
Creating factor variables in resultssets and
other datasets

Roger B. Newson
r.newson@imperial.ac.uk

http://www.imperial.ac.uk/nhli/r.newson/

National Heart and Lung Institute, Imperial College London

19th UK Stata Users’ Group Meeting, 12–13 September, 2013
Downloadable from the conference website at

http://ideas.repec.org/s/boc/usug13.html

Creating factor variables in resultssets and other datasets Frame 1 of 32

mailto:r.newson@imperial.ac.uk
http://www.imperial.ac.uk/nhli/r.newson/
http://ideas.repec.org/s/boc/usug12.html

The importance of string–factor (and factor–string) conversion

I Traditionally, Stata documentation has encouraged users to
encode string variables to value–labelled integer variables to
save space.

I Nowadays, a commoner reason to encode is that string
variables cannot be axis variables in graphs.

I More generally, a well–formed Stata dataset should have one
observation per thing and data on attributes_of _things.

I And the things should be identified by key variables, by which
the observations are sorted and identified uniquely.

I And, if these key variables are string, then they cannot be sorted
non–alphabetically.

I On the other hand, numeric variables (labelled or otherwise)
often need the addition of prefixes, suffixes and/or conversion of
exponents before being output to TEX, HTML, RTF or SMCL.

Creating factor variables in resultssets and other datasets Frame 2 of 32

The importance of string–factor (and factor–string) conversion

I Traditionally, Stata documentation has encouraged users to
encode string variables to value–labelled integer variables to
save space.

I Nowadays, a commoner reason to encode is that string
variables cannot be axis variables in graphs.

I More generally, a well–formed Stata dataset should have one
observation per thing and data on attributes_of _things.

I And the things should be identified by key variables, by which
the observations are sorted and identified uniquely.

I And, if these key variables are string, then they cannot be sorted
non–alphabetically.

I On the other hand, numeric variables (labelled or otherwise)
often need the addition of prefixes, suffixes and/or conversion of
exponents before being output to TEX, HTML, RTF or SMCL.

Creating factor variables in resultssets and other datasets Frame 2 of 32

The importance of string–factor (and factor–string) conversion

I Traditionally, Stata documentation has encouraged users to
encode string variables to value–labelled integer variables to
save space.

I Nowadays, a commoner reason to encode is that string
variables cannot be axis variables in graphs.

I More generally, a well–formed Stata dataset should have one
observation per thing and data on attributes_of _things.

I And the things should be identified by key variables, by which
the observations are sorted and identified uniquely.

I And, if these key variables are string, then they cannot be sorted
non–alphabetically.

I On the other hand, numeric variables (labelled or otherwise)
often need the addition of prefixes, suffixes and/or conversion of
exponents before being output to TEX, HTML, RTF or SMCL.

Creating factor variables in resultssets and other datasets Frame 2 of 32

The importance of string–factor (and factor–string) conversion

I Traditionally, Stata documentation has encouraged users to
encode string variables to value–labelled integer variables to
save space.

I Nowadays, a commoner reason to encode is that string
variables cannot be axis variables in graphs.

I More generally, a well–formed Stata dataset should have one
observation per thing and data on attributes_of _things.

I And the things should be identified by key variables, by which
the observations are sorted and identified uniquely.

I And, if these key variables are string, then they cannot be sorted
non–alphabetically.

I On the other hand, numeric variables (labelled or otherwise)
often need the addition of prefixes, suffixes and/or conversion of
exponents before being output to TEX, HTML, RTF or SMCL.

Creating factor variables in resultssets and other datasets Frame 2 of 32

The importance of string–factor (and factor–string) conversion

I Traditionally, Stata documentation has encouraged users to
encode string variables to value–labelled integer variables to
save space.

I Nowadays, a commoner reason to encode is that string
variables cannot be axis variables in graphs.

I More generally, a well–formed Stata dataset should have one
observation per thing and data on attributes_of _things.

I And the things should be identified by key variables, by which
the observations are sorted and identified uniquely.

I And, if these key variables are string, then they cannot be sorted
non–alphabetically.

I On the other hand, numeric variables (labelled or otherwise)
often need the addition of prefixes, suffixes and/or conversion of
exponents before being output to TEX, HTML, RTF or SMCL.

Creating factor variables in resultssets and other datasets Frame 2 of 32

The importance of string–factor (and factor–string) conversion

I Traditionally, Stata documentation has encouraged users to
encode string variables to value–labelled integer variables to
save space.

I Nowadays, a commoner reason to encode is that string
variables cannot be axis variables in graphs.

I More generally, a well–formed Stata dataset should have one
observation per thing and data on attributes_of _things.

I And the things should be identified by key variables, by which
the observations are sorted and identified uniquely.

I And, if these key variables are string, then they cannot be sorted
non–alphabetically.

I On the other hand, numeric variables (labelled or otherwise)
often need the addition of prefixes, suffixes and/or conversion of
exponents before being output to TEX, HTML, RTF or SMCL.

Creating factor variables in resultssets and other datasets Frame 2 of 32

The importance of string–factor (and factor–string) conversion

I Traditionally, Stata documentation has encouraged users to
encode string variables to value–labelled integer variables to
save space.

I Nowadays, a commoner reason to encode is that string
variables cannot be axis variables in graphs.

I More generally, a well–formed Stata dataset should have one
observation per thing and data on attributes_of _things.

I And the things should be identified by key variables, by which
the observations are sorted and identified uniquely.

I And, if these key variables are string, then they cannot be sorted
non–alphabetically.

I On the other hand, numeric variables (labelled or otherwise)
often need the addition of prefixes, suffixes and/or conversion of
exponents before being output to TEX, HTML, RTF or SMCL.

Creating factor variables in resultssets and other datasets Frame 2 of 32

Some SSC programs for string–factor and factor–string conversion

Official Stata’s encode, decode, destring and tostring
commands seemed insufficient for what I wanted to do. So, over time,
I accumulated some conversion packages of my own:

Command Description
String–factor:

sencode “Super” version of encode
fvregen Extract factors from a parameter–name string variable in a resultsset
factext Extract factors from a parameter–label string variable in a resultsset

Factor–string:
sdecode “Super” version of decode
msdecode Multi–factor version of sdecode
factmerg Generate factor name, label and level string variables from multiple in-

put factors
insingap Insert labelled gap observations at start of by–groups

bmjcip Decode estimates, confidence limits, and P– and Q–values

Resultssets may be generated by the SSC package parmest. The
programs msdecode, factmerg, insingap and bmjcip all use
sdecode.

Creating factor variables in resultssets and other datasets Frame 3 of 32

The sencode package for string–factor conversion

I sencode is a “super” version of encode, downloadable (and
frequently downloaded) from SSC.

I It has a replace option, so the output numeric variable can
inherit the name and position of the input string variable.

I It has a gsort() option, specifying a list of existing variables
(defaulting to _n), which determine the primary, non–alphabetic
order in which the output numeric values will be allocated
(breaking ties alphabetically).

I It has a manyto1 option, specifying that multiple gsort()
groups of observations with the same input string value can have
different output numeric values, instead of being combined in
order of first appearance of the input string value.

I sencode has been evolving since 2001. However, we will be
presenting some useful tips, accumulated since then, that are not
immediately obvious.

Creating factor variables in resultssets and other datasets Frame 4 of 32

The sencode package for string–factor conversion

I sencode is a “super” version of encode, downloadable (and
frequently downloaded) from SSC.

I It has a replace option, so the output numeric variable can
inherit the name and position of the input string variable.

I It has a gsort() option, specifying a list of existing variables
(defaulting to _n), which determine the primary, non–alphabetic
order in which the output numeric values will be allocated
(breaking ties alphabetically).

I It has a manyto1 option, specifying that multiple gsort()
groups of observations with the same input string value can have
different output numeric values, instead of being combined in
order of first appearance of the input string value.

I sencode has been evolving since 2001. However, we will be
presenting some useful tips, accumulated since then, that are not
immediately obvious.

Creating factor variables in resultssets and other datasets Frame 4 of 32

The sencode package for string–factor conversion

I sencode is a “super” version of encode, downloadable (and
frequently downloaded) from SSC.

I It has a replace option, so the output numeric variable can
inherit the name and position of the input string variable.

I It has a gsort() option, specifying a list of existing variables
(defaulting to _n), which determine the primary, non–alphabetic
order in which the output numeric values will be allocated
(breaking ties alphabetically).

I It has a manyto1 option, specifying that multiple gsort()
groups of observations with the same input string value can have
different output numeric values, instead of being combined in
order of first appearance of the input string value.

I sencode has been evolving since 2001. However, we will be
presenting some useful tips, accumulated since then, that are not
immediately obvious.

Creating factor variables in resultssets and other datasets Frame 4 of 32

The sencode package for string–factor conversion

I sencode is a “super” version of encode, downloadable (and
frequently downloaded) from SSC.

I It has a replace option, so the output numeric variable can
inherit the name and position of the input string variable.

I It has a gsort() option, specifying a list of existing variables
(defaulting to _n), which determine the primary, non–alphabetic
order in which the output numeric values will be allocated
(breaking ties alphabetically).

I It has a manyto1 option, specifying that multiple gsort()
groups of observations with the same input string value can have
different output numeric values, instead of being combined in
order of first appearance of the input string value.

I sencode has been evolving since 2001. However, we will be
presenting some useful tips, accumulated since then, that are not
immediately obvious.

Creating factor variables in resultssets and other datasets Frame 4 of 32

The sencode package for string–factor conversion

I sencode is a “super” version of encode, downloadable (and
frequently downloaded) from SSC.

I It has a replace option, so the output numeric variable can
inherit the name and position of the input string variable.

I It has a gsort() option, specifying a list of existing variables
(defaulting to _n), which determine the primary, non–alphabetic
order in which the output numeric values will be allocated
(breaking ties alphabetically).

I It has a manyto1 option, specifying that multiple gsort()
groups of observations with the same input string value can have
different output numeric values, instead of being combined in
order of first appearance of the input string value.

I sencode has been evolving since 2001. However, we will be
presenting some useful tips, accumulated since then, that are not
immediately obvious.

Creating factor variables in resultssets and other datasets Frame 4 of 32

The sencode package for string–factor conversion

I sencode is a “super” version of encode, downloadable (and
frequently downloaded) from SSC.

I It has a replace option, so the output numeric variable can
inherit the name and position of the input string variable.

I It has a gsort() option, specifying a list of existing variables
(defaulting to _n), which determine the primary, non–alphabetic
order in which the output numeric values will be allocated
(breaking ties alphabetically).

I It has a manyto1 option, specifying that multiple gsort()
groups of observations with the same input string value can have
different output numeric values, instead of being combined in
order of first appearance of the input string value.

I sencode has been evolving since 2001. However, we will be
presenting some useful tips, accumulated since then, that are not
immediately obvious.

Creating factor variables in resultssets and other datasets Frame 4 of 32

Example: Keying and plotting the auto data

I The familiar auto dataset, loadable using sysuse, is not really
a well–formed Stata dataset.

I The describe command shows that it is sorted by the binary
variable foreign, which indicates US or non–US origin for a
car model, but does not identify the car models uniquely.

I The models are in fact identified uniquely by the string variable
make.

I We might like to encode the variable make to a labelled numeric
variable, which we can then sort by, and plot against other
variables in the dataset.

I And, to show off, we will order the new variable primarily by
descending weight, breaking tied weights alphabetically.

Creating factor variables in resultssets and other datasets Frame 5 of 32

Example: Keying and plotting the auto data

I The familiar auto dataset, loadable using sysuse, is not really
a well–formed Stata dataset.

I The describe command shows that it is sorted by the binary
variable foreign, which indicates US or non–US origin for a
car model, but does not identify the car models uniquely.

I The models are in fact identified uniquely by the string variable
make.

I We might like to encode the variable make to a labelled numeric
variable, which we can then sort by, and plot against other
variables in the dataset.

I And, to show off, we will order the new variable primarily by
descending weight, breaking tied weights alphabetically.

Creating factor variables in resultssets and other datasets Frame 5 of 32

Example: Keying and plotting the auto data

I The familiar auto dataset, loadable using sysuse, is not really
a well–formed Stata dataset.

I The describe command shows that it is sorted by the binary
variable foreign, which indicates US or non–US origin for a
car model, but does not identify the car models uniquely.

I The models are in fact identified uniquely by the string variable
make.

I We might like to encode the variable make to a labelled numeric
variable, which we can then sort by, and plot against other
variables in the dataset.

I And, to show off, we will order the new variable primarily by
descending weight, breaking tied weights alphabetically.

Creating factor variables in resultssets and other datasets Frame 5 of 32

Example: Keying and plotting the auto data

I The familiar auto dataset, loadable using sysuse, is not really
a well–formed Stata dataset.

I The describe command shows that it is sorted by the binary
variable foreign, which indicates US or non–US origin for a
car model, but does not identify the car models uniquely.

I The models are in fact identified uniquely by the string variable
make.

I We might like to encode the variable make to a labelled numeric
variable, which we can then sort by, and plot against other
variables in the dataset.

I And, to show off, we will order the new variable primarily by
descending weight, breaking tied weights alphabetically.

Creating factor variables in resultssets and other datasets Frame 5 of 32

Example: Keying and plotting the auto data

I The familiar auto dataset, loadable using sysuse, is not really
a well–formed Stata dataset.

I The describe command shows that it is sorted by the binary
variable foreign, which indicates US or non–US origin for a
car model, but does not identify the car models uniquely.

I The models are in fact identified uniquely by the string variable
make.

I We might like to encode the variable make to a labelled numeric
variable, which we can then sort by, and plot against other
variables in the dataset.

I And, to show off, we will order the new variable primarily by
descending weight, breaking tied weights alphabetically.

Creating factor variables in resultssets and other datasets Frame 5 of 32

Example: Keying and plotting the auto data

I The familiar auto dataset, loadable using sysuse, is not really
a well–formed Stata dataset.

I The describe command shows that it is sorted by the binary
variable foreign, which indicates US or non–US origin for a
car model, but does not identify the car models uniquely.

I The models are in fact identified uniquely by the string variable
make.

I We might like to encode the variable make to a labelled numeric
variable, which we can then sort by, and plot against other
variables in the dataset.

I And, to show off, we will order the new variable primarily by
descending weight, breaking tied weights alphabetically.

Creating factor variables in resultssets and other datasets Frame 5 of 32

The auto data
We load the auto dataset, and then describe it:
. sysuse auto, clear;
(1978 Automobile Data)

. describe;

Contains data from C:\Program Files (x86)\Stata12\ado\base/a/auto.dta
obs: 74 1978 Automobile Data
vars: 12 13 Apr 2011 17:45
size: 3,182 (_dta has notes)

storage display value

variable name type format label variable label

make str18 %-18s Make and Model
price int %8.0gc Price
mpg int %8.0g Mileage (mpg)
rep78 int %8.0g Repair Record 1978
headroom float %6.1f Headroom (in.)
trunk int %8.0g Trunk space (cu. ft.)
weight int %8.0gc Weight (lbs.)
length int %8.0g Length (in.)
turn int %8.0g Turn Circle (ft.)
displacement int %8.0g Displacement (cu. in.)
gear_ratio float %6.2f Gear Ratio
foreign byte %8.0g origin Car type

Sorted by: foreign

It is sorted by foreign (2 values), but has 74 observations. So. . .

Creating factor variables in resultssets and other datasets Frame 6 of 32

Generating a new ID variable using sencode

. . .we then use sencode, with the gsort() option, to generate a
new factor variable make2, ordered by descending weight. Then, we
sort the dataset by this new ID variable:

. sencode make, gsort(-weight) generate(make2);

. describe make2;

storage display value
variable name type format label variable label

make2 byte %17.0g make2 Make and Model

. keyby make2;

The keyby package can be downloaded from SSC. It is an extension
of sort, and checks that the sort key variables uniquely identify the
observations, and moves the key variables to the start of the variable
order (unless the user specifies the noorder option).

Creating factor variables in resultssets and other datasets Frame 7 of 32

The new improved auto dataset
We now describe the improved auto dataset:
. describe;

Contains data from C:\Program Files (x86)\Stata12\ado\base/a/auto.dta
obs: 74 1978 Automobile Data

vars: 13 13 Apr 2011 17:45
size: 3,256 (_dta has notes)

storage display value

variable name type format label variable label

make2 byte %17.0g make2 Make and Model
make str18 %-18s Make and Model
price int %8.0gc Price
mpg int %8.0g Mileage (mpg)
rep78 int %8.0g Repair Record 1978
headroom float %6.1f Headroom (in.)
trunk int %8.0g Trunk space (cu. ft.)
weight int %8.0gc Weight (lbs.)
length int %8.0g Length (in.)
turn int %8.0g Turn Circle (ft.)
displacement int %8.0g Displacement (cu. in.)
gear_ratio float %6.2f Gear Ratio
foreign byte %8.0g origin Car type

Sorted by: make2

Note: dataset has changed since last saved

The dataset is now sorted (and keyed) by the new labelled numeric ID
variable make2, which is now the first variable. However. . .

Creating factor variables in resultssets and other datasets Frame 8 of 32

Using a sencode output factor on a graph axis

. . . to see what this new factor looks like, we use it to make a spike
graph of car weights, using twoway spike:

. twoway spike weight make2,
> ylabel(0(500)5000)
> xlabel(1(1)74, labsize(2) angle(90))
> xsize(6.5) ysize(3.75);

(Note that we could not have done this with the original string
variable make.)

Creating factor variables in resultssets and other datasets Frame 9 of 32

Weights of cars in the auto dataset

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000
W

ei
gh

t (
lb

s.
)

Li
nc

. C
on

tin
en

ta
l

Li
nc

. M
ar

k
V

C
ad

. D
ev

ill
e

C
ad

. S
ev

ill
e

M
er

c.
 X

R
-7

B
ui

ck
 E

le
ct

ra
M

er
c.

 C
ou

ga
r

O
ld

s
98

O
ld

s
T

or
on

ad
o

C
ad

. E
ld

or
ad

o
B

ui
ck

 R
iv

ie
ra

Li
nc

. V
er

sa
ill

es
D

od
ge

 S
t.

R
eg

is
M

er
c.

 M
ar

qu
is

P
on

t.
C

at
al

in
a

C
he

v.
 Im

pa
la

O
ld

s
D

el
ta

 8
8

B
ui

ck
 L

eS
ab

re
D

od
ge

 D
ip

lo
m

at
D

od
ge

 M
ag

nu
m

P
on

t.
F

ire
bi

rd
C

he
v.

 N
ov

a
P

eu
ge

ot
 6

04
P

on
t.

P
ho

en
ix

B
ui

ck
 S

ky
la

rk
M

er
c.

 M
on

ar
ch

O
ld

s
O

m
eg

a
A

M
C

 P
ac

er
P

ly
m

. V
ol

ar
e

O
ld

s
C

ut
l S

up
r

O
ld

s
C

ut
la

ss
B

ui
ck

 R
eg

al
P

ly
m

. A
rr

ow
B

ui
ck

 C
en

tu
ry

C
he

v.
 M

on
te

 C
ar

lo
P

on
t.

G
ra

nd
 P

rix
P

on
t.

Le
 M

an
s

C
he

v.
 M

al
ib

u
V

ol
vo

 2
60

A
M

C
 C

on
co

rd
A

ud
i 5

00
0

M
er

c.
 Z

ep
hy

r
C

he
v.

 M
on

za
D

at
su

n
81

0
O

ld
s

S
ta

rf
ire

P
on

t.
S

un
bi

rd
T

oy
ot

a
C

or
on

a
B

M
W

 3
20

i
F

or
d

M
us

ta
ng

A
M

C
 S

pi
rit

M
er

c.
 B

ob
ca

t
P

ly
m

. S
ap

po
ro

T
oy

ot
a

C
el

ic
a

D
at

su
n

20
0

D
at

su
n

51
0

H
on

da
 A

cc
or

d
B

ui
ck

 O
pe

l
P

ly
m

. H
or

iz
on

T
oy

ot
a

C
or

ol
la

V
W

 D
as

he
r

F
ia

t S
tr

ad
a

D
od

ge
 C

ol
t

C
he

v.
 C

he
ve

tte
A

ud
i F

ox
S

ub
ar

u
V

W
 D

ie
se

l
D

at
su

n
21

0
V

W
 S

ci
ro

cc
o

M
az

da
 G

LC
V

W
 R

ab
bi

t
R

en
au

lt
Le

 C
ar

F
or

d
F

ie
st

a
P

ly
m

. C
ha

m
p

H
on

da
 C

iv
ic

Make and Model

The models are ordered by descending weight, with the very few tied
weights broken alphabetically.

Creating factor variables in resultssets and other datasets Frame 10 of 32

Producing subset plots by decoding and re–encoding

I We often want to plot subsets of a dataset.
I For instance, we might want to produce a version of the previous

plot, restricted to cars costing at least 9,000 1978 US dollars.
I When we do this, it often makes sense to decode the factor to

string for the subset (using sdecode), and then to encode it
back (using sencode).

I sdecodeing and sencodeing back is a commonly–used trick,
as we shall see later.

Creating factor variables in resultssets and other datasets Frame 11 of 32

Producing subset plots by decoding and re–encoding

I We often want to plot subsets of a dataset.
I For instance, we might want to produce a version of the previous

plot, restricted to cars costing at least 9,000 1978 US dollars.
I When we do this, it often makes sense to decode the factor to

string for the subset (using sdecode), and then to encode it
back (using sencode).

I sdecodeing and sencodeing back is a commonly–used trick,
as we shall see later.

Creating factor variables in resultssets and other datasets Frame 11 of 32

Producing subset plots by decoding and re–encoding

I We often want to plot subsets of a dataset.
I For instance, we might want to produce a version of the previous

plot, restricted to cars costing at least 9,000 1978 US dollars.
I When we do this, it often makes sense to decode the factor to

string for the subset (using sdecode), and then to encode it
back (using sencode).

I sdecodeing and sencodeing back is a commonly–used trick,
as we shall see later.

Creating factor variables in resultssets and other datasets Frame 11 of 32

Producing subset plots by decoding and re–encoding

I We often want to plot subsets of a dataset.
I For instance, we might want to produce a version of the previous

plot, restricted to cars costing at least 9,000 1978 US dollars.
I When we do this, it often makes sense to decode the factor to

string for the subset (using sdecode), and then to encode it
back (using sencode).

I sdecodeing and sencodeing back is a commonly–used trick,
as we shall see later.

Creating factor variables in resultssets and other datasets Frame 11 of 32

Producing subset plots by decoding and re–encoding

I We often want to plot subsets of a dataset.
I For instance, we might want to produce a version of the previous

plot, restricted to cars costing at least 9,000 1978 US dollars.
I When we do this, it often makes sense to decode the factor to

string for the subset (using sdecode), and then to encode it
back (using sencode).

I sdecodeing and sencodeing back is a commonly–used trick,
as we shall see later.

Creating factor variables in resultssets and other datasets Frame 11 of 32

How do we make our subset plot? (Take 1)

We might be tempted to repeat the previous twoway spike
command, adding only an if qualifier, as follows:

. twoway spike weight make2 if price>=9000,
> ylabel(0(500)5000)
> xlabel(1(1)74, labsize(2) angle(90))
> xsize(6.5) ysize(3.75);

This might seem sensible at first. However. . .

Creating factor variables in resultssets and other datasets Frame 12 of 32

Weights of cars costing at least 9,000 US dollars (take 1)

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000
W

ei
gh

t (
lb

s.
)

Li
nc

. C
on

tin
en

ta
l

Li
nc

. M
ar

k
V

C
ad

. D
ev

ill
e

C
ad

. S
ev

ill
e

M
er

c.
 X

R
-7

B
ui

ck
 E

le
ct

ra
M

er
c.

 C
ou

ga
r

O
ld

s
98

O
ld

s
T

or
on

ad
o

C
ad

. E
ld

or
ad

o
B

ui
ck

 R
iv

ie
ra

Li
nc

. V
er

sa
ill

es
D

od
ge

 S
t.

R
eg

is
M

er
c.

 M
ar

qu
is

P
on

t.
C

at
al

in
a

C
he

v.
 Im

pa
la

O
ld

s
D

el
ta

 8
8

B
ui

ck
 L

eS
ab

re
D

od
ge

 D
ip

lo
m

at
D

od
ge

 M
ag

nu
m

P
on

t.
F

ire
bi

rd
C

he
v.

 N
ov

a
P

eu
ge

ot
 6

04
P

on
t.

P
ho

en
ix

B
ui

ck
 S

ky
la

rk
M

er
c.

 M
on

ar
ch

O
ld

s
O

m
eg

a
A

M
C

 P
ac

er
P

ly
m

. V
ol

ar
e

O
ld

s
C

ut
l S

up
r

O
ld

s
C

ut
la

ss
B

ui
ck

 R
eg

al
P

ly
m

. A
rr

ow
B

ui
ck

 C
en

tu
ry

C
he

v.
 M

on
te

 C
ar

lo
P

on
t.

G
ra

nd
 P

rix
P

on
t.

Le
 M

an
s

C
he

v.
 M

al
ib

u
V

ol
vo

 2
60

A
M

C
 C

on
co

rd
A

ud
i 5

00
0

M
er

c.
 Z

ep
hy

r
C

he
v.

 M
on

za
D

at
su

n
81

0
O

ld
s

S
ta

rf
ire

P
on

t.
S

un
bi

rd
T

oy
ot

a
C

or
on

a
B

M
W

 3
20

i
F

or
d

M
us

ta
ng

A
M

C
 S

pi
rit

M
er

c.
 B

ob
ca

t
P

ly
m

. S
ap

po
ro

T
oy

ot
a

C
el

ic
a

D
at

su
n

20
0

D
at

su
n

51
0

H
on

da
 A

cc
or

d
B

ui
ck

 O
pe

l
P

ly
m

. H
or

iz
on

T
oy

ot
a

C
or

ol
la

V
W

 D
as

he
r

F
ia

t S
tr

ad
a

D
od

ge
 C

ol
t

C
he

v.
 C

he
ve

tte
A

ud
i F

ox
S

ub
ar

u
V

W
 D

ie
se

l
D

at
su

n
21

0
V

W
 S

ci
ro

cc
o

M
az

da
 G

LC
V

W
 R

ab
bi

t
R

en
au

lt
Le

 C
ar

F
or

d
F

ie
st

a
P

ly
m

. C
ha

m
p

H
on

da
 C

iv
ic

Make and Model

. . .this is not the graph we really wanted. The subset X–labels are
unevenly spaced, and unwanted models are still listed, because the
cars are still numbered as before. So what should we have done?

Creating factor variables in resultssets and other datasets Frame 13 of 32

How do we make our subset plot? (Take 2)

A better way is to decode make2, with the if qualifier, to a string
variable make3, and to encode make3 back to numeric with the
same ordering. This method has the added advantage that we can
italicize the axis labels, using the prefix() and suffix()
options of sdecode to add SMCL prefixes and suffixes:

. sdecode make2 if price>=9000, generate(make3) prefix("{it:") suffix("}");

. sencode make3, replace gsort(make2);

. describe make2 make3;

storage display value
variable name type format label variable label

make2 byte %17.0g make2 Make and Model
make3 byte %22.0g make3 Make and Model

We now have 2 factor variables with different value labels.

Creating factor variables in resultssets and other datasets Frame 14 of 32

How do we make our subset plot? (Take 2, continued)

And, this time, when we make the plot, we use levelsof to extract
the list of values of make3 to a local macro xlabs, and use this
macro to specify the X–axis labels for our twoway spike graph:

. levelsof make3, local(xlabs);
1 2 3 4 5 6 7 8 9 10 11 12

. twoway spike weight make3,
> ylabel(0(500)5000)
> xlabel(‘xlabs’, labsize(2) angle(90))
> xsize(6.5) ysize(3.75);

So what does this graph look like?

Creating factor variables in resultssets and other datasets Frame 15 of 32

Weights of cars costing at least 9,000 US dollars (take 2)

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000
W

ei
gh

t (
lb

s.
)

Li
nc

. C
on

tin
en

ta
l

Li
nc

. M
ar

k
V

C
ad

. D
ev

ill
e

C
ad

. S
ev

ill
e

O
ld

s
T

or
on

ad
o

C
ad

. E
ld

or
ad

o

B
ui

ck
 R

iv
ie

ra

Li
nc

. V
er

sa
ill

es

P
eu

ge
ot

 6
04

V
ol

vo
 2

60

A
ud

i 5
00

0

B
M

W
 3

20
i

Make and Model

This looks more like the graph we wanted. The X–axis labels are now
subsetted, evenly spaced and italicized.

Creating factor variables in resultssets and other datasets Frame 16 of 32

Bringing order to concatenated resultssets

I A resultsset is a Stata dataset produced as output by a Stata
command, such as the ones in the SSC package parmest[1].

I These resultssets are frequently concatenated, using append,
especially when we make multiple resultssets containing
parameter estimates from multiple model fits.

I And they often contain a string ID variable, specified by the
idstr() option, identifying which resultsset an observation
came from.

I In the concatenated resultsset, we usually use sencode to
extract numeric factors from the string ID variable.

I These factors are then used for sorting and/or plotting the
concatenated resultsset.

Creating factor variables in resultssets and other datasets Frame 17 of 32

Bringing order to concatenated resultssets

I A resultsset is a Stata dataset produced as output by a Stata
command, such as the ones in the SSC package parmest[1].

I These resultssets are frequently concatenated, using append,
especially when we make multiple resultssets containing
parameter estimates from multiple model fits.

I And they often contain a string ID variable, specified by the
idstr() option, identifying which resultsset an observation
came from.

I In the concatenated resultsset, we usually use sencode to
extract numeric factors from the string ID variable.

I These factors are then used for sorting and/or plotting the
concatenated resultsset.

Creating factor variables in resultssets and other datasets Frame 17 of 32

Bringing order to concatenated resultssets

I A resultsset is a Stata dataset produced as output by a Stata
command, such as the ones in the SSC package parmest[1].

I These resultssets are frequently concatenated, using append,
especially when we make multiple resultssets containing
parameter estimates from multiple model fits.

I And they often contain a string ID variable, specified by the
idstr() option, identifying which resultsset an observation
came from.

I In the concatenated resultsset, we usually use sencode to
extract numeric factors from the string ID variable.

I These factors are then used for sorting and/or plotting the
concatenated resultsset.

Creating factor variables in resultssets and other datasets Frame 17 of 32

Bringing order to concatenated resultssets

I A resultsset is a Stata dataset produced as output by a Stata
command, such as the ones in the SSC package parmest[1].

I These resultssets are frequently concatenated, using append,
especially when we make multiple resultssets containing
parameter estimates from multiple model fits.

I And they often contain a string ID variable, specified by the
idstr() option, identifying which resultsset an observation
came from.

I In the concatenated resultsset, we usually use sencode to
extract numeric factors from the string ID variable.

I These factors are then used for sorting and/or plotting the
concatenated resultsset.

Creating factor variables in resultssets and other datasets Frame 17 of 32

Bringing order to concatenated resultssets

I A resultsset is a Stata dataset produced as output by a Stata
command, such as the ones in the SSC package parmest[1].

I These resultssets are frequently concatenated, using append,
especially when we make multiple resultssets containing
parameter estimates from multiple model fits.

I And they often contain a string ID variable, specified by the
idstr() option, identifying which resultsset an observation
came from.

I In the concatenated resultsset, we usually use sencode to
extract numeric factors from the string ID variable.

I These factors are then used for sorting and/or plotting the
concatenated resultsset.

Creating factor variables in resultssets and other datasets Frame 17 of 32

Bringing order to concatenated resultssets

I A resultsset is a Stata dataset produced as output by a Stata
command, such as the ones in the SSC package parmest[1].

I These resultssets are frequently concatenated, using append,
especially when we make multiple resultssets containing
parameter estimates from multiple model fits.

I And they often contain a string ID variable, specified by the
idstr() option, identifying which resultsset an observation
came from.

I In the concatenated resultsset, we usually use sencode to
extract numeric factors from the string ID variable.

I These factors are then used for sorting and/or plotting the
concatenated resultsset.

Creating factor variables in resultssets and other datasets Frame 17 of 32

Code to produce a concatenated resultsset in the auto dataset

This alien–looking code (which you do not need to memorize) uses
the parmby module of the parmest package to fit unadjusted and
weight–adjusted regression models of mpg with respect to foreign,
with confidence limits from the unequal–variance and equal–variance
formulas. The parameters from these 4 estimations are saved in 4
temporary parmby resultssets, identified using the idstr() option,
which are then concatenated into the memory using append, after
the old dataset has been cleared:

tempfile tf1 tf2 tf3 tf4;
parmby "regress mpg foreign, vce(robust)",

idstr("Unequal&Unadjusted") saving(‘"‘tf1’"’, replace);
parmby "regress mpg foreign weight, vce(robust)",

idstr("Unequal&Adjusted") saving(‘"‘tf2’"’, replace);
parmby "regress mpg foreign",

idstr("Equal&Unadjusted") saving(‘"‘tf3’"’, replace);
parmby "regress mpg foreign weight",

idstr("Equal&Adjusted") saving(‘"‘tf4’"’, replace);
clear all;
append using ‘"‘tf1’"’ ‘"‘tf2’"’ ‘"‘tf3’"’ ‘"‘tf4’"’;

Creating factor variables in resultssets and other datasets Frame 18 of 32

Variables in the concatenated resultsset

When we describe the concatenated resultsset, we see that it
contains parameter estimates, confidence limits and P–values:

. describe;

Contains data
obs: 10
vars: 10
size: 750

storage display value

variable name type format label variable label

parmseq byte %12.0g Parameter sequence number
idstr str18 %18s String ID
parm str7 %9s Parameter name
estimate double %10.0g Parameter estimate
stderr double %10.0g SE of parameter estimate
dof byte %10.0g Degrees of freedom
t double %10.0g t-test statistic
p double %10.0g P-value
min95 double %10.0g Lower 95% confidence limit
max95 double %10.0g Upper 95% confidence limit

Sorted by:

Note: dataset has changed since last saved

However, this resultsset does not seem to be sorted by anything!

Creating factor variables in resultssets and other datasets Frame 19 of 32

Confidence intervals in the concatenated resultsset

When we list the concatenated resultsset, there seems to be more
hope of some order being established:

. list idstr parmseq parm estimate min* max*, sepby(idstr);

+---+
idstr parmseq parm estimate min95 max95

1. | Unequal&Unadjusted 1 foreign 4.9458042 1.8670625 8.0245459 |
2. | Unequal&Unadjusted 2 _cons 19.826923 18.510426 21.14342 |

|---|
3. | Unequal&Adjusted 1 foreign -1.6500291 -3.9083006 .6082424 |
4. | Unequal&Adjusted 2 weight -.00658789 -.00767698 -.00549879 |
5. | Unequal&Adjusted 3 _cons 41.679702 38.095484 45.26392 |

|---|
6. | Equal&Unadjusted 1 foreign 4.9458042 2.2303837 7.6612247 |
7. | Equal&Unadjusted 2 _cons 19.826923 18.346341 21.307505 |

|---|
8. | Equal&Adjusted 1 foreign -1.6500291 -3.7955004 .49544223 |
9. | Equal&Adjusted 2 weight -.00658789 -.00785825 -.00531752 |
10. | Equal&Adjusted 3 _cons 41.679702 37.361724 45.997681 |

+---+

The string ID variable idstr identifies the 4 estimations, and the
numeric variable parmseq gives the parameter sequence order
within each estimation.

Creating factor variables in resultssets and other datasets Frame 20 of 32

Bringing order to the concatenated resultsset

This is done using the split command to split the string ID variable
(at the ampersand) into 2 new string variables (S_1 and S_2), and
then using sencode to encode them to 2 numeric variables
(vartype and adjtype), which are given variable labels and used
to key the resultsset, after the old string variables have been dropped:

. split idstr, parse(&) generate(S_);
variables created as string:
S_1 S_2

. sencode S_1, gene(vartype);

. sencode S_2, gene(adjtype);

. lab var vartype "Variance type";

. lab var adjtype "Adjustment type";

. drop idstr S_*;

. keyby vartype adjtype parmseq;

Note that sencode encodes string values in order of appearance, if
no gsort() option is specified.

Creating factor variables in resultssets and other datasets Frame 21 of 32

Variables in the improved concatenated resultsset

These are now as follows:

. describe;

Contains data
obs: 10

vars: 11
size: 590

storage display value

variable name type format label variable label

vartype byte %8.0g vartype Variance type
adjtype byte %10.0g adjtype Adjustment type
parmseq byte %12.0g Parameter sequence number
parm str7 %9s Parameter name
estimate double %10.0g Parameter estimate
stderr double %10.0g SE of parameter estimate
dof byte %10.0g Degrees of freedom
t double %10.0g t-test statistic
p double %10.0g P-value
min95 double %10.0g Lower 95% confidence limit
max95 double %10.0g Upper 95% confidence limit

Sorted by: vartype adjtype parmseq

Note: dataset has changed since last saved

This resultsset is sorted (and keyed) by 3 numeric variables.

Creating factor variables in resultssets and other datasets Frame 22 of 32

Confidence intervals in the improved concatenated resultsset

The dataset also looks better when listed (key variables first). . .

. list vartype adjtype parmseq parm estimate min* max*, sepby(vartype adjtype);

+---+
vartype adjtype parmseq parm estimate min95 max95

1. | Unequal Unadjusted 1 foreign 4.9458042 1.8670625 8.0245459 |
2. | Unequal Unadjusted 2 _cons 19.826923 18.510426 21.14342 |

|---|
3. | Unequal Adjusted 1 foreign -1.6500291 -3.9083006 .6082424 |
4. | Unequal Adjusted 2 weight -.00658789 -.00767698 -.00549879 |
5. | Unequal Adjusted 3 _cons 41.679702 38.095484 45.26392 |

|---|
6. | Equal Unadjusted 1 foreign 4.9458042 2.2303837 7.6612247 |
7. | Equal Unadjusted 2 _cons 19.826923 18.346341 21.307505 |

|---|
8. | Equal Adjusted 1 foreign -1.6500291 -3.7955004 .49544223 |
9. | Equal Adjusted 2 weight -.00658789 -.00785825 -.00531752 |
10. | Equal Adjusted 3 _cons 41.679702 37.361724 45.997681 |

+---+

Creating factor variables in resultssets and other datasets Frame 23 of 32

Mileage differences between non–US and US cars (plotted using the SSC
package eclplot)

I . . .and better still when
we plot only the
foreign effects.

I We see that non–US cars
do more miles per gallon
than US cars.

I However, this difference
vanishes after adjusting
for weight.

I Of course, split and
sencode can extract
more than 2 factors from
the same string ID.

Unadjusted

Adjusted

Unadjusted

Adjusted

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

Unequal

Equal
A

dj
us

tm
en

t t
yp

e

Difference in mileage (MPG) between non-US and US cars
Graphs by Variance type

Creating factor variables in resultssets and other datasets Frame 24 of 32

Mileage differences between non–US and US cars (plotted using the SSC
package eclplot)

I . . .and better still when
we plot only the
foreign effects.

I We see that non–US cars
do more miles per gallon
than US cars.

I However, this difference
vanishes after adjusting
for weight.

I Of course, split and
sencode can extract
more than 2 factors from
the same string ID.

Unadjusted

Adjusted

Unadjusted

Adjusted

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

Unequal

Equal
A

dj
us

tm
en

t t
yp

e

Difference in mileage (MPG) between non-US and US cars
Graphs by Variance type

Creating factor variables in resultssets and other datasets Frame 24 of 32

Mileage differences between non–US and US cars (plotted using the SSC
package eclplot)

I . . .and better still when
we plot only the
foreign effects.

I We see that non–US cars
do more miles per gallon
than US cars.

I However, this difference
vanishes after adjusting
for weight.

I Of course, split and
sencode can extract
more than 2 factors from
the same string ID.

Unadjusted

Adjusted

Unadjusted

Adjusted

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

Unequal

Equal
A

dj
us

tm
en

t t
yp

e

Difference in mileage (MPG) between non-US and US cars
Graphs by Variance type

Creating factor variables in resultssets and other datasets Frame 24 of 32

Mileage differences between non–US and US cars (plotted using the SSC
package eclplot)

I . . .and better still when
we plot only the
foreign effects.

I We see that non–US cars
do more miles per gallon
than US cars.

I However, this difference
vanishes after adjusting
for weight.

I Of course, split and
sencode can extract
more than 2 factors from
the same string ID.

Unadjusted

Adjusted

Unadjusted

Adjusted

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

Unequal

Equal
A

dj
us

tm
en

t t
yp

e

Difference in mileage (MPG) between non-US and US cars
Graphs by Variance type

Creating factor variables in resultssets and other datasets Frame 24 of 32

Mileage differences between non–US and US cars (plotted using the SSC
package eclplot)

I . . .and better still when
we plot only the
foreign effects.

I We see that non–US cars
do more miles per gallon
than US cars.

I However, this difference
vanishes after adjusting
for weight.

I Of course, split and
sencode can extract
more than 2 factors from
the same string ID.

Unadjusted

Adjusted

Unadjusted

Adjusted

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

Unequal

Equal
A

dj
us

tm
en

t t
yp

e

Difference in mileage (MPG) between non-US and US cars
Graphs by Variance type

Creating factor variables in resultssets and other datasets Frame 24 of 32

Advanced example: Frequency distributions of 3 factors in the auto
dataset

I This histogram describes
the distributions of 3
factors, with different
levels and numbers of
levels.

I These factors are
foreign, rep78, and
the added factor
odd=mod(_n,2).

I So how do we produce a
multi–factor histogram
like this?

Car type:

Domestic

Foreign

Odd-numbered car:

Even

Odd

Repair Record 1978:

1

2

3

4

5

0 10 20 30 40 50 60 70 80

Percent

Creating factor variables in resultssets and other datasets Frame 25 of 32

Advanced example: Frequency distributions of 3 factors in the auto
dataset

I This histogram describes
the distributions of 3
factors, with different
levels and numbers of
levels.

I These factors are
foreign, rep78, and
the added factor
odd=mod(_n,2).

I So how do we produce a
multi–factor histogram
like this?

Car type:

Domestic

Foreign

Odd-numbered car:

Even

Odd

Repair Record 1978:

1

2

3

4

5

0 10 20 30 40 50 60 70 80

Percent

Creating factor variables in resultssets and other datasets Frame 25 of 32

Advanced example: Frequency distributions of 3 factors in the auto
dataset

I This histogram describes
the distributions of 3
factors, with different
levels and numbers of
levels.

I These factors are
foreign, rep78, and
the added factor
odd=mod(_n,2).

I So how do we produce a
multi–factor histogram
like this?

Car type:

Domestic

Foreign

Odd-numbered car:

Even

Odd

Repair Record 1978:

1

2

3

4

5

0 10 20 30 40 50 60 70 80

Percent

Creating factor variables in resultssets and other datasets Frame 25 of 32

Advanced example: Frequency distributions of 3 factors in the auto
dataset

I This histogram describes
the distributions of 3
factors, with different
levels and numbers of
levels.

I These factors are
foreign, rep78, and
the added factor
odd=mod(_n,2).

I So how do we produce a
multi–factor histogram
like this?

Car type:

Domestic

Foreign

Odd-numbered car:

Even

Odd

Repair Record 1978:

1

2

3

4

5

0 10 20 30 40 50 60 70 80

Percent

Creating factor variables in resultssets and other datasets Frame 25 of 32

Creating the multi–factor histogram using sdecode and sencode
(repeatedly)

I We start by using the SSC package xcontract (an extended
version of contract) to make 3 frequency resultssets, one for
each factor, which we append into the memory.

I We then replace these 3 old factors with 2 new key factors,
indicating the old factors and the old–factor levels, respectively.

I We then replace the 2 new key factors with a single key factor,
which we plot against the variable _percent to make the
histogram.

I This kind of destructive mutilation of resultssets is usually done
in a do–file, between a preserve statement and a restore
statement. (Not interactively.)

Creating factor variables in resultssets and other datasets Frame 26 of 32

Creating the multi–factor histogram using sdecode and sencode
(repeatedly)

I We start by using the SSC package xcontract (an extended
version of contract) to make 3 frequency resultssets, one for
each factor, which we append into the memory.

I We then replace these 3 old factors with 2 new key factors,
indicating the old factors and the old–factor levels, respectively.

I We then replace the 2 new key factors with a single key factor,
which we plot against the variable _percent to make the
histogram.

I This kind of destructive mutilation of resultssets is usually done
in a do–file, between a preserve statement and a restore
statement. (Not interactively.)

Creating factor variables in resultssets and other datasets Frame 26 of 32

Creating the multi–factor histogram using sdecode and sencode
(repeatedly)

I We start by using the SSC package xcontract (an extended
version of contract) to make 3 frequency resultssets, one for
each factor, which we append into the memory.

I We then replace these 3 old factors with 2 new key factors,
indicating the old factors and the old–factor levels, respectively.

I We then replace the 2 new key factors with a single key factor,
which we plot against the variable _percent to make the
histogram.

I This kind of destructive mutilation of resultssets is usually done
in a do–file, between a preserve statement and a restore
statement. (Not interactively.)

Creating factor variables in resultssets and other datasets Frame 26 of 32

Creating the multi–factor histogram using sdecode and sencode
(repeatedly)

I We start by using the SSC package xcontract (an extended
version of contract) to make 3 frequency resultssets, one for
each factor, which we append into the memory.

I We then replace these 3 old factors with 2 new key factors,
indicating the old factors and the old–factor levels, respectively.

I We then replace the 2 new key factors with a single key factor,
which we plot against the variable _percent to make the
histogram.

I This kind of destructive mutilation of resultssets is usually done
in a do–file, between a preserve statement and a restore
statement. (Not interactively.)

Creating factor variables in resultssets and other datasets Frame 26 of 32

Creating the multi–factor histogram using sdecode and sencode
(repeatedly)

I We start by using the SSC package xcontract (an extended
version of contract) to make 3 frequency resultssets, one for
each factor, which we append into the memory.

I We then replace these 3 old factors with 2 new key factors,
indicating the old factors and the old–factor levels, respectively.

I We then replace the 2 new key factors with a single key factor,
which we plot against the variable _percent to make the
histogram.

I This kind of destructive mutilation of resultssets is usually done
in a do–file, between a preserve statement and a restore
statement. (Not interactively.)

Creating factor variables in resultssets and other datasets Frame 26 of 32

The first concatenated resultsset (with 3 key factors)

This was made by appending 3 xcontract resultssets (one for
each factor). It has 3 factors, 1 observation per level per factor, and a
lot of missing factor values.

. list, sepa(0);

+--+
foreign odd rep78 _freq _percent

1. | Domestic . . 52 70.27 |
2. | Foreign . . 22 29.73 |
3. | . Even . 37 50.00 |
4. | . Odd . 37 50.00 |
5. | . . 1 2 2.90 |
6. | . . 2 8 11.59 |
7. | . . 3 30 43.48 |
8. | . . 4 18 26.09 |
9. | . . 5 11 15.94 |

+--+

Creating factor variables in resultssets and other datasets Frame 27 of 32

The second concatenated resultsset (with 2 key factors)
This was made by replacing the 3 factors with 2 factors, factor and
faclev, created by the decoding–encoding command sequence:
factmerg foreign odd rep78, flabel(factor) fvalue(faclev);
sencode factor, replace;
sencode faclev, replace manyto1 gsort(factor foreign odd rep78);

It still has 1 observation per level per factor. However, it is slimmer,
with no missing factor values.

. list, sepby(factor);

+--+
factor faclev _freq _percent

1. | Car type Domestic 52 70.27 |
2. | Car type Foreign 22 29.73 |

|--|
3. | Odd-numbered car Even 37 50.00 |
4. | Odd-numbered car Odd 37 50.00 |

|--|
5. | Repair Record 1978 1 2 2.90 |
6. | Repair Record 1978 2 8 11.59 |
7. | Repair Record 1978 3 30 43.48 |
8. | Repair Record 1978 4 18 26.09 |
9. | Repair Record 1978 5 11 15.94 |

+--+

Creating factor variables in resultssets and other datasets Frame 28 of 32

The third concatenated resultsset (with 1 key factor)
This was made by replacing the 2 factors with 1 factor row, created
by the decoding–encoding command sequence:
sdecode faclev, gene(row);
insingap factor, rowlabel(row) grdecode(factor) inner(faclev)

neworder(rowseq1) gapindicator(gapstat) prefix("{bf:") suffix(":}");
sencode row, replace manyto1;

It is even slimmer, taller, and richer, with added SMCL gap
observations, introducing each of the 3 original factors. So, it now
has 1 observation per row of the planned multi–factor histogram. . .
. list row _freq _percent, sepby(factor);

+---+
row _freq _percent

1. | {bf:Car type:} . . |
2. | Domestic 52 70.27 |
3. | Foreign 22 29.73 |

|---|
4. | {bf:Odd-numbered car:} . . |
5. | Even 37 50.00 |
6. | Odd 37 50.00 |

|---|
7. | {bf:Repair Record 1978:} . . |
8. | 1 2 2.90 |
9. | 2 8 11.59 |
10. | 3 30 43.48 |
11. | 4 18 26.09 |
12. | 5 11 15.94 |

+---+
Creating factor variables in resultssets and other datasets Frame 29 of 32

Frequency distributions of 3 factors in the auto dataset

I . . .which we then create
using a twoway bar
command, plotting
_percent against row.

I Note that each factor has
a bold–font heading,
made using SMCL.

I Similar decoding and
encoding sequences can
be used to produce TEX,
HTML or RTF tables[3].

Car type:

Domestic

Foreign

Odd-numbered car:

Even

Odd

Repair Record 1978:

1

2

3

4

5

0 10 20 30 40 50 60 70 80

Percent

Creating factor variables in resultssets and other datasets Frame 30 of 32

Frequency distributions of 3 factors in the auto dataset

I . . .which we then create
using a twoway bar
command, plotting
_percent against row.

I Note that each factor has
a bold–font heading,
made using SMCL.

I Similar decoding and
encoding sequences can
be used to produce TEX,
HTML or RTF tables[3].

Car type:

Domestic

Foreign

Odd-numbered car:

Even

Odd

Repair Record 1978:

1

2

3

4

5

0 10 20 30 40 50 60 70 80

Percent

Creating factor variables in resultssets and other datasets Frame 30 of 32

Frequency distributions of 3 factors in the auto dataset

I . . .which we then create
using a twoway bar
command, plotting
_percent against row.

I Note that each factor has
a bold–font heading,
made using SMCL.

I Similar decoding and
encoding sequences can
be used to produce TEX,
HTML or RTF tables[3].

Car type:

Domestic

Foreign

Odd-numbered car:

Even

Odd

Repair Record 1978:

1

2

3

4

5

0 10 20 30 40 50 60 70 80

Percent

Creating factor variables in resultssets and other datasets Frame 30 of 32

Frequency distributions of 3 factors in the auto dataset

I . . .which we then create
using a twoway bar
command, plotting
_percent against row.

I Note that each factor has
a bold–font heading,
made using SMCL.

I Similar decoding and
encoding sequences can
be used to produce TEX,
HTML or RTF tables[3].

Car type:

Domestic

Foreign

Odd-numbered car:

Even

Odd

Repair Record 1978:

1

2

3

4

5

0 10 20 30 40 50 60 70 80

Percent

Creating factor variables in resultssets and other datasets Frame 30 of 32

Odds ratios for Parietaria pollen allergy in the GA2LEN survey

I And similar tricks also
work with factors
regenerated in parmest
resultssets, using
fvregen[2] and
factext[1].

I In the GA2LEN survey,
we fitted multi–factor
logistic models,
predicting skin–prick
allergies using discrete
and continuous factors.

I Continuous factors were
modelled using additive
reference splines[4].

 Gender:
Male

Female (ref)
 Follow up questionnaire age (years):

25
35

45 (ref)
55
65
75

 Smoking status:
Never (ref)

Ex
Current

 Smoking exposure (pack−years):
0 (ref)

25
50

 Number of older siblings:
0 (ref)

2
6

 Farm exposure in first 5 years:
Non−farm (ref)

Farm
 Body mass index (kilos/square metre):

20
25 (ref)

30

.005859
.007813
.01172
.01563
.02344
.03125
.04688
.0625
.09375
.125
.1875
.25
.375
.5 .75
1 1.5
2 3 4 6 8 12

OR (95% CI) for sensitivity to: Parietaria (98 cases, 2920 subjects)

Creating factor variables in resultssets and other datasets Frame 31 of 32

Odds ratios for Parietaria pollen allergy in the GA2LEN survey

I And similar tricks also
work with factors
regenerated in parmest
resultssets, using
fvregen[2] and
factext[1].

I In the GA2LEN survey,
we fitted multi–factor
logistic models,
predicting skin–prick
allergies using discrete
and continuous factors.

I Continuous factors were
modelled using additive
reference splines[4].

 Gender:
Male

Female (ref)
 Follow up questionnaire age (years):

25
35

45 (ref)
55
65
75

 Smoking status:
Never (ref)

Ex
Current

 Smoking exposure (pack−years):
0 (ref)

25
50

 Number of older siblings:
0 (ref)

2
6

 Farm exposure in first 5 years:
Non−farm (ref)

Farm
 Body mass index (kilos/square metre):

20
25 (ref)

30

.005859
.007813
.01172
.01563
.02344
.03125
.04688
.0625
.09375
.125
.1875
.25
.375
.5 .75
1 1.5
2 3 4 6 8 12

OR (95% CI) for sensitivity to: Parietaria (98 cases, 2920 subjects)

Creating factor variables in resultssets and other datasets Frame 31 of 32

Odds ratios for Parietaria pollen allergy in the GA2LEN survey

I And similar tricks also
work with factors
regenerated in parmest
resultssets, using
fvregen[2] and
factext[1].

I In the GA2LEN survey,
we fitted multi–factor
logistic models,
predicting skin–prick
allergies using discrete
and continuous factors.

I Continuous factors were
modelled using additive
reference splines[4].

 Gender:
Male

Female (ref)
 Follow up questionnaire age (years):

25
35

45 (ref)
55
65
75

 Smoking status:
Never (ref)

Ex
Current

 Smoking exposure (pack−years):
0 (ref)

25
50

 Number of older siblings:
0 (ref)

2
6

 Farm exposure in first 5 years:
Non−farm (ref)

Farm
 Body mass index (kilos/square metre):

20
25 (ref)

30

.005859
.007813
.01172
.01563
.02344
.03125
.04688
.0625
.09375
.125
.1875
.25
.375
.5 .75
1 1.5
2 3 4 6 8 12

OR (95% CI) for sensitivity to: Parietaria (98 cases, 2920 subjects)

Creating factor variables in resultssets and other datasets Frame 31 of 32

Odds ratios for Parietaria pollen allergy in the GA2LEN survey

I And similar tricks also
work with factors
regenerated in parmest
resultssets, using
fvregen[2] and
factext[1].

I In the GA2LEN survey,
we fitted multi–factor
logistic models,
predicting skin–prick
allergies using discrete
and continuous factors.

I Continuous factors were
modelled using additive
reference splines[4].

 Gender:
Male

Female (ref)
 Follow up questionnaire age (years):

25
35

45 (ref)
55
65
75

 Smoking status:
Never (ref)

Ex
Current

 Smoking exposure (pack−years):
0 (ref)

25
50

 Number of older siblings:
0 (ref)

2
6

 Farm exposure in first 5 years:
Non−farm (ref)

Farm
 Body mass index (kilos/square metre):

20
25 (ref)

30

.005859
.007813
.01172
.01563
.02344
.03125
.04688
.0625
.09375
.125
.1875
.25
.375
.5 .75
1 1.5
2 3 4 6 8 12

OR (95% CI) for sensitivity to: Parietaria (98 cases, 2920 subjects)

Creating factor variables in resultssets and other datasets Frame 31 of 32

References

[1] Newson, R. 2004. From datasets to resultssets in Stata. Presented at the 10th UK Stata
User Meeting, 28–29 June, 2004. Downloadable from the conference website at
http://ideas.repec.org/s/boc/usug04.html

[2] Newson, R. B. 2010. Post–parmest peripherals: fvregen, invcise, and qqvalue.
. Presented at the 16th UK Stata User Meeting, 9–10 September, 2010. Downloadable
from the conference website at http://ideas.repec.org/s/boc/usug10.html

[3] Newson, R. B. 2012. From resultssets to resultstables in Stata. The Stata Journal 12(2):
479–504.

[4] Newson, R. B. 2012. Sensible parameters for univariate and multivariate splines. The
Stata Journal 12(3): 479–504.

This presentation, and the do–file producing the examples in the
auto data, can be downloaded from the conference website at
http://ideas.repec.org/s/boc/usug13.html

The packages used in this presentation can be downloaded from SSC,
using the ssc command.

Creating factor variables in resultssets and other datasets Frame 32 of 32

http://ideas.repec.org/s/boc/usug04.html
http://ideas.repec.org/s/boc/usug04.html
http://ideas.repec.org/s/boc/usug12.html

	Title
	Introduction
	Keying and plotting the auto data
	Bringing order to concatenated resultssets
	Multi–factor histograms and plots
	References

