mathbf{0}, \sigma_{\mu \mathbf{0}})$$

$$\mu \mathbf{1}_j \sim Normal(\mathbf{0}, \sigma_{\mu \mathbf{1}})$$

Path notation for a multilevel model



V. Wiggins (StataCorp)

Path diagrams as a notational formalism

2013 London UG 9 / 20

Linear multilevel model

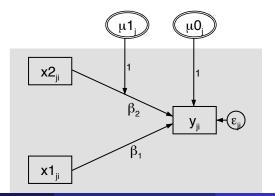
Mathematical notation for a multilevel model

$$y_{ji} = \beta_0 + \beta_1 x \mathbf{1}_{ji} + (\beta_2 + \mu \mathbf{1}_j) x \mathbf{2}_{ji} + \mu \mathbf{0}_j + \epsilon_{ji}$$

$$\mu \mathbf{0}_j \sim Normal(\mathbf{0}, \sigma_{\mu \mathbf{0}})$$

$$\mu \mathbf{1}_j \sim Normal(\mathbf{0}, \sigma_{\mu \mathbf{1}})$$

Path notation for a multilevel model — with maths



V. Wiggins (StataCorp)

Path diagrams as a notational formalism

Every diagram in this talk was drawn with it.

They each took 2 or 3 minutes to draw.

They can all be estimated by sem or gsem.

Let's draw one ...

If you are reading this online, you just had to be there.

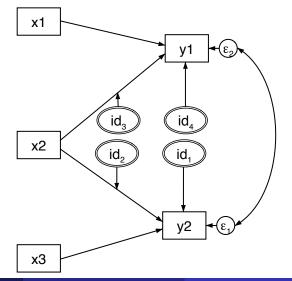
Linear multivariate (seemingly unrelated) multilevel model

Mathematical notation

$$\begin{array}{l} y\mathbf{1}_{ji} = \beta_{0a} + \beta_{1}x\mathbf{1}_{ji} + (\beta_{2} + \mu\mathbf{1}_{j})x\mathbf{2}_{ji} + \mu\mathbf{0}_{j} + \epsilon\mathbf{1}_{ji} \\ y\mathbf{2}_{ji} = \beta_{0b} + \beta_{3}x\mathbf{3}_{ji} + (\beta_{4} + \mu\mathbf{2}_{j})x\mathbf{2}_{ji} + \mu\mathbf{3}_{j} + \epsilon\mathbf{2}_{ji} \\ \mu\mathbf{0}_{j} \sim \textit{Normal}(\mathbf{0}, \sigma_{\mu\mathbf{0}}) \\ \mu\mathbf{1}_{j} \sim \textit{Normal}(\mathbf{0}, \sigma_{\mu\mathbf{1}}) \\ \mu\mathbf{2}_{j} \sim \textit{Normal}(\mathbf{0}, \sigma_{\mu\mathbf{2}}) \\ \mu\mathbf{3}_{j} \sim \textit{Normal}(\mathbf{0}, \sigma_{\mu\mathbf{3}}) \\ j \quad \textit{indexes levels} \end{array}$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Linear multivariate (seemingly unrelated) multilevel model



V. Wiggins (StataCorp)

Path diagrams as a notational formalism

Variations on the linear multivariate multilevel model

What if the random effects are shared?

- Easy enough in the mathematical notation, but easier to see in the path diagram. Let's edit the path diagram ...
- I am sorry once again to those following at home.

What if the random effects are shared?

- Easy enough in the mathematical notation, but easier to see in the path diagram. Let's edit the path diagram ...
- I am sorry once again to those following at home.

What if the random coefficients on x2 are the same for both y's?

- Again, very easy to see (and to change) on the path diagram ...
- Must explicitly constrain paths/coefficients from latent variables.

What if the random effects are shared?

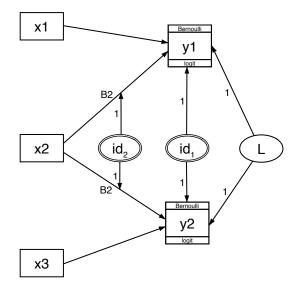
- Easy enough in the mathematical notation, but easier to see in the path diagram. Let's edit the path diagram ...
- I am sorry once again to those following at home.

What if the random coefficients on x2 are the same for both y's?

- Again, very easy to see (and to change) on the path diagram ...
- Must explicitly constrain paths/coefficients from latent variables.

What if the outcomes were 0/1 and we wanted to model them as logistic?

- We would add some probabilistic statements to our mathematical notation. And likely some verbal explanation.
- We can also designate this on the path diagram ...



Э.

イロト イヨト イヨト イヨト

Time series — ARMAX model

Mathematical notation

$$y_t = \beta x_t + \epsilon_t$$

$$\epsilon_t = \rho \epsilon_{t-1} + \mu_t$$

$$\mu_t \sim Normal(0, \sigma_\mu)$$

æ

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Time series — ARMAX model

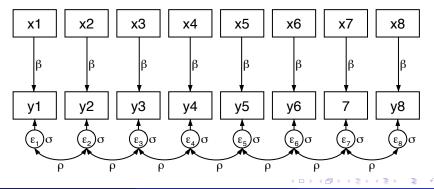
Mathematical notation

$$y_t = \beta x_t + \epsilon_t$$

$$\epsilon_t = \rho \epsilon_{t-1} + \mu_t$$

$$\mu_t \sim Normal(0, \sigma_\mu)$$

Path notation



V. Wiggins (StataCorp)

Path diagrams as a notational formalism

Regression with sample selection — Heckman style

Mathematical notation

$$y_i = eta_0 + eta_1 x \mathbf{1}_i + eta_2 x \mathbf{2}_i + \epsilon_i$$

 $s_i = \lambda_0 + \lambda_2 x \mathbf{2}_i + \lambda_3 x \mathbf{3}_i + \xi_i$
 $cov(\epsilon, \xi) \neq 0$
 y_i observed when $s_i > 0$

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Regression with sample selection — Heckman style

Mathematical notation

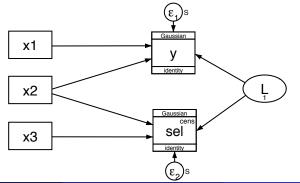
$$y_{i} = \beta_{0} + \beta_{1}x1_{i} + \beta_{2}x2_{i} + \epsilon_{i}$$

$$s_{i} = \lambda_{0} + \lambda_{2}x2_{i} + \lambda_{3}x3_{i} + \xi_{i}$$

$$cov(\epsilon, \xi) \neq 0$$

$$v_{i} observed when s_{i} > 0$$

Path notation



Path diagrams as a notational formalism

Logistic model with endogenous covariate

Mathematical notation

$$Pr(y_i) = logit(\beta_0 + \beta_1 x \mathbf{1}_i + \beta_2 z_i + UC_i)$$

$$z_i = \gamma_0 + \gamma_1 x \mathbf{2}_i + UC_i + \nu_i$$

$$cov(\epsilon, \xi) = 0$$

Logistic model with endogenous covariate

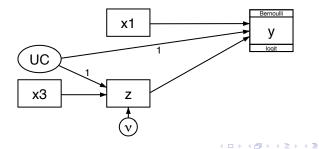
Mathematical notation

$$Pr(y_i) = logit(\beta_0 + \beta_1 x \mathbf{1}_i + \beta_2 z_i + UC_i)$$

$$z_i = \gamma_0 + \gamma_1 x \mathbf{2}_i + UC_i + \nu_i$$

$$cov(\epsilon, \xi) = 0$$

Path notation



Selection with an endogenous covariate in a multilevel framework

Regression component

$$y_{ji} = \beta_0 + (\beta_1 + \mu \mathbf{1}_j) x \mathbf{1}_{ji} + \beta_2 z_{ji} + UC_{ji} + \mu \mathbf{0}_j + \epsilon_{ji}$$

Selection component

$$egin{aligned} s_{ji} &= \lambda_0 + \lambda_1 z_i + \lambda_2 x \mathbf{2}_i + \xi_i \ cov(\epsilon,\xi)
eq 0 \ y_{ji} \ observed \ when \ s_{ji} > 0 \end{aligned}$$

Endogenous component

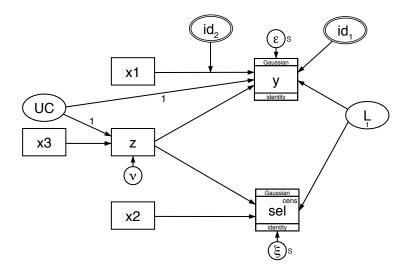
$$z_j i = \gamma_0 + \gamma_1 x \mathbf{3}_j i + U C_j i + \nu_i$$

$$cov(\epsilon, \nu) = 0$$

$$cov(\xi, \nu) = 0$$

4 A N

Selection with an endogenous covariate in a multilevel framework — path diagram



Compared to math, path diagrams are:

- easier to understand
- more attuned to human perception
- Iess precise
- Iess flexible
- more amenable to noodling

Don't choose.

Use what works — words, maths, paths.

< 4 →